
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Interpreting machine learning in equities

Bachelor Thesis Quantitative Finance

Author: Ralph Hermeling
Student ID number: 513098

Supervisor: Drs. T. van der Zwan
Second assessor: Prof. Dr. M. van der Wel

Abstract

We conduct a comparative analysis among popular machine learning methods for predicting
monthly risk premiums of US equities. Among the methods is XGBoost, a gradient boosting
algorithm with countless machine learning competitions wins. Moreover, we use the latest
model-agnostic1 tools, such as SHapley Additive exPlanations (SHAP) and Permutation Feature
Importance (PFI), to interpret XGBoost’s predictions and better understand the behavior of
risk premiums. Our results show that we can not replicate the performance of Gu, Kelly, and
Xiu (2020) by using a subset of their data that includes the most important predictors, which
are variations on momentum, liquidity, and volatility. This suggests that larger datasets are
essential to deep learning’s success. XGBoost had the best predictive accuracy in our research
and SHAP indicates that stock fundamentals are relatively more important for larger stocks
than for smaller stocks and that the opposite is true for momentum.

July 3, 2021

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor,
Erasmus School of Economics or Erasmus University Rotterdam.

1Seperating the explanations from the machine learning model

Contents

1 Introduction 2

2 Data 3

3 Methodology 4

3.1 Sample Splitting and Hyperparameter Optimization 5

3.2 Dimension Reduction: Principal Components Regression and Partial Least Squares 5

3.3 XGBoost and Random Forest . 6

3.4 Neural Networks . 9

3.5 Performance Evaluation . 10

3.6 Interpreting Results . 11

3.6.1 Permutation Feature Importance . 11

3.6.2 SHapley Additive exPlanations . 12

4 Results 13

4.1 Empirical asset pricing via machine learning . 13

4.2 Interpreting machine learning . 15

5 Conclusion 19

References 21

Appendices 23

A Interpretation Methods . 23

A.1 Shapley values . 23

A.2 SHapley Additive exPlanations . 24

B Data . 25

C Results . 25

C.1 Waterfall Plot . 25

D Parameter Hyperoptimization . 25

D.1 Hyperparameters . 25

D.2 Bayesian Optimization . 25

D.3 Hyperband Optimization . 30

E Algorithms . 30

E.1 Histogram Algorithm . 30

E.2 XGBoost Algorithm . 31

1

1 Introduction

Gu, Kelly, and Xiu (2020) demonstrated large economic gains to investors who use complex

machine learning methods for measuring asset risk premiums.2 However, one large disadvantage

of these complex machine learning methods is that they do not explain their predictions. Un-

derstanding why those predictions were made can be as crucial as creating accurate forecasts.

Not only does it provide insights as to how we can improve our models, but it can get us a step

closer to understanding the behavior of risk premiums. This raises the dilemma of sacrificing

predictive accuracy for more interpretability or is there a method we can use to interpret these

sophisticated models?

Recently S. Lundberg and Lee (2017) proposed SHapley Additive exPlanations (SHAP),

which is a framework for interpreting complex machine learning methods. SHAP provides each

feature an importance value for a particular prediction. It is based on Shapley values (Shapley,

1997) from conditional game theory and has desirable properties. Besides SHAP, we can also

estimate a feature’s importance by measuring the decrease in out-of-sample R2 when omitting

it from the test data, this is referred to as Permutation Feature Importance (PFI). Gu et al.

(2020) followed this approach. We apply both techniques to interpret machine learning.

Our comparative analysis of machine learning methods for measuring asset risk premiums is

different in two ways to that of Gu et al. (2020). First, we use a subset of their data due to a

lack of computing resources. The selected subset results from the outer product between 20 of

their most important firm characteristics and 9 macroeconomic variables (including a constant),

adding up to 180 stock-level covariates. The sample remains the same. It begins in 1957, ends

in 2016, and consists of approximately 30,000 equities. Second, we add XGBoost from Chen and

Guestrin (2016) to the comparative analysis, which is an accurate and scalable implementation

of the gradient boosting algorithm. Many cutting-edge industry applications use XGBoost.

From our research we conclude that we cannot replicate the same performance as Gu et al.

(2020) by solely relying on variations resulting from the outer product of the 20 most important

firm characteristics and 9 macroeconomic variables. Since all our models heavily under perform

(negative and small values for R2). Neural networks, which were the winners in their research,

actually produced negative values for R2. This confirms the notion that a larger dataset con-

tributes to deep learning’s success. Our best model was XGBoost, which had the highest R2

and was one of the few models that actually produced positive R2. Note that its values for R2

were still a lot smaller than that of Gu et al. (2020).

2Our aim is to measure conditional expected stock returns in excess of the risk-free rate. In academic finance
this is traditionally referred to as the ”risk premium” due to its close connection with equilibrium compensation
for bearing equity investment risk. We use the terms ”expected return” and ”risk premium” interchangeably.

2

By using SHAP and PFI for XGBoost we discovered that variations on momentum are

relatively more important for smaller sized stocks than for larger sized stocks. Whereas variations

on stock fundamentals are relatively more important for larger size stocks than for smaller size

stocks.

2 Data

We use the data set by Gu, Kelly, and Xiu (2020), which contains firm characteristics of around

30,000 US equities. The monthly returns for these equities are collected by using WRDS. More-

over, we obtain the Treasury-bill rate to proxy for the risk-free rate when calculating individual

excess returns.3 The sample starts in March 1957 and ends in December 2016 adding up to 60

years. Due to lack of computing power we opted for a subset of the available firm characteristics.

To decide which firm characteristics to keep we researched the variable importance figure in (Gu

et al., 2020, p. 31) and picked the 20 most important firm characteristics among the neural

networks. Since, these models had the best monthly forecast performance. The 74 industry

dummies defined by Gu et al. (2020) do not appear in any of the variable importance figures

and are omitted for this reason. The resulting 20 most important firm characteristics are listed

in Appendix B.4 Furthermore, we also include the following eight macroeconomic explanatory

variables from Welch and Goyal (2008): dividend-price ratio (dp), earnings-price ratio (ep),

book-to-market ratio (bm), net equity expansion (ntis), Treasury-bill rate (tbl), term spread

(tms), default spread (dfy), and stock variance (svar).5

For pre-processing we map the firm characteristics and macroeconomic variables cross-

sectionally and period-by-period into the [-1,1] interval by using the MinMaxScaler method

from Pedregosa et al. (2011). This is done to achieve optimal machine learning performance and

prevent data leakage. Moreover, we perform the same outer product as Gu et al. (2020) between

the firm characteristics and the macroeconomic variables. The resulting stock-level covariates

zi,t are defined as follows:

zi,t = xt ⊗ ci,t, (1)

where xt is a Px × 1 vector of macroeconomic variables including a constant and ci,t is a Pc ×

1 matrix of firm characteristics for each stock i at time t. For predicting an asset’s excess

return we use zi,t, which is a (PcPx = P)× 1 vector containing interactions between stock-level

characteristics and macroeconomic state variables. The final number of covariates P is equal to

3We picked the monthly Treasury-bill rate from Amit Goyal’s website. Note that this rate is annualized. Hence

one should convert it into a monthly rate by taking the power of
1

12
4The monthly data are available from Shihao Gu’s website.
5This monthly data are available from Amit Goyal’s website.

3

20× (8 + 1) = 180.

The motivation behind the structure of zi,t according to Gu et al. (2020) is the standard

beta-pricing representation of the asset pricing conditional Euler equation, which is defined as

follows:

Et(ri,t+1) = β
′
i,tλt. (2)

The design of zi,t allows for two things. First pure stock level interactions are able to enter the

expected returns via ci,t in a similar way as β
′
i,t does and it also enables aggregate economic

conditions to enter which is in analogy with λt. We borrow the example from Gu et al. (2020) to

show the analogy, if βi,t = θ1ci,t and λt = θ2xt, for some constant parameter matrices θ1 (K×Pc)

and θ2 (K × Px), then the beta-pricing model in (2) becomes

g∗(zi,t) = Et(ri,t+1) = β′i,tλt = c′i,tθ
′
1θ2xt = (xt ⊗ ci,t)′vec(θ′1θ2) =: z′i,tθ, (3)

where θ = vec(θ′1θ2). The broader model is more general since g∗(.) also allows for nonlinearity.

Moreover, nonlinear g∗(.) formulations enlarge the predictor set with functional transformations

of the baseline predictor set zi,t.

3 Methodology

This section describes the methods we use to predict an asset’s excess return and to interpret

predictions. We follow Gu, Kelly, and Xiu (2020) and view an asset’s excess return as an additive

prediction error model:

ri,t+1 = Et(ri,t+1) + εi,t+1, (4)

where

Et(ri,t+1) = g∗(zi,t). (5)

Stocks are represented by the index i = 1, ..., Nt and months by t = 1, ..., T . If we perform

research on a yearly basis, then t corresponds to years. Our aim is to find a function of predictor

variables, which maximizes the out-of-sample explanatory power for realized ri,t+1, and which

can be used as an proxy for Et(ri,t+1). The P-dimensional vector zi,t in equation (5) represents

the predictor variables. The g∗(.) function corresponds to the conditional expected return and

depends neither on i or t. By retaining the same form across time and different stocks, it allows

the model to use information from the entire panel. Gu, Kelly, and Xiu (2020) state that this

provides extra stability to estimates of risk premia for any individual asset. Lastly, g∗(.) depends

only on z through zi,t. This means that we make predictions without the knowledge of history

prior to t, or of any individual stock that is not the ith.

4

3.1 Sample Splitting and Hyperparameter Optimization

We perform the same sample splitting strategy as Gu et al. (2020). Every year from the sample

period of 1987-2016 is considered as an out-of-sample year and has its own training, validation

and testing set. The size of the validation and testing set remain the same across all out-of-

sample years and equal 12 years and 1 year, respectively. The size of the training set depends

on the out-of-sample year since it increases with every refit. To explain this refitting process, let

1987 denote the first out-of-sample year, then the training period is 18 years (1957-1974) and

the validation period is 12 years (1975-1986). For the next out-of-sample year 1988 we keep the

validation period the same size but roll it over by one year, and we increase the training set by

one year. This results in a training period of 19 years (1957-1975) and a validation period of 12

years (1976-1987).

Each set fulfills the following purpose. The training set is used for estimating the model given

a set of hyperparameters6, the validation set for tuning these hyperparameters, and the testing

set for evaluating the model’s forecast performance. Our approach of finding the best performing

configuration of hyperparameters differs from (Gu et al., 2020) since we use Bayesian Optimiza-

tion (Bergstra, Yamins, & Cox, 2013) or Hyperband (Li, Jamieson, DeSalvo, Rostamizadeh,

& Talwalkar, 2017) for automatic hyperparameter optimization. These two algorithms are de-

scribed in the Appendix.

3.2 Dimension Reduction: Principal Components Regression and Partial

Least Squares

Principal Components Regression (PCR) and Partial Least Squares (PLS) are both popular

dimension reduction techniques. PCR can be divided into two steps. In the first step Princi-

pal Component Analysis (PCA) is performed in order to find components, which capture the

covariance structure among the explanatory variables the best. Then in the second step compo-

nents, that explain the most variance, are used for prediction in a linear regression type fashion.

This results in the omission of components with low variance, which causes regularization of the

prediction problem.

One of PCR’s disadvantages is that it does not take into account the ultimate statistical

objective when selecting components, since it picks components that explain the most variance

among the explanatory variables. This may result in the omission of significant components

that explain little variance.

6We define hyperparameters as parameters of a machine learning model that control its learning process and
complexity.

5

PLS however does incorporate the objective function when computing its components, be-

cause it selects them based on their covariance with the target variable. PLS regression works

in the following way. Compute the univariate return prediction coefficient for each variable j

using OLS. The resulting coefficient is denoted by φj and corresponds to the ’partial’ sensitivity

of the returns to every variable j. Thereafter, create an aggregate component that consists of all

the predictors weighed proportional to their respective φj . Thus, larger φj gets a larger weight.

Additional components are created from the orthogonalization of the target and all explanatory

variables to the previously made components. This process is repeated untill the desired number

of PLS components is achieved. We use the same implementation of the models as Gu et al.

(2020)

R = Zθ + E, (6)

where R is the NT × 1 vector of ri,t+1, Z is the NT ×P matrix of stacked predictors zi,t, and E

is a NT × 1 vector of residuals εi,t+1. For both methods we define the forecast model as follows

R = (ZΩK)θK + Ẽ, (7)

where ΩK is a P × K matrix with columns w1, w2, ..., wk. The weights used to create the

jth component are denoted by wj . Thus by definition ZΩk represents the dimension-reduced

version of the full explanatory variable set. Thereby, θK is a K × 1 vector instead of a P × 1

one. The objective function of the two models differ. PCR selects the combination weights ΩK

in a recursive way and to get the jth component we solve

wj = arg max
w

Var(Zw), s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, ..., j − 1. (8)

For the jth PLS component we solve

wj = arg max
w

Cov2(R,Zw), s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, ..., j − 1. (9)

To implement these methods we use the PCR and PLS class from Pedregosa et al. (2011) in

Python. The only tune-able parameter for both of these methods is the number of components

K.

3.3 XGBoost and Random Forest

To implement a gradient boosted regression trees (GBRT) algorithm as noted by Gu et al.

(2020) we use XGBoost (XGB) from Chen and Guestrin (2016), which provides scalability

in all scenarios and runs 10 times faster than existing popular solutions on a single machine.

XGB owes its scalability to several system and algorithmic improvements. Here are the following

6

improvements: a tree algorithm which handles sparse data and a quantile sketch procedure which

enables handling instance weights in approximate tree learning. XGB also offers distributed

and parallel computing which decreases the learning time such that more time is available for

model exploration. Moreover, XGB provides a cache-aware block structure 7 for out-of-core tree

learning. XGB uses K additive functions to predict. We follow Chen and Guestrin (2016) for

the notation of this model. The predictions are made as follows

g(zi,t,K) =
K∑
k=1

fk(zi,t), fk ∈ F , (10)

where F = {f(zi,t) = wq(zi,t)}(q : RP → T,w ∈ RT) denotes the space of regression trees.

Variable q corresponds to the structure of each tree that maps a sample to their respective leaf

index. Each tree is represented by fk and has its own independent tree structure q and leaf

weights w. The leaves of every regression tree have a continuous score, where wi corresponds to

the score of leaf i. The total number of leaves in each tree is denoted by T . The tree structure

q also consists of the decision rules thus given a sample we can classify it into one of the leaves

and get the prediction by summing up the score in the corresponding leaves. The functions fk(.)

in equation (10) use the following regularized objective function to learn

L(g) =
∑
i

l(r̂i,t, ri,t) +
∑
k

Ω(fk), (11)

where Ω(fk) = γT + α||w||+ 1

2
λ||w||2.

The loss function l is differentiable and convex. Regularization is introduced through Ω, which

includes l1 and l2 penalization on the leaf weights denoted by α and λ, respectively. Moreover,

the depth of a tree is penalized by a factor γ. This design punishes the model’s complexity and

reduces overfitting. The tree model provided in Equation (11) has functions as parameters. As

a result it can not be solved by using standard optimization methods in Euclidean space. Hence,

the model is trained in an additive way. Let r
(s)
i,t be the prediction of the ith instance at iteration

s and time t. To minimize the objective function we add fs and it becomes

L(s) =
n∑

i=1

l(ri,t, r̂
(s−1)
i,t + fs(zi,t)) + Ω(fs). (12)

7A cache-aware block model is created to solve the drawback of RAM, which is that it considers only one
memory and is not an approximation of the actual hardware (Angrish & Garg, 2011). The cache-aware model is
a two-level hierarchy model with block transfer.

7

This implies that we greedily add fs such that it improves our loss score. To quickly optimize

the objective function we use second-order Taylor approximation.

L(s) '
n∑

i=1

[l(ri,t, r̂
(s−1)
i,t) + gifs(zi,t) +

1

2
hif

2
s (zi,t)] + Ω(fs), (13)

where gi = δr̂s−1 l(ri,t, r̂
(s−1)
i,t) and hi = δ2

r̂s−1 l(ri,t, r̂
(s−1)
i,t) are first and second order gradient

statistics on the loss function, respectively. This approximation enables us to estimate the opti-

mal weight of a leaf and its corresponding value. The details of XGB’s algorithm are described

in the Appendix, but it begins with initialization of a shallow tree. Thereafter, the gradient and

second derivative of the regularized loss function as seen in Equation (13) are computed in order

to fit a new decision tree to the residuals from the previous iteration.8 Next, its prediction gets

scaled by a factor η and added to the total. This process is repeated until the ensemble consists

of K trees. Besides the scaling of predictions, there are three other parameters we use to reduce

overfitting when building trees: max depth L which corresponds to the longest path from a

root to a leaf and controls the tree’s complexity, ϑ corresponds to the percentage of randomly

chosen features to be available when constructing a tree, and ζ which is the minimum sum of

weights in a child. As a result we have an additive model of shallow trees with the following

hyperparameters (L, η, K, γ, α, λ, ϑ, ζ) which are tuned using Bayesian Optimization. We

implement the model in Python using the XGBRegressor class from Chen and Guestrin (2016).

Random Forest (RF) is just as XGB an ensemble forecasting technique, but the ensembles are

created in a different way. RF builds each tree from a bootstrapped sample of the training set.

Moreover, RF constructs each tree from a random subset of the features. The size of this random

subset is denoted by ι. The reason behind these two measures, which create randomness, is to

reduce the variance of the forest estimator. Decision trees typically experience high variance

and also tend to overfit. As Pedregosa et al. (2011) state by introducing randomness in the

construction of decision trees we decouple the prediction of the trees and thereby the forecast

errors. As a result, when averaging the predictions some errors may cancel out. Thus RF reduces

variance by creating ensembles of diverse trees, which in turn might lead to a small increase of

bias. However, the decrease in variance is in most cases significant. Thus these two measures

yield a better overall model.

When constructing trees we use a maximum number of features L. Furthermore, we use the

Histogram-based Algorithm (Ke et al., 2017) in combination, with the Mean Squared Error loss

as split criterion. In total RF has K trees in its ensemble and the prediction is computed by

8To find the best split inside each base learner we use the Histogram-based Algorithm from Ke et al. (2017),
which is also described in the Appendix.

8

taking the average of the ensemble

g(zi,t,K) =
1

K

K∑
k=1

fk(zi,t), fk ∈ F . (14)

For RF we choose the following hyperparameters to tune (L,K,ι), which is done by Bayesian

Optimization. Moreover, we implement the GPU-accelerated version of RF in Python with the

help of cuML’s RandomForestRegressor class from Raschka, Patterson, and Nolet (2020).

3.4 Neural Networks

Our Feed Forward Neural Networks consist of the following parts: an ”input layer” which is a

row from our data set, one or multiple hidden layers that are connected and together alter the

predictors’ values, and an ”output layer” which combines the hidden layers’ information into a

prediction. Gu et al. (2020) conclude that Neural Networks with fewer layers and nodes often

perform better in smaller data sets. Our data set represents approximately 20% of the original

data set. Thus the Neural Networks we construct have one or two layers, which are called

NN1 and NN2, respectively. The number of neurons in each layer is chosen to be a tunable

hyperparameter. Both networks are fully connected thus every unit in a layer gets input from

every unit of the previous layer. Moreover, each unit uses the same nonlinear ’activation function’

f when aggregating the unit weights from the previous layer. For the activation function we

follow Gu et al. (2020) and use the rectified linear unit (ReLU) from Nair and Hinton (2010).

ReLU stimulates sparsity in active neurons and enables faster evaluation of derivatives. It is

defined as follows

ReLU =


0 if x < 0

x otherwise.

(15)

For notation of our Neural Network models we also follow Gu et al. (2020). Let K(l) correspond

to the number of neurons in each layer l = 1, 2, .., L. The output of each neuron k in layer l is

denoted as xk(l). Moreover, the vector of outputs (including a constant) of this layer is repre-

sented by x(l) = (1, x
(l)
1 , ..., x

(l)

K(l))
′. When initializing the network, the input layer corresponds to

the raw predictors, and is denoted by x(0) = (1, z1, ..., zN)′. Thus the recursive output formula

for the network for each neuron in layer l > 0 becomes

x
(l)
k = ReLU(x(l−1)′θ

(l−1)
k) (16)

with predicted output

g(z, θ) = x(L−1)′θ(L−1). (17)

9

Lastly, each hidden layer l has K(l)(1 + K(l−1)) weight parameters, and the final output layer

has 1 +K(L−1) weights.

The configuration of our neural networks includes the use of the Mean Squared Error with

l1 penalization as the loss function, the Adam solver (Kingma & Ba, 2014) in order to find the

best weights, early stopping for regularization, and batch normalization (Ioffe & Szegedy, 2015)

which standardizes the input layer for each mini-batch in order to make the network faster and

more stable. We omitted the ensemble technique mentioned by Gu et al. (2020) due to the lack

of computing resources. The Neural Networks are implemented with Tensorflow (Abadi et al.,

2015) and Keras (Chollet, 2015) in Python. An overview of the hyperparameters is given in the

Appendix.

3.5 Performance Evaluation

We follow the approach of Gu, Kelly, and Xiu (2020) to assess forecast performance for individual

excess stock returns forecasts, out-of-sample R2 is calculated as follows

R2
oos = 1−

∑
(i,t)∈T3(ri,t+1 − r̂i,t+1)2∑

(i,t)∈T3 r
2
i,t+1

, (18)

where T3 corresponds to the testing subsample. This corresponds to the data of the fits, which

never entered model estimation or tuning and are truly out-of-sample. Equation (18) shows

that R2
oos pools prediction errors across firms and time. The higher R2

oos is the better the

forecast performance of a model. We set the denominator of R2
oos equal to the sum of squared

returns without demeaning. By comparing predictions against a forecast value of zero instead of

historical mean returns we avoid artificially lowering the bar for ”good” forecasting performance

(Gu, Kelly, & Xiu, 2020).

In order to compute the annual R2
oos we first add one to the (predicted) returns such that

we are able to take the product of those months and compute the annualized return. Thus we

redefine ri,t+1 of equation (18) as ri,t+1 = ri,t+1,january × ri,t+1,february × ...× ri,t+1,december − 1,

where ri,t+1,month corresponds to the return of stock i at year t + 1 and month month. The

predicted return r̂i,t+1 is defined in the same manner. We repeat this process for every stock i in

the panel and for every year t in the testing subsample. With the redefined (predicted) returns

we compute R2
oos the same way as described in (18).

In order to calculate the annual R2
oos for the top 1,000 companies we gather the largest

companies monthly and add their respective (predicted) returns to a vector r′month,t+1, where

month is the month, and t+ 1 is the year. Furthermore, we add one to annualized (predicted)

returns for the same reason as mentioned above. By definition rmonth,t+1,i is the ith company in

10

month month and year t+ 1. Then to compute the annualized return we take the elementwise

product of this group for every month. This operation corresponds to rt+1 = r′january,t+1 �

r′february,t+1 � � r′december,t+1 − 1′. Then we can substitute rt+1 and r̂i,t+1 in equation (18)

with their annualized counterparts and compute the annual R2
oos. The same process is repeated

for the bottom 1,000 companies, but we collect the respective 1,000 smallest companies by value

instead.

We compare the out-of-sample predictive accuracy between two models by using the adjusted

Diebold-Mario statistic from Gu, Kelly, and Xiu (2020), which takes the strong dependence in the

cross section into account. Thus the test statistic DM12 = d̄12/σ̂d̄12 is more likely to satisfy the

mild regularity conditions needed for asymptotic normality and provides appropriate p-values.

It tests the predictive accuracy of method (1) against method (2)

d12,t+1 =
1

n3,t+1

n3∑
i=1

(
(ê

(1)
i,t+1)2 − (ê

(2)
i,t+1)2

)
, (19)

where ê
(1)
i,t+1 and ê

(2)
i,t+1 correspond to the prediction error for stock return i at time t using each

method, and n3,t+1 represents the number of stocks in the testing sample at time t+1. Moreover,

d̄12 and σ̂ ¯d12
correspond to the mean and Newey-West standard error of d12,t over the testing

sample, respectively.

3.6 Interpreting Results

Gu, Kelly, and Xiu (2020) have shown that neural networks and tree ensembles have the best

forecast performance. However, the parameters of these methods do not provide the same

straightforward interpretation as linear models or decision trees. We combine the variable im-

portance research of Gu et al. (2020) with SHapley Additive exPlanations in order to estimate

feature importance regardless of the model’s complexity.

3.6.1 Permutation Feature Importance

Gu et al. (2020) perform Permutation Feature Importance (PFI) to estimate variable importance.

PFI measures the change in panel predictive R2 of a model after setting all values of variable j

to zero, while keeping the rest fixed. This implies that every stock interaction with variable j is

also set to zero.

We extend the research of variable importance by adding SHapley Additive exPlanations in

order to estimate variable importance.

11

3.6.2 SHapley Additive exPlanations

Molnar (2019) states that game theory can be used to estimate feature importance in Machine

Learning methods. The game’s payout is the prediction and the players are the feature values

used for this prediction. Then Shapley values, which is a method from conditional game theory

(Shapley, 2016), can tell us how to allocate the payout fairly among the features. Shapley values

have desirable properties such as efficiency, symmetry, additivity, and dummy. These properties

are defined in Appendix A.1.

SHapley Additive exPlanations (SHAP) by S. Lundberg and Lee (2017) is a method to

explain individual predictions and is based on Shapley values. Thereby inheriting its properties.

Whereas popular feature attribution methods are inconsistent, meaning that they can attribute a

lower importance to features when in reality the impact of those features actually increase, SHAP

provides unique consistent and locally accurate attribution values (S. M. Lundberg, Erion, &

Lee, 2018). Thus, in addition to the properties from Shapley values SHAP has these 3 desirable

properties: local accuracy, missingness, and consistency. These are described in Appendix

A.2. The theoretical implication of the consistency property is that the SHAP value changes

depending on whether the marginal contribution of a feature value also changes. This also applies

if the marginal contribution stays the same. Because of this property SHAP also satisfies other

Shapley properties such as Linearity, Dummy and Symmetry. This is shown in the Appendix of

S. Lundberg and Lee (2017).

SHAP provides an efficient way to estimate Shapley values for tree models such as XGBoost.

SHAP has a different approach to the Shapley value expectation since they represent it as an

additive feature attribution method h(q′) = φ0 +
∑N

j=1 φjq
′
j , where h denotes the explanation

model, q′ ∈ {0, 1}N the coalition vector, M corresponds to the maximum coalition size, and

φj ∈ R is the jth feature contribution. The jth element of the coalition vector q’ equals one if

feature j is part of the coalition and zero otherwise. S. M. Lundberg et al. (2018) state that

one must define a mapping hz that maps between a vector q′ that represents which features are

missing and the original function’s domain. This mapping enables us to evaluate f(hz(q
′)) and

thereby measure the effect of observing a feature or not (by setting q′i = 1 or q′i = 0). We follow

the notation of S. M. Lundberg et al. (2018) and define fz(S) = f(hz(q
′)) = E[f(z)|zS], where

S corresponds to the set of non-zero indices in q′, and E[f(z)|zS] is the expected value of the

function conditional on the subset S of the predictors. Shapley values are combined with the

conditional expectations from SHAP in order to compute the jth feature contribution φj

φj =
∑

S⊆{z1,...,zN}\{zj}

|S|! (N − |S| − 1)!

N !
[fz (S ∪ {zj})− fz(S)] , (20)

12

where N is the number of input features.

The properties of the above defined SHAP values are desirable, but two problems hinder

us in using them. The first is the challenge of estimating E[f(z)|zS] efficiently, and the second

problem is the exponential complexity of Equation (20). That is why we use the fast SHAP

estimation method for trees and ensembles of trees called Tree SHAP from S. M. Lundberg et

al. (2018). This algorithm reduces the complexity of computing the exact SHAP values from

O(TL2N) to O(TLD2), where T corresponds to the number of trees, L is the maximum number

of leaves in any tree, N is the number of predictors, and D is the maximum depth of any tree.

The exact algorithm is given in the Appendix, since it is a page long. The intuition behind

the algorithm is as follows, the tree-structure is leveraged in order to compute the conditional

expectation recursively and at the same time the subset of relevant features in that branch

is monitored. This monitoring allows us to compute the weights of the contribution of each

subset. One disadvantage of using the conditional expectation instead of the marginal marginal

expectation is that features who have no contribution to the prediction can get a feature value

other than zero (Janzing, Minorics, & Blöbaum, 2020). The non-zero feature value occurs

when the feature is correlated with a feature that actually contributes to the prediction. Thus,

SHAP discovers seemingly important features and thereafter we have to differentiate the truly

contributing predictors from the correlated ones by using our knowledge of the dataset.

4 Results

The results section is divided into two parts. The first part is the result of reproducing the

research of Gu et al. (2020) on a smaller dataset that is described in section 2. It consists of

a comparison between the models of their annual and monthly R2
oos. Thereafter, part 2 starts

with variable importance by using the Permutation Feature Importance from section 3.6.1 and

continues with an overview of which variables are the most important across the models and

within each model. Next, we compute SHAP values for the entire panel, the top 1,000 and

bottom 1,000 stocks in order to interpret the predictions. Then, we zoom in on 2010, since that

is our best year according to monthly R2
oos, and provide figures to interpret the best and worst

predictions from XGB.

4.1 Empirical asset pricing via machine learning

Gu et al. (2020) displayed that almost all models, listed in table 1, have a positive monthly R2
oos

for every group. However, table 1 shows that only PCR and XGB have a positive R2
oos for all

groups. This suggests that we can not replicate the same performance as Gu et al. (2020) by

13

Table 1: Monthly Out-of-sample Stock-level Prediction Performance (Percentage R2
oos)

PLS PCR RF XGB NN1 NN2

All -0.017 0.005 -0.023 0.010 -0.014 -0.040
Top -0.200 0.013 -0.149 0.020 -0.069 -0.185
Bottom 0.003 0.004 0.011 0.005 0.002 -0.005

Note: In this table, we report monthly R2
oos for the entire panel of stocks using Partial Least Squares (PLS),

Principal Components Regression (PCR), Random Forest (RF), XGBoost (XGB), and Neural Networks with 1
to 2 layers NN1-NN2. We also report these R2

oos for samples that consists only of the top 1,000 or bottom 1,000
stocks by market value. The histogram below the table provides a visual comparison of the R2. Lastly, we omitted
the results of neural networks with more than 2 layers since their R2 values were very negative and needed a
logarithmic scale to get them to fit in the histogram with the other models.

solely relying on variations of momentum, liquidity or volatility. Moreover, the discrepancy in

performance can be caused by the size of our data set, which is one fifth the size of theirs. Note

that we use 180 predictors, whereas they use 920. Especially Neural Networks, which were the

winners in their research, suffer from the decrease in sample size. Friedman, Hastie, Tibshirani,

et al. (2001) state that model complexity should only grow with parameter size, and neural

networks (deep learning) are fairly complex, thereby implying that it will not operate optimally

for smaller datasets. This appears to be true for our case.

XGB has the best monthly R2
oos, which suggests that it captures significant non linear rela-

tions that linear methods such as PLS can not do. Moreover, it also achieves better results than

RF. This is due to its sequential approach of building decision trees, which repetitively leverages

the patterns in residuals, whereas RF builds independent trees and aggregates the predictions.

Table 1 indicates that all models except the NN2 have a positive R2
oos when predicting the

monthly return for the bottom 1,000 companies, but it can be debated whether their positive

R2
oos is significantly different from zero.

Table 2 shows that all models only have a positive annual R2
oos for the bottom 1000 companies,

which can be implied from the positive monthly R2
oos. Even the NN2 model, which does not

have a positive monthly R2
oos, has a positive annual R2

oos. XGB has the best annual R2
oos when

predicting returns for the bottom 1,000 stocks.

Gu et al. (2020) state that positive coefficients in the column indicate whether the row model is

significantly worse than the column model, but this is not the proper use of the Diebold Mariano

14

Table 2: Annual Out-of-sample Stock-level Prediction Performance (Percentage R2
oos)

PLS PCR RF XGB NN1 NN2

All -0.244 -0.111 -0.218 -0.164 -0.156 -0.217
Top -0.739 -0.352 -0.863 -0.640 -0.648 -1.072
Bottom 0.023 0.021 0.020 0.024 0.023 0.014

Note: Annual return forecasting R2
oos (see table 1).

Table 3: Comparison of Monthly Out-of-Sample Prediction using Diebold-Mariano Tests

PCR RF XGB NN1 NN2

PLS 6.19 -5.58 8.42 0.66 -6.39
PCR -14.85 4.34 -10.38 -21.73
RF 16.21 7.97 -0.50
XGB -12.78 -22.05
NN1 -11.10

Note: This table presents the pairwise Diebold-Mariano test statistics comparing the out-of-sample stock-level
forecast performance among 6 models. Bold font indicates that the difference is significant at a 5% level or better
for individual tests.

statistic. It can only be used to determine whether two models have the same predictive accuracy.

Thus, table 3 shows that the predictive accuracy of XGB is significantly different from the rest

of the models.

4.2 Interpreting machine learning

Table 4 presents the variable importance structure of each method. Tree ensembles have a

dominant set of important predictors, whereas neural networks and PCR have a more diverse

set of important variables. This is due to limiting the depth of every tree to 6, which forces it

to use a small set of variables and reduces overfitting. However, For RF and NN2 the figures in

table 4 show that omitting certain variables actually increases the R2
oos. This suggests that these

models tend to overfit. By omitting these variables, we get better generalized predictions and

therefore an increase in R2
oos. Moreover, table 4 indicates that variables which include variations

on momentum are the most important for tree ensemble methods. This is in contrast with the

neural networks, where variations of momentum are not as important and importance is shared

15

Table 4: Variable Importance By Model

Note: Variable importance of all firm characteristics in each model according to the permutation method described
in section 3.6.1. Variable importance is average over all testing samples. Variable importances within each model
are normalized to sum to one.

16

more evenly across predictors.

Figure 1: Characteristic Importance

Note: This figure provides a graphical illustration of variable importance across and within models. The variables
on the y-axis are sorted by Permutation Feature Importance and the darker the color of a cell in a column the
more important the variable is for the model corresponding to that column.

If we combine table 4 and figure 1 we see that the most important variables are those that

concern momentum and liquidity, which is in accordance with the research of Gu et al. (2020).

Moreover, the property that the most important variables, across each model, share is that they

are updated monthly. This is also reflected in the results of Gu et al. (2020).

Figure 2 indicates that the top 2 features are turn∗svar and retvol∗dfy, which correspond to the

product of Share turnover × Stock variance, and Return volatility ×Default yield spread.

These two products contain predictors that indicate stock liquidity (turn and retvol). Fur-

thermore, figure 2 shows that two other most important variables mvel1(size) × svar and

sp× tms = Sales to price× term spread are related to the firm’s fundamentals.

Figure 3 points out that the 2 most important variables for the top group are turn ∗ svar and

mvel1 ∗ svar, which includes interactions between stock fundamentals and volatility. For the

bottom group the 2 most important variables are retvol∗dfy and mom1m(1 month momentum),

which are variations on momentum and volatility. This suggests that momentum contributes

more to the prediction for smaller stocks than for larger stocks, which can be explained by the

fact that smaller stocks are more volatile and in turn momentum plays more of an important

role. The results also show that for larger stocks firm characteristics are more important and

this is supported by decades of finance literature.

17

Figure 2: Variable Importance for XGBoost using SHAP

Note: SHAP values explain the difference between the average prediction and the prediction. In this plot we
present the absolute mean SHAP values of the top 20 features by value for the entire panel.

Figure 3: Variable Importance for XGB using SHAP when predicting Top and Bottom 1,000
stocks by size.

(a) Top (b) Bottom

Note: See figure 2. We report SHAP values for samples that consist of top 1,000 or bottom 1,000 stocks by size.

It is inherently more valuable to acquire insights about which variables are important in

a good working model than in a bad one. Thus, for the following plots we zoom in on 2010,

18

since XGBoost has the best monthly R2
oos for that period. Decision plot 4.a displays that

Figure 4: Decision plot of the best and worst 5 predictions of monthly returns in 2010

(a) Best 5 (b) Worst 5

Note: Decision plot shows how each prediction (plotted line) arrives to its value. At the top of the plot, each line
strikes the x-axis at its corresponding observation’s predicted value. Moving from the bottom to the top, SHAP
values are added to the model’s base value (mean of predicted returns).

the best predictions stay centered around 0, and only start moving when entering the area

of the most important variables. This indicates a relatively large contribution of the most

important variables to the prediction. Whereas decision plot 4.b shows that the predictions

deviate relatively more from 0. Furthermore, the purple plotted lines do not have any direction

change when they visit the most important variables. This suggests that the most important

predictors have relatively less contribution to the prediction.

5 Conclusion

Our results show that XGBoost and PCR are the only models that achieve positive monthly

R2
oos for all groups. This is in contrast with the research by Gu et al. (2020), where almost all

models listed in this research have positive R2
oos. In addition, XGB and PCR have a lot smaller

values for R2
oos. The difference in performance can be explained by our data set, which is one

fifth the size of theirs. This suggests that merely including the most important variables in the

research of Gu et al. (2020) is not sufficient for achieving the same performance, which confirms

the notion that you need a relatively large dataset for deep learning success.

Our variable importance research suggests that the most important variables are variations

19

on momentum and volatility, which is in accordance with the research of Gu et al. (2020).

Moreover, if we take a closer look at our best performing model XGB we conclude that features,

which incorporate variations on a stock’s fundamentals, are relatively more important for larger

stocks than for smaller stocks. Whereas, momentum is relatively more important for smaller

stocks than for larger stocks. This is due to the larger volatility of smaller stocks, which in turn

makes momentum a more important signal.

To conclude, our research implemented the latest model agnostic tools on machine learning

algorithms and successfully inferred economic insights regardless of the models’ complexity.

Further research should implement the same model agnostic tools on neural networks, which

leverage the full dataset from Gu et al. (2020), to discover more meaningful relations of risk

premiums.

20

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from

https://www.tensorflow.org/ (Software available from tensorflow.org)

Angrish, R., & Garg, D. (2011). Efficient string sorting algorithms: Cache-aware and cache-

oblivious. International Journal of Soft Computing and Engineering (IJSCE), 1 (2), 12–16.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter

optimization. In 25th annual conference on neural information processing systems (nips

2011) (Vol. 24).

Bergstra, J., Yamins, D., & Cox, D. (2013). Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures. In International conference

on machine learning (pp. 115–123).

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings

of the 22nd acm sigkdd international conference on knowledge discovery and data mining

(pp. 785–794).

Chollet, F. (2015). Keras. https://keras.io.

Friedman, J., Hastie, T., Tibshirani, R., et al. (2001). The elements of statistical learning

(Vol. 1) (No. 10). Springer series in statistics New York.

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review

of Financial Studies, 33 (5), 2223–2273.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International conference on machine learning (pp.

448–456).

Janzing, D., Minorics, L., & Blöbaum, P. (2020). Feature relevance quantification in explainable

ai: A causal problem. In International conference on artificial intelligence and statistics

(pp. 2907–2916).

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., . . . Liu, T.-Y. (2017). Lightgbm: A

highly efficient gradient boosting decision tree. Advances in neural information processing

systems, 30 , 3146–3154.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 .

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A

novel bandit-based approach to hyperparameter optimization. The Journal of Machine

Learning Research, 18 (1), 6765–6816.

21

https://www.tensorflow.org/
https://keras.io

Lundberg, S., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. arXiv

preprint arXiv:1705.07874 .

Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2018). Consistent individualized feature attribution

for tree ensembles. arXiv preprint arXiv:1802.03888 .

Molnar, C. (2019). Interpretable machine learning. (https://christophm.github.io/

interpretable-ml-book/)

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines.

In Icml.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duches-

nay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12 , 2825–2830.

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main developments

and technology trends in data science, machine learning, and artificial intelligence. arXiv

preprint arXiv:2002.04803 .

Shapley, L. S. (1997). A value for n-person games. Classics in game theory , 69 .

Shapley, L. S. (2016). 17. a value for n-person games. Princeton University Press.

Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of equity

premium prediction. The Review of Financial Studies, 21 (4), 1455–1508.

22

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Appendices

A Interpretation Methods

A.1 Shapley values

As Molnar (2019) states game theory can be used in order to estimate feature importance in

Machine Learning methods. The game’s payout is the prediction and the players are the feature

values used for this prediction. Then Shapley values, which is a method from conditional game

theory (Shapley, 2016), tells us how to allocate the payout fairly among the features.

We follow these key terms from Molnar (2019) to explain Shapley values. The feature value

corresponds to the numerical or categorical value of a feature and sample, the Shapley value

is the feature contribution to the prediction, and the value function corresponds to the payout

function for coalition of players.

Shapley values are computed by measuring the contribution it has to the prediction over all

possible coalitions of feature values, and thereafter aggregate the weighted contributions. We

calculate the Shapley value for feature j as follows:

φj(val) =
∑

S⊆{z1,...,zN}\{zj}

|S|! (N − |S| − 1)!

N !
(val (S ∪ {zj})− val(S)) , (21)

where zj represents the vector of feature j, S corresponds to the subset of feature values excluding

j, and N the number of features. The function valz(S) outputs the prediction for feature values

in set S, which are marginalized over the feature values that are not in set S

valz(S) =

∫
g(z1, . . . , zp)dPz /∈S − EZ(g(Z)). (22)

One of main the advantages of Shapley values are its desirable properties. It is the only attri-

bution method which satisfies efficiency, symmetry, additivity, and dummy. The combination of

these properties makes the Shapley value per definition a fair payout (Molnar, 2019).

Efficiency requires that feature contributions sum up to the difference between the average

and the prediction for z
N∑
j=1

φj = g(z)− EZ(g(Z)). (23)

Symmetry requires that feature values i and j have the same value if and only if they have

the same contribution to all possible coaltions

val(S ∪ {zi}) = val(S ∪ {zj}). (24)

Additivity ensures that in a game of combined payouts val and val+ their respective values

23

can be added

φj + φ+
j . (25)

To clarify the value of additivy we provide an example. Given a Random Forest model, we can

compute the Shapley feature values for each individual tree and thereafter average them to get

the feature values for the Random Forest.

Dummy ensures that a feature j, which does not contribute in all possible coalitions of

feature values, has a Shapley value of 0. Thus

if val(S ∪ {xj}) = val(S), ∀S ⊆ {x1, . . . , xp} (26)

then φj = 0.

For computation of the exact Shapley values we need to evaluate all possible coalitions sets

with and without the feature value j. As you can expect this is computationally very expen-

sive. Hence, in the following subsection we describe SHapley Additive exPlanations (SHAP)

by S. Lundberg and Lee (2017), which is a faster approach to estimating Shapley values, and

it provides many global interpretation methods which are based on aggregated Shapley Values.

Since these methods are based on Shapley values they possess the same properties.

A.2 SHapley Additive exPlanations

Local Accuracy

f(z) = h(q′) = φ0 +

N∑
j=1

φjq
′
j (27)

To derive the efficiency property from Local Accuracy, we set all elements of q′ to one and define

φ0 = EZ(g(Z)). This results in

f(z) = φ0 +
N∑
j=1

φjq
′
j = EZ(g(Z)) +

N∑
j=1

φj . (28)

Missingness If q′j = 0 ⇒ φj = 0. Thus missingness enforces that an absent feature does not

have any contribution.

Consistency We follow the definition from Molnar (2019). Let q′\j denote that q′j = 0 and

fz(q
′) = f(hz(q

′)). For any two models f and f that satisfy

f ′z(q
′)− f ′z(q′\j) ≥ fx(q′)− fz(q′\j), (29)

for all inputs q′ ∈ {0, 1}N , then

φj(f
′, z) ≥ φj(f, z). (30)

24

B Data

C Results

C.1 Waterfall Plot

Figure 5: Waterfall plot of the best and worst prediction by monthly R2
oos in 2010

(a) Best (b) Worst

Note: The bottom of the waterfall represents the expected value of the model output, and then every row shows
how the contribution, which is positive (red) or negative (blue), moves the value from the expected model output
over the background data set (conditional expectation) to the prediction of this model (top).

The waterfall plot in figure 5 shows that turn ∗ svar has a relatively large negative contribution

to the predicted return, this indicates that the higher the interaction between liquidty and

volatility the lower the expected return.

D Parameter Hyperoptimization

D.1 Hyperparameters

D.2 Bayesian Optimization

As noted in (Bergstra et al., 2013) Bayesian Optimization (BO) aims to find the global minimum

of a function with the help of Bayes Theorem. It works by constructing a surrogate function,

which corresponds to a probabilistic model of the objective function, and that is searched with

an acquisition function before samples are to be evaluated with the real objective function.

In order to further describe how BO works we define some key terms used in global function

optimization:

• Samples: Are examples from the domain and represented by a vector

• Search Space: Set through which algorithm searches

25

T
ab

le
5:

D
et

ai
ls

of
th

e
C

h
ar

ac
te

ri
st

ic
s

N
o.

A
cr

on
y
m

F
ir

m
ch

ar
ac

te
ri

st
ic

P
ap

er
’s

au
th

or
(s

)
Y

ea
r

J
o
u

rn
al

D
a
ta

S
o
u

rc
e

F
re

q
u

en
cy

1
a
g
r

A
ss

et
g
ro

w
th

C
o
op

er
,

G
u

le
n

&
S

ch
il

l
20

08
J
F

C
om

p
u

st
at

A
n

n
u

a
l

2
ca

sh
p

r
C

as
h

p
ro

d
u

ct
iv

it
y

C
h

an
d

ra
sh

ek
ar

&
R

ao
20

09
W

P
C

om
p

u
st

at
A

n
n
u

a
l

3
ch

cs
h

o
C

h
a
n

g
es

in
sh

a
re

s
ou

ts
ta

n
d

in
g

P
on

ti
ff

&
W

o
o
d

ga
te

20
08

J
F

C
om

p
u

st
at

A
n

n
u

a
l

4
ch

m
o
m

C
h

a
n

g
e

in
6-

m
o
n
th

m
om

en
tu

m
G

et
tl

em
an

&
M

ar
k
s

20
06

W
P

C
R

S
P

M
o
n
th

ly
5

d
ol

vo
l

D
o
ll

a
r

tr
ad

in
g

vo
lu

m
e

C
h

or
d

ia
,

S
u

b
ra

h
m

an
ya

m
&

A
n

sh
u

m
an

2
00

7
J
F

E
C

R
S

P
M

on
th

ly
6

ep
E

ar
n
in

gs
to

p
ri

ce
B

as
u

19
77

J
F

C
om

p
u

st
at

A
n

n
u

a
l

7
in

d
m

o
m

In
d

u
st

ry
m

o
m

en
tu

m
M

os
ko

w
it

z
&

G
ri

n
b

la
tt

1
99

9
J
F

C
R

S
P

M
on

th
ly

8
le

v
L

ev
er

a
ge

B
h

an
d

ar
i

19
88

J
F

C
o
m

p
u

st
a
t

A
n

n
u

al
9

m
a
x
re

t
M

ax
im

u
m

d
ai

ly
re

tu
rn

B
al

i,
C

ak
ic

i
&

W
h

it
el

aw
20

11
J
F

E
C

R
S

P
M

o
n
th

ly
1
0

m
o
m

12
m

1
2
-m

on
th

m
o
m

en
tu

m
J
ag

ad
ee

sh
19

90
J
F

C
R

S
P

M
o
n
th

ly
1
1

m
o
m

1m
1
-m

o
n
th

m
om

en
tu

m
J
ag

ad
ee

sh
&

T
it

m
an

1
99

3
J
F

C
R

S
P

M
on

th
ly

1
2

m
o
m

6m
6
-m

o
n
th

m
om

en
tu

m
J
ag

ad
ee

sh
&

T
it

m
an

1
99

3
J
F

C
R

S
P

M
on

th
ly

1
3

m
ve

l1
S

iz
e

B
an

z
2
00

5
R

A
S

C
o
m

p
u

st
a
t

Q
u

ar
te

rl
y

1
4

n
in

cr
N

u
m

b
er

of
ea

rn
in

g
in

cr
ea

se
s

B
ar

th
,

E
ll

io
t

&
F

in
n

19
99

J
A

R
C

o
m

p
u

st
a
t

Q
u

ar
te

rl
y

1
5

o
p

er
p

ro
f

O
p

er
at

in
g

p
ro

fi
ta

b
il

it
y

F
am

a
&

F
re

n
ch

20
15

J
F

E
C

om
p

u
st

at
A

n
n
u

a
l

1
6

rd
m

ve
R

&
D

to
m

a
rk

et
ca

p
it

a
li

za
ti

on
G

u
o,

L
ev

&
S

h
i

20
06

J
B

F
A

C
om

p
u

st
at

A
n

n
u

a
l

1
7

re
tv

o
l

R
et

u
rn

vo
la

ti
li

ty
A

n
g,

H
o
d

ri
ck

,
X

in
g

&
Z

h
an

g
20

06
J
F

C
R

S
P

M
on

th
ly

1
8

sp
S

al
es

to
p

ri
ce

B
ar

b
ee

,
M

u
k
h

er
ji

&
R

ai
n

es
19

96
F
A

J
C

o
m

p
u

st
a
t

A
n

n
u

al
1
9

st
d

tu
rn

V
o
la

ti
li

ty
of

li
q
u

id
it

y
(s

h
ar

e
tu

rn
ov

er
)

C
h

or
d

ia
,

S
u

b
ra

h
m

an
ya

rn
&

A
n

sh
u

m
a
n

2
00

1
J
F

E
C

R
S

P
M

on
th

ly
2
0

tu
rn

S
h

ar
e

tu
rn

ov
er

D
at

ar
,

N
ai

k
&

R
ad

cl
iff

e
19

98
J
F

M
C

R
S

P
M

o
n
th

ly

26

Table 6: Hyperparameters For All Methods

PLS PCR RF XGBoost NN1-NN2

K K Depth = 1 ∼ 6 Depth = 1 ∼ 6 l1 penalty
Trees = 100 # Trees K ∈ (1000, 10000) λ1 ∈ (e−5, e−3)
Features in each split Learning rate η Learning rate LR
∈ {3, 5, 10, 20, 50, ...} η ∈ (0.1, 0.3) ∈ (e−5, e−2)

Depth penalty Batch Size = 10000
γ ∈ (1, 9) Epochs = 50
l1 penalty Patience = 5
α ∈ (40, 180) Adam Para. = Default
l2 penalty Neurons per layer
λ ∈ (0, 1) s ∈ (5, 150)
Colsample by three
ϑ ∈ (0.5, 1)
min child weight
ζ ∈ (0, 10)

• Objective Function: Function which has input a sample and as output a cost

• Cost: Quantitative score for a sample computed with the Objective Function.

First we provide Bayes Theorem such that we can understand how it applies to Hyperparameter

Optimization. Let A and B denote events then Bayes Theorem allows us to compute the

conditional probability of event P (A|B):

P (A|B) =
P (B|A)P (A)

P (B)
. (31)

For BO we are not interested in calculating the conditional probability but instead we want

to optimize a proportional quantity. To get this proportional quantity we remove the normal-

izing value of P (B), which transforms Equation (31) into the following equation: P (A|B) =

P (B|A)P (A). This transformed equation is in analogy with the equation:

posterior = likelihood× prior. (32)

Given this framework we can use samples from the domain and their respective cost in order to

quantify the beliefs of an unknown objective function. In other words we can use Bayes Theo-

rem in combination with samples and their cost to approximate an computationally expensive

objective function.

Thus we create specific samples x1, x2, ..., xn and compute their cost using the real objective

function f(.). Then we group the samples and their outcome as pairs and consider that as

our data D =
{
{x1, f(x2)}, {x2, f(x2)}, ..., {xn, f(xn)}

}
, which we use to define the prior. The

probability of observing the data D given the function f is denoted by P (D|f) and is in analogy

with the likelihood in equation (32). Since D is subject to change when more observations are

27

added, the likelihood will also change. The posterior is denoted by P (f |D) and corresponds

to an approximation of the objective function. Thus P (f |D) enables us to evaluate candidate

samples at a relatively low cost.

In BO P (f |D) is referred to as the surrogate function and it can be created in multiple

ways. We consider a regression model where the input is represented by D and the output by

the score. The most used model used for this regression is a Gaussian Process (GP), which is

a model that builds a joint probability distribution over the variables based on the assumption

that they are distributed in a multivariate Gaussian way. GP inherently ensures that estimates

come from a distribution with a mean and standard deviation, which is useful for later use in

the acquisition function.

Thus we use the surrogate function to test a couple of samples in the domain. Thereafter a

search algorithm algorithm determines which area of the sample space is most likely to pay off

and the acquisition function is used to decide whether a given sample is worthy of evaluating

with the real objective function. The acquisition function can use the surrogate score to estimate

the worthiness of a sample but given that the surrogate function summarizes the conditional

probability p(f |D) in a probabilistic way we can also use the probabilistic information from this

model. Here again there are multiple methods we use the method of Expected Improvement

(EI).

To summarize the algorithm of BO we provide the following flow. First pick a sample that

results from optimizing the acquisition function. After a sample is picked it is evaluated and

added to D, thereafter the posterior and surrogate function is updated. This process is repeated

until extrema of the objective function are discovered, the resources are depleted, or a good

enough sample is found.

The search and surrogate function we use is from Bergstra, Bardenet, Bengio, and Kégl

(2011) and is called the Tree-structured Parzen Estimator Approach (TPE). This algorithm

differs from GP since it estimates P (D|f) and P (f) instead of directly estimating P (f |D). We

implemented it by using the Hyperopt Python package from Bergstra et al. (2013).

Tree SHAP

28

T is the number of trees and M is the number of features.

29

D.3 Hyperband Optimization

E Algorithms

E.1 Histogram Algorithm

30

E.2 XGBoost Algorithm

Model input: dataset D := {(x1, y1), ..., (xN , yN), yi ∈ R}

Model output: Final regressor fm(x)

Steps:

(1) Initialization f0(x) = argmin
γ

∑N
i=1 Loss(yi, γ)

(2) for m = 1 to M do

Compute the gradient:

gi =
δLoss(yi, fm−1(xi))

fm−1(x)
, i = 1, 2, ..., N

Compute the second derivative:

gi =
δ2Loss(yi, fm−1(xi))

fm−1(x)
, i = 1, 2, ..., N

Fit a new decision tree by minimizing the loss function with regulariza-

tion term:

New tree: Gm(xi) =
∑J

j=1 bj ∗ I(xi ∈ Rj)

Find the best tree structure : {Rj}Jj=1 = argmin
{Rj}Jj=1

∑J
j=1(Gj∗bj+

1

2
(Hj+

λ) ∗ b2
j)) + γ ∗ J ,

where Gj =
∑

xi∈Rj
, Hj =

∑
xi∈Rj

hi

Best predicted value of tree node: b∗j = − Gj

Hj + λ

Minimal final loss Loss(y, fm(x)) =
∑J

j=1(−
1

2
∗

G2
j

Hj + λ
) + γ ∗ J

Update the function fm(x):

fm(x) = fm−1(x) +Gm(x)

(3) The final output model fM(x) becomes:

fM(x) = f0(x) +
∑M

m=1Gm(x)

31

	Introduction
	Data
	Methodology
	Sample Splitting and Hyperparameter Optimization
	Dimension Reduction: Principal Components Regression and Partial Least Squares
	XGBoost and Random Forest
	Neural Networks
	Performance Evaluation
	Interpreting Results
	Permutation Feature Importance
	SHapley Additive exPlanations

	Results
	Empirical asset pricing via machine learning
	Interpreting machine learning

	Conclusion
	References
	Appendices
	Interpretation Methods
	Shapley values
	SHapley Additive exPlanations

	Data
	Results
	Waterfall Plot

	Parameter Hyperoptimization
	Hyperparameters
	Bayesian Optimization
	Hyperband Optimization

	Algorithms
	Histogram Algorithm
	XGBoost Algorithm

