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Abstract

This paper investigates the forecast performance of GARCH-MIDAS relative to local linear

forests: a procedure that takes random forests as an adaptive kernel method paired to a local

linear regression to capture smooth signals better. In an empirical study with S&P 500 data,

Realized volatility is estimated by both models using macroeconomic variables, and the outcomes

are compared based on QLIKE losses and mean prediction errors. Furthermore, three additional

models are included as competitor models, namely HAR (Heterogeneous autoregression) with

and without leverage and Realized GARCH. The findings show that using LLF in combination

with all listed macroeconomic variables reduces the prediction losses for 1-day-, 2-weeks-, 1-

month-, 2-months-, and 3-months-ahead horizons. Additionally, the SHAP values show the

contribution to the prediction for all macroeconomic variables where the VIX, NFCI, and RVol

proved to be the most important.
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1 Introduction

This paper focuses on the method described in Friedberg et al., 2020. They introduce local re-

gressions in combination with random forests in order to improve predictive accuracy. This model

tackles the main weakness of random forests, now that the prediction function no longer resembles

a step function but a smooth curve. The main findings of Friedberg et al. (2020) show that the

linear adjustment to the random forest improves the confidence interval coverage as well as the

predictive performance. Due to these systematic improvements, a practical application of the local

linear forests (LLF) would be to compare the predictive performance on stock market volatility of

this method to well-known forecast models.

Volatility modeling using multiple components is widely discussed within financial econometrics

(e.g., R. Engle and Lee, 1999). Bollerslev (1986) was the first to introduce the generalized autore-

gressive conditional heteroskedasticity model (GARCH), and it is beneficial to model stock prices

due to their characteristics. R. Engle et al. (2013) proposed a mixed-data sampling component

to the GARCH model, namely the GARCH-MIDAS model, which proved to be a valuable way to

analyze the link between macroeconomic variables and financial volatility.

The paper of Conrad and Kleen (2019) compares the forecast performance for multiplicative

volatility of stock prices of the GARCH-MIDAS model to different competitor models. They use

various macroeconomic data as explanatory variables in their research. The results indicate an

improvement for the forecast horizons of 2- to 3-months-ahead when using housing starts growth as

explanatory variables within the GARCH-MIDAS model. Currently, interest in the use of supervised

machine learning in the stock market is increasing. Therefore, it is of interest to see how the

GARCH-MIDAS performs compared to LLF and to test the predictive ability of LLF on stock

market volatility. Hence, this paper uses the exact data set of Conrad and Kleen (2019) in order to

compare the predictive ability of the LLF of Friedberg et al. (2020) to the GARCH-MIDAS model.

There have been countless papers studying the predictive ability of GARCH-MIDAS on stock

market volatility using macroeconomic data (R. Engle et al., 2013; Conrad and Loch, 2015; Fang

et al., 2018). However, the research for these types of data sets on machine learning algorithms is

limited. Next to this, the LLF method of Friedberg et al. (2020) has not yet been empirically tested

on financial volatility. Their paper provides two other empirical results; one where they predict

wages using covariates such as age, race, years of education, and gender, and the second on the

relationship between word choice and public opinions on welfare. This lack of empirical research
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stresses the need to explore more uses of LLF, for example, in the stock market. Higher volatility

means higher risk but can also lead to higher returns. Anticipating these swings will help the trader

or firm improve their strategies, for example, by buying or selling options of that asset. As a proxy

for the time value of options, the expected value of the underlying asset’s volatility is used. Hence,

improving the forecast on long-term volatility could enhance their market position.

This paper uses the R package grf (J. Tibshirani et al., 2019) to build the LLF models, where the

dependent variable is Realized Volatility (RV), and the features contain real-time macroeconomic

variables. The out-of-sample forecasts are made using a rolling window, from which different loss

functions are calculated (e.g., QLIKE loss, RMSE, and RMAD). Different tuning of the forests is

considered, including LASSO for selecting variables and ridge penalty to prevent overfitting to the

local trend. Lastly, the SHAP values are presented to indicate the importance of each variable.

The main findings suggest that the LLF method improves upon current models if the explanatory

variables are chosen accordingly. The model including all macroeconomic variables performed best

for all forecast horizons compared to the GARCH-MIDAS and competitor models. However, when

only the lags of housing starts are included, the performance was worse than the GARCH-MIDAS

model. The macroeconomic variables that proved to attribute most to the target variable are VIX,

NFCI, and RVol.

The paper is organized as follows. First, a literature review on random forests and the GARCH-

MIDAS is given, followed by a description of the data used. Next, the methodology is explained

in detail in Section 4. Section 5 describes the results. Lastly, a conclusion is given together with a

short discussion.

2 Literature review

2.1 Random forest

Random forests are nonparametric regression approaches first introduced by Breiman (2001) and

builds upon recursive partitioning (CART) (Breiman et al., 1984), bagging (Breiman, 1996), and

random trees (Amit and Geman, 1997). In a variety of applications, random forests have proven

to be very useful (Svetnik et al. (2003); Cutler et al. (2007)). However, they suffer from significant

weakness, namely that they cannot take advantage of strong local trends in estimating the regression

surface. To solve this weakness, random forests can be interpreted as an adaptive kernel, following

Hothorn et al. (2004), Meinshausen and Ridgeway (2006), and Athey et al. (2019), adding to the
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usual understanding of forests as an ensemble approach.

It is possible to correct imbalances and asymmetries in the set of neighboring prediction points

using the local regression adjustment, such that the predictions are centered and the weighted mean

of the feature vector of nearby points is roughly the same as the target feature vector. When several

features have a substantial impact with moderate curvature, the improvement from regression ad-

justments to forests is most likely to be considerable, making regression modifications both effective

and useful.

There is a substantial body of work that explores various combinations of trees and local regres-

sions. For starters, Karalic (1992) proposed to fit local linear regressions in every leaf, while Torgo

(1997) emphasized the kernel performance for MOB tree models in general. Both Torgo (1997) and

Gama (2004) examined functional tree leaves models, by fitting models at each node instead of local

averages.

Menze et al. (2011) presented oblique random forests that use ridge regression findings to learn

split directions, which is comparable to the work of Friedberg et al. (2020), establishing splitting

rules for LLF but more in line with linear discriminant analysis (LDA). As introduced by Xu et al.

(2016), case-specific random forests employ local information to up weight training data during

the bootstrap to produce data sets for each tree, rather than during the prediction step. Zeileis

et al. (2008) first, and Rusch and Zeileis (2013) later introduced recursive partitioning by fitting

a different model in each leaf node, related to the residual splitting technique used in LLF. Local

linear forests add to this literature; nevertheless, they vary in that they regard forests as a kernel

approach. In an LLF model, the leaf nodes give neighbor information rather than local predictions.

2.1.1 Empirical studies

Recently, the use of machine learning algorithms to forecast time series has gained popularity. How-

ever, the researches are extensive, and many properties remain unexplored. Tyralis and Papachar-

alampous (2017) use two large data sets of high-frequency time series to evaluate the effectiveness

of random forests in one-step-ahead forecasting of temperatures to achieve an optimal collection of

predictor variables. They simulate time series using Autoregressive Fractionally Integrated Moving

Average (ARFIMA) models together with random forests and conclude that the highest predictive

performance is observed when including a low number of lagged predictor variables.

More along the lines of this paper, Luong and Dokuchaev (2018) combine a heterogeneous

autoregressive (HAR) model and machine learning to forecast Realised volatility of financial time
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series. The general HAR is extended by including purified implied volatility and is applied to a

random forest algorithm to predict the direction and magnitude of the volatility. The data set

includes high-frequency data, and their findings show improvements in the forecasting accuracy

for the HAR model. Moreover, Polamuri et al. (2019) use multiple machine learning methods to

attempt innovative work to predict the stock market prices. Among all the methods are Support

Vector regression, linear regression, decision trees, extra tree regressor, and random forest regressor.

They conclude that out of all these methods, decision trees and random forest regressors perform

best.

The study of Vassallo et al. (2020) answers three questions regarding optimal random forest

modeling strategies in their journey to forecast wind speed/power. The results interesting for this

research focus on the effect of recursive (step-by-step) multi-step forecast versus a direct method

(single jump). The direct forecasting strategy only slightly outperforms the recursive method. Next

to this, the amount of training data required to benefit from asymptotic performance behavior was

unattainable to compute. However, increasing the training data to approximately eight years does

increase the accuracy in forecasting wind speed/power.

Lastly, Sadorsky (2021) relies on decision tree bagging and random forests to predict the stock

market direction of clean energy companies. They use well-known technical indicators as features

driving these prices and compare the results with logit models. Their results indicate a substantial

increase in accuracy, from 55% - 60% of the logit models to 85% - 90% for tree bagging and random

forest methods.

2.2 GARCH-MIDAS

Autoregressive Conditional Heteroskedasticity (ARCH) models have been used excessively to cap-

ture the time variation in volatility and the driving factors behind this, dating back to the early work

of R. F. Engle (1982). This model has since been extended to the Generalized ARCH (GARCH)

model by Bollerslev (1986), followed by multiple versions and extensions additive to the GARCH. At

the same time, a broad literature has connected macroeconomic variables and financial instruments

to volatility. Schwert (1989) has related the change in volatility of stock returns to macroeconomic

variables and discusses how bond returns, short-term interest rates, producer prices, and the pace

of increase in industrial output give further information on monthly market volatility. The research

of Glosten et al. (1993) discovered that short-term interest rates have a significant impact on future

market volatility. Whitelaw (1994) establishes statistical significance for the spread of a commercial

6



paper and the one-year treasury rate, whereas Brandt and Kang (2002) find statistical significance

for the short-term interest rate, the term premium, and the default premium. Other studies, includ-

ing Hamilton and Lin (1996) and Perez-Quiros and Timmermann (2000), have discovered evidence

that the status of the economy is a significant factor of return volatility.

Since time-varying volatility analyses are usually based on high-frequency data, earlier research

has been confined to variables such as short-term interest rates, term spread, and default premiums,

for which daily data is available. As a result, the effects of variables like the unemployment rate

and inflation have not been thoroughly investigated. Ghysels et al. (2006) introduce the mixed data

sampling regression scheme (MIDAS) to allow for different frequencies to be included in the same

model. This framework allows the model to combine high-frequency return data with less frequent

(e.g., monthly, quarterly) macroeconomic data. R. Engle et al. (2013) propose the MIDAS structure

in the GARCH model to study time-varying volatility in the stock market. Here, the conditional

variances can be split into long- and short-term components affected by low- and high-frequency

variables, respectively. By combining both components, the GARCH-MIDAS model is constructed.

The model’s key benefit is that it allows us to connect daily stock return data with macroeconomic

factors collected at lower frequencies, enabling us to analyze macroeconomic variables’ influence on

stock volatility directly.

R. Engle et al. (2013) employ monthly inflation and industrial production rate as explanatory

variables in their study to model stock market volatility with the GARCH-MIDAS component

model. Their findings suggest an improvement in terms of long-horizon forecasting compared to

more traditional time series volatility models. Conrad and Loch (2015) investigate the relation

between quarterly macroeconomic factors and long-term US stock market volatility using a two-

component GARCH-MIDAS model. Their findings indicate that housing starts, the term spread,

unemployment rate, and corporate profits exceed the predictive ability for the long-term component.

Additionally, Asgharian et al. (2013) use principal component analysis combined with GARCH-

MIDAS to include information enclosed in various variables. The results suggest that including

low-frequency macroeconomic data into the GARCH-MIDAS model enhances the model’s prediction

performance, especially for the long-term variance component. Furthermore, the GARCH-MIDAS

model with the first principal component surpasses all other specifications, implying that the created

principal component is a reliable proxy for the business cycle. Opschoor et al. (2014) use a Spline-

GARCH type model, which can be considered a special case of the GARCH- MIDAS, where only the

first lag of the explanatory variable X is used in the specification of the long-term component. Their
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empirical research considers daily US stock returns of deposit banks and the Financial Conditions

Index (FCI) by Bloomberg as a proxy for the financial state of bond, equity, and money markets.

They find an improvement of the Value-at-Risk estimation by including the FCI, particularly for

shorter horizons. A further application of the GARCH-MIDAS model has been proposed by Dorion

(2016), where he allows for changes in business cycles for valuation of options, referring to it as the

MacroGARCH model. Next to predicting the stock market volatility, the GARCH-MIDAS model

can also be used to forecast the long- and short-term components of cryptocurrency volatility

(Conrad et al., 2018). Measures of risk and volatility in the US stock market and global economic

activity measures are considered as potential drivers of the volatility of Bitcoin. Atypically, their

findings suggest a negative effect of stock market volatility on long-term Bitcoin volatility. They

also show that there is a strong link between global economic activity and Bitcoin volatility.

More recently, Conrad and Loch (2015), Conrad and Kleen (2019), and Wu and Chong (2021)

incorporate a more broad set of macroeconomic factors in the GARCH-MIDAS model. They all draw

similar conclusions where the most influential variables are term spread, housing starts, the change

in unemployment rate, the default rate, and the National Activity Index (NAI). The predictive

performance of GARCH-MIDAS is compared to the Realized GARCH of Hansen et al. (2012), the

Markov-switching GARCH, the heterogeneous autoregression (HAR) model of Corsi (2009), and the

high-frequency-based volatility (HEAVY) model of Shephard and Sheppard (2010). Specifically, the

results of Conrad and Kleen (2019) indicate that the GARCH-MIDAS approach with housing starts

growth as the explanatory variable performs better than competitor models for 2- and 3-months-

ahead forecasting horizons.

3 Data

All data has been retrieved from the Journal of Applied Econometrics data archive, following the

data from Conrad and Kleen (2019). The data set consists of the returns of the S&P 500 and several

macroeconomic variables, including their Real-time release dates.

The stock market return data consists of the daily log return of the S&P 500 for the period

from January 1971 to April 2018. The daily realized variance (RVi,t) has been defined by Conrad

and Kleen (2019) based on the five-minute intraday returns and are available from 2000 onwards.

The data to construct these are provided by the Realized Library of the Oxford-Man Institute of

Quantitative Finance.
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The explanatory variables which are used in the model are summarized below; a more elaborate

description of the data is presented in Table 6 of Appendix A.

• NFCI: As a daily measure of financial risk, the Chicago Fed’s National Financial Conditions

Index (NFCI) is used. Positive values of the NFCI indicate tighter financial conditions than

average, while the opposite is true for negative values.

• NAI: The Chicago Fed National Activity Index (NAI) is a monthly measure of macroeconomic

variables. It measures the weighted mean of 85 economic variables. The NAI takes values

that are positive/negative whenever the US economy is expanding/declining.

• ∆IP: Another monthly macroeconomic variable is the Industrial Production Index (IP) which

measures the changes in Real output. The explanatory variable consists of the growth rates

for IP calculated as the log differences.

• ∆Hous: The growth rates of housing starts calculated as the log differences of the New

Privately Owned Housing Units Started (HOUST).

• RVOL: As a backward measure of daily volatility, the average realized volatility over a rolling

window of 22 days is used, RV OL(22)i,t =
√

1/22
∑21

j=0 r
2
i−j,t.

• VIX: For the forward measure of daily volatility, the VIX index is used. This index provides

the expected volatility of the S&P 500 and can be retrieved from the Chicago Board Options

Exchange. The VIX is divided by
√

252 in order to convert it to a daily level.

• VRP: The difference between RVOL22 and the square root of the VIX is used as a proxy for

the variance risk premium (VRP).

The choice of lag length for the explanatory variables differs across the measures, as the frequency

between these variables variates. Conrad and Kleen (2019) use a lag length of 3 for the VIX, a

length of 52 for the NFCI and a length of 36 for the monthly macroeconomic variables, NAI, ∆IP

and ∆Hous. Some will be included as covariates in the models, more on that in Section 4.

A Real-time database is included in the data set, which is a collection of all vintages from

the same time series, indexed by the date each data point was released to the public. The latest

revision for each reference point at a particular moment in time is used. Conrad and Kleen (2019)

emphasize the need to use Real-time data rather than the final releases of macroeconomic data for a
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representational forecast evaluation. A ”look-ahead bias” is eliminated by utilizing Real-time data

since macroeconomic indicators are revised significantly after their first publication.

4 Methodology

The methodology is subdivided into five sections. Section 4.1 contains a description of the LLF

model. The second section explains the GARCH-MIDAS model. The third and fourth sections

address forecasting procedures and measures needed to compare the forecasting performances re-

spectfully. Lastly, the fifth section explains the SHAP values, which are used to see which macroe-

conomic variable contributes the most to the prediction of the realized variance. A description of

the code implementing all the methodology is mentioned in Appendix D.

4.1 Local Linear Forest

Local linear regression can be estimated using weights as a kernel which can be provided by random

forest. Assuming we have (X1, Y1), ..., (Xn, Yn) available training data with Yi = µ(Xi) + εi for

i = 1, ..., n, the conditional mean µ(x0) = E[Y |X = x0] can be estimated using random forest,

where x0 is a fixed test point. For the use of this paper, the value of Yi is defined as the RVi,t of

the S&P 500. Next to this, the value of Xi variates across models in order to achieve maximum

forecast accuracy. Random forests are traditionally considered ensemble methods, which are defined

to create multiple learning algorithms to improve predictive performance (Opitz and Maclin, 1999).

In the case of random forests, the final estimate is obtained by averaging the predictions of the

trees. Each leaf Lb(x0) from tree Tb has a predicted response µ̂b(x0), which is the average overall

training data assigned to leaf Lb(x0). From these responses, the average prediction over all trees is

µ̂(x0) = (1/B)
∑B

b=1 µ̂b(x0) where B is the number of trees in the forest.

Alternatively, the average prediction µ̂(x0) can be written as the weighted sum of all the depen-

dent variables in the training set Yi. Here, random forests are viewed as adaptive weight generators

(Hothorn et al., 2004; Meinshausen and Ridgeway, 2006; Athey et al., 2019). The predicted condi-

tional mean can be written as

µ̂(x0) =

n∑
i=1

αi(x0)Yi, (1)

where αi(x0) are the forest weights defined as
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αi(x0) =
1

B

B∑
b=1

I{Xi ∈ Lb(x0)}
|Lb(x0)|

s.t. 0 ≤ αi(x0) ≤ 1. (2)

Given that there exists at least one non-empty cell containing x0,
∑n

i=1 αi(x0) = 1. LLF take

αi(x0) and use them in order to predict the local linear regression:

(
µ̂(x0)

θ̂(x0)

)
= argminµ,θ

{
n∑
i=1

αi(x0)(Yi − µ(x0)− (Xi − x0)θ(x0))2 + λ‖θ(x0)‖22

}
, (3)

where the slope parameter θ(x0) corrects the local trend in Xi − x and the term λ‖θ(x0)‖22
is added as a ridge penalty to prevent overfitting to the local trend. It plays an important role

in simulation experiments as well as asymptotic convergence results. The weighted least squares

Equation 3 with weights (2) is solved by LLF. This estimator can then be written as

(
µ̂(x0)

θ̂(x0)

)
=
(
∆TA∆ + λJ

)−1
∆TAY. (4)

Throughout this paper, the weight matrix A is a diagonal matrix with Ai,i = αi(x0) and J is

an identity matrix with J1,1 = 0 such that the intercept is not penalized. The centered regression

matrix, ∆, is defined as ∆i,1 = 1 and ∆i,j+1 = xi,j − x0,j .

The local linear regression can be thought of as a function with weights γiαi(x0), defining

γi = ei
(
∆TA∆+λJ

)−1
∆T with ei being a zeros vector with value 1 at column i. Now, the moments

of x0 are better oriented around the test point: µ̂(x0) =
∑n

i=1 γiαi(x0)Yi with
∑n

i=1 γiαi(x0) = 1

and
∑n

i=1 γiαi(x0)Xi ≈ x0.

4.1.1 Splitting rule

Classification and regressions tree (CART) splits, introduced by Breiman et al. (1984), are tra-

ditionally used by random forests. The standard CART splits determine the splitting value by

minimizing the sum of squared errors (SSE) for every possible variable. First the parent node P

is considered with np observations. The mean of Y for all child pair nodes C1, C2 gives Ȳ1 and Ȳ2

respectively. After this, C1 and C2 are chosen based on the minimum SSE:

SSE =
∑

i:Xi∈C1

(Yi − Ȳ1)2 +
∑

i:Xi∈C2

(Yi − Ȳ2)2. (5)

However, there is no need for the forest to model the strong and smooth signal as the last
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regression step models them. Instead, ridge regression in node P can be used to predict Yi:

Ŷi = α̂P + xTi β̂P , (6)

where α̂P is the intercept and β̂P = (xTPxP + λJ)−1xTPYP . Standard CART splits can now be

used on Yi − Ŷi, such that the local effects are modeled in the forest, and the global effects are

regressed back in when predicting. This splitting rule can be enforced on every variable giving

balanced splits necessary for honest forests.

For tuning the random forests in this paper, the ridge penalty for splitting is set to λ = 0.10,

and the ridge penalty for predicting is tuned by default using the R package grf (J. Tibshirani et al.,

2019). This feature selects the penalties by cross-validation.

4.1.2 Honest Forests

There are different ways to grow trees in a random forest. Friedberg et al. (2020) mentioned that

there are no results available on the consistency of random forests where the trees are fully grown

for cases without the use of honesty. Hence, honest forest is used in the entirety of this paper,

which is a way of sub-sample splitting. Wager and Athey (2018) used honest forest to derive the

asymptotic properties of prediction using random forests. Two independent subsamples are drawn

from the training data, Ib and Jb. First, the tree structure Tb is chosen only using Jb and let

x0 ⇐⇒b x
′ be a boolean indicating whether x0 and x′ end up in the same leaf node of Tb. Secondly,

let Lb(x0) = {i ∈ Ib : x0 ⇐⇒b Xi} be the set of neighbors of x0. This neighborhood function is

used to define the weights in Equation (2). The y-values from sample Ib are not used to determine

split points. The covariates, however, may be used to ensure that a fraction from the parent is

incorporated in each node. Using this modification, the forest complies with the assumption that

trees are split on every variable with probability larger than zero, symmetric in permutations, and

balance the observations of the parent in every child node.

4.1.3 Forest size

Selecting the appropriate amount of trees in a forest is important as the computational costs increase

together with the number of trees. Studies have suggested a wide range in the number of trees. For

example, the study of Oshiro et al. (2012) suggests a number between 64 and 128 trees, while Kuhn

and Johnson (2013) suggest incorporating a minimum of 1000 trees. On the other hand, Probst
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and Boulesteix (2017) suggest training 100 trees to achieve maximum performance gain. For this

study, the number of trees is set to 500.

4.1.4 Feature selection

In order to achieve the best forecast, multiple models are considered and compared. Only the

covariates differ across the models, with the dependent variable being Realized volatility. The

selection of variables is partly based on the succeeding models used in Conrad and Kleen (2019):

the first model only contains ∆ Hous with lag up to 36. The second model contains all variables

mentioned in Section 3 without their lags. Finally, the last model contains the same variables as

the second model, with the lag of the log returns added to the set. On these data sets, two different

approaches are examined to specify the number of covariates on which the splits are performed: one

where LASSO is used to choose the covariates that are incorporated in the model and one where

all the covariates are used.

LASSO (least absolute shrinkage and selection operator) was introduced by R. Tibshirani (1996),

and it results in stable and interpretable models. LASSO performs variable selection and regulariza-

tion to enhance the predictive accuracy of the model. It minimized the sum of squares conditional

on the sum of the absolute values of all coefficients being less than a constant. This method is also

included in the R package grf (J. Tibshirani et al., 2019) and is run beforehand on the training data

set. The returned covariates are then implemented in the LLF prediction method; the results can

be found in Table 1 in the Results.

4.2 GARCH-MIDAS

The daily log returns can be modeled as ri,t = µ+ εi,t where t = 1, ..., T indicates a period (week or

month) and i = 1, ..., It are the number of days within that period. The GARCH-MIDAS model of

R. Engle et al. (2013) differs from the standard GARCH model because it allows the components

to vary in frequencies. The demeaned scaled returns can be noted as:

εi,t√
τt

=
√
gi,tZi,t, (7)

where τi is the long-term volatility component and is a function of explanatory variable Xt. The

short-term volatility component, gi,t, follows from the GARCH model, and Zi,t are i.i.d. with zero

mean and variance equal to one. The information set of day i in period t is Fi,t with Ft := FItt.
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The conditional variance of the returns can be defined as

σ2i,t := gi,tτt, (8)

if τt only depends on the lagged values of Xt; equivalently, σ2i,t = var(εi,t|Fi−1,t). The short-

term variance component is constructed such that it describes day-to-day volatility clustering and

is presumed to follow a GJR-GARCH(1,1) process:

gi,t = (1− α− γ/2− β) + (α+ γ1{εi−1,t<0{)
ε2i−1,t
τt

+ βgi−1,t. (9)

Here, the convention ε0,t = εIt−1,t−1 and g0,t = gIt−1,t−1 is used, as well as τi,t = τt for i = 1, ..., n

and τIt−1,t−1 = τt−1. If It > 1, then τt is a constant. For It = 1, both the short- and long-term

component vary at equal frequencies, such that index i can be dropped.

Some assumptions are made about the innovation process Zi,t and short-term component pa-

rameters.

Assumption 1. Zi,t are i.i.d. random variables where E[Zi,t] = 0, E[Z2
i,t] = 1, and k = E[Z4

i,t]

for 1 < k <∞.

Assumption 2. Let α > 0, α+γ > 0, β ≥ 0, α+γ/2+β < 1, and (α+γ/2)2k+2(α+γ/2)β+β2 <

1.

Taken both assumptions together, the scaled returns defined in Equation 7 follow a covariance

stationary process. The first-order moment of gi,t is equal to E[gi,t] = 1, the second-order is defined

as

E[g2i,t] =
1− (α+ γ/2 + β)2

1− (α+ γ/2)2k − 2(α+ γ/2)β − β2
, (10)

and lastly, the fourth moment is finite. The long-term component, τt, has the role of describing

smooth movements within the conditional variance. This component is generally specified as a

positive-valued, measurable function f(·) of its explanatory variable Xt together with the lags

K ≥ 1:

τt = f(Xt, Xt−1, ..., Xt−K). (11)

An additional assumption is made about the specifications of this function f(·) and Xt.

Assumption 3. Function f(·) > 0 is measurable and Xt is an ergodic, strictly stationary time
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series where E[|Xt|n] <∞ with n large enough such that E[τ2t ] <∞. Zi,t−j and Xt are independent

∀t, i and j.

This assumption implies strict stationary, covariance stationary and does not depend on gi,t for

τt. The choice for function f(·) > 0 is generally a simple linear model:

τt = a+ π1Xt − 1 + ...+ πKXt −K, (12)

with the requirements that a > 0 and πm ≥ 0 for m = 1, ...,K and Xt is nonnegative. However,

if Xt can take on negative values the exponential of Equation (12) can be taken. The function for

τt now becomes:

τt = exp(a+ π1Xt − 1 + ...+ πKXt −K). (13)

The weights πm are determined by a weighting scheme, where the most common choice is

πm = θ ·φm(w1, w2). The parameter θ regulates the sign of the effect Xt has on τt, and the weights

can be estimated using the following Beta weighting scheme:

φm(w1, w2) =
[m/(K + 1)]w1−1 ∗ [1−m/(K + 1)]w2−1∑K
j=1[j/(K + 1)]w1−1 ∗ [1− j/(K + 1)]w2−1

. (14)

The sum of the weights are equal to 1; that is,
∑K

m=1 φm(w1, w2) = 1. It follows that E[τt+1|Ft] =

τt+1. A note about the independence assumption of Xt and Zi,t−j , as it might appear to be

too strong: even if there would be dependence between daily innovations and the daily Xt, the

dependence between Zi,t−j and τt is probable to be negligible due to the smoothness of the function

of τt. Conrad and Kleen (2019) provide an illustration through simulations that light independence

violations do not affect the main results.

4.3 Forecasting

The forecast period ranges from 2010M1 to 2018M1, with forecasts horizons of cumulative volatility

up to three months. Out-of-sample forecast evaluations are made using a rolling window for all

models. The rolling window length depends on the sample size of the data set for each model,

starting from the first available point in the data set up to and including 2009M12. Next to the

full out-of-sample forecasts, three subsamples are considered, each representing a different volatility

regime: namely, low, normal, and high. Finally, a distribution is made of the daily realized variances
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from the complete empirical data set. If a forecast is below the threshold of the 25% quantile, it

falls in the low regime. Similarly, the forecast falls in the normal or high regime if it is in between

the quantile of 25% and 75% or above the 75% quantile threshold.

The realized variances used for evaluation are defined as the daily realized variance adjusted

for the squared difference in return and open-close price. The cumulative sum for each proxy can

now be written as: RV1:k,t+s, where k is defined as the number of forecasting days in each month

and s states the number of months. The realized variances are forecasted using multiple-day ahead

horizons, namely one day (1d), two weeks (2w), one month (1m), two months (2m), or three months

(3m), i.e. k ∈ {1, 10, 22} and s ∈ {1, 2, 3} respectively. For the forecast horizons of more than

one day, the forest is held constant for consecutive dates until the horizon. For example, 2-months-

ahead forecasts at time t + 2 are estimated by training a forest using data from t − 2 to t, where

s is the length of the forecast window. The covariates from time t to t + 2 are then plugged into

the obtained forest to make the 2-months-ahead forecast. This approach is also implemented by

Medeiros et al. (2021).

4.4 Performance evaluation

The forecasts are compared based on their QLIKE loss, and after this, a model confidence set (MCS),

introduced by Hansen et al. (2011), is used to compare these losses. In addition, the different models

are compared based on a range of loss functions.

Firstly, the QLIKE loss function is the single robust function which depends only on
σ2
k,t+1

hk,t+1|t

(standardized forecast error). For k-step-ahead forecasts, the function can be defined as:

QLIKE(σ2k,t+1, hk,t+1|t) =
σ2k,t+1

hk,t+1|t
− ln(

σ2k,t+1

hk,t+1|t
)− 1. (15)

Here, σ2k,t+1 represents the realized variance and hk,t+1|t is the forecasted variance. The loss

functions are jointly evaluated through MCS. The objective of this procedure is to return the best

models, M∗, from a collection of all models M0. The difference between the QLIKE functions i and

j is defined as:

di,j(s, k) = QLIKE(RV1:k,t+s, ĥ
(i)
1:k,t+s|t)−QLIKE(RV1:k,t+s, ĥ

(j)
1:k,t+s|t). (16)

In Equation (16), σ2k,t+1 is replaced by RV1:k,t+s such that the long-term component of Equation

(7) is fixed. Here, k ∈ {1, 10, 22} denotes the daily components (short-run) and s ∈ {1, 2, 3} denotes
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the monthly component (long-run).

Then the test statistic can be calculated:

tij = d̄i,j/
√

v̂ar(d̄i,j) ∀i, j ∈M0. (17)

The test statistic of MCS follows from TM = max
i,j∈M

|ti,j | with H0: the expected loss of all models

is the same. Under the alternative hypothesis, there exists a model i whose expected loss is greater

than the rest of the models j ∈M/i. If this is the case, this model is eliminated from the rest, and

the test is performed again until there are no models left to be eliminated. The surviving models

are denoted by MMCS and are defined as the best forecast models with confidence 1−ν. The choice

of ν is commonly set to 0.1, as is done by Laurent et al. (2013) and Liu et al. (2015).

The different loss functions include the Root Mean Squared Error (RMSE), the Root Mean

Absolute Error (RMAE), the Root Mean Standard Deviation (RMSD), and the Root Mean Absolute

Deviation (RMAD). Their formulas are as follows:

RMSE =

√√√√ 1

T

T∑
i=1

(σ2i+1 − E(σ2i+1))
2, (18)

RMAE =

√√√√ 1

T

T∑
i=1

|σ2i+1 − E(σ2i+1)|, (19)

RMSD =

√√√√ 1

T

T∑
i=1

(σi+1 − E(σi+1))2, (20)

RMAD =

√√√√ 1

T

T∑
i=1

|σi+1 − E(σi+1)|, (21)

where σ2i+1 is the actual realized variance and E(σ2i+1)
2 is the forecasted variance, T denotes the

number of forecasted values.

4.5 SHAP values

As mentioned earlier, it is known that certain macroeconomic variables have an impact on the

variance of stock prices. In order to find out which macroeconomic variable contributes most to the

prediction of Realized variances, the SHapley Additive exPlanations (SHAP) are used. It was first
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developed by Lundberg and Lee (2017) and helps to gain more knowledge on the so-called ’black

box’ which are machine learning models.

The SHAP method assigns a value of importance to each feature for a certain prediction. This

is done using different subsets of the entire variable set: S ⊆ F . Two models are trained, one

where all features are included in the trained model fS , and one where only feature i is included

fS∪{i}. Both predictions are compared to each other fS∪{i}(xS∪{i}) − fS(xS), where xS are the

values of the features in subset S. This process continues for all possible subsets, S ⊆ F \ {i}.

Consider the prediction model f with explanation model g. The latter model uses simplified input

variables x′, which map back to x using a mapping function x = hx(x′). The SHAP values differ

from Shapley values because they use a conditional expectation model retrieved from the original

model as mapping function.The explanation function g is a linear function using binary inputs z as

explanatory variables:

g(z′) = φ0 +
M∑
i=1

φiz
′
i, (22)

where M is the total number of inputs and z′ ∈ {0, 1}M . The effect to each feature is described

by φi, which sum approximates the original output f(x). The SHAP values can then be defined as:

φi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z′)− fx(z′ \ i)]. (23)

Here, fx(z′) = f(hx(z′)) = E(f(z)|zS) with S being the set where z′i = 1. The initial input

variables are all variables mentioned in Section 3 without their lags, but including the lag return.

The dependent variable is the realized variance. As the LLF model is relatively new, there has

not yet been a development on the computation of SHAP values using LLF as the predictor model.

Hence, an Extreme Gradient Boosting (XGBoost) model is used. This model is an ensemble machine

learning algorithm using decision trees. The objective of using the SHAP is to see which features

are important in predicting the realized variances, hence using another machine learning algorithm

still gives a relevant insight. The code of Lundberg (2019) is used to estimate the SHAP (package

shap).
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5 Results

This section discusses the results of all the models. In the paper of Conrad and Kleen (2019),

the GARCH-MIDAS model was compared to various competitor models. Some of them outper-

formed the GARCH-MIDAS model in terms of forecasting accuracy, which is why these methods

are included in the comparison to LLF. These models include the Realized GARCH (Hansen et al.,

2012), the heterogeneous autoregression (HAR) model (Corsi, 2009), and the HAR with leverage

effect (Corsi and Renò, 2012).

First, the estimation results of the relevant GARCH-MIDAS models are presented in Appendix

B, where Table 7 refers to the GARCH-MIDAS model with one covariate and Table 8 refers to

the GARCH-MIDAS model with covariate VIX in combination with another variable. Second, the

LASSO results for every LLF model are presented below in Table 1. As is evident from this table,

LASSO is not applicable for the model only considering the lags of ∆ Hous. Hence, there will be

no results from LASSO on that model in this section. For the model including all variables, the

selected variables from LASSO are RVol(22) and VIX. LASSO selects the same variables for the

model when the lag of the return is included.

Table 1

LASSO results for different LLF models

RVol (22) VIX VRP NFCI NAI ∆ IP ∆ Hous ri,t−1
Dep. var. RVi,t
∆ Hous (36) - - - - - - no -
All var yes yes no no no no no -
All var + ri,t−1 yes yes no no no no no no

Note. These are the LASSO results performed on training data set up to and including 2009M12.
Yes/no are indicators whether LASSO includes the variables.

As mentioned in Section 4.4, the forecast performance of various models is compared based on

the QLIKE losses. The results of these losses on the complete data set are presented in Table 2

below. The shaded entries imply the surviving models in the set c with a 90% confidence interval.

For example, the models included in MMCS for the 1-day-ahead forecast horizon are all LLF models

except the one including only the lags of ∆ Hous. For the 2-weeks-ahead horizon, the models in

MMCS are only the LLF models with all variables with and without the return variable, thus

excluding the LASSO models. The LLF for all variables with and without the lag of the return,

not including LASSO, stays in MMCS for all horizons. For 2-months- and 3-months-ahead, the

GARCH-MIDAS using the lags of housing starts improves upon the competitor models but still
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have significantly higher losses than the LLF.

The bold entries indicate the lowest average loss for that particular forecast horizon. The

data in the table shows that the LLF models using all variables (in combination with LASSO and

ri,t−1) attain the lowest losses and are thus dominant over the other models in terms of predictive

ability. Both the model with all variables as all variables with the lag return are in MMCS for each

horizon, and they score the lowest values for 2-weeks-, 1-month-, 2-months- and 3-months-ahead.

By comparing the numbers from these models with GARCH-MIDAS, it is clear that LLF proves to

be very useful provided the correct variables are used to train the model.

Table 2

QLIKE losses and MCS results per model on the complete data set

1d 2w 1m 2m 3m

LLF ∆ Hous 0.805 0.597 0.567 0.594 0.632
All var 0.205 0.054 0.037 0.039 0.040
All var - LASSO 0.203 0.056 0.039 0.039 0.041
All var + ri,t−1 0.206 0.054 0.037 0.039 0.040
All var + ri,t−1 - LASSO 0.204 0.056 0.039 0.039 0.041

GARCH-MIDAS VIX 0.275 0.217 0.242 0.359 0.413
∆ Hous 0.328 0.254 0.265 0.347 0.380
VIX and NFCI 0.274 0.216 0.238 0.349 0.400
VIX and NAI 0.275 0.217 0.242 0.358 0.409
VIX and ∆ IP 0.274 0.216 0.241 0.355 0.409
VIX and ∆ Hous 0.280 0.220 0.244 0.351 0.410

Competitors HAR 0.254 0.212 0.244 0.368 0.419
HAR (leverage) 0.238 0.209 0.246 0.371 0.420
Real GARCH 0.245 0.206 0.234 0.356 0.369

Note.The numbers represent the average QLIKE losses of 1-day-, 2-weeks-, 1-month-, 2-months-
and 3-months-ahead forecasts. The bold entries show the lowest value of average QLIKE loss
across the models for that particular forecast horizon. The shaded entries show which models
are in the 90% model confidence set.

Additional to the complete data set, it is interesting to consider the results for subsamples of

different volatility regimes. Hence, three quantiles are considered: low, normal, and high. These

regimes are computed as defined in Section 4.3 using the computed empirical distribution of the

realized variances. The analysis of each regime is presented in Table 3. Here, approximately the

same results are obtained as in Table 2. The LLF models, except the one with only housing starts,

perform the best for almost all horizons and every volatility regime. Next to this, both HAR models

and the Real GARCH are included in MMCS for the one-day-ahead forecasts in the low regime. Only

the HAR with leverage in combination with the GARCH-MIDAS with variables VIX + NFCI and
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VIX + ∆ IP shows up in the MMCS for the one-day-ahead forecasts in the high regime additional

to the aforementioned LLF models. The values in these columns are higher as well. Overall the

values for the normal regime are for each horizon lower, indicating that the LLF models perform

best under normal circumstances.
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Tables 4 and 5 show the mean prediction errors of the different models per horizon. For the

RMSE, letting LASSO select the covariates used in prediction seems to improve the model slightly.

The closer the values are to zero, the better the fit of the model to the data. The addition of the

lag return does not seem to affect the errors significantly, as these outcomes stay relatively the

same for all horizons. The LLF model including 36 lags of housing starts performs the worst out of

all five LLF models for every loss function. By comparing these results with the GARCH-MIDAS

and competitor models, the conclusion drawn from the QLIKE losses can be confirmed. The LLF

models, excluding ∆ Hous, outperform all GARCH-MIDAS and competitor models.

Table 4

Out-of-sample root mean squared prediction errors for all forecast horizons

RMSE 1d 2w 1m 2m 3m

LLF ∆ Hous 0.954 1.128 1.123 1.060 1.322
All var 0.365 0.367 0.372 0.364 0.369
All var - LASSO 0.358 0.361 0.364 0.360 0.364
All var + ri,t−1 0.364 0.365 0.374 0.363 0.368
All var + ri,t−1 - LASSO 0.357 0.362 0.365 0.359 0.365

GARCH-MIDAS VIX 0.490 0.616 0.632 0.672 0.697
∆ Hous 0.496 0.619 0.664 0.704 0.707
VIX and NFCI 0.469 0.591 0.610 0.645 0.663
VIX and NAI 0.484 0.608 0.624 0.663 0.687
VIX and ∆ IP 0.482 0.608 0.625 0.665 0.688
VIX and ∆ Hous 0.493 0.620 0.639 0.677 0.698

Competitors HAR 0.404 0.563 0.636 0.753 0.820
HAR (leverage) 0.388 0.567 0.641 0.754 0.819
Real GARCH 0.413 0.527 0.565 0.618 0.642

Note. The table shows the loss values of the root mean squared error function for the prediction
of the realized variance for all forecast horizons. The out-of-sample forecasts cover 2010M1-
2018M1.

Second is the RMAE, which values are given in Table 5. This function has the advantage that

every error has the same impact on the RMAE because it is based on absolute error, contrary to the

RMSE. For all horizons except one month, the lowest values are obtained for the LLF model with

all variables including the lag return and with the use of LASSO. The other LLF models including

all variables, produce similar results but clearly outperform the other models. Again, this confirms

the previous results.
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Table 5

Out-of-sample root mean absolute prediction errors for all forecast horizons

RMAE 1d 2w 1m 2m 3m

LLF ∆ Hous 0.857 0.944 0.935 0.915 0.982
All var 0.478 0.482 0.482 0.482 0.483
All var - LASSO 0.475 0.480 0.479 0.479 0.482
All var + ri,t−1 0.478 0.481 0.484 0.480 0.483
All var + ri,t−1 - LASSO 0.474 0.479 0.481 0.478 0.481

GARCH-MIDAS VIX 0.570 0.644 0.666 0.690 0.704
∆ Hous 0.593 0.676 0.714 0.744 0.750
VIX and NFCI 0.564 0.637 0.660 0.681 0.692
VIX and NAI 0.568 0.643 0.664 0.688 0.701
VIX and ∆ IP 0.567 0.642 0.663 0.687 0.701
VIX and ∆ Hous 0.573 0.650 0.673 0.697 0.710

Competitors HAR 0.502 0.623 0.680 0.754 0.797
HAR (leverage) 0.490 0.623 0.682 0.753 0.798
Real GARCH 0.507 0.597 0.639 0.683 0.703

Note. The table shows the loss values of the root mean absolute error function for the prediction
of the realized variance for all forecast horizons. The out-of-sample forecasts cover 2010M1-
2018M1.

Lastly, the RMSD and the RMAD are considered and can be found in Appendix C. Both

give similar results, where the LLF again gives superior results compared to the competitor and

GARCH- MIDAS models. The HAR with leverage is the only model that comes close to the LLF

model with all variables. However, their values are outperformed by the LLF models.

Next to comparative models of the GARCH-MIDAS and the LLF, the SHAP values were intro-

duced in Section 4.5. First, the variable importance is plotted, which is easily interpretable. Then,

the average SHAP values are presented for each feature from high to low.
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Figure 1

The variable importance based on SHAP of all features for the prediction on 2010-01-04

The plot above suggests that the VIX is the most important feature in the model. It contributes

by far the most, after which is the NFCI with much lower importance than VIX. In third place is

the average realized volatility of the previous 22 days (RVol22). In last comes the lag return, which

confirms the results from the loss functions. The average losses stayed the same with and without

the inclusion of this variable in the model.

One disadvantage of the variable importance is that we cannot see if a variable contributes

positive or negative values to the target variable. Hence, the SHAP is plotted next to show overall

metrics.
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Figure 2

The SHAP variable importance plot of all features for the prediction on 2010-01-04

Here, the plot shows that a high value of the VIX has a high positive effect on the realized

variance. Contrary, a high value of the RVol22 can have a high negative and positive effect. There

are no features with only a high negative impact. Clearly, high values of the variables from housing

starts to the lag return do not significantly affect either direction.

To summarize, the LLF method using all macroeconomic variables mentioned in Section 3 shows

the lowest losses, where the use of LASSO does not seem to decrease the QLIKE losses. However,

the mean squared prediction errors do decrease slightly with the use of LASSO for prediction. The

difference in QLIKE losses between LLF methods and the GARCH- MIDAS increases up to almost

ten times for the longer forecast horizons. For all other losses, the LLF models including all variables

outperform all GARCH-MIDAS and competitor models. In addition, the macroeconomic variables

which have the most effect on the predictions are VIX, NFCI, and RVol22.
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6 Conclusion

This paper introduces and debates the features of a series of multiplicative volatility models, in-

cluding the GARCH-MIDAS and local linear forests. This is done through an empirical application

on the realized variance of S&P 500 stock returns retrieved from Conrad and Kleen (2019). Their

results showed that the GARCH-MIDAS model performed best for forecast horizons 2- and 3-

months-ahead. These results are then compared to the outcomes after applying the LLF method

of Friedberg et al. (2020). Both QLIKE losses and mean squared prediction errors are considered

as reference material.

The choice of covariates affects the performance of LLF models: only including (the lags of)

housing starts in the direct prediction of realized variance did not improve the current models.

Surprisingly, the LLF method including all macroeconomic variables performed best at all forecast

horizons, such that the relative forecast performance does not depend on the length of the horizon.

For these sets of models, the inclusion of the lag return as a variable showed to be relatively

insensitive to the forecast outcomes; the same applies to the use of LASSO for variable selection in

the prediction step. The best LLF specifications produce volatility estimates that are better than

the GARCH-MIDAS forecasts. These findings imply that LLF models based on all macroeconomic

data, including variables with different frequencies, may be more effective than the GARCH-MIDAS

specification in forecasting financial volatility. Such improved forecasts could be used to better value

options, and when used correctly, they can help optimize portfolio strategies.

However, it must be noted that the forecasts from the LLF models use the information on future

macroeconomic variables which have not yet been attained. This makes the model less robust when

applied in practice. Hence, further research is still to be done on forecasting the realized variances

without knowing future macroeconomic variables. Due to the great results the LLF model has on

predicting, it is useful to do more research on this model.

Lastly, the SHAP values were calculated to see which feature contributes the most to the target

variable. The VIX index showed to be the most important, where high values of the VIX have a

high positive effect. This result is to be expected as this index is a measure to estimate the expected

volatility of the S&P 500. The objective is to estimate the realized variance; hence this feature is

naturally important. The second variable is the National Financial Condition Index, where positive

values indicate tighter financial conditions than average. High values of the NFCI correspond to

a positive impact on the realized volatility. An explanation of this could be the decreasing money
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supply. When the interest rates rise due to monetary policies of the central bank, it is more difficult

to receive credit. Contrary, previous research did not directly relate stock market volatility and

money supply (Taamouti, 2014; Choi and Yoon, 2015). However, the indirect effect of the money

supply through macroeconomic features should not be overlooked. The third variable, which showed

only slight importance to the target variable, is the backward measure of daily volatility. A large

positive value of this variable can negatively or positively affect the realized volatility. This result

also deviates from what is expected, as the negative effect is surprising. Further research upon the

macroeconomic explanation of these outcomes would be useful for the economic interpretation of

the obtained results.
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Corsi, F., & Renò, R. (2012). Discrete-time volatility forecasting with persistent leverage effect and

the link with continuous-time volatility modeling. Journal of Business Economic Statistics,

30 (3), 368–380. http://www.jstor.org/stable/23243735

Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J.

(2007). Random forests for classification in ecology. Ecology, 88 (11), 2783–2792.

Dorion, C. (2016). Option valuation with macro-finance variables. Journal of Financial and Quan-

titative Analysis, 51 (4), 1359–1389.

Engle, R., & Lee, G. (1999). A long-run and short-run component model of stock return volatility.

Engle, R.F. and White, H., Eds., Cointegration, Causality, and Forecasting: A Festschrift

in Honor of Clive W.J. Granger, 475–497.

Engle, R., Ghysels, E., & Sohn, B. (2013). Stock Market Volatility and Macroeconomic Fundamen-

tals. The Review of Economics and Statistics, 95 (3), 776–797. https://doi.org/10.1162/

REST a 00300

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of

united kingdom inflation. Econometrica: Journal of the econometric society, 987–1007.

Fang, L., Qian, Y., Chen, Y., & Yu, H. (2018). How does stock market volatility react to nvix?

evidence from developed countries. Physica A: Statistical Mechanics and its Applications,

505. https://doi.org/10.1016/j.physa.2018.03.039

Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Com-

putational and Graphical Statistics, 1–15. https://doi.org/10.1080/10618600.2020.1831930

Gama, J. (2004). Functional trees. Machine Learning, 55 (3), 219–250.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2006). Predicting volatility: Getting the most out of

return data sampled at different frequencies. Journal of Econometrics, 131 (1-2), 59–95.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected

value and the volatility of the nominal excess return on stocks. The journal of finance, 48 (5),

1779–1801.

Hamilton, J. D., & Lin, G. (1996). Stock market volatility and the business cycle. Journal of applied

econometrics, 11 (5), 573–593.

Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79 (2),

453–497. http://www.jstor.org/stable/41057463

Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized garch: A joint model for returns and

realized measures of volatility. Journal of Applied Econometrics, 27 (6), 877–906.

30



Hothorn, T., Lausen, B., Benner, A., & Radespiel-Tröger, M. (2004). Bagging survival trees. Statis-
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Appendices

A Summary Statistics

Table 6

Summary statistics of the data set
Freq. Start Min. Max. Mean Median SD Skew Kurt. Obs.

Stock market data
S&P 500 return d 1971 -22.900 10.957 0.028 0.044 1.062 -1.039 28.811 11938√

(RV ) d 2000 0.127 8.842 0.872 0.716 0.604 3.224 21.930 4600
RVol(22) d 1989 0.234 5.542 0.949 0.801 0.560 2.973 17.465 7390

Explanatory Variables
VIX d 1990 0.576 5.094 1.219 1.102 0.495 2.085 10.628 7135
NFCI w 1973 -0.990 4.670 0.002 -0.330 1.001 1.944 6.533 2470
NAI m 1971 -5.160 2.760 -0.004 0.060 1.003 -1.212 6.961 568
∆ IP m 1971 -4.430 2.375 0.181 0.219 0.724 -1.220 8.818 568
∆ Hous m 1971 -30.674 25.672 -0.068 -0.191 8.029 -0.034 3.775 568
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B GARCH-MIDAS results

Table 7

GARCH-MIDAS estimation results: one variable
α β γ m θ w1 w2 K LLH BIC VR(X)

Daily τt
VIX 0.000 0.853*** 0.095*** -2.129*** 1.524*** 1 3.470** 3 -9.138 18.339 76.14

(0.010) (0.021) (0.015) (0.086) (0.067) (1.371)
Monthly τt
∆ Hous 0.019*** 0.897*** 0.119*** -0.079 -0.237*** 1.695*** 2.586*** 36 -14.449 29.192 19.63

(0.005) (0.005) (0.007) (0.076) (0.034) (0.383) (0.770)

Note. Estimation results of GARCH-MIDAS for single explanatory variables VIX and ∆ Hous-
ing are reported above, starting from 1990M1 and 1974M1 respectively. Bollerslev-Woolridge
standard errors are given in parentheses below, with significance levels *10%, **5% and ***1%.
Only for VIX, a restricted weighting scheme is chosen; w1 = 1. LL denotes the maximized log-
likelihood function, BIC stands for Bayesian Information Criterion and VR(X ) is the variance
ratio (= var(log(τXM ))/var(log(σXM ))). Estimates of µ are omitted.

Table 8

GARCH-MIDAS estimation results: two variables, VIX plus other
α β γ m θX wX1 wX2 θV IX wV IX2 KX LLH BIC VR(V IX, X)

Daily τt
VIX 0.000 0.853*** 0.095*** -2.129*** - - - 1.524*** 3.470** 3 -9.138 18.339 76.14

(0.010) (0.021) (0.015) (0.086) (0.067) (1.371)

0.000 0.852*** 0.099*** -1.993*** 0.118 1 2.252 1.451*** 3.617** 52 -9.110 18.300 75.84
(0.010) (0.020) (0.016) (0.143) (0.085) (4.152) (0.093) (1.518)

Monthly τt
NAI 0.000 0.870*** 0.092*** -2.032*** -0.108** 1 119.372 1.431*** 3.775** 36 -9.133 18.346 75.06

(0.009) (0.018) (0.015) (0.100) (0.046) (326.330) (0.079) (1.594)
∆ IP 0.000 0.876*** 0.084*** -2.133*** -0.043 1 8.960 1.528*** 3.806** 36 -9.139 18.357 75.91

(0.009) (0.018) (0.014) (0.096) (0.089) (34.803) (0.072) (1.520)
∆ Hous 0.000 0.863*** 0.097*** -2.035*** -0.061** 1.001 2.139 1.446*** 3.605** 36 -9.135 18.359 74.99

(0.009) (0.019) (0.015) (0.094) (0.024) (0.743) (2.462) (0.074) (1.503)

Note. Estimation results of GARCH-MIDAS for combination of daily VIX and NAI, ∆ IP, and
∆ Housing as explanatory variables, starting from 1990M1 to 2018M4 respectively. For com-
parison, the estimation results of the single explanatory variable VIX are included in the table.
All parameters with superscript X are related to the second explanatory variable. Bollerslev-
Woolridge standard errors are given in parentheses below, with significance levels *10%, **5%
and ***1%. Only for VIX, a restricted weighting scheme is chosen; w1 = 1. LL denotes the
maximized log-likelihood function, BIC stands for Bayesian Information Criterion and VR(X )
is the variance ratio (= var(log(τXM ))/var(log(σXM ))). Estimates of µ are omitted.
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C RMSD and RMAD results

Table 9

Out-of-sample root mean standard deviation values for all forecast horizons

RMSD 1d 2w 1m 2m 3m

LLF ∆ Hous 0.490 0.560 0.554 0.533 0.593
All var 0.186 0.188 0.189 0.188 0.188
All var - LASSO 0.184 0.186 0.187 0.187 0.188
All var + ri,t−1 0.186 0.187 0.190 0.187 0.188
All var + ri,t−1 - LASSO 0.184 0.186 0.188 0.186 0.187

GARCH-MIDAS VIX 0.244 0.311 0.331 0.354 0.366
∆ Hous 0.265 0.333 0.365 0.391 0.396
VIX and NFCI 0.240 0.306 0.325 0.346 0.357
VIX and NAI 0.243 0.309 0.329 0.352 0.364
VIX and ∆ IP 0.242 0.309 0.329 0.352 0.364
VIX and ∆ Hous 0.247 0.314 0.335 0.358 0.370

Competitors HAR 0.205 0.297 0.342 0.399 0.433
HAR (leverage) 0.196 0.297 0.343 0.399 0.434
Real GARCH 0.207 0.280 0.312 0.348 0.363

Note. The table shows the loss values of the root mean standard deviation function for the
prediction of the realized variance for all forecast horizons. The out-of-sample forecasts cover
2010M1-2018M1.

Table 10

Out-of-sample root mean absolute deviation values for all forecast horizons

RMAD 1d 2w 1m 2m 3m

LLF ∆ Hous 0.649 0.700 0.691 0.681 0.706
All var 0.386 0.390 0.389 0.390 0.389
All var - LASSO 0.385 0.389 0.388 0.389 0.390
All var + ri,t−1 0.387 0.389 0.390 0.389 0.390
All var + ri,t−1 - LASSO 0.384 0.389 0.390 0.388 0.390

GARCH-MIDAS VIX 0.452 0.508 0.527 0.545 0.554
∆ Hous 0.472 0.533 0.563 0.585 0.588
VIX and NFCI 0.450 0.505 0.525 0.541 0.549
VIX and NAI 0.452 0.507 0.526 0.544 0.613
VIX and ∆ IP 0.451 0.507 0.526 0.544 0.553
VIX and ∆ Hous 0.455 0.511 0.532 0.550 0.559

Competitors HAR 0.403 0.495 0.538 0.586 0.613
HAR (leverage) 0.395 0.494 0.539 0.585 0.614
Real GARCH 0.405 0.479 0.515 0.548 0.561

Note. The table shows the loss values of the root mean absolute deviation function for the
prediction of the realized variance for all forecast horizons. The out-of-sample forecasts cover
2010M1-2018M1.
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D Code Description

This paper uses different packages to obtain the results, divided into a total of nine scripts. Hence,

a short explanation of these scripts’ order is given here so that the results can be reproduced.

First, the MasterThesis.R needs to be run, containing all the necessary packages for the whole

project. It also creates empty files where the models and results are stored. After which, the models

can be estimated using the estimate models real time.R script. It first reads the data downloaded

from the Journal of Applied Econometrics data archive, following the paper of Conrad and Kleen

(2019). With this data, the models are estimated individually, starting with the LLF models, then

the GARCH-MIDAS, and ending with the competitor models. Note that most of this code has been

copied by Conrad and Kleen (2019) in order to reproduce their results.

Before the forecasts can be made, the LASSO.R script is run to get the selected variables.

The results of these estimations are shown in Table 1. After obtaining the models and LASSO

selected variables, forecasts are made with the make forecasts.R script. First, the parameters of

the GARCH-MIDAS and competitor models need to be retrieved before forecasting. Then a data

frame is created where all forecasts are stored for later use. After this, one big forecast loop begins.

Again, most of this builds upon the existing code of Conrad and Kleen (2019).

Lastly, there are different scripts for different performance measures. The qlike.R together with

the MCS.R script produce Tables 2 and 3. The qlike.R script begins with some alterations to the

LLF forecasts, as the realized variance cannot be equal to one. These values are replaced with a very

low number (this cannot be equal to zero; otherwise, this will produce a NaN for qlike). The rest of

the code builds upon the available scripts of Conrad and Kleen (2019). The mse.R script contains

the estimations of all four mean prediction errors, to make Tables 4, 5, 9, and 10. Ending with the

SHAP values mentioned in Section 4.5. The shap analysis.R uses the shap.R script, which contains

different functions made by Lundberg (2019). His shap analysis.R script has been modified to the

data in this paper. With these scripts Figures 1 and 2 are made. For a more detailed description,

see the scripts.
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