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Abstract

Time-varying heterogeneity is a common problem for financial research. I take an existing model

for time-varying group effects, the GFE model, and show how this model can be modified to

account for binary dependent variables in two different ways. The estimation methods use an

iterative procedure which alternates between estimating parameters and grouping firms with the

estimated parameters. I investigate the accuracy of the models though simulations and find that

for dichotomous dependent variables, firms can be regrouped with an accuracy of up to 82

percent. Linear probability models with group fixed effects are an effective way of dealing with

time-varying group heterogeneity, when little is known about the source of heterogeneity.



1 Introduction

Heterogeneity is a common problem when modeling financial data and can change the outcomes of

research if not treated properly. An omitted variable bias occurs when the explanatory variables

are correlated with the source of heterogeneity, this leads to inconsistent parameter estimates if the

heterogeneity is not correctly incorporated in the model.

Current literature explores several ways to treat heterogeneity, but it often requires knowledge

on the source of heterogeneity. Recently the group fixed effects (GFE) class of models has been

developed, which group firms based on their reaction to shocks over time. GFE models assume

that firms in a group react similarly to heterogeneous shocks, but that firms across groups can react

differently. Firms are grouped together if their residuals move together over time. The model can be

estimated by an iterative procedure that alternates between estimating groupings and parameters.

Sojli, Tham, and Wang (2018) implement a GFE model and show that it performs very well.

Their model places firms in the correct groups over 98 percent of the time, with as few as 10

observations available per firm. The model gives consistent and unbiased estimates. It performs

almost on par with infeasible models that assume the groupings known. In practice it is almost

impossible to manually assign these groupings perfectly.

The existing literature on models for binary dependent variables assumes groupings known and

firms are often grouped based on observable characteristics, such their industry. When groups are

assumed to be heterogeneously affected through a (unknown) group structure, it is infeasible to

manually assign these groupings. This leads to the following research question:

Can the GFE class of models be extended to incorporate binary dependent variables?

It is not as easy to disentangle heterogeneous effects from other effects, as the effect of the shocks

are not always visible in the dependent variable. I combine the GFE estimation procedure with a

logit model for fixed effects and a linear probability model. Through simulations I determine how

well the firms can recover these groupings. The GFE estimation procedure for a linear probability

model can recover over 80 percent of the original groupings, the logit GFE model can recover about

75 percent of the groupings.

The main contribution of this paper is that it extends the ideas of the GFE model to the binary

class of dependent variables. It uses logit and linear probability models with fixed effects that have

been used in the past to deal with heterogeneity and combines them with the iterative procedure

used to estimate GFE models.

Section 2 summarizes literature on fixed effects for continuous and binary variables in panel

data. Section 3 describes the estimation methods used for the groupings and parameters. Section

4 describes the simulations used to determine the relative performance of the models. Section 5
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describes the simulation results. Section 6 presents a conclusion and some discussion points that

could be a starting point for further research.

2 Literature review

In this section I discuss the various ways existing literature incorporates fixed effects in models.

Fixed effects have been modeled as time-varying, varying intercepts for individuals or groups. Re-

cently the GFE model has been developed to estimate fixed effects as time-varying shocks that affect

groups heterogeneously. I start with continuous models, as previous literature assumes groupings

known for binary variables.

2.1 Models for unobserved heterogeneity

When dealing with heterogeneity in finance, the dependent variable y is assumed to be affected in

the same way within groups and differently across groups. Existing models are the two-way fixed

effects (TFE) model, the the interacted fixed effects (IFE) model and the group fixed effects (GFE)

model, discussed in Sojli et al. (2018).

Two-way fixed effects

The first model is the TFE, in which yit depends on explanatory variables X in the following

manner:

yit = αi + λt +X ′itβ + εit for i = 1, ..., N ; t = 1, ..., T ; (1)

where λt are time-fixed effects and αi are the unit-fixed effects. The regressors can be correlated

with αi and λt. The parameters are estimated with OLS after demeaning X and y in the cross-

section and in the time series. This leads to elements of the form: X̃it = (Xit − X̄i. − X̄.t + X̄..),

where X̄i. is the average of value of X for firm i over the time series, X̄.t is the average value of X

at time t and X̄.. is the average value of X. Y is transformed in a homologous manner. The model

assumes that all individuals respond to the time-varying shocks in the same manner, which need

not be the case. TFE estimation leads to biased results when the individuals respond differently to

the time-varying shocks (Sojli et al., 2018).

Interacted fixed effects

Another model to estimate fixed effects is the IFE model. This model lets the effect of time-varying

shocks vary over groups, which leads to unbiased estimates. A major limitation is that the model

has no way of estimating these groups and requires a priori knowledge on the groupings. Firms are
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often grouped by industry or another observably characteristic.

In practice this means that the model is infeasible as it is unlikely that a researcher can classify all

firms in their original groups. Misspecification of the groups leads to inconsistent estimates if the

group effects are correlated with X (Sojli et al., 2018).

Group-fixed effects

Sojli et al. (2018) describe a linear model with components θgi,t to account for time-varying group

effects. The model assumes that responses to time-varying shocks differ over G distinct groups,

but are similar within groups. There are i firms in N groups with t = 1...T as the time of the

observation. The model model assumes that y is generated as follows:

yit = αi + θgi,t +X ′itβ + εit, gi ∈ {1, ..., G}, (2)

where αi captures individual levels for firms, θgi,t is the unobserved time-varying group effect,

gi is the group firm i belongs to and Xit contains the explanatory variables. Sojli et al. jointly

estimate the coefficients β and group parameters θgi,t with Algorithm 1, introduced by Bonhomme

and Manresa (2015). Sojli et al. find that the algorithm can retrieve the original groupings almost

perfectly through simulations. This estimation methods leads to no significant bias in β̂. Let

ẏit = yit − 1
T

∑T
t=1 yit and Ẋit = Xit − 1

T

∑T
t=1Xit. The estimation algorithm can be described as

follows:

Algorithm 1

1. Let g(0) be an initial value of grouping. Set s=0.

2. For the given g(s), compute:

(θ(s+1), β(s+1)) = arg min
β,θ

N∑
i=1

T∑
t=1

(ẏit − Ẋ ′itβ − θg(s)i ,t
)2

3. compute for all i ∈ {1, ..., N}

g
(s+1)
i = arg min

g∈1,...,G

N∑
i=1

T∑
t=1

(ẏit − Ẋ ′itβ(s+1) − θ(s+1)
gi,t )2

4. Set s = s+ 1 and go to Step 2 (until numerical convergence)

The algorithm is used because of the large number of possible combinations of groupings. As the

the objective function (3) does not linearly depend on the groupings, it is not possible to find an

analytical solution that minimizes QNT (Sojli et al., 2018).
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The least squares objective function is:

QNT = min
θ,β,g

N∑
i=1

T∑
t=s

(ẏit − Ẋ ′itβ − θgi,t)2 (3)

This algorithm can end op in local optima, so one should use many starting values to see

which one results in the lowest sum of squared residuals. Another complication is that the number

of groups is unknown. Sojli et al. (2018) therefore use the information criterion proposed by

Bonhomme and Manresa (2015) and Su, Shi, and Phillips (2016) to determine the number of

groups.

BIC(G) =
1

NT

N∑
i=1

T∑
t=1

(ẏit − Ẋ ′itβ̂
(G)
gfe − θ̂

(G)
gi,t)

2 + σ̂2GT +K +N

NT
log(NT ) (4)

It is better to have G slightly too large than too small. If G is chosen too small, the parameter

estimates are inconsistent. The GFE model groups firms based on the residuals of the time series.

Firms with residuals that move together over time are placed in the same group. The parameter

estimates closely match that of the infeasible IFE model, which assumes known groupings. Over

98 percent if firms are grouped correctly with as few as 10 observations per firm.

2.2 Fixed effects for binary dependent data

This section describes literature on fixed effects for binary dependent variables. Unfortunately I

could not find an example where the authors did not impose the groupings themselves.

Most of the recent literature on fixed effects for binary dependent variables is not from the field

of finance or economics, but from other social sciences. Existing literature agrees on a common

assumption; asymptotics have to be in the groups and not the individual to avoid an incidental

parameter problem, where the number of parameters to be estimated increases with N. This prevents

the parameter estimates from converging to their true values. The most common models used for

binary yit with fixed effects are: logit models with grouping dummies, conditional logit models and

linear probability models with fixed effects. I define pit as p(yit = 1). All three of these models can

be written in the following form:

pit = H(Xi,tβ + θgi) (5)

where gi is the group of firm i and θgi are the fixed effects for group gi.
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Linear probability models

The simplest model for probabilities is the linear probability model. Equation H in equation ??

doesn’t do anything in this case. pit can be written as:

pit = Xgi,tβ + θgi + ε. (6)

This equation can be estimated by regressing y on X and the corresponding group dummies. A lim-

itation of this class of models is that linearity is imposed on the probability function. Additionally,

p̂ is not bounded between zero and one.

Logit with dummies

The logistic model with dummies is an alternative to the linear probability model. Function H is

now the logistic function and pit can be written as:

pit =
1

1 + exp (−αi −X ′itβ − θgi)
. (7)

Now pit is bounded between zero and one. A problem with this specification is that groups with no

variation in yit will have no influence on β̂, as each group has its own intercept. This is intuitive, as

we can choose θgi sufficiently small (large) for groups where every observation is zero (one) to always

get the right prediction of y, regardless of β̂. As these groups might contain useful information on

the DGP of y, this poses a serious problem.

Estimating LPMFE with OLS lets the information be included in β. This leads to a smaller β̂ and

smaller standard errors (Beck, 2018).

As groups with no variation will be more prevalent when pit is low (high). This helps explain the

findings of Timoneda (2021), who find that LPMFE outperforms logit with dummies when y = 0

(trivially y = 1) is rare.

Conditional logit

Conditional logit gives consistent estimates of β. But as the group effects are conditioned out,

it provides no estimates of θ (Coupé, 2005). Conditional logit as described by Timoneda (2021),

conditions on the known number of positives in a group and calculates the conditional probability

for a vector yg occurring as:

p(yg|kg) =
exp(

∑Tg

t=1 ygtXitβ)∑
dg∈sg exp(

∑Tg

t=1 ditXitβ)
(8)

where Tg is the number of observation in a group, kg is the number of successes (ones) in group g,

dg is a vector with kg ones and Tg − kg zeros, sg is the set of all possible combinations of drawing
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kg successes out of Tg and dit are the observations in dg. Estimation of the model comes with the

assumption of no fixed effects when calculating predicted probabilities, which is not correct. The

model overestimates the probabilities when X is at its smallest for rare events (Timoneda, 2021).

This estimation method does not suffer from an incidental parameter problem. However, it cannot

be used in combination with a GFE model, as it provides no estimates of θ. This is necessary as it

is not feasible to compute all possible groupings; there are too many possible combinations. If we

have a group of 200 observations with 100 successes there are 9.05e58 possible combinations.

2.3 The effects of G and p

It is noteworthy that adding a lot of parameters introduces a positive bias in ML estimation, but this

bias is generally small (Timoneda, 2021). The bias is stronger for larger G, as more parameters have

to be estimated. Timoneda shows that the bias is low for both logit models through simulations.

For 2500 individuals, fifty groups and p = 0.01 the bias is eight percent for logit with dummies

and two percent for conditional logit. For events that are less rare the bias is lower. As GFE

models estimate a separate parameter for every group g at every time t, I suspect there might be

a significant positive bias in the logit models. Beck (2018) finds that logit models perform worse

compared to conditional logit model, when dealing with fixed effects. Especially for many smaller

groups.

3 Methodology

In this section I describe the two fixed effects models that I use to estimate the simulations. Both

models make use of a modified algorithm as proposed by Bonhomme and Manresa (2015). The

groupings will never be recovered as well when y is binary, because y holds less information. We

only know whether y is above or under a certain threshold, so there are often multiple plausible

groups in which a firm can be placed. Because T is modest and y doesn’t have to vary over time

for a given firm, this poses a serious challenge.

3.1 GFE for linear probability models

Timoneda (2021) finds that LPMFE has its merits, despite its simplicity. Estimating the model

is not different from estimating a regular regression, therefore it is easily implemented with group

fixed effects. I modify the model to allow for time-varying group fixed effects. The linear probability

model with group fixed effects (LPMGFE) model becomes:

pit = Xitβ + θgi,t + ε, (9)
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I use Algorithm 1 to estimate the groupings and parameters for the LPMFFE. The only difference

is that I replace ẏ with y. In other words: the binary variable is not demeaned.

3.2 Logit with dummies

Recall the logistic regression with dummies from section 2.2. Again I modify the model to allow

for time-varying group fixed effects. pit becomes:

pit =
1

1 + exp (−αi − Ẋ ′itβ − θgit)
. (10)

I modify the algorithm to maximize the following likelihood function, which assumes that yit are

all independently Bernoulli distributed:

L(θ|y,X) =

N∏
i=1

T∏
t=1

pyitit ∗ (1− pit)(1−yit). (11)

With this likelihood I formulate algorithm 2. This algorithm minimizes −log(L) in steps 2 and

3 (maximizing the likelihood). For microeconomic or financial data the implicit assumption of

independence often does not hold due to correlated sequential observations. Two examples: If we

classify firms as dividend-payer or non-payer, the assumption does not hold because firms rarely

stop paying dividends once they start doing so. This is seen as a bad sign by investors. yt depends

on yt−1 as well as Xt. If we classify individuals as employed or unemployed, it is obvious that

sequential observations are correlated as well.

Adding a unique intercept αi for each firm would result in an incidental parameter problem.

ẏit cannot be used here, as this variable would not be binary. Therefore I add ȳit in the logistic

function. Adding firm dummies instead would cause multicollineary on top of the incidental pa-

rameter problem, as the group dummy would be exactly equal to the sum of the firm dummies that

correspond to the group. This can be resolved by setting one firm dummy to zero for each group,

although this does change the interpretation of the parameters.

This model does not recover the original DGP, because there are infinitely many combinations of

the parameters that would lead to these outcomes for y. Two examples are: adding a constant c to

both α and q will lead to the same binary variable y. Scaling all parameters (and the idiosyncratic

shocks) by a factor c would give the same outcomes for y, as the cutoff is based on a quantile of

y. This complicates analysis on the accuracy of the parameter estimates, but we can verify the

accuracy of the groupings. ȳi serves as a base probability for a firm and clearly has a different

interpretation than αi. The estimated parameters β can be interpreted as the estimated change in

probability of observing a success for a unit change in X.

Define ȳi = 1
T

∑T
t=1Xit. I modify Algorithm 1 and obtain the following algorithm:
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Algorithm 2

1. Let g(0) be an initial value of grouping. Set s=0.

2. For the given g(s), compute:

(θ(s+1), β(s+1)) = arg min
β,θ

N∑
i=1

T∑
t=1

−yit log(p̂it)− (1− yit) log(1− p̂it),

where

p̂it =
1

1 + exp (ȳi +X ′itβ
+θ

g
(s)
i ,t

)
.

3. compute for all i ∈ {1, ..., N}

g
(s+1)
i = arg min

g∈1,...,G

N∑
i=1

T∑
t=1

−yit log(p̂it)− (1− yit) log(1− p̂it),

where

p̂it =
1

1 + exp (ȳi +X ′itβ
(s+1) + θ

(s+1)
gi,t )

.

4. Set s = s+ 1 and go to Step 2 (until numerical convergence)

I refer to this model as the logit model with group fixed effects (logitGFE). The parameters β

can be interpreted as the change of the log-odds for a unit change in X, where the log − odds is

defined as log( p
1−p ).

4 Simulation

This section describes the data generating processes used to test the accuracy of the the models

described in section 3.

4.1 Continuous GFE model

To verify the accuracy of my implementation of the GFE model for continuous y, I generate 100

sets of data with 1000 firms and 10 observations per firm in the same way as Sojli et al. (2018).

This data generating process (DGP) is designed to mimic common financial panel data, with a

large panel size (N) and a modest time span (T). The notation follows Sojli et al. (2018).

First I generate τl,gi,t from G = 5 independent normal distributions, with mean g and variance 2g.

Let Xit and θgi,t both depend on the underlying component τl,gi,t with the following structure:

Xl,it = cττl,gi,t + vit for l = 1, 2 (12)
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and

θgi,t = g2
i (τ1,gi,tτ2,gi,t)/cθ (13)

The error terms vit are the idiosyncratic shocks for each firm-year, drawn from the normal distribu-

tion with unit mean and variance. Intuitively, one can interpret τl,gi,t as the group-specific driver

of Xl, it, which influences both X and θ. I set ct = 0.5 and cθ = 0.15 to replicate the DGP with

moderate shocks from Sojli et al. (2018).

With the group component θ and X we generate the dependent variable y in the following

manner:

yit = αi + θgi,t +

2∑
l=1

Xl,itβl + εit, i = 1, ..., N ; t = i, ..., T ; εit ∼ N (0, 1) , (14)

where αi = 1/T
∑T
t=1X1,it and β = (1, 2)′.

I then estimate the parameters for the simulated data with the GFE model described in Algo-

rithm 1.

4.2 Binary GFE models

For the binary case, I generate new datasets in two ways: according to a Bernoulli distribution and

in a linear fashion.

Linear DGP

I first generate a binary variable y∗ by generating the continuous variable y as described in the

previous section. To transform y into a binary variable, I select a quantile q from y. For all y

larger than q, y∗ is set to 1 and for all y smaller or equal, y∗ is set to 0. I generate 20 datasets for

q = 50%.

Bernoulli DGP

I first generate αi, Xit and θgi,t as explained in section 4.1. Then I draw binary variables y∗
according to a Bernoulli distribution with pit = 1

1+exp (yit−ȳ) , where yit = αi + Xitβ + θgi,t and

ȳ = 1
N

∑N
i=1

1
T

∑T
t=1(αi + Xitβ + θgi,t). y is demeaned so the probability p(y=1) will be close to

0.5, the distribution is positively skewed so this is not be exact.1 Again, N = 1000 and T = 10.

1If we take ȳ as the median of y instead, p is exactly 0.5.
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Estimation

I estimate the datasets with logitGFE as well as LPMGFE. To determine the difference in the

parameter estimates from determining the groupings; I estimate the models as well with infeasible

logit and least squares models. Here the groupings don’t have to be estimated, but only β and θ.

5 Results

This section describes the estimation results for the simulations.

5.1 Accuracy GFE implementation

Groupings

To determine the the accuracy with which the algorithms reconstruct the originally imposed group-

ings, I compute the average misclassification frequency (AMF) over all repetitions r, defined as:

AMF =
1

R

R∑
r=1

1

N

N∑
i=1

1(ĝri 6= g0
i ), (15)

where ĝri is the estimated group of firm i in repetition r and g0
i is the true group of firm i in

repetition r. The estimation of the GFE DGP with moderate shocks leads to an AMF of 0.0709.

This is not as low as in Sojli et al. (2018), who find an AMF of 0.0124. The difference can likely be

explained as the result of limited computing power. Table 1 displays the results from the simulation

with y continuous.

Table 1: Results of GFE estimation.

AMF bias X1 bias X2 std X1 std X2 RMSE

GFE 0.0709 -0.0117 0.0229 0.2338 0.2349 0.3337

Parameters

To determine the accuracy of the models, I compute the bias, standard deviation and root mean

squared error. The bias for the regular GFE model, defined as

Bias(β̂)
1

R

R∑
r=1

β̂r − β0, (16)
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is -0.0117 for X1 and 0.0229 for X2. To determine the uncertainty and accuracy of the parameter

estimates I compute the empirical standard deviation

Std(β̂) =

√√√√ 1

R− 1

R∑
r=1

(β̂r − ¯̂
β)2 (17)

and the root mean squared error (RMSE)

RMSE(β̂) =

√√√√ 1

R

R∑
r=1

‖β̂r − β0‖2, (18)

where β̂r is the parameter estimate of the r-th replication and β0 is the true parameter value. The

least squares GFE simulation results in a standard deviation of 0.2338 and 0.2349, for X1 and X2

respectively, and a RMSE of 0.3337.

5.2 Simulations with y binary

In this section I discuss the results from the logit model with dummies and the linear probability

model with fixed effects. Table 2 displays the results. Bias and RMSE have no obvious meaning,

due to different interpretation of the estimated parameters and are therefore not displayed. It is

immediately clear that the LPMGFE model classifies firms better, with an AMF of 0.2573 for the

linear DGP and 0.2637 for the Bernoulli DGP. The model differs less from its infeasible counterpart

than the logitGFE model. The logitGFE model suffers more from the unknown groupings; it has

a higher misclassification frequency and the parameters are about twice the size of their infeasible

counterparts.

Table 2: Estimation results for 10 initial groupings over 20 repetitions.

DGP Estimation feasible AMF β1 β2 std(β1) std(β2)

Linear LPMGFE yes 0.2573 0.0374 0.0760 0.0277 0.0295

no - 0.0580 0.0909 0.0191 0.0257

logitGFE yes 0.3302 1.9322 2.9614 0.6019 0.6355

no - 0.8048 1.2798 0.3073 0.2984

Bernoulli LPMGFE yes 0.2637 0.0287 0.0644 0.0199 0.0204

no - 0.0572 0.0858 0.0151 0.0230

logitGFE yes 0.3272 1.5384 2.3404 0.6810 0.6599

no - 0.7850 1.0620 0.1591 0.1874
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As the linear probability model runs best with these settings, I rerun the simulations for LPMGFE

model with a hundred initial groupings. I only rerun this model as it is almost an order of magnitude

faster than the logisticGFE model. Again, y is generated as described in section 4.2, with t = 10,

N = 1000, p = 0.5 and 20 repetitions. Table 3 displays the results. It is clear that the LMPGFE

primarily benefited from the higher number of initial groupings when estimating the linear DGP.

In this case the AMF drops by 28 percent. For the Bernoulli GDP the difference is smaller, with a

reduction in the AMF of 1.5 percent. This is not unexpected as the linear model misspecifies the

DGP in this case.

If one assumes that y is generated according to a linear probability model with time-varying

group fixed effects, then one has the best chance of recovering most of the original groupings and

should use the LPMGFE model. It is not evident that the assumption of linearity will hold in many

cases.

Table 3: Estimation results for 100 initial groupings over 20 repetitions.

DGP Estimation feasible AMF β1 β2 std(β1) std(β2)

Linear LPMGFE yes 0.1844 0.0342 0.0766 0.0112 0.0244

no - 0.0580 0.0909 0.0191 0.0257

Bernoulli LPMGFE yes 0.2598 0.0298 0.0543 0.0143 0.0179

no - 0.0572 0.0858 0.0151 0.0230

6 Conclusion

The GFE model can cluster firms very well based on their reaction to time-varying shocks. When

extending the idea of the model to the binary case, the groupings cannot be recovered as well.

The logitGFE model misclassifies firms more often than the LPMGFE model and its parameter

estimates suffer. The LPMGFE model is impacted less severely by the unknown groupings. While

not perfect, the LPMGFE model is a good starting point when incorporating fixed effects for binary

dependent variables.

6.1 Discussion

A limitation is that all simulations, except for the one with continuous dependent variables, are

done with only 20 repetitions and a limited number of initial groupings. It is possible that the
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models perform better when given more time and computing power.

Further research can focus on improvements in the current models, or try to find more ways

to groups firms based on observable characteristics. As there is not as much information in a

binary dependent variable, there likely is no a satisfying solution that can be applied in all cases of

time-varying group heterogeneity for binary dependent variables. Further research can investigate

how the models perform for different p and T . If successes (failures) are rare, I expect the linear

probability model with fixed effects to have a greater advantage. For higher T all models should

perform better.
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