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Abstract

Constructing accurate forecasts from economic data is essential for economic policy decision-making.

But low-frequency and high-dimensionality of such data can pose a serious challenge for classical

statistical techniques. Kim & Swanson (2018) give an extensive overview of the most promising

methodologies for analyzing such data. In this paper, a dataset containing yearly GDP growth rates of

52 African countries is used to replicate the findings of Kim & Swanson (2018) and answer how factor

selection and dimensionality reduction techniques impact forecasting accuracy in terms of MSFE. In

line with prior literature, it is found that factor-based models outperform AR-type models. However,

combining boosting and least angle regression with factorization improves accuracy only sometimes.

Additionally, although rPC,IC (Bai & Ng, 2002) more accurately identifies the number of underlying

factors than a selection based on AIC and SIC, this only translates to accuracy gains occasionally. Still,

both methods are preferred to always include the first three factors. When analyzing dimensionality

reduction techniques it is concluded that PCA and Kernel PCA are preferred over SPCA and ICA for

the one-step-ahead forecasts constructed in this paper.
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1 Introduction

At the heart of every economic policy decision are forecasts of future economic conditions.

Whether it is central banks projecting inflation to set their interest rates, or governments pro-

jecting GDP growth to adjust their fiscal policies, forecasts always play an important role. These

forecasts are based on a large variety of different economic variables observed over time.

As time passes time-series datasets automatically grow along the time axis T. However,

as Donoho et al. (2000) note, with increasing efficiency more and more information is being

collected and stored, leading to an explosion of available variables which enter datasets along

the predictor axis N. This growth of variables means the dimensionality of datasets increases,

which can pose problems for classic statistical techniques (Donoho et al., 2000). Especially,

low-frequency economic datasets can become difficult to analyze if T << N.

But hand in hand with the growing datasets, also the literature and methodology to analyze

’Big Data’ is growing. Different methodologies for handling high-dimensional datasets have been

developed and are constantly being refined. One approach is to use feature selection, for which

the goal is to identify a subset of predictors from all the available variables as described in

(Mitra et al., 2002) and (Kira & Rendell, 1992). Another approach is to project the dataset into

lower dimensionality. A popular technique to reduce dimensionality in such a way is Principal

Component Analysis. On the other hand, models such as a Least Angle Regression (Efron et

al., 2004) use regularization, which penalizes using many predictors, and therefore selects only

the most important predictors automatically. Many other techniques exist and most of them

can be employed together. This can make an overview of all available methodologies and their

respective performance challenging.

Kim & Swanson (2018) tried to give such an overview, by comparing the forecasting per-

formance of 14 different models for low-frequency macroeconomic data. They analyze different

dimensionality reduction techniques, such as PCA, ICA, SPCA, machine learning, variables

selection, and shrinkage methods independent from each other and jointly. The authors find

that factor models outperform the autoregressive-type benchmark models. Additionally, ML,

variable selection, and shrinkage methods are better when combined with factor models. Also,

they find that PCA is usually preferred over ICA and SPCA for longer forecasting horizons,

due to its robustness, but models based on ICA and SPCA are better when predicting over

shorter forecasting horizons. To test whether these findings can be generalized to other data the

following two research hypothesis are formulated:

H1: Do factor-based models outperform forecasting accuracy of AR-type models when GDP

growth rates are forecasted for 52 African countries?
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H2: Does combining machine learning such as boosting and least angle regression with factor

models improve performance of these models when forecasting GDP growth rates of 52 African

countries?

As indicated by the two hypotheses, the results of Kim & Swanson (2018) will be replicated

on a dataset that contains the yearly GDP growth rates of 52 African countries. For the results

of Kim & Swanson (2018) the number of factors to include after applying PCA, ICA or SPCA

is selected according to the methodology of Bai & Ng (2002). Since factor-based models were

shown to be among the best, it is of interest to test how other methodologies for factor selection

impact the forecasting performance of these models. Therefore, the following hypothesis is

formulated as an extension to the findings of Kim & Swanson (2018):

H3: How does the factor selection methodology impact forecasting accuracy of factor-based

models?

On the other hand, Cao et al. (2003) show that the non-linear Kernel Principal Component

Analysis (KPCA) in some use cases can deliver better results than the linear PCA or ICA. Since

the findings of Kim & Swanson (2018) also show that the preference of PCA, ICA, or SPCA

is situation-dependent, including KPCA seems like an interesting extension, which is translated

to hypothesis four:

H4: How do KPCA factor-based models compare to PCA, ICA, and SPCA-based models?

By adding to existing literature through the extensions and testing the generalizability of

Kim & Swanson (2018), this paper has scientific relevance. At the same time, analyzing the

accuracy of GDP growth forecasts is important in a practical way. Accurate economic forecasts

are critical for every policy decision that can have an enormous impact on a significant amount

of people, highlighting the social relevance of this research.

The rest of this thesis is structured as follows. Section 2 summarizes relevant literature,

Section 3 describes the African GDP dataset, and Section 4 covers the Methodology. Section

5 presents the results and which are summarized and discussed in Section 6. Note that, the

findings of Kim & Swanson (2018) are not replicated due to the missing dataset. Instead, a

simulation study explained in section 4.4 is conducted.

2 Literature Review

2.1 Econometric Literature

Many different methodologies for handling high-dimensional datasets have been developed. Most

of the earlier research focused on diffusion index (DI) models as proposed by Stock & Watson
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(1998). The idea behind diffusion index models is that a small set of common underlying factors

drives the variability in a dataset. Therefore, when constructing diffusion index models, first the

underlying factors are estimated from the data, and then those factors instead of the original

variables are used in a least-squares regression. As Kim & Swanson (2013) note, the factors are

most commonly calculated by PCA. The in general good forecasting accuracy of DI models has

been analyzed empirically and theoretically. For example, Stock & Watson (2002) conclude that

PCA-based DI models outperform autoregressive benchmark models when predicting industrial

production from 149 variables. On the other hand, Bai & Ng (2006) develop a theoretical

framework for the use of DI models. They show that the least-squares estimates from factor

augmented regressions are consistent and give a methodology for constructing forecast confidence

intervals.

When building factor-based models, there is a wide variety of factor estimation and selection

techniques. Next to PCA, recent papers such as Kim & Swanson (2018) and Cao et al. (2003)

use ICA, SPCA, and KPCA as other ways to estimate the factors. Kim & Swanson (2018) find

that for shorter forecasting horizons SPCA and ICA-based factor models deliver better forecasts

than PCA-based models and the opposite is true for longer horizons. On the other hand, Cao et

al. (2003) find that KPCA performs best, followed by ICA and PCA. Bai & Ng (2002) in their

research on determining the correct number of factors show that the common way of selecting

factors based on AIC or SIC often overestimates the number of true underlying factors. Instead,

they propose new criteria which show better accuracy in their simulation study. In contrast to

this, Stock & Watson (2002) find that most forecasting gains come from the first two to three

factors and a PCA model which always includes three factors outperforms all other models,

including a model where the number of factors is determined according to Bai & Ng (2002).

Next to diffusion index models, other forecasting methodologies such as combination models,

LASSO regression, least angle regression, the elastic net, and boosting were shown to produce

accurate forecasts in high dimensional datasets. The good performance of combination models

which aggregate forecasts from other models is highlighted in Stock & Watson (2004). Stock

& Watson (2004) forecast quarterly GDP growth for 7 countries from a set of up to 73 pre-

dictors and show that combination forecasts can deliver more accurate forecasts than AR-type

benchmark models. Most interestingly, they show that the best and most stable results are

achieved for simple weighting schemes such as the arithmetic mean. Bai & Ng (2008) improve

the forecasting accuracy of factor-based inflation forecasts by calculating factors from a subset

of variables. For the variable selection, LASSO regression, Least Angle regression (LARS), the

elastic net, and statistical tests are used. According to Kim & Swanson (2018), one can think
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of LASSO, LARS, and the elastic net as penalized regressions with a function of parameters as

penalty. When applying these methods, the coefficients of some variables converge to 0 and,

therefore, these methods can be also used for variable selection.

Boosting which combines forecasts from simpler models, so-called weak learners, can be

employed similarly. Bai & Ng (2009) use boosting for variable selection and improve the accuracy

of subsequent 12-month ahead prediction of several macro variables. However, Bai & Ng (2009)

note that boosting is sensitive to the data generating process since for example boosting of

factors is preferred over boosting of variables only when there is a strong factor structure. Also,

Bai & Ng (2008) conclude that the best model is situation-dependent and that the preselected

subset of variables changes over time and across predicted variables.

More recent literature such as Kim & Swanson (2018) and Stock & Watson (2012) compare

all of these methodologies jointly on even bigger datasets. Stock & Watson (2012) forecast eight

US macroeconomic variables from 215 predictor variables for three different forecast horizons

with 20 different models. In accordance with Bai & Ng (2008) and Bai & Ng (2009) they find

big differences in model performance between the eight variables. Additionally, Stock & Watson

(2012) conclude that there are only a few sources of variability as at most six factors account for

most of the variation in the dependent variables. Similar to Stock & Watson (2002), the authors

also find that including autoregressive terms in the factor-based models offers little or no benefit

(Stock & Watson, 2012). Kim & Swanson (2018) compare even more models based on MSFE

when predicting eleven US macro variables. Kim & Swanson (2018) show that factor-based

models outperform AR-type models, and model averaging techniques such as mean forecasts

are best one-third of the time. They also conclude that machine learning and variable selection

methods combined with factorization as in Bai & Ng (2008) and Bai & Ng (2009) outperform

their pure application. However, also the results of Kim & Swanson (2018) show that different

models are preferred between the eleven macro variables.

2.2 Use of Factor Models in Economics

The idea and popularity of diffusion index models can also be seen in classic economic literature.

Especially, for asset returns, many theoretical frameworks have been developed that model these

returns through a small set of factors. The Capital Asset Pricing Model (CAPM) of Sharpe

(1964) was one of the first to do so and models asset returns by a single factor, the market

return. According to the CAPM, the expected return of an asset is solely determined by the

exposure to market risk. As an alternative to the CAPM, Ross (1976) developed Arbitrage

Pricing Theory (APT). In APT, asset returns are driven by multiple undefined factors.
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Based on the APT, Fama (1992) developed a three-factor model including the market re-

turn, a company size factor, and a value factor based on book-to-market ratios. Hence, they

extended the CAPM by two additional factors. Later this was refined to a five-factor model

with additional bond-market factors for maturity and default risk as described in Fama & French

(1993). The CAPM was also extended to include consumption by Breeden (1979) and became

the Consumption CAPM (CCAPM).

3 Data

For the extension, a dataset containing yearly GDP observations of 52 African Countries ranging

from 1960 to 2015 (N=52, T=56) is used. From the GDP data for each country i the log GDP

growth rates Yi,t are calculated as demonstrated in Equation 1. Since the growth rates cannot

be calculated for the first observation, the final sample period is 1961 - 2015 (N=52, T=55).

Table A1 in Appendix A shows the descriptive statistics of this dataset.

Yi,t = 100 ∗ log(
GDPi,t

GDPi,t−1
), i = 1, ..., 52, t = 2, ..., 56 (1)

From the descriptive statistics, it is concluded that there are large differences in terms of

GDP growth between the 52 countries. The log GDP growth of countries such as Somalia

seems to be normally distributed with a moderate mean growth of 2%, skewness of -0.463, and

kurtosis of 3.033. On the other hand, Rwanda shows a higher average growth of 3.9% but with

a significant negative skewness of -4.121 and big swings as seen by the large standard deviation

of 12.163 and kurtosis of 25.275. In general, we find a large spread in all statistics. The sample

includes stagnating as well as high growth economies as shown by the mean log growth rate

ranging from -0.861 (Libya) to 10.168 (Equatorial Guinea). Also, the stability of growth differs

as depicted by the standard deviation range of 1.576 (Guinea) to 19.713 (Libya). Overall,

this relatively heterogeneous sample could lead to varying model accuracy over the different

countries. Therefore, it will be interesting to compare the average forecasting performance to

the forecasting performance of individual countries as will be explained in Section 4.7.

4 Methodology

4.1 Dimensionality reduction

The idea behind dimensionality reduction is to meaningfully reduce a high dimensional dataset

to a lower dimension (Van Der Maaten et al., 2009). If we denote the African GDP dataset as
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a [T x N] = [55 x 52] matrix X1, then this idea can be explained by Equation 2 taken from Kim

& Swanson (2018).

X = FΛ′ + e (2)

F represents a [T x r] matrix of factors, Λ is an [N x r] coefficient matrix, and e a [T x N]

disturbance matrix. The goal of dimensionality reduction techniques is to find a matrix F with

r << N = 52 but that still captures most variation in X. F is not unique and depends on the

algorithm that is used to calculate it. In this paper, F is calculated by Principal Component

Analysis (PCA), Independent Component Analysis (ICA), Sparse Principal Component Analysis

(SPCA), and Kernel Principal Component Analysis (KPCA).

4.1.1 PCA

Principal Component Analysis is one of the oldest and most popular dimensionality reduction

techniques (Abdi & Williams, 2010). When applying PCA, orthogonal factors which are called

principal components are extracted from the initial dataset. The principal components are

linear combinations of the original variables. The first component captures as much variation

as possible, while the second tries to do the same but under the condition that it is orthogonal

to the first. Similarly, all other principal components are computed (Abdi & Williams, 2010).

X = U∆V ′ (3)

F = U∆ (4)

F = U∆ = U∆V V ′ = XV (5)

To see how these factors can be obtained denote the singular value decomposition (SVD) of

the dataset X, according to Wall et al. (2003), as in Equation 3. If the dataset X is of size [N x

T] with rank L, then the left singular matrix U has size [N x L] and the right singular matrix V

has size [L x T]. ∆ is then a diagonal [L x L] matrix of singular values.

From Equation 3 then the principal components or factors F can be constructed according

to Equation 4. Note that since it is assumed V V ′ = I, where I denotes an identity matrix, F

can also be expressed in terms of X and V. Which shows that V represents Λ in the general

Equation 2 for PCA.

1Note that Yi = Xi since the columns of X represent the log GDP growth of the 52 different countries over

time respectively.
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X ′X = V∆2V ′ (6)

U = XV∆−1 (7)

To construct F, one can use the property in Equation 6. Once V and ∆ have been obtained,

U can be calculated as displayed in Equation 7, where the property that V −1 = V ′ is used.

4.1.2 ICA

Unlike principal components, factors obtained by Independent Component Analysis are assumed

to be independent and not ordered by their variances. Similar to the V in PCA Equation 5 the

goal is to find a demixing matrix Ψ such that the ICA factors can be calculated as depicted

in Equation 8. As Kim & Swanson (2013) note, ICA assumes that the dataset X consists of a

statistical independent source data S which is weighted by Ω as seen in Equation 8.

F = XΨ = SΩΨ (8)

Note that if we set Ψ = V , we would get the same factors as for the PCA. To obtain

the demixing matrix Ψ and calculate the ICA factors the ”Fast ICA” algorithm proposed by

Hyvärinen & Oja (2000) is chosen.

4.1.3 SPCA

One problem with PCA is that, since the factors are linear combinations of all original vari-

ables, the factor loadings coefficients are usually non-zero, which makes the interpretation of the

different factors difficult. Zou et al. (2006), therefore, developed Sparse Principal Component

Analysis which tries to work around this problem by penalizing for non-zero factor loadings.

This way, ideally SPCA factors are constructed only from a subset of the most important vari-

ables. Similar to Kim & Swanson (2018), this paper follows the methodology of Zou et al. (2006)

to obtain the SPCA loadings.

4.1.4 KPCA

Kernel PCA can be seen as a non-linear extension to PCA (Hoffmann, 2007). The idea behind

KPCA is to project data that is non-linearly separable into a higher dimension that allows

linear separation. The linear principal components that are calculated in the higher dimensional

feature space then become non-linear in the original feature space. This method was originally
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proposed by Schölkopf et al. (1997) and this paper follows the same proposed methodology to

obtain KPCA factors.

4.2 Determining the number of factors r

All of the proposed dimensionality reduction methods return a square matrix containing all

calculated factors as columns Fi. Instead of using all factors Fi, the r most important factors

will be selected for the construction of the forecasts. There are different methodologies to

calculate the best number of factors to include. Let F r = [F1, F2, ..., Fr] denotes the set of

selected factors from all available factors. One way to get F r would be to regress X on F r as

in Equation 2 for r = 1, 2, ..., rmax, and then choose the r* that minimizes AIC(r) or SIC(r) of

these regressions. However, as Bai & Ng (2002) note, AIC(r) and SIC(r) tend to overestimate

the number of factors that should be included. Instead, the authors propose using PCp1, PCp2,

ICp1 and ICp2 as selection criteria instead.

PCp1(r) = V (r, F̂ r) + rσ̂2(
N + T

NT
)ln(

NT

N + T
) (9)

PCp2(r) = V (r, F̂ r) + rσ̂2(
N + T

NT
)ln(C2

NT ) (10)

ICp1(r) = ln(V (r, F̂ r)) + r(
N + T

NT
)ln(

NT

N + T
) (11)

ICp2(r) = ln(V (r, F̂ r)) + r(
N + T

NT
)ln(C2

NT ) (12)

These criteria are calculated according to Equation 9 to 12. V (r, F̂ r) are the squared residuals

of regressing X on F̂ r divided by T and C2
NT = min(T,N). As Bai & Ng (2002) note, all of the

proposed criteria converge in infinite samples but have different properties for finite samples.

rAIC,SIC ≈ argrminAIC(r) + argrminSIC(r)

2
(13)

rPC,IC ≈ argrminPCp1 + argrminPCp2 + argrminICp1 + argrminICp2

4
(14)

Since r, the number of factors that are included can impact forecasting accuracy, this paper

will follow three separate methodologies for determining r. First, r is selected according to

AIC(r) and SIC(r) by rounding the average suggested number of factors from both measures as

depicted in Equation 13. Additionally r is calculated based on PCp1, PCp2, ICp1 and ICp2 as

proposed by Bai & Ng (2002). The average of all four suggested r is taken and rounded to the

nearest integer as seen in Equation 14. For the calculations of the criteria we set rmax = 15.

Finally, both methodologies are also compared to fixing r3 = 3, which showed the best results

for Stock & Watson (2002).
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4.3 Forecasting methodology

Following Kim & Swanson (2018), the h-step ahead growth rate forecast of country i Yi,t+h

are constructed as in Equation 15. Wi,t is a vector containing additional variables, such as the

lagged dependent variable. Ft is a [1 x r] vector of factors which are calculated and selected as

explained in Section 4.1 and 4.2. βi,W and βi,F are the coefficient vectors calculated by Ordinary

Least Squares (OLS). εi,t+h is the disturbance term.

Yi,t+h = Wi,tβi,W + Fi,tβi,F + εi,t+h, i = 1, ..., 52, t = 1, ...55. (15)

This paper will focus on one-step-ahead forecasts, such that h = 1. Forecasts are constructed

on an expanding- and rolling window basis. For both methods, the initial estimation sample is

the first Test. = 40 years (1961 - 2000). After constructing the one-step-ahead forecast for 2001

the expanding window sample increases to Test. = 41 observations, while the rolling window

estimation period rolls forward by one year keeping the 40 most recent observations. In total

there are therefore 2 (expanding window, rolling window) x 4 (PCA, ICA, SPCA, KPCA) x 3

(r3, rAIC,SIC , rPC,IC) = 24 different forecast settings.

Similar to Kim & Swanson (2018), all estimation calculations are redone for each new fore-

cast. This includes the calculation and selection of factors Fi.t, re-estimation of all regression

coefficients such as βi,W and βi,F , all lag order selections such as of the dependent variable

included in Wi,t, and all other machine learning, variable selection and shrinkage methods ex-

plained below.

4.4 Simulation Study

To test how the factor selection methodologies and model performance depend on the number

of variables N and observations T, six datasets are simulated. For this first R factors Fi are

constructed from an autoregressive process with lag p = 1, as shown in the following Equation:

Fi,t = φiFi,t−1 + εi,t, i = 1, ..., R, t = 1, ..., T (16)

Fi,0 = 0 for all i, εi,t ∼ IID N(0,1), and φi, T, and R vary over the different data generating

processes. Next the [T x N] dataset X and the [T x 1] dependent variable Y are generated from

the factors Fi, according to Equation 17 and 18 respectively. The factor loadings λj,i ∼ IID

N(0,1), likewise εj,t ∼ IID N(0,1), and N varies over the different data generating processes.

Xj , t = λj,1F1,t + ...+ λj,RFR,t + εj,t, j = 1, ..., N, t = 1, ..., T (17)
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The factor loadings for Yt are set equal to one and the disturbance term εt ∼ IID N(0,1).

Yt = F1,t + ...+ FR,t + εt, t = 1, ..., T (18)

The settings for all six different data generating processes can be found in Table 1. Two

different sample sizes of [50 x 50] and [100 x 100] are chosen, to test the accuracy of rAIC,SIC

and rPC,IC in a sample the size of the African GDP dataset and in a slightly bigger one. The

number of factors is varied to include either one, four, or eight, to test if this affects the factor

selection methodologies. Since the focus of this paper is on forecasting, one step ahead forecast

Ŷt+1 are constructed from Xt.

Table 1: Specification for six different data generating processes

T N R φi

DGP1 50 50 1 [0.9]

DGP2 50 50 4 [0.9, 0.8, 0.7, 0.6]

DGP3 50 50 8 [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]

DGP4 100 100 1 [0.9]

DGP5 100 100 4 [0.9, 0.8, 0.7, 0.6]

DGP6 100 100 8 [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]

4.5 Forecasting models depending on PCA, ICA, SPCA and KPCA

The models discussed in this section are of the form presented in Equation 15 and for all models

Fi,t is calculated by PCA, ICA, SPCA, and KPCA. Therefore, models will differ depending

on the factor estimation technique. The models that will be compared include: Component

Regression, Factor augmented regression, Boosting, and Least Angle Regression.

Ŷ CA
i,t+1 = α̂+ γ̂Fi,t (19)

The Component Regression (CA) in Equation 19 is a deviation from Kim & Swanson (2018)

who include a principal component regression and do not calculate this model for ICA, SPCA

and KPCA.

Ŷ FAAR
i,t+1 = α̂+

p∑
j=1

φ̂jYi,t+1−j + γ̂Fi,t (20)

The Factor augmented autoregression (FAAR) model presented in Equation 20 is a com-

bination of an AR(p) and CA model. Like with those models, first, the lag order p is selected
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using SIC, and then the regression on Fi,t takes place.

Ŷ
Boosting(F )
i,t+1 = Fm(Xi,t) =

M∑
m=1

hm(Xi,t) (21)

Fm(Xi) = Fm−1(Xi) + hm(Xi) (22)

hm = arghmin
n∑

i=1

l(Yi, Fm−1(Xi) + h(Xi)) (23)

Boosting (Boosting(F)) is represented by a Gradient Boosting Regression Tree model

(GBRT). Hastie et al. (2009) explain the idea behind boosting as combining forecasts from

multiple weak learners hm as seen in Equation 21. The weak learners are simpler models and

are decision tree regressions for GBRT. The hyperparameter M denotes the number of boosting

stages. As can be seen from Equation 22, the GBRT algorithm is constructed iteratively. hm

is calculated according to Equation 23, where l() denotes a loss function that is specified as a

hyperparameter. Similar to ’Specification 1’ of Kim & Swanson (2013), this model is estimated

on Fi,t after the factors have been calculated by either PCA, ICA, SPCA, or KPCA. This speci-

fication is chosen as the results of Kim & Swanson (2013) show that ’Specification 1’ was among

the best specifications for expanding window h=1 forecasts. The hyperparameters of this model

are: loss function = least squares, learning rate = 0.1, boosting stages = 100.

A Least Angle Regression (LARS(F)) is performed according to the methodology proposed

by Efron et al. (2004). As with the Boosting, the Least Angle Regression is performed on Fi,t.

Additionally, 5-fold cross-validation is used to avoid overfitting the model.

Kim & Swanson (2018) compute additional models which are not replicated in this paper.

The models that are excluded were the worst-performing models for the h=1 forecast horizon.

More specifically, the following models given together with their percentage of wins (being the

best model) are excluded: bagging (0.00%), bayesian model averaging with two different g-prior

(1.95%, 1.62%), ridge regression (0.65%), elastic net (2.60%), and non-negative garotte (0.32%).

4.6 Baseline models

Next to the models already discussed, also the following benchmark models are included. These

models are considered benchmarks since, except for the mean model, they do not use Fi,t and,

therefore, give the same forecast for PCA, ICA, SPCA, and KPCA.

Ŷ AR
i,t+1 = α̂+

p∑
j=1

φ̂jYi,t+1−j (24)
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AR(p) (AR) model as depicted in Equation 24 where the number of lags p is selected

according to the SIC.

Ŷ ARX
i,t+1 = α̂+

p∑
j=1

φ̂jYi,t+1−j + β̂Zi,t (25)

ARX(p) (ARX) model as depicted in Equation 25 where first the number of lags of the

dependent variable p is determined by SIC. Then, similar to Kim & Swanson (2018) the first

lag of each variable in the dataset X is added to the regression iteratively. If the adjusted R2

of the regression improves by at least 0.01 the variable is kept and added to Zi,t. After this has

been done for all variables, the same process is repeated for the second lag and repeated until

the sixth lag of each variable.

Ŷ ADL,k
i,t+1 = α̂+

pk,y∑
j=1

φ̂jYi,t+1−j +

pk,x∑
j=1

β̂jXk,t+1−j , for k = 1, ..., N

Ŷ CADL
i,t+1 =

1

N

N∑
k=1

Ŷ ADL,k
i,t+1

(26)

Combined bivariate autoregressive distributed lag model (CADL) as proposed by Stock &

Watson (2012) and shown in Equation 26. Similar to Kim & Swanson (2018) 52 individual ADL

models are constructed for each of the 52 Xk variables for this model. For these models, first,

pk,x, the lag order of Xk is determined by SIC and then pk,y the best lag order of the dependent

variables is calculated also by SIC. The average of these 52 individual ADL models is then the

combined bivariate ADL model.

Boosting (Boosting(X)), as discussed in Section 4.5, is also applied to the full dataset X

making the forecast independent of the choice of dimensionality reduction technique. This model

can be compared to the boosting model under ’Specification 3’ of Kim & Swanson (2018).

Similarly, a Least Angle regression (LARS(X)) is also performed on the full dataset X.

The final model is the arithmetic mean (Mean) of all other nine forecasts. Therefore, unlike

the other benchmark models, the forecasts from this model will differ for PCA, ICA, SPCA, and

KPCA. Table A2 in Appendix A gives an overview of all 10 models.

4.7 Model comparison

To compare the forecasting accuracy of the different models, forecasts for the GDP growth

rates of all 52 countries are constructed. Then the Mean Squared Forecast Error (MSFEi) is

calculated for the forecasts of each country i according to Equation 27. êi,t denotes the forecast
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error for country i computed as Yi,t − Ŷi,t. The average MSFE over all countries is computed

and is scaled by dividing by the MSFE of the AR(p) benchmark.

MSFEi =
1

#(Tforecast)

∑
t∈Tforecast

ê2i,t (27)

As noted in Section 3 the dataset seems to be heterogeneous, and growth characteristics

differ for countries. Therefore, also the ’wins’ per country will be counted. Win refers to a

model having the lowest MSFEi for a given country i.

5 Results

5.1 Simulated Dataset

First, the results of the simulated dataset are presented. Table 2 gives the mean and accuracy

of rPC,IC and rAIC,SIC , as well as the best model (lowest MSFE) for all six data generating

processes and different dimensionality reduction techniques. This table shows that the rPC,IC

does well, attaining 100 percent accuracy most of the time. There are only two exceptions. First

of all, when applying ICA, the number of selected factors is too high. This can be explained

by convergence problems of the proposed ’Fast ICA’ algorithm. However, this impacts the

forecasting performance of factor-based ICA models only partially as will be shown. Next to

the ICA, rPC,IC struggles to identify the 8 underlying factors of DGP3. When applying PCA

or KPCA on average 7.667 factors are selected with an accuracy of 0.667, while for SPCA the

correct 8 factors were identified all of the time. However, when the sample size is increased to

[100 x 100] as in DGP6, rPC,IC has an accuracy of 100 percent, except for the mentioned ICA

issue. Nevertheless, the sample size of DGP3 resembles the African GDP dataset of size [52 x

55]. From these results, it is concluded, rPC,IC is accurate and might only have troubles when

many underlying factors influence the GDP growth of those countries.

On the other hand, as suggested by Bai & Ng (2002) rAIC,SIC overestimates the number of

underlying factors. Except for KPCA and when there is only 1 true factor (DGP1 and DGP4),

the mean factor selected is above the true value. For KPCA rAIC,SIC always selects the correct

number of factors. Even for DGP3 where rPC,IC failed. But also for PCA and SPCA are factors

selected correctly sometimes as can be seen from the accuracy range of 0.222 to 0.889 and the

mean values are close to the true R.

Overall, Least Angle Regression and Boosting seem to be the best models. Only for DGP6,

which contains many observations and 8 factors, the Mean model makes the best forecasts for

both factor selection methodologies. In general, the same model is best for both rPC,IC or
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Table 2: Best model and accuracy of rPC,IC and rAIC,SIC for one step ahead expanding window

forecasts of the 10 last observation in six simulated datasets for PCA, ICA, SPCA, and

KPCA

rPC,IC rAIC,SIC

R Dim. Red. Mean Accuracy Best Model Mean Accuracy Best Model

DGP1 1 PCA 1.000 1.000 LARS(F) 1.000 1.000 LARS(F)

1 ICA 11.222 0.111 LARS(X) 11.889 0.000 LARS(X)

1 SPCA 1.000 1.000 LARS(F) 1.000 1.000 LARS(F)

1 KPCA 1.000 1.000 LARS(F) 1.000 1.000 LARS(F)

DGP2 4 PCA 4.000 1.000 Boosting(F) 4.444 0.778 Boosting(F)*

4 ICA 13.333 0.000 CA* 18.778 0.000 LARS(X)

4 SPCA 4.000 1.000 Boosting(F)* 9.778 0.222 CA

4 KPCA 4.000 1.000 Boosting(F)* 4.000 1.000 Boosting(F)

DGP3 8 PCA 7.667 0.667 Boosting(F) 8.111 0.889 Boosting(F)*

8 ICA 11.111 0.111 Boosting(X) 18.111 0.000 Boosting(X)

8 SPCA 8.000 1.000 Boosting(X) 10.000 0.333 Boosting(X)

8 KPCA 7.667 0.667 LARS(F) 8.000 1.000 Boosting(F)*

DGP4 1 PCA 1.000 1.000 LARS(X) 1.000 1.000 LARS(X)

1 ICA 11.222 0.000 LARS(X) 15.667 0.000 LARS(X)

1 SPCA 1.000 1.000 LARS(X) 1.000 1.000 LARS(X)

1 KPCA 1.000 1.000 LARS(X) 1.000 1.000 LARS(X)

DGP5 4 PCA 4.000 1.000 LARS(X) 4.444 0.667 LARS(X)

4 ICA 16.444 0.000 LARS(F) 19.000 0.000 CA*

4 SPCA 4.000 1.000 LARS(X) 4.556 0.889 LARS(X)

4 KPCA 4.000 1.000 LARS(X) 4.000 1.000 LARS(X)

DGP6 8 PCA 8.000 1.000 Mean 8.333 0.778 Mean*

8 ICA 15.778 0.000 CADL 19.333 0.000 CADL

8 SPCA 8.000 1.000 Mean 11.000 0.333 Mean*

8 KPCA 8.000 1.000 Mean 8.000 1.000 Mean*

Note: * marks the better model per row, no * means both model were equally accurate. The best

model for each DGP is given in bold.
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rAIC,SIC . The only four exceptions are DGP2 ICA, DGP2 SPCA, DGP3 KPCA, DGP5 ICA,

which all have a bigger difference in the average number of selected factors.

Furthermore, it is observed that for the smaller datasets (DGP1-3) 17/24 best models are

factor-based. For the larger datasets (DGP4-6), this number drops to 2/24 (8/24 if mean is

also included). For the larger dataset LARS(X) delivers the best forecasts most of the time and

Boosting never does. This indicates that the advantage of combining dimensionality reduction

with Least Angle Regression and Boosting disappears in larger datasets. It will be interesting

to see what conclusion can be drawn for the African GDP dataset that is of ’small’ size.

Usually, the same model delivers the best forecasts for PCA, SPCA, and KPCA, but a differ-

ent model for ICA. For ICA, in DGP1 and DGP3 sample-based models are selected (LARS(X)

instead of LARS(F) and Boosting(X) instead of Boosting(F) respectively), which is probably

due to the ICA convergence issue resulting in bad factors. This could also explain why for DGP6

CADL model is better than the mean. On the other hand, for DGP2 and DGP5 which both

contain 4 true factors, factor-based models deliver the best ICA forecasts (CA and LARS(F)

for rPC,IC , and LARS(X) and CA for rAIC,SIC respectively). In the case of the DGP5, the CA

model of rAIC,SIC even is the best overall model for that data generating process.

If the best models from rPC,IC and rAIC,SIC are compared directly, 3/24 times rPC,IC models

outperform their rAIC,SIC counterparts. 7/24 times the opposite holds true but for a majority

of 14/24 times the best model of both methodologies has equal precision. The overall best

model for each of the six data generating processes comes from rAIC,SIC 4/6 times. For DGP1,

LARS(F) delivered the same accuracy for PCA, SPCA, and KPCA, across both methodologies.

For DGP4 the LARS(X) model delivered the most accurate forecasts and was, therefore, the

best model, independent of the dimensionality reduction technique. As a result, it is concluded

that the better accuracy of rPC,IC does not seem to significantly benefit forecasting accuracy.

Finally, the best models are not dominated by a specific dimensionality reduction technique.

For DGP1, LARS(F) delivered the same forecasts for PCA, SPCA, and KPCA, which would

mean that all three methodologies calculated the same or a very similar factor. PCA-based

models delivered the best results for DGP2 and DGP6, KPCA for DGP3, and ICA for DGP5. For

DGP4 no dimensionality reduction managed to produce a model that outperformed LARS(X).

Table A3 in Appendix A shows the same results as in Table 2 for rolling window forecasts.

Mostly the same results hold also for the rolling window forecasts. rPC,IC identifies the number

of factors more accurately than rAIC,SIC . The same ICA issue is observed and usually, another

model is picked then for PCA, SPCA, and KPCA. Additionally, factor models are also preferred

for the smaller datasets but for DGP4-DGP6 more benchmark models manage to give the best
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forecasts. On the other hand, LARS and Boosting do not dominate as much as for the expanding

window, with FAAR and CA appearing more often. Also rPC,IC models do slightly better than

rAIC,SIC in terms of direct comparison and being the overall best models for a DGP.

In summary, the results of the simulated dataset indicate that rPC,IC does a better job

at identifying the true number of underlying factors than rAIC,SIC as suggested by Bai & Ng

(2002). However, this did not translate to better forecasting accuracy and usually, the same

model is the best for both factor selection methodologies. Least Angle Regression and Boosting

give the best forecasts most of the time. For the smaller DGP1-3, combining these models with

dimensionality reduction delivers better results but for the larger DGP4-6 LARS(X) dominates

all other models. Except for the ICA, which has convergence issues, the dimensionality reduction

techniques only seem to have a marginal impact on the best model’s forecasting accuracy. The

majority of these observations also hold for rolling window forecasts. To test whether these

findings can be generalized, a similar analysis is conducted on the African GDP Dataset in the

next section.

5.2 Africa GDP Dataset

For the results in this section, forecasts for the log GDP growth rates of all 52 African countries

are made and then evaluated by MSFE. As described in the data section, the growth statistics

differ a lot across the different countries. Therefore, the performance across all countries is

evaluated first before giving a more detailed view of the forecasting performance for individual

countries and how the factor selection and dimensionality reduction methodologies influence the

forecast models.

5.2.1 Full sample results

Table 3 shows the MSFE of the best model relative to the MSFE of the AR(p) benchmark for

the different factor selection and dimensionality reduction techniques. The MSFE is calculated

from the predictions of all countries. The values of the best model are 0.004 across the whole

table because the LARS(X) model delivered the most accurate forecasts for the full sample.

The expanding window gain over the AR benchmark is bigger than the rolling window gain,

but they are rounded to the same integer. As a result the overall best model always comes

from the expanding window, similar to Kim & Swanson (2018) who also find the expanding

window forecasts are preferred over rolling window forecasts for the h=1 forecast horizon. The

results indicate that the Least Angle Regression without dimensionality reduction does much

better than the AR(p) benchmark. The LARS(X) model also was one of the best models for the
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simulated datasets. To find a possible explanation for the strong performance of the LARS(X)

model, the results are analyzed in more detail.

Table 3: Relative MSFE of best model based on all forecasts under 24 specifications

Expanding window Rolling window

r3 rAIC,SIC rPC,IC r3 rAIC,SIC rPC,IC

PCA 0.004 0.004 0.004 PCA 0.004 0.004 0.004

ICA 0.004 0.004 0.004 ICA 0.004 0.004 0.004

SPCA 0.004 0.004 0.004 SPCA 0.004 0.004 0.004

KPCA 0.004 0.004 0.004 KPCA 0.004 0.004 0.004

First of all, to give a better overview of the performance of the other models, Figure 1

and Figure 2 show the ranking (in terms of MSFE) of all models for all specifications of the

expanding and rolling window forecasts respectively. Both figures show relatively stable rankings

as most models remain within ±1 rank of their average rank over time, except for when ICA is

applied. If factors are calculated according to ICA, the factor-based models LARS(F), CA, and

FAAR struggle to produce good forecasts. Only Boosting(F) seems to be resilient. Together

with all non-factor-based models, the rank of Boosting(F) increases due to the performance dip

of the three other factor-based models.

Figure 1: MSFE ranking of models for expanding window forecasts and all specifications

As was clear from Table 3, LARS(X) takes first place for both windows across all specifica-

tions. The second-best model is LARS(F) unless factors are calculated by ICA. For the expand-

ing window, the CA forecasts are usually a bit more accurate than the Boosting(X). However,

unlike Boosting(X), CA is dependent on the dimensionality reduction technique and does poorly

when ICA is applied. For the rolling window CA forecasts are better than Boosting(X) forecasts

when the factors are determined by rPC,IC and also when the first three factors of PCA and

KPCA are chosen, but worse else. Boosting(F) and FAAR are in the middle field, followed by
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the mean forecast. The bottom three ranks go to CADL, ARX, and the AR benchmark. CADL

always outperforms ARX, which in turn is always more accurate than the AR model. Since

the forecasts from all three models do not differ across the specifications it is clear that the

better ranks of these models for the ICA specifications, come from the underperformance of the

factor-based models.

Figure 2: MSFE ranking of models for rolling window forecasts and all specifications

Overall, the full sample results can be summarized in the light of the first two research

hypotheses as follows. First of all, factor-based models indeed seem to outperform AR-type

models. Except for when ICA is applied, factor-based models such as CA, FAAR, LARS(F),

and Boosting(F) tend to be always better than the AR and ARX models. This is in line with

findings of Kim & Swanson (2018), Stock & Watson (2002), Stock & Watson (2004), and Stock

& Watson (2012).

Secondly, combining Boosting and LARS with dimensionality reduction in the form of PCA,

ICA, SPCA, and KPCA does not seem to bring any advantage. The LARS(X) model always

outperforms the LARS(F) and the Boosting(X) model also generates more accurate forecasts

than Boosting(F) for most of the specifications. This is in contrast to the results of Kim &

Swanson (2018), who find that machine learning, variable selection, or shrinkage model are only

good when combined with factors. This difference can potentially be explained by the different

datasets. The dataset of Kim & Swanson (2018) contains almost three times as many variables

and more than ten times more observations than the African GDP dataset. This means that

in the African dataset much less information is available to determine any underlying factors.

Additionally, the research of Bai & Ng (2009) highlights that boosting the variables is preferred

if there is no strong factor structure. The large difference in the African countries might indicate

that this is the case.

Finally, the findings can also be related to the results of the simulated dataset. Similar

to those results, Boosting and Least Angle Regressions are the best models. As for the larger
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datasets, LARS(X) is the overall best model for most cases. Furthermore, the dimensionality

reduction and factor selection methodologies only marginally impact the ranking of the different

models, except for ICA. Most of the main findings, therefore, hold when looking at average

performance. However, since this assessment is only based on the average forecasting accuracy

of all 52 countries, further analysis is needed.

5.2.2 Country results

Due to the large difference in countries, the number of wins is analyzed next. This analysis is

conducted since the average results could potentially be skewed. For example, a model could

potentially produce accurate forecasts for a large number of countries, but be completely off

for a few other countries, which could increase the average MSFE disproportionally. Such a

scenario could explain why the factor-based and AR-type models, for which the set of explanatory

variables changes through renewed dimensionality reduction and variable selection based on SIC,

seem to do worse than LARS(X) which has the same set of 52 explanatory variables for each

prediction.

Table 4: Model that most often was the lowest MSFE model counted over all 52 countries for

PCA, ICA, SPCA, KPCA and different ways to select the number of factors r

Expanding window Rolling window

r3 rAIC,SIC rPC,IC r3 rAIC,SIC rPC,IC

PCA LARS(X) LARS(X) LARS(F)1 PCA LARS(X) LARS(F)2 LARS(F)

ICA LARS(X) LARS(X) LARS(X) ICA LARS(X) LARS(X) LARS(X)

SPCA LARS(X) LARS(X) LARS(X) SPCA LARS(X) LARS(X) LARS(X)

KPCA LARS(X) LARS(X) LARS(F)1 KPCA LARS(X) LARS(X) LARS(F)

Note: 1together with Boosting(X) and LARS(X), 2together with LARS(X).

To begin with, Table 4 shows the model which won the most countries for each specification.

For example, the LARS(X) of PCA and r3 indicates that no model won more of the 52 countries

than the LARS(X) for that specification. As with the average results, this table is dominated by

LARS(X). However, when applying rPC,IC other models win more countries than the LARS(X).

For the expanding window forecasts, LARS(F) together with LARS(X) and Boosting(X), are

the best models for 13 countries each, when applying PCA or KPCA and using rPC,IC to select

the factors. For the rolling window estimation, PCA or KPCA combined with rPC,IC result in

LARS(F) being the best model for 16 countries, compared to 12 for the LARS(X). Lastly, also

for the rolling window PCA rAIC,SIC specification, LARS(F) is tied with LARS(X) for most
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wins with 13 wins each.

In general, it can be observed that whenever the number of factors is determined by rPC,IC ,

LARS(F) wins more countries at the expense of LARS(X). The results of Table 4 suggest that

there are some countries for which LARS(X) is not the ideal model. To illustrate this, Table 5

shows the model that was most often the best model for each country with the percentage of

wins over the 24 specifications. The results of Table 5 clearly show that the different growth

patterns impact which model gives the best forecasts.

Confirming earlier results, LARS(X), LARS(F), and Boosting(X) appearing the most often

in Table 5. However, also models that did worse on average beat these three models for some

of the countries. For example, the ARX model gives the best growth forecast for the Central

African Republic for 12/24 specifications. For Mauritius, the same holds for the CADL model,

and for Ghana, the CADL model always gives the most accurate forecasts. Togo’s GDP growth

is best forecasted by the CA model for half of the specifications.

Not only do the best models differ over the countries, but also the extent of their dominance.

For countries such as Burkinafaso, Cabo Verde, Djibouti, Rwanda (Boosting(X)), Equatorial

Guinea, Liberia, Seychelles (LARS(X)), and Ghana (CADL) one model always gives the best

forecasts. For other countries, the best model choice is dependent on the specifications and,

therefore, changes a lot. An example of this is Benin where no model manages to be best for

more than a third of the specifications. On the other hand, countries like Egypt, Libya, and

Nigeria are best predicted by two models that split the top spot. For Nigeria, depending on the

specification, either LARS(F) or LARS(X) gives the best forecasts and the overall wins are split

evenly in half.

In summary, as expected, the more in-depth country by country results show that the

LARS(X) does not produce the best forecasts for all of the countries and specifications. Table

4 suggests that when using rPC,IC together with PCA or KPCA, then the LARS(F) gives the

best forecasts for more countries than the LARS(X). Furthermore, the difference in the GDP

growth statistics resulted in a big variety of models present in Table 5. While for some countries

the same model gives the best forecast independent of specifications, for most countries the best

model changes over the different specifications.

Similarly, Kim & Swanson (2018) find that the best model differs across the eleven macroe-

conomic variables that are being predicted. For most variables, the best model also changes

depending on the specification and forecast horizons. The macroeconomic variables of Kim &

Swanson (2018) also consist of many different types of variables. So much like the dataset of

this paper, the difference in those variables can explain the variation in best models.
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Table 5: Best model per country with percentage of specifications won out of 24

Country Best Model % Wins Country Best Model % Wins

algeria LARS(F) 0.750 liberia LARS(X) 1.000

angola LARS(X) 0.833 libya LARS(X)/Boosting(F) 0.417

benin LARS(F) 0.333 madagascar LARS(X) 0.917

botswana Boosting(X) 0.625 malawi LARS(X) 0.667

burkinafaso Boosting(X) 1.000 mali LARS(F) 0.542

burundi LARS(F) 0.625 mauritania LARS(F) 0.500

caboverde Boosting(X) 1.000 mauritius CADL 0.500

cameroon LARS(F) 0.750 morocco LARS(X) 0.750

car ARX 0.500 mozambique Boosting(X) 0.917

chad LARS(X) 0.500 namibia LARS(X) 0.500

comoros LARS(F) 0.542 niger LARS(F) 0.458

congodr Boosting(X) 0.667 nigeria LARS(F)/LARS(X) 0.500

congorepub LARS(X) 0.542 rwanda Boosting(X) 1.000

djibouti Boosting(X) 1.000 saotome LARS(F) 0.292

egypt Boosting(X)/LARS(X) 0.500 senegal LARS(F) 0.500

eqguinea LARS(X) 1.000 seychelles LARS(X) 1.000

eritrea Boosting(X) 0.500 sierraleone LARS(F) 0.458

ethiopia Boosting(X) 0.958 somalia LARS(X) 0.667

gabon LARS(X) 0.500 southafrica LARS(X) 0.625

gambia LARS(F) 0.542 sudan LARS(X) 0.792

ghana CADL 1.000 tanzania Boosting(X) 0.542

guinea LARS(X) 0.542 togo CA 0.500

guineabissau LARS(X) 0.750 tunisia LARS(X) 0.583

ivorycoast Boosting(X) 1.000 uganda Boosting(X) 0.917

kenya LARS(X) 0.458 zambia LARS(X) 0.417

lesotho Boosting(X) 0.375 zimbabwe LARS(X) 0.750
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Also in terms of wins, LARS and Boosting are the best performing models, like in the sim-

ulated dataset. The better performance of LARS(F) is also more in line with the results of

DGP1-3, which closely resemble the African dataset in size. The more in-depth country re-

sults allow refining the answers to the first two research questions. The first hypothesis, that

factor-based models outperform AR-type models is further strengthened due to more wins of

factor-based models. On the other hand, the results of this section show that under certain con-

ditions, LARS(F) outperforms LARS(X) indicating that there are benefits from a combination

with dimensionality reduction. To determine these conditions and to be able to answer research

hypotheses three and four, the impact of factor selection methodology and dimensionality re-

duction technique is analyzed further in the next section.

5.2.3 Factor selection and dimensionality reduction

The results from Table 4 indicated that LARS(F) wins more countries at the expense of the

LARS(X) whenever rPC,IC is used. To further examine this, Table 6 shows how often each

models delivered the best forecasts for the different factor selection methodologies r3, rAIC,SIC ,

and rPC,IC . The columns add up to 4 * 52 = 208 as the wins are counted for all dimensionality

reduction techniques.

Table 6: Wins per model for different ways of selecting the number of factors r counted over all

four dimensionality reduction techniques

Expanding window Rolling window Both

Model r3 rAIC,SIC rPC,IC Total r3 rAIC,SIC rPC,IC Total Total

AR(p) 0 0 0 0 0 0 0 0 0

ARX(p) 4 4 4 12 0 0 0 0 12

CADL 8 6 6 20 15 13 13 41 61

CA 7 8 23 38 5 11 9 25 63

FAAR 10 3 5 18 10 9 12 31 49

Boosting(X) 51 51 52 154 44 43 44 131 285

Boosting(F) 5 15 7 27 6 15 9 30 57

LARS(X) 86 88 73 247 84 74 69 227 474

LARS(F) 37 33 37 107 38 36 46 120 227

Mean 0 0 1 1 6 7 6 19 20

First of all, the last column of Table 6 gives the total number of wins for each model. This

allows to get a complete ranking of all models also in terms of their wins rather than based on
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MSFE as done previously. The LARS(X) (474) delivered the most accurate forecasts in most

cases, followed by Boosting(X) (285) and LARS(F) (227). The fourth best model in terms of

wins is the CA (63), tightly followed by CADL (61), Boosting(F) (57), and FAAR (49). The

three bottom places go to Mean forecast (20), ARX (12), and the AR (0) model which never

delivered the most accurate forecasts. This ranking, in essence, resembles the ranking based on

MSFE. Only the CADL model and Boosting(X) do slightly better than in the MSFE ranking.

The CADL, FAAR, LARS(F), and Mean models all get the majority of their wins under the

rolling window forecast. The ARX, CA, Boosting(X), and LARS(X) do relatively better for the

expanding window forecasts.

Next, the wins can be broken down over the different factor selection methodologies, to show

their impact on forecasting accuracy. For the expanding window, the biggest difference in the

number of wins is seen in the CA, Boosting(F), and LARS(X) models. When using rAIC,SIC

instead of r3, Boosting(F) wins 15 countries instead of 5. Since the wins of most other models

remain stable, the Boosting(F) gains are most likely at the costs of FAAR and LARS(F) for

which the wins drop by 7 and 4 respectively. Bigger changes are seen when using rPC,IC for the

factor selection. Under rPC,IC the number of wins for the CA triple to 23, and the LARS(X)

wins drop to 73, well below the wins for the two other methodologies. The FAAR and LARS(F)

win increase slightly when compared to the rAIC,SIC wins but remain below or equal to the r3

wins. The Boosting(F) wins are 7 which is below the 15 of rAIC,SIC but still above the 5 from

r3.

These movements can be summarized in the following patterns. First of all, when using

rAIC,SIC , which according to Bai & Ng (2002) and the simulation results overestimates the

number of true underlying factors, Boosting(F) gains more wins at the expense of FAAR and

LARS(F). However, when the supposedly more accurate rPC,IC is used, factor-based models

such as CA, FAAR, and LARS(F) gain at the cost of LARS(X) and Boosting(F). This first

finding indicates that Boosting(F) is the most robust of the factor-based models, doing better

even if factors are selected based on rAIC,SIC . This is in line with the results of Figure 1 and 2

which already showed the robustness of Boosting(F) to the ICA factors. On the other hand, if

factors are more correctly determined by rPC,IC , especially the forecasting accuracy of LARS(F)

and CA benefit. For the rolling window forecasts, similar patterns can be observed. The wins

of Boosting(F) peak at 15 for rAIC,SIC and LARS(X) wins are highest for r3 and lowest for

rPC,IC . Again models like LARS(F) benefit when rPC,IC is used at the expense of LARS(X)

and Boosting(F).

The impact of dimensionality reduction techniques is isolated with the help of Table 7. For
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this table, the wins are counted for all factor selection methodologies and both windows, making

the columns add up to 3 * 2 * 52 = 312. The first observation that can be made is that there

is little difference between the win distribution of the PCA and KPCA column. For all models,

the number of wins under PCA and KPCA differ by at most one.

Table 7: Wins per model for different dimensionality reduction techniques counted over both

windows and all three factor selection methodologies

Model PCA ICA SPCA KPCA Total

AR(p) 0 0 0 0 0

ARX(p) 3 3 3 3 12

CADL 14 21 12 14 61

CA 23 0 17 23 63

FAAR 17 0 14 18 49

Boosting(X) 64 93 64 64 285

Boosting(F) 16 12 14 15 57

LARS(X) 92 181 108 93 421

LARS(F) 77 2 72 76 227

Mean 6 0 8 6 20

Secondly, the ICA convergence issue can also be seen as under ICA most factor-based models

struggle. CA and FAAR wins drop to 0 and LARS(F) wins drop to 2 compared to more than

70 for the other dimensionality reduction techniques. Boosting(F) again shows the biggest

resilience and the number of wins decreases only a bit. Nevertheless, the bad performance of the

other factor-based models, also makes the Mean forecast worse. Naturally, the non-factor-based

models LARS(X), Boosting(X), and CADL are the biggest beneficiaries under ICA.

Thirdly, the SPCA-based results closely resemble the PCA and KPCA results. However, in

general, the wins for the factor-based models CA, FAAR, Boosting(F), and LARS(F) remain

slightly below their PCA and KPCA values. Those wins are transferred to LARS(X) which

attains 108 wins compared to 92 and 93 for the PCA and KPCA results respectively.

Before any conclusions for hypotheses three and four are drawn, the effect of the interaction

of factor selection and dimensionality reduction techniques is analyzed jointly. For this, Table

8 shows which dimensionality reduction technique delivered the overall best model for the dif-

ferent factor selection methodologies. The AR, ARX, CADL, LARS(X), and Boosting(X) wins

are summarized under the category ’Benchmark model’ as they are independent of the dimen-

sionality reduction methodology. Note that the columns do not add up to the 52 countries since
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sometimes two models of different categories had the same best MSFE accuracy, getting a win

each.

Table 8: Winning model for each country across all dimensionality reduction techniques and

benchmark models (AR, ARX, CADL, LARS(X), Boosting(X)) for different ways of

selecting the number of factors r

Expanding window Rolling window Both

r3 rAIC,SIC rPC,IC Total r3 rAIC,SIC rPC,IC Total Total

Benchmark model 25 24 23 72 26 19 22 67 139

PCA 14 11 10 35 8 12 15 35 70

ICA 1 1 0 2 2 3 3 8 10

SPCA 10 11 14 35 13 11 11 35 70

KPCA 13 5 15 33 10 12 13 35 68

Overall PCA, SPCA, and KPCA based models are the most accurate for one-fifth of the

countries. Benchmark models are the lowest MSFE model for roughly the remaining 2/5 of

countries and ICA. Between expanding and rolling window results only ICA wins differ, by

taking some wins from the benchmark models under the rolling window.

The influence of the factor selection methodology is analyzed further. For the expanding

window, the benchmark model and PCA do best when factors are selected according to r3 and

worst when they are selected according to rPC,IC . The opposite holds for SPCA. KPCA seems to

be the most sensitive to the choice of factor selection methodology, doing worst under rAIC,SIC

and best when rPC,IC is used. For PCA and SPCA the pattern reverses for the rolling window.

However, also for the rolling window, a drop in benchmark wins is observed when factors are

determined by rAIC,SIC and rPC,IC . Again KPCA attains the most wins under rPC,IC . To

summarize, more wins are shifted from the benchmark to factor-based models if the number of

factors is determined according to rAIC,SIC or rPC,IC , although the magnitude of that shift is

somewhat muted. Between rAIC,SIC and rPC,IC only KPCA shows a clear pattern, attaining

more wins under the latter.

To relate these patterns to the individual factor-based models, Figure 3 plots the full sample

MSFE results for the different dimensionality reduction and factor selection methodologies. The

results of Figure 3 are for the expanding window forecasts. The rolling window forecast graphs

are presented in Figure A1 in Appendix A, due to their similarity. The lines in the graph show

how, for the given dimensionality reduction technique, the average MSFE gain over the AR

model changes for the different factor selection methodologies. The ICA lines are not included
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Figure 3: Effect of factor selection methodology on full sample MSFE for expanding window

forecasts

since their scales are much bigger.

In general, Figure 3 confirms the patterns detected from Tables 7-8. First of all, PCA and

KPCA results closely resemble each other. Therefore, the PCA line is overshadowed by the

KPCA for most of the graphs. The CA model attains the best results for PCA, SPCA, and

KPCA when the more accurate rPC,IC is used, whereas FAAR and Boosting(F) show the best

results for rAIC,SIC . The difference between CA and FAAR can be explained by the additional

autoregressive terms that influence the FAAR forecasts. From the scale of the y-axis and the

number of wins, it is concluded that the additional AR terms in the FAAR worsen forecast

accuracy compared to the CA, in line with earlier research of Stock & Watson (2002) and Stock

& Watson (2012).

On the other hand, Boosting(F) gives the best results for rAIC,SIC which on average selects

more factors than rPC,IC . This explains why Boosting(F) wins jumped to 15 for the expanding

window in Table 7. Together with the fact that Boosting(X) usually does better than Boost-

ing(F), it seems that Boosting delivers better results if it is applied to more variables and that

too much dimensionality reduction harms the forecasting performance. The LARS(F) attains

the best results for SPCA when rPC,IC factors are included. However, for PCA and KPCA,

rAIC,SIC is preferred which also gives the overall lowest MSFE.
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Finally, also the Table 7 conclusion that PCA and KPCA are slightly preferred over SPCA is

confirmed. LARS(F) and Boosting(F) attain their lowest relative MSFE for PCA and KPCA.

For CA and FAAR, the lowest relative MSFE is only dependent on the factor selection method-

ology since the best model comes from PCA, SPCA, and KPCA. The absolute minimum of these

four models is given by LARS(F) when the factors are calculated by PCA or KPCA and selected

according to rAIC,SIC .

In summary, the factor selection methodology seems to have an impact on forecasting accu-

racy. Therefore, the findings for hypothesis three are summarized as follows. Selecting factors

based on rAIC,SIC and rPC,IC instead of always picking 3 factors r3 makes factor-based mod-

els more accurate and attain more wins at the expense of benchmark models. Under rAIC,SIC

this happens mostly due to Boosting(F), which prefers more factors. The more sensitive CA

and LARS(F) benefit the most from rPC,IC factors, although LARS(F) delivers the best results

for PCA and KPCA together with rAIC,SIC . Nevertheless, the changes are somewhat small as

LARS(X), LARS(F), and Boosting(X) take the top three places with a big gap to the fourth

place for all factor selection methodologies. These are the same models identified as the best

models for the simulated datasets and also the somewhat limited impact of rAIC,SIC and rPC,IC

is in line with the simulation results.

On the other hand, no clear winner between PCA, ICA, SPCA, and KPCA can be deter-

mined. As seen in Table 7 and 8 and Figure 3 PCA, SPCA, and KPCA yield almost identical

results, with a slight preference for PCA and KPCA. ICA-based models do the worst, but this

is due to a convergence issue of the proposed ’Fast ICA’ algorithm. Therefore, it is concluded

that KPCA is as good as PCA and slightly preferred over SPCA in this dataset. This answers

research question four, on how KPCA based models compare to PCA, ICA, and SPCA-based

models. Interestingly, this was expected from the simulation results, as there it was likewise

shown that the dimensionality reduction techniques only have very little impact on the best

model. This is somewhat in contrast to Kim & Swanson (2018), who find that for h=1 forecasts

ICA and SPCA are preferred over PCA. In this paper, PCA does at least as well as SPCA. It

might be the case that KPCA won the countries that would have gone to SPCA else, which

would put the results of this paper and Kim & Swanson (2018) in line again. However, the sim-

ilarity of KPCA-based models and PCA-based models, makes it more likely that KPCA took

wins away from PCA. Alternatively, this difference in results might simply be due to a different

set of models in this paper. As was shown, different models prefer different factor selection

and dimensionality reduction techniques. But also the different datasets can potentially explain

these somewhat contrasting results.
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5.2.4 Additional Results

From an economic perspective, it is also interesting which countries have the highest explanatory

power. For this, the variable selection of the best model, LARS(X) is analyzed. Figure 4 shows

how often each country was selected as an explanatory variable for the expanding and rolling

window forecasts of each country. More detailed country by country results can be found in

Figure A2 in Appendix A. Tanzania was an explanatory variable for 162 different forecasts,

followed by Djibouti (132), Eritrea (130), and Angola (129). On the other hand, Zambia (24),

Nigeria (20), and Equatorial Guinea (15) were selected as the fewest.

Figure 4: How often each country was selected as explanatory variable in LARS(X) forecasts for

rolling and expanding window

Tanzania’s high count comes from the forecast of its GDP growth, close countries such as

Zambia and Namibia, a cluster of western states including Mali, Burkina Faso, and Sierra Leone,

and Eritrea in the northeast. However, for other bordering countries such as Kenya, Uganda,

and the Democratic Republic of Congo, Tanzania is never chosen. Similarly, Djibouti is mostly

a variable for Central African countries such as Tanzania, the Democratic Republic of Congo,

Burundi, and Equatorial Guinea, but also Sierra Leone and Cabo Verde to the very west of

Africa. Overall, geographic location does not seem to be important, but also GDP and GDP

per capita can’t explain the links. The low countries like Nigeria are most of the time not

even selected for their forecast, which hints towards the bad performance of AR-type models.

Furthermore, high GDP countries such as Egypt, South Africa, and Nigeria, which should have

a big impact on the overall African economy, are selected relatively seldom.
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Overall, similarity in location and GDP does not seem to drive the explanatory power of

some countries. This might be due to only looking at the LARS(X) variable selection, or due to

not analyzed economic relations that are more important. Alternatively, this can be interpreted

as further evidence for the dissimilarity of economic growth in Africa.

6 Conclusion and Discussion

6.1 Conclusion

This research aimed to extend current literature by replicating the findings of Kim & Swanson

(2018) on another dataset and by additionally investigating how KPCA and the factor selection

methodology impact forecasting accuracy of factor-based models. Accurate economic forecasts

are critical to the policy decisions of central banks and governments all around the world.

Analyzing what affects the accuracy of such forecasts, therefore, explains the social relevance

of this paper. To answer the four research hypotheses the GDP growth of 52 African countries

was forecasted by ten different models under 24 different settings.

The first hypothesis, if factor-based models outperform the forecasting accuracy of AR-type

models, can be answered with a clear yes. Across all specifications and in terms of MSFE as

well as wins, factor-based models delivered better results than their autoregressive counterparts.

These results are in line with an extensive list of past literature such as Stock & Watson (2002),

Stock & Watson (2012), Kim & Swanson (2013), and Kim & Swanson (2018). Including au-

toregressive terms even proved as a disadvantage, as described by Stock & Watson (2002) and

Stock & Watson (2012) for the FAAR, which in general performed worse than the CA.

The second hypothesis asked if combining boosting and least angle regression with factor

models improves the forecasting performance. Overall LARS(X) delivered the best forecasts

in terms of MSFE across all specifications, and Boosting(X) also did better than Boosting(F)

under most specifications. However, sometimes LARS(F) is more accurate than LARS(X) and

for some specifications even wins more countries. These observations show that there is a benefit

in combining boosting and LARS with factorization. Nevertheless, in this dataset arguably

LARS(X) is preferred overall, due to the sensitivity of LARS(F) to the right factor methodology.

This is in contrast to the findings of Kim & Swanson (2018). But as the research of Bai & Ng

(2008), Bai & Ng (2009), Stock & Watson (2012), and even Kim & Swanson (2018) show,

different models are preferred for different variables and no single methodology fits all, making

general conclusions difficult. This is also emphasized by the country results which showed a big

variation in best models across the 52 countries.
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The third hypothesis was concerned with the impact of factor selection methodology on

forecasting accuracy. Overall, it is shown that rAIC,SIC and rPC,IC improved forecasting per-

formance of factor-based models relative to the fixed r3. Between rAIC,SIC and rPC,IC the

preference changes depending on the model and whether models are evaluated based on MSFE

or wins. It is concluded that the better accuracy of rPC,IC , as shown by Bai & Ng (2002) and

the simulation results, does not necessarily translate to a better forecasting performance.

Finally, to test the fourth hypothesis, KPCA-based models were compared to PCA, ICA,

and SPCA-based models. KPCA proved to be quite similar to PCA and is slightly preferred

over SPCA. Due to a convergence problem, KPCA is much better than ICA. Unlike Kim &

Swanson (2018) SPCA and ICA are not preferred over PCA for the h=1 forecasts. But similar

to Cao et al. (2003) a good performance of KPCA is found, although KPCA does not seem to be

preferred over PCA. The limitations of these conclusions and starting points for future research

are discussed in the next section.

6.2 Limitations and future research

The first limitation of this research is that the proposed ’Fast ICA’ algorithm of Hyvärinen &

Oja (2000) does not converge when applied to the dataset of this paper. As is evident from the

results, ICA still manages to produce meaningful factors occasionally, but on average factor-

based models are not doing well with the ICA factors.

The comparison of the different models was also solely based on MSFE and their wins which

were also determined by MSFE. Due to the number of models, specifications, and countries,

it was decided to not further increase dimensionality through additional performance measures.

However, for future research, it might be interesting to look at forecasting accuracy differently.

Due to the long runtime and time constraints, the simulation results are only based on one

simulated dataset for each DGP. As has been shown by the results of this thesis and prior

literature, model preference can vary. To generalize the findings of this paper, research on more

simulated data as well as other datasets is necessary.

Finally, this paper only used a subset of the models and specifications proposed by Kim

& Swanson (2018) and model hyperparameter were not tuned. Including additional models

and finetuning could give a better overview of the best way to construct forecasts from high-

dimensional datasets.
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Appendix A - Additional Tables and Figures

Table A1: Descriptive statistics of yearly log growth rates for 52 African countries 1961 - 2015

(T=55)

Country Mean Std Minimum Median Max Skew Kurtosis JB

algeria 3.518 7.200 -21.940 3.730 29.491 0.006 6.367 24.566

angola 3.418 7.022 -28.369 3.343 20.376 -1.252 7.428 56.070

benin 3.513 3.039 -5.024 3.826 9.531 -0.920 1.154 14.725

botswana 7.932 5.509 -8.013 7.232 23.428 0.456 1.922 4.319

burkinafaso 4.213 3.047 -1.816 4.210 10.436 -0.068 -0.934 33.570

burundi 2.464 5.602 -14.734 3.440 19.310 -0.150 1.973 2.477

caboverde 5.561 4.517 -2.327 5.164 17.563 0.472 -0.326 25.893

cameroon 3.481 5.441 -11.541 4.114 19.885 -0.161 2.027 2.276

car 0.832 7.408 -45.728 1.980 9.075 -4.762 29.316 1697.066

chad 3.374 8.165 -24.080 2.176 28.968 -0.170 3.205 0.341

comoros 2.993 3.231 -5.551 2.762 12.663 0.108 1.971 2.395

congodr 1.242 6.079 -14.503 1.390 19.227 -0.220 0.849 10.445

congorepub 4.160 5.268 -9.431 3.730 21.188 0.338 2.186 2.425

djibouti 2.208 3.215 -6.828 2.664 6.859 -0.998 0.537 21.785

egypt 4.882 2.662 0.598 4.593 13.628 0.976 1.557 12.760

eqguinea 10.168 19.416 -45.887 8.801 91.629 1.083 5.956 29.099

eritrea 3.888 7.364 -19.237 4.974 19.227 -1.057 1.589 13.993

ethiopia 3.119 6.976 -15.082 3.922 13.015 -0.642 -0.252 26.477

gabon 3.888 9.127 -27.444 4.402 33.289 -0.066 4.765 6.790

gambia 3.755 3.240 -4.395 4.018 11.689 -0.183 0.237 16.829

ghana 3.441 4.386 -13.239 4.306 13.103 -1.402 3.484 17.533

guinea 3.259 1.576 -1.511 3.537 6.297 -0.620 0.702 14.781

guineabissau 1.685 6.937 -32.989 2.762 16.721 -2.511 11.756 220.742

ivorycoast 3.752 5.246 -11.653 3.247 16.212 -0.030 0.336 15.381

kenya 4.522 4.346 -8.121 4.306 20.049 0.664 3.725 4.959

lesotho 4.705 5.527 -14.503 3.826 23.428 0.571 4.601 8.377

liberia 0.267 19.103 -71.335 3.247 72.416 -0.522 6.732 32.534

libya -0.861 19.713 -97.022 0.100 71.540 -1.253 12.715 218.094
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Country Mean Std Minimum Median Max Skew Kurtosis JB

madagascar 1.822 4.069 -13.582 2.078 9.440 -1.454 3.936 20.222

malawi 4.138 4.867 -10.759 4.593 15.444 -0.445 1.653 5.647

mali 3.485 5.368 -13.582 3.440 18.482 -0.105 1.742 3.523

mauritania 3.795 5.646 -5.235 2.956 24.451 1.233 2.545 13.619

mauritius 5.424 3.887 -10.647 5.259 13.278 -0.876 4.474 11.356

morocco 4.988 3.981 -5.551 4.688 15.358 0.005 0.410 14.538

mozambique 5.227 5.872 -17.079 6.672 23.744 -0.889 4.520 11.860

namibia 3.985 2.614 -1.816 4.497 11.600 -0.176 0.386 15.068

niger 2.383 5.996 -18.633 2.956 12.663 -1.458 3.780 19.751

nigeria 3.760 7.879 -17.079 4.306 29.043 0.267 2.462 1.248

rwanda 3.905 12.163 -69.716 6.110 30.158 -4.121 25.275 1222.244

saotome 4.354 6.261 -10.870 3.053 24.216 0.758 1.765 8.292

senegal 2.759 3.526 -6.828 3.247 8.526 -0.880 0.552 19.700

seychelles 4.316 5.980 -8.556 4.784 19.227 0.092 -0.261 23.119

sierraleone 2.364 7.281 -22.941 2.859 23.349 -0.837 4.530 11.141

somalia 1.939 9.166 -30.517 2.567 26.313 -0.463 3.033 1.863

southafrica 3.031 2.370 -2.122 3.150 7.603 -0.346 -0.385 25.869

sudan 3.732 5.170 -6.507 4.306 15.444 -0.107 -0.136 21.409

tanzania 4.360 1.973 0.000 4.402 8.158 -0.146 -0.367 24.750

togo 3.623 5.659 -16.370 3.922 14.410 -0.513 1.873 5.029

tunisia 4.514 3.255 -1.918 4.593 16.297 0.743 2.291 5.872

uganda 5.155 3.879 -7.042 5.921 14.669 -0.797 1.415 10.942

zambia 3.155 4.608 -8.992 3.730 15.358 -0.124 0.206 17.049

zimbabwe 2.681 7.485 -19.480 2.567 20.376 -0.610 1.419 8.643
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Table A2: All 10 models used for forecasting

Model Independent of PCA, ICA, SPCA, KPCA

AR(p) Yes

ARX(p) Yes

Comb. ADL Yes

CR No

FAAR No

Boosting(X) Yes

Boosting(F) No

LARS(X) Yes

LARS(F) No

Mean No

Figure A1: Effect of factor selection methodology on full sample MSFE for rolling window fore-

casts
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Table A3: Best model and accuracy of rPC,IC and rAIC,SIC for rolling window forecasts of the

10 last observation in six simulated datasets for PCA, ICA, SPCA, and KPCA

rPC,IC rAIC,SIC

R Dim. Red Mean Accuracy Best Model Mean Accuracy Best Model

DGP1 1 PCA 1.000 1.000 LARS(F) 1.000 1.000 LARS(F)

1 ICA 13.778 0.000 Boosting(F)* 14.333 0.000 LARS(X)

1 SPCA 1.000 1.000 CA 1.111 0.889 CA

1 KPCA 1.000 1.000 LARS(F) 1.000 1.000 LARS(F)

DGP2 4 PCA 4.000 1.000 CA 5.444 0.667 CA

4 ICA 14.333 0.000 FAAR* 17.444 0.000 FAAR

4 SPCA 4.000 1.000 CA 7.333 0.333 CA

4 KPCA 4.000 1.000 CA 4.000 1.000 CA

DGP3 8 PCA 7.667 0.667 LARS(X) 8.111 0.889 LARS(X)

8 ICA 12.667 0.000 CA* 19.778 0.000 CA

8 SPCA 8.000 1.000 LARS(X) 11.222 0.111 LARS(F)*

8 KPCA 7.667 0.667 LARS(X) 8.000 1.000 LARS(X)

DGP4 1 PCA 1.000 1.000 LARS(X) 2.000 0.778 LARS(X)

1 ICA 12.000 0.111 LARS(X) 15.667 0.000 Boosting(F)*

1 SPCA 1.000 1.000 LARS(X) 1.111 0.889 LARS(X)

1 KPCA 1.000 1.000 LARS(X) 1.000 1.000 LARS(X)

DGP5 4 PCA 4.000 1.000 CADL 4.667 0.667 CADL

4 ICA 16.667 0.000 CADL 18.667 0.000 CA*

4 SPCA 4.000 1.000 CADL 4.222 0.778 CADL

4 KPCA 4.000 1.000 CADL 4.000 1.000 CADL

DGP6 8 PCA 8.000 1.000 Boosting(X)* 8.111 0.889 CADL

8 ICA 14.444 0.000 FAAR* 19.000 0.000 CADL

8 SPCA 8.000 1.000 Boosting(X)* 10.333 0.444 CADL

8 KPCA 8.000 1.000 Boosting(X)* 8.000 1.000 CADL
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Figure A2: Heatmap showing how often a country was selected as explanatory variable

(columns) for the forecasts of all countries (rows)
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Appendix B - Code

The entire code of for this thesis was written in Python (Foundation, 2000–20021) and will be

uploaded together with the thesis. The following libraries were used: pandas (Wes McKinney,

2010), numpy (Harris et al., 2020), matplotlib (Hunter, 2007), statsmodels (Seabold & Perktold,

2010), and sklearn (Pedregosa et al., 2011).
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