
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Factoring health into the equation: Promoting healthy purchasing
decisions through shelf-space optimization

Abstract

The optimal allocation of scarce shelf space is an everlasting challenge in retail-
ing. Nowadays, this problem can be tackled by numerous optimization-based
approaches to shelf-space planning. Many, if not all, of these methods attempt
to promote impulse purchases, which are often unhealthy, hedonic products such
as ice cream and cookies. In this paper, we extend one of these methods such
that it promotes healthy purchasing decisions, as opposed to impulse purchases
of unhealthy products.

For this purpose, a visibility penalty is introduced to the objective function
of the model. This penalty penalizes the placement of unhealthy products on
prominent shelf segments. The results indicate that by forgoing just 0.2% of
profit, one might already attain a 4% gain in both store-wide availability of
healthy products and store healthiness when we consider product visibility. Even
larger gains can be attained by forgoing a larger share of profit: a 5% decrease
in profit, yields gains in availability and visibility of healthy products of around
18% and 26%, respectively. These results indicate that store healthiness can
be substantially improved by introducing a visibility penalty. Most notably,
even stores that are not willing to forgo large shares of their profit could gain
substantially in terms of store healthiness by introducing this penalty.

The visibility penalty is finally combined with a healthy-left, unhealthy-right
ordering. The results suggest that this integrated approach is able to attain
a visible product ordering with near-equal profit and store healthiness, when
compared to a store that is optimized using the visibility penalty only.

Bachelor Thesis
BSc2 in Econometrics and Economics

Name: Stefan van Berkum
Student ID: 467315

Supervisor: Olga Kuryatnikova, Ph.D.
Second assessor: Luuk van Maasakkers, M.Sc.

Date final version: July 1, 2021

The views stated in this thesis are those of the author and not necessarily those of the super-

visor, second assessor, Erasmus School of Economics, or Erasmus University Rotterdam.



Contents

1 Introduction 2

2 Related Work 4

3 Data 5
3.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Methodology 11
4.1 APSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Optimization-based heuristic approach . . . . . . . . . . . . . . . 13
4.3 Visibility penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Healthy-left, unhealthy-right . . . . . . . . . . . . . . . . . . . . . 15
4.5 Integrated approach . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Results 17
5.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Heuristic performance . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Neighborhood size . . . . . . . . . . . . . . . . . . . . . . 18
5.1.3 Optimality gap . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.4 Affinity relationships . . . . . . . . . . . . . . . . . . . . . 19

5.2 Visbility penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Healthy-left, unhealthy-right . . . . . . . . . . . . . . . . . . . . . 22

6 Conclusion 23
6.1 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Appendix A Code description 25
Appendix A.1 Source code . . . . . . . . . . . . . . . . . . . . . . 25
Appendix A.2 Output . . . . . . . . . . . . . . . . . . . . . . . . 27
Appendix A.3 Graphics . . . . . . . . . . . . . . . . . . . . . . . . 28

1



Factoring health into the equation: Promoting healthy
purchasing decisions through shelf-space optimization

Stefan van Berkuma

aErasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The
Netherlands

Abstract

The optimal allocation of scarce shelf space is an everlasting challenge in retail-
ing. Nowadays, this problem can be tackled by numerous optimization-based
approaches to shelf-space planning. Many, if not all, of these methods attempt
to promote impulse purchases, which are often unhealthy, hedonic products such
as ice cream and cookies. In this paper, we extend one of these methods such
that it promotes healthy purchasing decisions, as opposed to impulse purchases
of unhealthy products.

For this purpose, a visibility penalty is introduced to the objective function
of the model. This penalty penalizes the placement of unhealthy products on
prominent shelf segments. The results indicate that by forgoing just 0.2% of
profit, one might already attain a 4% gain in both store-wide availability of
healthy products and store healthiness when we consider product visibility. Even
larger gains can be attained by forgoing a larger share of profit: a 5% decrease
in profit, yields gains in availability and visibility of healthy products of around
18% and 26%, respectively. These results indicate that store healthiness can
be substantially improved by introducing a visibility penalty. Most notably,
even stores that are not willing to forgo large shares of their profit could gain
substantially in terms of store healthiness by introducing this penalty.

The visibility penalty is finally combined with a healthy-left, unhealthy-right
ordering. The results suggest that this integrated approach is able to attain
a visible product ordering with near-equal profit and store healthiness, when
compared to a store that is optimized using the visibility penalty only.

Keywords: Shelf-space optimization, healthy choices, nudging, retail

1. Introduction

With an ever-expanding range of products, retailers have to decide which
products to include in their limited shelf space, and where to put them. This
problem of shelf-space planning has been addressed in academic literature since
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as early as the 1960s, with an increasing focus on optimization-based approaches
(Bianchi-Aguiar, Hübner, Carravilla & Oliveira, 2021).

Despite this increasing attention for optimization-based approaches, many
decision support systems that are implemented in practice still use simplistic
rules of thumb (Hübner & Kuhn, 2012). This points out the need for simple, yet
effective approaches that can be easily implemented in decision support systems.

Most, if not all, optimization-based approaches aim to maximize profits and
hence they often promote impulse purchases (e.g., Flamand, Ghoniem, Haouari
& Maddah (2018)), which are often unhealthy hedonic products such as ice
cream and cookies (Inman, Winer & Ferraro, 2009; Kacen, Hess & Walker,
2012). This stands in stark contrast to the recent shift in society towards
healthier diet choices (Shan et al., 2019) and an apparent willingness of retailers
to promote this healthy purchasing behavior (Martinez, Rodriguez, Mercurio,
Bragg & Elbel, 2018).

There are many ways to promote healthy purchasing behavior, but in the
context of shelf-space planning there are at least two promising approaches:
enhancing visibility (i.e., prominent and convenient display of healthy products)
and availability (i.e., a higher ratio of healthy to unhealthy products).

While there is no general consensus on the effectiveness of visibility nudges,
the majority of studies have shown positive results (Shaw, Ntani, Baird & Vo-
gel, 2020; Vecchio & Cavallo, 2019), most notably: placement of healthy prod-
ucts near the checkout counter (e.g., Kroese, Marchiori & De Ridder (2016);
Van Gestel, Kroese & De Ridder (2018)), placing healthy products at eye-level
(e.g., Adam, Jensen, Sommer & Hansen (2017); Foster et al. (2014); Sigurdsson,
Saevarsson & Foxall (2009)), and even placing healthy products to the left of
unhealthy products (e.g., Romero & Biswas (2016)).

Regarding availability enhancements, one study found positive effects when
the assortment consisted of 75% percent healthy snacks as opposed to 25% (Van
Kleef, Otten & Van Trijp, 2012). This indicates that increasing the sheer ratio
of healthy to unhealthy products in the assortment could already prove effective
in promoting healthy purchasing behavior.

This paper investigates several possible adaptations of a state-of-the-art
optimization-based approach to shelf-space planning (Flamand et al., 2018).
For this purpose, we first attempt to replicate the results of the original paper,
to investigate whether it indeed performs as well as expected. The model is
then adapted such that it promotes healthy purchasing behavior, as opposed
to impulse purchases of unhealthy products. Possible approaches include incor-
porating relative attractiveness of different shelf heights, penalizing prominent
placement of unhealthy products in the shelf-space optimization, and promoting
healthy-left and unhealthy-right shelf-space planning. For the evaluation of each
of the considered approaches, we use an adapted version of the data in Flamand
et al. (2018) such that it incorporates a measure of relative nutritional value for
each product category and relative attractiveness of different shelf heights.

The rest of this paper is structured as follows: Section 2 briefly outlines the
academic literature that is related to this research. Section 3 discusses the data
that is used in this paper and how it is obtained. Section 4 discusses the original
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model, each of the considered adaptations, and how their performance will be
evaluated. Section 5 discusses the obtained results and their interpretation.
Finally, Section 6 briefly summarizes the results and discusses some suggestions
for future work.

2. Related Work

Shelf-space planning can be split into two distinct parts: how much of each
product to include in the assortment (assortment planning) and where to place
them in the store (shelf-space allocation). Note that in other literature, some-
times these definitions are used in a different context (Bianchi-Aguiar et al.,
2021), but for this paper we will stick to the aforementioned distinction in line
with Flamand et al. (2018).

The first part of shelf-space planning is assortment planning. This is the
process of determining which items to include in the assortment, how many
stock keeping units (SKUs) to keep if a product is selected, and the inventory
level of each SKU (Gürhan Kök, Fisher & Vaidyanathan, 2008). This requires
careful consideration of the trade-off between different assortments, which is
largely independent of the physical characteristics of the store (i.e., layout and
individual shelf capacity). The other dimension of shelf-space planning is shelf-
space allocation. This is the process of allocating products to shelves in the
store, given a set of products and their corresponding SKUs. This process deals
with the optimal allocation of scarce shelf space in a store, which is by definition
based on its physical characteristics (as opposed to assortment planning). For a
detailed overview of both components of shelf-space planning, interested readers
can refer to Bianchi-Aguiar et al. (2021); Hübner & Kuhn (2012); Karampatsa,
Grigoroudis & Matsatsinis (2017).

While much of the academic literature considers either one of these aspects
of shelf-space planning separately (either assortment planning or shelf-space
allocation), some papers consider both these aspects in tandem (e.g., Chen &
Lin (2007); Flamand et al. (2018); Hübner & Schaal (2017)). In this paper, we
will extend one of such models: a state-of-the-art integrated assortment planning
and shelf-space allocation approach that is proposed in Flamand et al. (2018).
This optimization-based heuristic approach yields near-optimal solutions within
manageable computation times.

Visibility enhancements are mostly based on ideas that originate in behav-
ioral sciences and economics. Placing healthy products in more prominent po-
sitions in the store are so called nudges (affecting the choice architecture in a
non-limiting way (Thaler & Sunstein, 2009)), and they have shown positive re-
sults in promoting healthy choices (Vecchio & Cavallo, 2019). Another approach
that one might consider is a healthy-left, unhealthy-right placement of products,
which appears to positively influence healthy purchasing behavior (Romero &
Biswas, 2016).

Availability enhancements are based on findings that increased shelf space
for healthy products can already promote healthy purchasing behavior (e.g.,
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Van Kleef et al. (2012)), which is supported by findings that increased shelf
space can yield additional sales for a product (Eisend, 2014).

Approaches that combine visibility and availability enhancements appear
to have the greatest potential for inducing healthy purchasing behavior (Shaw
et al., 2020). Therefore, it makes sense to also investigate possible combina-
tions of visibility enhancements (placing healthy products in more prominent
positions in the store) and availability enhancements (increasing the amount of
healthy products in the assortment).

To place healthy products in more prominent positions in the store, one
needs to determine what these ‘prominent’ positions are exactly. One measure
of shelf attractiveness used in this paper is traffic density. For the purpose
of this paper, this parameter is simply simulated where shelves are divided
over relative attractiveness categories, as in Flamand et al. (2018). For the
application of this model in practice, one might consider modeling the traffic in
a more sophisticated way such as in Tsai & Huang (2015).

Another measure that can influence shelf attractiveness is shelf height. Re-
search into the relative attractiveness of different shelf heights suggests that
there is a range roughly between eye and knee level that is the most attrac-
tive (Hübner, Düsterhöft & Ostermeier, 2021). This finding is confirmed by
eye-tracking studies, where it appears that consumers focus on the center of a
shelf (Drexler & Souček, 2016; Huddleston, Behe, Driesener & Minahan, 2018).
Moreover, in general, it appears that the top shelf is slightly more attractive
than the bottom shelf (Chandon, Hutchinson, Bradlow & Young, 2009; Drèze,
Hoch & Purk, 1994).

3. Data

In this paper, we use a simulated dataset similar to the one used in Flamand
et al. (2018). The authors simulate five store instances ranging from 30 shelves
and 240 product categories to 100 shelves and 800 product categories. For
the purpose of replication, we simulate the smallest, middle, and largest store
instances (30/240, 50/400, and 100/800). For the purpose of evaluating the
extensions, a single store with 30 shelves and 240 product categories is sufficient
as the considered methods can simply be applied to larger stores as well.

3.1. Replication

Before discussing the data simulation, we define some notation that is used
throughout the rest of this paper. The notation that is used in this paper consists
of the notation used in the original model that is relevant to our replication and
extension, extended with the health score and three-dimensional adaptation.
Interested readers can refer to Flamand et al. (2018) for the original model with
corresponding notation. For the purpose of this paper, the following notation
is utilized:

• Sets and indices:
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– N ≡ {1, . . . , n}: The set of product categories, indexed by j.

– L: The set of product category pairs (j, j′) ∈ N 2 that have allocation
disaffinity (should not be placed on the same shelf).

– H1: The set of product category pairs (j, j′) ∈ N 2 that have sym-
metric assortment affinity (should both be selected and placed on the
same shelf, or neither should be selected).

– H2: The set of product category pairs (j, j′) ∈ N 2 that have asym-
metric assortment affinity (if j is selected, j′ must be selected as well,
and placed on the same shelf).

– H3: The set of product category pairs (j, j′) ∈ N 2 that have alloca-
tion affinity (should be placed on the same shelf).

– B ≡ {1, . . . ,m}: The set of shelves, indexed by i.

– Ki ≡ {1, 2, . . . , nh, nh + 1, . . . , nvnh}: The set of consecutive shelf
segments along shelf i (i ∈ B), indexed by k. Here, nh and nv
denote the number of horizontal and vertical positions for each shelf,
respectively.

– K ≡ ∪i∈BKi: The set of all shelf segments in the store.

– R ≡ {(k1, k2, j) ∈ K×K×N : k1 < k2 and
∑k2−1
h=k1+1 ch > uj−2ϕj}:

The set of of triplets (k1, k2, j), such that product j cannot cover all
intermediate shelf segments between k1 and k2.

– Ak ≡

{
∅, if k mod nh = 0

{k + 1, . . . , k + (nh − k mod nh)}, otherwise
:

The set of shelf shelf segments to the right of shelf segment k, where
nh denotes the number of horizontal positions for each shelf, k ∈ K.

• Parameters:

– fk ∈ (0, 1]: The attractiveness of segment k, k ∈ K.

– Φj : The maximum attainable profit for product category j on a
single segment, which would be obtained when fk = 1, j ∈ N . Note
that in the original model, this measure consists of the profit margin,
demand volume, and impulse purchase potential. For the purpose of
this paper, however, we omit these elements and simply define Φj as
before. In this paper, we directly simulate Φj , so its determination
in practice can be done in any manner.

– `j/uj : The minimum/maximum amount of shelf space allocated to
product j (if it is selected in the assortment), j ∈ N .

– ϕj : The minimum space that needs to be allocated to product j on
a segment (if it is assigned to that segment), j ∈ N ,.

– βi: The largest index among the segments on shelf i, i ∈ B.

– ck: The capacity of segment k, k ∈ K.
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– hj : The health score of each product category j, an integer on the
interval [1, 100], where 1 is the least healthy and 100 is the most
healthy, j ∈ N .

• Decision variables:

– xij ∈ {0, 1}: xij = 1 if and only if product category j is allocated to
shelf i, ∀i ∈ B, j ∈ N .

– ykj ∈ {0, 1}: ykj = 1 if and only if product category j is allocated to
shelf segment k, ∀k ∈ K, j ∈ N .

– skj ∈ R+: The amount of space allocated to product category j on
shelf segment k, ∀k ∈ K, j ∈ N .

– zjj′ ∈ {0, 1} : zjj′ = 1 if and only if product category j and j′ are
both selected into the assortment, ∀j, j′ ∈ N .

– qkj ∈ {0, 1} : qkj = 1 if and only if product category j is allocated
to both segments k and k + 1, ∀k ∈ K \ {βi : i ∈ B}, j ∈ N .

For the purpose of replication of the original paper, we utilize following data
generation scheme:

• All shelves have a capacity of 18 units, and each shelf is split into three
horizontal positions with one vertical level (i.e., nh = 3 and nv = 1), of
equal capacity (i.e., ck = 6, ∀k ∈ K, j ∈ N ).

• We simulate three store instances that consist of 30, 50, and 100 shelves
and 240, 400, and 800 products.

• The minimum space `j for each product category j is randomly generated
using a uniform distribution over the interval [1, 3], rounded to the nearest
integer.

• The maximum space uj for each product category j is randomly generated
using a uniform distribution over the interval [`j + 1, 6], rounded to the
nearest integer. Note that this step is slightly different from the one used
in Flamand et al. (2018). This adaptation avoids the case where `j = uj ,
which would effectively result in the exclusion of product j.

• The largest possible profit Φj for each product category j is randomly
generated using a uniform distribution over the interval [1, 25], rounded
to two decimal places.

• The base attractiveness t of each shelf is randomly generated such that
the shelves are evenly divided over the following five categories (i.e., 20%
each): t ∈ {0.05, 0.25, 0.45, 0.65, 0.85}. The attractiveness fk of each seg-
ment is generated by increasing the base attractiveness t of its shelf by a
randomly generated amount. The center shelf segments are assumed to be
less attractive than the right- and leftmost shelf segments. Consequently,
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Figure 1: Example of a 6x3 shelf with vertical attractiveness score in parentheses.

the attractiveness of the center shelf segments is generated using a uniform
distribution over the interval [t, t + 0.05]. The attractiveness of left- and
rightmost shelf segments is generated using a uniform distribution over
the interval [t+ 0.06, t+ 0.1].

• The minimum allocated space is set to 0.1 units for each product category.

3.2. Extensions

As mentioned before, for the extensions we simulate a single store instance
with 30 shelves and 240 product categories. For easy comparison, we use a
similar data generation procedure to the one used in Flamand et al. (2018), but
we adapt it such that it includes a health score between 1-100 for each product.

Moreover, shelf height needs to be incorporated into the model if we are to
place healthy products at an attractive vertical position. This requires us to
extend the model into a three-dimensional space. Conceptually, one would split
each shelf into a given number of levels (e.g., six levels for each shelf) and weight
the attractiveness score fk of segment k based on its shelf height. For example,
if each shelf has six levels, one might weight the attractiveness score of each
segment by the following vertical attractiveness scores fvk : 0.925 (top shelf),
0.95 (fifth level), 1.0 (fourth level), 1.0 (third level), 0.95 (second level), 0.9
(bottom shelf). These particular scores are based on the relative attractiveness
of shelves at the center and the relative attractiveness of top shelves as opposed
to bottom shelves.

One possible way to extend the model to three-dimensional space is to rep-
resent a shelf as one consecutive set of segments. An example of such a shelf
is depicted in Figure 1. In this example, the segments are ordered based on
their vertical position and on their horizontal position within each level. In this
way, the original computation based on the two-dimensional model can be used.
In essence, this representation simply squeezes the long 18-segment shelves in
Flamand et al. (2018) into a three-dimensional 6x3 shelf.

This three-dimensional representation of the original flat 18-segment shelf
requires a small adjustment to one of the assumptions in Flamand et al. (2018).
The authors assume that shelf segments in the middle of the store are less
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Figure 2: Example a double aisle that consists of eight shelves, with three horizontal shelf
segment positions each, viewed from above. Dashed lines depict possible other shelves.

attractive than end-of-aisle segment. In the context of an 18-segment aisle,
this makes sense as end-of-aisle segments are assumed to have a higher traffic
density. However, when we squeeze these shelves into a 6x3 shelf, the shelves
do not span an entire aisle anymore. Therefore, this assumption that left- and
rightmost segments are relatively attractive does not necessarily hold in this
case. To the contrary, it can be argued that the center segments are relatively
attractive as consumers tend to focus on the center of a shelf (Drexler & Souček,
2016; Huddleston et al., 2018). In line with this reasoning, we assume that center
shelves are more attractive than the left- and rightmost segments, contrary to
the assumption in Flamand et al. (2018).

The previously described assumptions still allow us to model the relative
attractiveness of end-caps, albeit through a different mechanism. One might
imagine that a store that consists of 30 shelves, could position them in aisles
as depicted in Figure 2. This would, for example, allow the store to form three
of these double aisles, and the remaining six shelves can be positioned on the
outer perimeter of the store. Contrary to the original two-dimensional model,
the end-caps are now defined as standalone 6x3 shelves, rather than the outer
segments of a flat 18-segment shelf. The relative attractiveness of end-caps is
then simply incorporated into the base attractiveness of the end-of-aisle shelf.
Similarly to Flamand et al. (2018), in this paper the segment attractiveness is
mainly based on the base attractiveness of its shelf, and only slightly affected
by the horizontal and vertical position of a segment within a shelf.

For the purpose of incorporating the relative attractiveness of different shelf
heights, we can split the relative attractiveness of each segment fk into a hor-
izontal component 0 < fhk ≤ 1 and a vertical component 0 < fvk ≤ 1, such
that:

fk = fhk f
v
k , ∀i ∈ B, k ∈ K, (1)

provided that:

fha = fhb , ∀i ∈ B, a, b ∈ Ki|(a < b ∧ (b− a) mod h = 0), (2)

where h denotes the number of segments per level (horizontal positions).
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Equation 2 ensures that the horizontal segment attractiveness component is
equal for any two segments that are on the same horizontal position along the
same shelf.

These adaptations result in the following data generation scheme:

• All shelves have a capacity of 18 units, and each shelf is split into three
horizontal positions with six vertical levels (i.e., nh = 3 and nv = 6), of
equal capacity (i.e., ck = 1, ∀k ∈ K, j ∈ N ).

• We simulate a single store that consists of 30 shelves and 240 products.

• The minimum space `j for each product category j is randomly generated
using a uniform distribution over the interval [1, 3], rounded to the nearest
integer.

• The maximum space uj for each product category j is randomly generated
using a uniform distribution over the interval [`j + 1, 6], rounded to the
nearest integer. Note that this step is slightly different from the one used
in Flamand et al. (2018). This adaptation avoids the case where `j = uj ,
which would effectively result in the exclusion of product j.

• The largest possible profit Φj for each product category j is randomly
generated using a uniform distribution over the interval [1, 25], rounded
to two decimal places.

• The health score hj for each product category j is randomly generated us-
ing a uniform distribution over the interval [1, 100], rounded to the nearest
integer. Here, a score of 1 is the least healthy and a score of 100 is the
most healthy.

• The base attractiveness t of each shelf is randomly generated such that the
shelves are evenly divided over the following five categories (i.e., 20% each):
t ∈ {0.05, 0.25, 0.45, 0.65, 0.85}. The horizontal attractiveness fhk of each
segment is generated for each shelf column (i.e., all six levels) by increasing
the base attractiveness t of its shelf by a randomly generated amount. The
left- and rightmost shelf segments are assumed to be less attractive than
the center shelf segments. Consequently, the attractiveness of the left-
and rightmost shelf segments is generated using a uniform distribution
over the interval [t, t+0.05]. The attractiveness of center shelf segments is
generated using a uniform distribution over the interval [t+ 0.06, t+ 0.1].
All shelf segments on the same horizontal position along a certain shelf
are required to have equal horizontal attractiveness in accordance with
Equation 2.

• The overall attractiveness fk of each segment k is computed by multi-
plying its horizontal attractiveness score fhk by its corresponding vertical
attractiveness score fvk ∈ {0.925, 0.95, 1.0, 1.0, 0.95, 0.9} (as in Figure 1).

• The minimum allocated space is set to 0.1 units for each product category.
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• All affinity relationships (L, H1, H2, and H3), are simulated by randomly
selecting 1% of the product categories and randomly assigning another
product category to each of them for each relation.

4. Methodology

In Flamand et al. (2018), an integrated Assortment Planning and Shelf-space
Allocation (APSA) model is proposed. This model is outlined in Subsection 4.1.
Moreover, the authors of Flamand et al. (2018) propose an optimization-based
heuristic approach to solve solve their model within manageable computation
times. This approach is briefly discussed in Subsection 4.2. In this paper,
we consider two possible extensions of this model: a visibility penalty for un-
healthy products and healthy-left, unhealthy-right shelf positioning, discussed
in Subsections 4.3 and 4.4, respectively. Subsection 4.5 outlines an integrated
approach which combines these two extensions. The evaluation of the considered
approaches is discussed in Subsection 4.6.

4.1. APSA

The MIP problem APSA is a model for shelf-space optimization that was
introduced in Flamand et al. (2018). The model is defined as follows:

APSA : Maximize
∑
k∈K

∑
j∈N

Φj
fkskj
ck

(3a)

subject to
∑
i∈B

xij ≤ 1, ∀j ∈ N (3b)

∑
j∈N

skj ≤ ck, ∀j ∈ N (3c)

`j
∑
i∈B

xij ≤
∑
k∈K

skj ≤ uj
∑
i∈B

xij , ∀j ∈ N (3d)

ϕjykj ≤ skj ≤ min{ck, uj}ykj , ∀j ∈ N , k ∈ K (3e)

sk2,j ≥ ck2(yk1,j + yk3,j − 1), ∀i ∈ B, j ∈ N ,
k1, k2, k3 ∈ Ki|k1 < k2 < k3, (k1, k3, j) /∈ R

(3f)

ykj ≤ xij , ∀i ∈ B, j ∈ N , k ∈ Ki (3g)

xij ≤
∑
k∈Ki

ykj , ∀i ∈ B, j ∈ N (3h)

qkj ≥ ykj + yk+1,j − 1, ∀i ∈ B, j ∈ N , k ∈ Ki \ {βi} (3i)

∑
j∈N

qkj ≤ 1, ∀i ∈ B, k ∈ Ki \ {βi} (3j)
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xij + xij′ ≤ 1, ∀(j, j′) ∈ L, i ∈ B (3k)

xij − xij′ = 0, ∀(j, j′) ∈ H1, i ∈ B (3l)

xij ≤ xij′ , ∀(j, j′) ∈ H2, i ∈ B (3m)

xij − xij′ ≤ 1− zjj′ , ∀(j, j′) ∈ H3, i ∈ B (3n)

xij − xij′ ≥ −1 + zjj′ , ∀(j, j′) ∈ H3, i ∈ B (3o)

zjj′ ≤
∑
i∈B

xij , ∀(j, j′) ∈ H3 (3p)

zjj′ ≤
∑
i∈B

xij′ , ∀(j, j′) ∈ H3 (3q)

zjj′ ≥
∑
i∈B

xij +
∑
i∈B

xij′ − 1, ∀(j, j′) ∈ H3 (3r)

yk1,j + yk2,j ≤ 1, ∀(k1, k2, j) ∈ R (3s)

x,y, z,q ∈ {0, 1}, s ≥ 0. (3t)

In the MIP problem APSA, the objective value 3a maximizes a measure of
store profit. Constraint 3b ensures that each product is assigned to at most one
shelf. Constraint 3c ensures that the allocated space on any given shelf does
not exceed its capacity. Constraint 3d ensures that the allocated space for each
product is between its minimum and maximum space requirement. Constraint
3e ensures that the allocated space for any given product on any given shelf
segment is between the minimum allocated space for this product, and the
minimum of the capacity of this segment and the maximum space requirement
of this product. Constraint 3f is the second valid inequality in Flamand et al.
(2018), it ensures that any product that is allocated to a pair of segments k1

and k3 (k1 < k2 < k3) on any given shelf, is also allocated to any segment
in between (k2). This constraint is included as recommended by the authors.
Constraint 3g ensures that any product is only allocated to a shelf segment if it
is assigned to the corresponding shelf. Constraint 3h ensures that any product is
placed on at least one shelf segment if it is allocated to the corresponding shelf.
Constraint 3i ensures that for any shelf, qkj is equal to one if and only if product
j is assigned to both segments k and k + 1, and zero otherwise. Constraint 3j
ensures that only one product category runs over any two consecutive shelf
segments. Constraint 3k ensures that any two products that have allocation
disaffinity, are not placed on the same shelf. Constraint 3l ensures that any two
products that have symmetric assortment affinity, are selected together, and
placed on the same shelf, or neither is selected. Constraint 3m ensures that for
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any two products that have asymmetric assortment affinity: if the first product
is selected, the second product is selected as well, and placed on the same shelf.
Constraints 3n-3r ensure that any two products that have allocation affinity are
placed on the same shelf. Constraint 3s is the first valid inequality in Flamand
et al. (2018), it ensures that any product that cannot cover all intermediate
sections k2 between segments k1 and k3 (k1 < k2 < k3) on any given shelf,
is not allocated to both segments k1 and k3. This constraint is included, as
recommended by the authors. Finally, Constraint 3t ensures that the decision
variables xij , ykj , zjj′ , and qkj are binary, and that decision variable skj is a
continuous variable larger or equal to zero.

4.2. Optimization-based heuristic approach

As briefly mentioned before, this paper builds upon the optimization-based
heuristic approach that was proposed in Flamand et al. (2018). This method
consists of two steps: an initialization procedure and a subsequent MIP-based
re-optimization procedure.

In the first step of the method, the problem is initialized by optimizing
each shelf separately. For each shelf, only the products that have not yet been
selected are considered in its optimization. The shelves are traversed from most
attractive to least attractive, such that the best products are placed on the most
promising shelves.

In the second step of the method, the shelves are split into τ levels according
to their current objective value contribution. From each level, a shelf is selected
and these τ shelves are jointly re-optimized starting from the initial solution
provided by the initialization procedure. After re-optimization, the shelves are
taken out of consideration and the next set of τ shelves is re-optimized, until
the number of remaining shelves falls below τ . This procedure repeated until
any of the stopping conditions are met. In this paper, we utilize the following
stopping conditions:

• The gap ε between the incumbent solution and the upper bound provided
by the continuous relaxation of the problem falls below 0.5%.

• All shelves are traversed ten times with a change in the objective value
that is smaller than 0.01. That is, no change for every set of τ shelves
that is re-optimized, in each of the ten loops.

• The re-optimization procedure is run for more than five hours.

After each shelf optimization in the initialization procedure, the original al-
gorithm described in Flamand et al. (2018) checks all products j that are placed
on this shelf for allocation affinity relationships (H3) with products j′ that are
not selected on this shelf, and removes these products j′ from consideration in
subsequent shelf optimizations.

While the aforementioned affinity relationship check is indeed important, it
is not sufficient to ensure solution feasibility with respect to the affinity rela-
tionships. Again, consider the case that product j is placed on a shelf that is
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not considered. Then, one must also consider any set of products (j′, j) that
have asymmetric assortment affinity (H2). Consider for example cake icing and
cake: if cake icing is selected in the assortment, then cake must be selected as
well. The converse need not hold (i.e., cake can be selected without selecting
cake icing). Therefore, the situation might arise that cake is selected on a shelf
i, and cake icing is not. Then, in any subsequent shelf optimization cake icing
must not be considered as cake has already been placed on shelf i. In other
words, for any set (j′, j) ∈ H2, one must remove j′ from consideration when
product j is placed on shelf that is not considered.

Moreover, when a product j′ is removed from consideration in either of the
aforementioned checks, this can affect other affinity relationships that concern
product j′. Firstly, one must remove any product j′′ from consideration when
(j′, j′′) ∨ (j′′, j′) ∈ H1. This is because both products must be selected or
neither of them should be included in the assortment. As j′ is removed from
consideration, j′′ must be removed from consideration as well. Secondly, one
must again remove any product j′′ from consideration when (j′′, j′) ∈ H2. As
before, if cake is removed from consideration, cake icing must also be removed.
These two additional check must then be recursively applied to product j′′ if it
is removed from consideration.

Finally, this procedure is not only applicable to the initialization procedure,
but also to the subsequent re-optimization. This is because when we consider
subsets of shelves, the same problems arise as when we optimize individual
shelves (products can be placed on a shelf that is not considered). For this
reason, each of the aforementioned checks must also be applied after the re-
optimization of each set of τ shelves. In summary:

1. When a product j is placed on a shelf that is not considered.

• L: No action required (always satisfied).

• H1: No action required (j′ would have been placed as well).

• H2: Remove j′ for any pair (j′, j) ∈ H2.

• H3: Remove j′ for any pair (j, j′) ∨ (j′, j) ∈ H3.

2. For any product j′ that is removed from consideration.

• L: No action required (always satisfied).

• H1: Remove j′′ for any pair (j′, j′′) ∨ (j′′, j′) ∈ H1.

• H2: Remove j′′ for any pair (j′′, j′) ∈ H2.

• H3: No action required (always satisfied).

3. Repeat Step 2 for any product j′′ that is removed from consideration in
the previous iteration, until no more products are removed.

4.3. Visibility penalty

One possible way to promote healthy purchase decisions is to place healthy
products in more prominent positions in the store. Conversely, we can penalize
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the prominent positioning of unhealthy products. We can do the latter by
adapting the objective function of the APSA problem as follows:

APSA : Maximize
∑
k∈K

∑
j∈N

Φj
fkskj
ck
− γ

hj
func(

fkskj
ck

), (4)

where
fkskj

ck
represents the visibility of product category j on shelf segment

k; γ is a penalty parameter for the visibility unhealthy food; func(x) denotes
any function of x.

For the purpose of this paper, we simply utilize a linear function of the
visibility: func(x) = x. Note that this can be extended to any other function,
if that were to be preferred.

Note that this visibility penalty also inherently penalizes the inclusion of
unhealthy products in the assortment (

skj

ck
), unweighted by the segment attrac-

tiveness score fk. Because of this, the visibility penalty is particularly interesting
if one wants to combine visibility and availability enhancements.

4.4. Healthy-left, unhealthy-right

A healthy-left, unhealthy-right shelf-space allocation can be implemented by
penalizing unhealthy products being placed to the left of healthy products. If
we include the previously mentioned extension to three-dimensional space, this
can be done by defining a penalty function:

ψ(k1) =
∑

k2∈Ak1

∑
j2∈N

(sk2j2hj2)− |Ak1 |
∑
j1∈N

(sk1j1hj1). (5)

We can use this in the objective function as follows:

APSA : Maximize
∑
k1∈K

(
∑
j∈N

(Φj
fk1sk1j
ck1

)− θψ(k1)), (6)

where θ is a parameter for the importance of healthy-left, unhealthy-right
placement. This procedure rewards healthy products placed to the left of un-
healthy products and penalizes the cases where unhealthy products are placed
to the left of healthy products.

Note that this function is deliberately written out in different sums as this al-
lows us to model the healthy-left, unhealthy-right approach without introducing
quadratic terms to the objective function.

4.5. Integrated approach

These aforementioned approaches can be integrated to obtain a Health-
adjusted Assortment Planning and Shelf-space Allocation problem HAPSA,
with an objective function as follows:

HAPSA : Maximize
∑
k∈K

∑
j∈N

Φj
fkskj
ck
− γ

hj

fkskj
ck
− θψ(k), (7)

where ψ(k) is the penalty function defined in Equation 5.
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4.6. Evaluation

We can define three measures to evaluate the performance of each approach.
The first measure is simply the Profit (P):

P =
∑
k∈K

∑
j∈N

Φj
fkskj
ck

. (8)

A second measure, which measures the store-wide availability of healthy
products, is the Store-average Health Score (SHS):

SHS =
1∑

k∈K ck

∑
k∈K

∑
j∈N

hjskj . (9)

The SHS measures the average health score for one capacity unit.
A third measure that we consider, which measures the store-wide visibility

healthy products, is the Store-average Visibility-weighted Health Score (SVHS):

SV HS =
1∑

k∈K ck

∑
k∈K

∑
j∈N

hjfkskj . (10)

The SVHS measures the average health score for one capacity unit, weighted
by the segment attractiveness. Note that this measure also partially includes
the availability of healthy products (as in the SHS).

These three measures can be compared against a benchmark model (without
the extensions) for each approach, to examine the trade-off between profit (which
is expected to decline), visibility of healthy products, and availability of healthy
products.

For the purpose of this paper, we first focus on the visibility penalty ap-
proach, as it integrates both visibility and availability enhancements, and is
therefore the most promising approach. We vary the parameter γ and by do-
ing so we investigate the effects of various parameter settings. Then, with an
adequate parameter setting for γ, the healthy-left, unhealthy-right approach is
introduced and the effect of this approach is visually examined to see how large
θ must be to achieve an acceptable ordering.

All algorithms are coded in Java, using CPLEX 20.1.0. The CPLEX param-
eters are tuned using the CPLEX tuning tool for the three-dimensional version
of a store with 30 shelves and 240 products, for each of the three subtasks (ini-
tialization, continuous relaxation, and re-optimization). We set τ = 4 shelves,
and the re-optimization of each set of four shelves is run using a relative MIP
gap tolerance of 0.001 and time limit of 120 seconds. All source code can be
found on GitHub1. A brief description of the files in this repository can be found
in Appendix A. Everything is run on a Lenovo Ideapad 510S-14IKB laptop with
an Intel(R) Core(TM) i5-7200U CPU 2.50GHz processor and 8 GB RAM.

1https://github.com/stefanvanberkum/HAPSA
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5. Results

In this section, we will discuss the results of the replication and extensions
that we consider in this paper. The replication results are outlined in 5.1. As
to the extensions, we investigate the trade-off between profit and the previously
defined scores that measure store healthiness (SHS and SVHS). Subsection 5.2
discusses the results of the visibility penalty. Subsection 5.3 discusses the results
of the healthy-left, unhealthy-right approach.

5.1. Replication

For the purpose of checking whether the original results replicate, we run
three instances of the smallest, middle, and largest stores that are considered
in Flamand et al. (2018). We measure the total running time in seconds, as
CPLEX has no built-in method to measure CPU time in Java. Moreover, we
use the CPLEX parameters that are tuned for our three-dimensional adaptation
of APSA, for a 30-shelf, 240-product store. We use these parameters as they sig-
nificantly improve performance of CPLEX in our three-dimensional adaptation
of APSA. This can be expected to improve performance of the two-dimensional
model as well, since this is the same problem, except for the fact that the shelves
are split into less segments. For each run in this section, the time limit stopping
condition is set to one hour (wall-clock time).

Note that differences in performance are difficult to interpret, as we do not
have access to the original implementation code. With respect to the stopping
conditions, we are not aware of the of the number of loops required for termi-
nation in the original runs. Moreover, we have no information on the utilized
parameter settings with respect to the relative MIP gap, time limit, and other
tunable parameters.

In Subsection 5.1.1 we discuss the general performance of the heuristic ap-
proach, as opposed to the full model. In Subsection 5.1.2 we discuss the effect
of different values of the neighborhood size τ (the number of shelves that is se-
lected for re-optimization in each iteration of the re-optimization procedure). In
Subsection 5.1.3 we discuss the effect of different values of the target optimality
gap ε. In Subsection 5.1.4 we discuss the effect of adding the different affinity
relationships (L, H1, H2, and H3).

5.1.1. Heuristic performance

In this subsection, the optimization-based heuristic approach is compared
against running the full model APSA as a whole. The result of this comparison
is depicted in Table 1. The results are consistent with the findings in Flamand
et al. (2018), in the sense that the heuristic substantially outperforms the reg-
ular APSA model. We observe that the optimality gap for regular APSA is
larger, when compared to the original findings. This can be due to many rea-
sons. Possibly, it is due to the fact that we measure wall-clock time in seconds,
as opposed to CPU time. Another possible explanation is that the original runs
were done using a substantially more powerful computer, using a different pro-
gramming language (C++). We can also note that the heuristic is faster in our
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Table 1: The performance of the optimization-based heuristic approach, compared to the full
model APSA.

(|B|, |N |) Inst. APSA Heuristic
τ = 4

ε = 0.5%
T(s) G(%) T(s) G(%)

(30, 240) 1 3603 2.03 63 0.50
2 3601 2.20 43 0.49
3 3601 1.80 32 0.45

(50, 400) 1 3605 3.05 173 0.45
2 3602 1.85 109 0.50
3 3602 2.75 92 0.48

(100, 800) 1 3609 6.88 623 0.48
2 3618 7.72 617 0.49
3 3611 7.51 465 0.46

Note. T(s): Time in seconds, G(%): Optimality gap.

Table 2: The effect of different neighborhood sizes τ on the performance of the optimization-
based heuristic.

(|B|, |N |) Inst. APSA Heuristic
τ = 2 τ = 3 τ = 4

ε = 0.5% ε = 0.5% ε = 0.5%
T(s) G(%) T(s) G(%) T(s) G(%) T(s) G(%)

(30, 240) 1 3603 2.03 101 0.89 68 0.50 63 0.50
2 3601 2.20 51 0.89 44 0.47 43 0.49
3 3601 1.80 85 0.52 29 0.47 32 0.45

(50, 400) 1 3605 3.05 215 0.69 86 0.48 173 0.45
2 3602 1.85 180 0.77 103 0.49 109 0.50
3 3602 2.75 318 0.50 59 0.49 92 0.48

(100, 800) 1 3609 6.88 908 0.59 330 0.48 623 0.48
2 3618 7.72 1504 0.63 494 0.46 617 0.49
3 3611 7.51 1686 0.61 375 0.48 465 0.46

Note. T(s): Time in seconds, G(%): Optimality gap.

runs, especially for larger store instances. Possibly, the increased performance
can be explained by our relative MIP gap tolerance and time limit for each
re-optimization iteration. The improved scalability of the heuristic can be due
to the parameter tuning, which is done for a three-dimensional version of a 30-
shelf, 240-product store. As this problem is quite large, it can be expected that
the heuristic with these parameters performs relatively well for large instances.

5.1.2. Neighborhood size

In this subsection, we investigate the effect of different neighborhood sizes τ
on the performance of the optimization-based heuristic approach. The result of
this comparison is depicted in Table 2. The results are not entirely consistent
with the results obtained in the original paper, in the sense that that τ = 3
yields results superior to τ = 4, especially for large instances. This could be
due to our CPLEX parameter settings (relative MIP gap tolerance, time limit,
and other tuned parameters). It might be the case that these yield even better
results when τ = 3.
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Table 3: The effect of different values for the target optimality gap ε on the performance of
the optimization-based heuristic.

(|B|, |N |) Inst. APSA Heuristic
τ = 4 τ = 4 τ = 4

ε = 1.5% ε = 1.0% ε = 0.5%
T(s) G(%) T(s) G(%) T(s) G(%) T(s) G(%)

(30, 240) 1 3603 2.03 37 1.07 36 0.96 63 0.50
2 3601 2.20 32 0.97 25 0.87 43 0.49
3 3601 1.80 17 0.92 20 0.77 32 0.45

(50, 400) 1 3605 3.05 46 0.98 67 0.92 173 0.45
2 3602 1.85 70 0.89 99 0.97 109 0.50
3 3602 2.75 63 0.88 55 0.90 92 0.48

(100, 800) 1 3609 6.88 355 0.81 460 0.85 623 0.48
2 3618 7.72 354 1.12 266 0.99 617 0.49
3 3611 7.51 276 0.91 275 0.93 465 0.46

Note. T(s): Time in seconds, G(%): Optimality gap.

Table 4: The effect of adding affinity relationships L and H1 on the performance of the
optimization-based heuristic.

(|B|, |N |) Inst. No affinity L H1

T(s) G(%) T(s) G(%) T(s) G(%)
(30, 240) 1 63 0.50 74 0.49 64 0.48

2 43 0.49 38 0.49 169 0.66
3 32 0.45 32 0.49 56 0.49

(50, 400) 1 173 0.45 131 0.45 360 0.49
2 109 0.50 110 0.47 229 0.50
3 92 0.48 106 0.43 106 0.48

(100, 800) 1 623 0.48 313 0.46 917 0.48
2 617 0.49 540 0.46 688 0.50
3 465 0.46 662 0.49 545 0.46

Note. T(s): Time in seconds, G(%): Optimality gap.

5.1.3. Optimality gap

In this subsection, we investigate the effect of different values for the target
optimality gap ε. The result of this comparison is depicted in Table 3. The
results are roughly consistent with the findings of the original paper. As ex-
pected, increasing the target optimality gap decreases the running times but
yields larger optimality gaps.

5.1.4. Affinity relationships

In this subsection, we investigate the effect of adding affinity relationships
(L, H1, H2, and H3) to the model. The effect of adding five of each affinity
relationship separately is depicted in Table 4 (L and H1) and Table 5 (H2 and
H3). The effect of adding five of each affinity relationship together is depicted
in Table 6. These results are roughly consistent with the findings of the original
paper. The separate affinity relationships L, H2, and H3 do not appear to have
a substantial impact on the performance of the heuristic. The addition of the
affinity relationship H1 does have a substantial impact on the performance of
the heuristic. Running time and convergence are negatively impacted by this
relationship, and even more so by adding all relationships together (L, H1, H2,
and H3).
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Table 5: The effect of adding affinity relationships H2 and H3 on the performance of the
optimization-based heuristic.

(|B|, |N |) Inst. No affinity H2 H3

T(s) G(%) T(s) G(%) T(s) G(%)
(30, 240) 1 63 0.50 106 0.45 79 0.50

2 43 0.49 42 0.50 43 0.48
3 32 0.45 39 0.47 34 0.46

(50, 400) 1 173 0.45 110 0.50 113 0.49
2 109 0.50 107 0.47 140 0.47
3 92 0.48 103 0.49 77 0.48

(100, 800) 1 623 0.48 478 0.48 392 0.50
2 617 0.49 650 0.49 625 0.48
3 465 0.46 611 0.44 608 0.46

Note. T(s): Time in seconds, G(%): Optimality gap.

Table 6: The effect of adding all affinity relationships on the performance of the optimization-
based heuristic.

(|B|, |N |) Inst. No affinity (L, H1, H2, H3)
T(s) G(%) T(s) G(%)

(30, 240) 1 63 0.50 282 0.65
2 43 0.49 151 0.96
3 32 0.45 53 0.49

(50, 400) 1 173 0.45 414 0.51
2 109 0.50 164 0.46
3 92 0.48 137 0.49

(100, 800) 1 623 0.48 798 0.49
2 617 0.49 812 0.48
3 465 0.46 615 0.50

Note. T(s): Time in seconds, G(%): Optimality gap.

5.2. Visbility penalty

As to the extension, we run the APSA model with a visibility penalty 40
times, with the visibility penalty parameter γ between 5-200 (i.e., increments
of five). The percentage change in each of the three measures (profit, SHS, and
SVHS) for different values of γ is displayed in Figure 3. The plot includes curves
fitted by means of LOESS, with the corresponding 95% confidence intervals.
Here, we can clearly discern a pattern for each of the three measures. The
profit initially falls only by a minor amount, and appears to fall more steeply as
γ increases. As to the other scores, both SHS and SVHS increase very steeply
at first, and appear to flatten out as γ increases. The results imply that by
forgoing just 0.2% of profit, one might attain an approximate gain of 4% in both
the store-wide availability of healthy products (SHS) and store healthiness when
we consider product visibility (SVHS). Moreover, by forgoing approximately 1%
of profits, one might attain an approximate gain of 7% and 10% in SHS and
SVHS, respectively. Stores that are willing to surrender approximately 5% of
profits might attain gains around 18% and 26% in SHS and SVHS, respectively.

Another way we might analyze these results is by plotting the change in SHS
and SVHS relative to the absolute change in profit. This is displayed for SHS and
SVHS in Figures 4a and 4b, respectively. These plots also include curves fitted
by means of LOESS, with the corresponding 95% confidence intervals. Again,
we can clearly see that the initial gain in each of these scores is relatively high
compared to the loss in profit. These ratios initially fall sharply for both the SHS
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Figure 3: Percentage change in profit, SHS, and SVHS using different values of γ.

(a) SHS. (b) SVHS.

Figure 4: Ratio between change SHS/SVHS and change in profit using different values of γ.

and SVHS. As γ increases, the ratios for SHS and SVHS appear to respectively
converge to approximately 3.5% and 5.1% percent for each percentage point in
forgone profits.

We can also consider the effect of the visibility penalty parameter γ on the
average shelf. Figure 5 displays a front view of the average shelf for different
values of γ. For each segment, this front view displays the average health
score for that particular segment. What is clear from this figure is that by
increasing γ, the average shelf gets healthier. However, we cannot discern a
clear pattern for the placement of healthy products. One might expect these
healthy products to get pulled towards the center of the shelf, as these segments
are both horizontally and vertically more attractive than the others. The fact
that this does not seem to happen might be due to the relatively large effect
of the base attractiveness of each shelf, compared to the horizontal and vertical
difference in segment attractiveness within a shelf. Moreover, the model assumes
that if a product is placed on multiple shelf segments, these segments must be
adjacent (horizontally). For this reason, the average health scores of horizontally
adjacent shelf segments are not independent. Another factor worth considering
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(e) γ = 200

Figure 5: Segment-average health score for different values of the visibility penalty parameter
γ, as viewed from the front of a shelf.

is that the optimization algorithm still needs to balance profits and health scores.
While these aspects are simulated independently, it might coincidentally be the
case that some unhealthy products are very profitable. The combination of these
two elements might cause the seemingly random patterns we see for increasing
values of γ. If the aim is to achieve a more visible product ordering, one might
consider adjusting the effect of horizontal and vertical positions on segment
attractiveness.

5.3. Healthy-left, unhealthy-right

For the purpose of this paper, we focus on the integrated approach HAPSA
(visibility penalty combined with healthy-left, unhealthy-right ordering) as the
aim is to make the store healthier. If one were to consider the healthy-left,
unhealthy-right ordering separately, then this would promote the placement of
very unhealthy products at the rightmost side of the shelf. The visibility penalty
parameter γ parameter is frozen at γ = 100. Note, however, that this can be any
value and is simply for the purpose of demonstration. We proceed by increasing
the healthy-left, unhealthy-right ordering parameter θ until a visual ordering
appears for the average shelf. This gives an indication of how much profit must
be forgone to obtain an acceptable ordering.

The aforementioned procedure yields an acceptable ordering for θ = 0.001,
which is visualized in Figure 6. Here we clearly see that healthy products are
on average placed on the left side of the shelf, while unhealthy products are
on average placed on the right side of the shelf. The effect of this ordering on
profits, SHS, SVHS is outlined in Table 7. These results indicate that the profit
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(c) HAPSA

Figure 6: Segment-average health score for regular APSA, APSA with a visibility penalty
(γ = 100), and HAPSA (γ = 100, θ = 0.001), as viewed from the front of a shelf.

that is attained for HAPSA is practically equal to the profit that is obtained by
APSA with a visibility penalty. Moreover, the SHS and SVHS scores are also
nearly equal to those for APSA with a visibility penalty.

Table 7: Effects of APSA, APSA with a visibility penalty (γ = 100), and HAPSA (γ = 100,
θ = 0.001) on profit, SHS, and SVHS.

APSA Visibility penalty HAPSA
Profit 5305.18 (-) 5156.90 (-2.8%) 5160.05 (-2.7%)
SHS 47.6 (-) 53.3 (+12.0%) 53.2 (+11.8%)
SVHS 21.7 (-) 25.6 (+18.1%) 25.5 (+17.6%)
Note. Change compared to regular APSA is in parentheses.

6. Conclusion

In this section, we will briefly summarize all results and provide some final
remarks. Subsection 6.1 briefly outlines the results obtained from the replication
of the original research. Subsection 6.2 discusses the results of the extensions to
the three-dimensional adaptation of the model. Subsection 6.3 provides some
final remarks on further application of the investigated methods.

6.1. Replication

In short, we were able to replicate most of the findings of the original paper.
Their proposed optimization-based heuristic approach was found to substan-
tially outperform the regular model. A finding worth noting is that our imple-
mentation of the heuristic appeared to be even faster than in the original paper.
Moreover, the scalability of the heuristic was substantially improved. This may
be due to the tuning of CPLEX parameters, which were tuned for a large-scale
model. Moreover, the relative MIP gap tolerance and the time limit for each re-
optimization iteration might have affected the performance. These parameters
might have also caused another finding of interest: the neighborhood size τ = 3
appeared to perform better than τ = 4. This could be further investigated in
future research.
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6.2. Extensions

In this paper, we investigate possible approaches to promote healthy pur-
chasing behavior through shelf-space optimization. For this purpose, we adapt
and extend a state-of-the-art optimization-based approach to shelf space plan-
ning. The method is adapted to model a three-dimensional store. Moreover, the
method is complemented by a visibility penalty and a healthy-left, unhealthy-
right ordering to promote healthy purchasing behavior.

The proposed visibility penalty substantially increases both the store-wide
availability of healthy products (SHS) and their visibility (SVHS). The results
suggest that by forgoing 1% of profits, one might attain gains in SHS and SVHS
of approximately 7% and 10%, respectively. For stores that are willing to forgo
5% of their profits, these gains in SHS and SVHS rise to around 18% and 26%,
respectively. It is worth noting that the gains in SHS and SVHS are relatively
large compared to the forgone profits for small values of the visibility penalty
parameter γ. This implies that stores that are willing to forgo minimal amounts
of profit might still benefit from this visibility enhancement. For example, a
store that is willing to surrender just 0.2% of profits may gain approximately
4% in both SHS and SVHS. This loss in profit might easily be covered by
marketing gains that are based around a healthier store image.

Secondly, the visibility penalty combined with a healthy-left, unhealthy-right
ordering is able to attain a visible product ordering with near-equal profit and
store healthiness, when compared to a store that is optimized using the visibility
penalty only. Moreover, this ordering can be used to sort on any numerical
product aspect (e.g., environmental impact).

Another finding worth noting is that the running time significantly increases
due to the three-dimensional adaptation. This makes sense, as we use six times
a many segments as in the original model. Moreover, we observe longer run-
ning times and worse convergence when the visibility penalty parameter γ and
healthy-left, unhealthy-right ordering parameter θ are increased. Future re-
search might pinpoint why this is the case, and possibly mitigate this behavior.
Perhaps, the performance of the algorithm might be improved by randomly re-
moving products from shelves (much like a dropout technique used in the context
of deep neural networks). This is also left as a question for future research.

In this paper, we incorporate a visibility penalty and healthy-left, unhealthy-
right ordering into a single state-of-the-art optimization-based approach to shelf-
space planning. Note, however, that both of the proposed methods can be
incorporated into almost any optimization-based approach as long as it includes
some kind of measure of segment attractiveness.

6.3. Application

The application of the investigated methods in a real-world setting would
require some additional research. Firstly, using real-world products would re-
quire an accurate health score for each considered product, which could be
determined for each product by using new or existing health scores such as the
Healthy Eating Index (Krebs-Smith et al., 2018).
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Secondly, the horizontal and vertical attractiveness scores used in this paper
are determined solely for the sake of demonstration. In a real-world setting,
one might consider extensive studies that combine traffic measurement such as
Tsai & Huang (2015) with eye-tracking approaches such as Drexler & Souček
(2016); Huddleston et al. (2018). Preferably, one would tailor the attractiveness
for each segment to the specific store that is considered in the optimization. For
example, end-cap shelves could be given a relatively high base attractiveness,
as well as shelves near the checkout.

As to the extensions, in practice one might optimize a given store both
without the extensions and with a visibility penalty, based on the store owner’s
preference for store healthiness. If a health score between 1-100 is used, one
would expect the effects to be roughly similar to the results found in this paper.
By also optimizing the store without the extensions, one can confirm whether
the results are satisfactory. If not, the γ parameter can be adjusted accordingly.
Moreover, any product ordering might be attained, as long as it is based on a
numerical product characteristic (e.g., price). However, the required value of θ
might differ between stores. Therefore, one might consider a similar procedure
as used in this paper. By increasing the parameter value until an acceptable
ordering appears, one ensures that the products are ordered at minimal cost to
any other measures.

For HAPSA with both a visibility penalty and product ordering, note that
these penalties need not serve the same purpose, and that they might conflict
with each other. For example, the healthy-left, unhealthy-right ordering on its
own would try to place very unhealthy products at the rightmost side of the
shelf. In practice, this causes very stringent orderings to actually decrease store
healthiness. This must be taken into account when the parameter settings are
determined, as per what is deemed the most important by the store owner.

Appendix A. Code description

As mentioned before, all source code used in this paper can be found on
GitHub2. This appendix briefly summarizes the files that can be found within
this repository. Appendix A.1 discusses the main Java source code, required
to run all methods. Appendix A.2 outlines the automatically generated output
files. Appendix A.3 discusses the R and MATLAB code used to obtain the
graphs and colormaps, respectively.

Appendix A.1. Source code

Path: main→ HAPSA→ src→ hapsa→ . . .
The following different classes are utilized:

• AsymmetricPair.java: The AsymmetricPair class defines a basic frame-
work for pairs of products that have an asymmetric affinity relationship
(H2).

2https://github.com/stefanvanberkum/HAPSA
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• HAPSA.java: The HAPSA class provides a framework for the models used
in the MIP-based re-optimization procedure of the optimization-based
heuristic approach to assortment planning and shelf space optimization.
It extends the Model class.

• Main.java: The Main class provides the main execution environment, and
contains methods for the optimization-based heuristic approach.

• Model.java: The Model class is an abstract class that defines the basic
framework for a model used in the optimization-based heuristic approach
to assortment planning and shelf space optimization (SSP and HAPSA).
It extends the CPLEX IloCplex class.

• ParameterTuner.java: The ParameterTuner class provides methods to
tune the CPLEX parameters for the optimization-based heuristic approach
to shelf space planning. The optimal parameters are determined for the
first iteration of the initialization procedure, the continuous relaxation,
and the first iteration of the re-optimization procedure. The results are
saved to a file and automatically loaded into the Main class.

• Product.java: The Product class provides definitions and methods for a
product within the context of a store.

• Segment.java: The Segment class provides definitions and methods for a
shelf segment.

• Shelf.java: The Shelf class provides definitions and methods for a store
shelf.

• Solution.java: The Solution class provides a framework and methods for
any store planning solution.

• SSP.java: The SSP class provides a framework for the Single Shelf Prob-
lem (SSP) model used in the initialization procedure of the optimization-
based heuristic approach to assortment planning and shelf space optimiza-
tion. It extends the Model class.

• Store.java: The Store class provides definitions and methods for a store.

• StoreSimulator.java: The StoreSimulator class provides methods for the
simulation of a store.

• SymmetricPair.java: The SymmetricPair class defines a basic framework
for pairs of products that have a symmetric affinity relationship (L, H1,
and H3).

• Utils.java: The Utils class provides some general utility methods for the
HAPSA method.
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Appendix A.2. Output

Path: main→ HAPSA→ . . .
We can distinguish two general types of output, parameter files and results:

• Parameters→ . . .

The parameter files are generated by the ParameterTuner class, and writ-
ten to a separate directory for each subproblem:

– CONT : This directory contains CPLEX parameter files for the con-
tinuous relaxation.

– HAPSA: This directory contains CPLEX parameter files for the MIP-
based re-optimization procedure.

– SSP : This directory contains CPLEX parameter files for the initial-
ization procedure.

• Results→ . . .

The result files are generated by the Main class, and written to a separate
directory for each problem type:

– APSA: The regular, three-dimensional APSA.

– APSA 2D : The regular, two-dimensional APSA.

– AVA: Three-dimensional APSA with an availability penalty (not used
in this paper).

– HAPSA: The integrated approach HAPSA.

– HLUR: Three-dimensional APSA with healthy-left, unhealthy-right
ordering (not used in this paper).

– VIS : Three-dimensional APSA with a visibility penalty.

Each of these directories contains three subdirectories:

– CSV : This directory contains CSV files of the scores (profit, SHS, and
SVHS), and front-view shelf segment-average health scores. These
files are solely written for the purpose of creating graphs and col-
ormaps, as discussed in Appendix A.3. These files are omitted from
the GitHub repository.

– Summary : This directory contains summary files for each run. These
files contain the profit, SHS, SVHS, front-view shelf segment-average
health scores, and some other statistics.

– Variables: This directory contains CSV files with the final values for
the decision variables of interest (skj , xij , and ykj). These files are
omitted from the GitHub repository.
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Appendix A.3. Graphics

Path: main→ ...
Two scripts are utilized for the purpose of graphical output representation:

• plotResults.R: Creates all sorts of different plots from the user-specified
results. Implemented in R (run in RStudio).

• plotShelf.m: Creates colormaps from the user-specified results. Imple-
mented in MATLAB R2020a.

References

Adam, A., Jensen, J. D., Sommer, I., & Hansen, G. L. (2017). Does shelf space
management intervention have an effect on calorie turnover at supermarkets?
Journal of Retailing and Consumer Services, 34 , 311–318. doi:10.1016/j.
jretconser.2016.07.007.
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