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Abstract

This paper analyses asymmetric volatility spillovers between cryptocurrency and financial

markets for the cryptos Bitcoin (BTC ), Ethereum (ETH ) and the financial markets Nikkei

225 (N225 ), Eurostoxx 50 (STO50 ) and S&P 500 (SP500 ) between 2017-2021, using a time-

varying VAR approach. Evidence from orthogonalised impulse response functions (IRFs)

shows that financial markets are immune to crypto shocks, such that financial market shocks

unidirectionally transmit to crypto markets. The total volatility spillover index demonstrates

that spillovers increase after major bear markets, representing greater market connectedness.

Nevertheless, asymmetry in volatility spillovers is found through the spillover asymmetry

measure (SAM ), showing that positive spillovers dominate during stable bull markets, but

negative spillovers surge quickly compared to positive spillovers during the COVID-19 crisis,

originating from the financial markets. Moreover, forecast error variance decompositions

(FEVD) surprisingly reveal that BTC innovations do not affect the forecast error variance

of any markets, whereas ETH has a prominent negative volatility spillover to the financial

markets, when crypto’s mining difficulty was reduced at the end of 2018. Lastly, FEVDs

also reveal that SP500 innovations explain the largest fractions of variance; though positive

SP500 innovations explain a larger part than negative innovations.
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1 Introduction

The cryptocurrency (from now on: ”crypto”) market has seen a stellar inflow of money in the

past decade; with the most prominent crypto Bitcoin becoming the fastest asset to reach the

$1 trillion market capitalisation. The over 4000 established cryptos are challenging the status-

quo of traditional currencies, whereby cryptos are regulated through a decentralised system of

computers with blockchain technology, rather than by central banks. More retailers are starting

to accept cryptos as an alternative method of payment; with Tesla recently announcing that

purchases can be made with Bitcoin (Katrina, 2021). But as Christine Lagarde once said,

”markets love volatility”, which is why currently cryptos are rather used as a speculative asset,

due to its high volatility partly due to unregulated pump and dump schemes (Brauneis & Mestel,

2018). This high volatility has attracted many retail- and institutional investors with the hope

of achieving high short-term returns when estimated correctly (French et al., 1987).

Given that cryptos are a recent phenomenon, research into volatility forecasting for this asset

class has been scarce. With experts arguing that cryptos have no relationship with economic

fundamentals, its growing popularity has raised questions as to whether cryptos are becoming

more intertwined with other markets, such as financial markets. At the start of 2018, when

Bitcoin’s and Ethereum’s bubble burst and its values dropped by an average of 40%, major

financial indices also took a hit of an average of 9%. Liang & Baig (2021) finds that extreme

Bitcoin price swings beyond +10% and -10% are more positively correlated with fluctuations

in the financial markets than during normal trading situations and conclude that equity and

crypto sentiments are becoming more connected. To further supplement this area of research

with a more detailed analysis, the following research question is investigated:

Are asymmetric volatility spillovers present between cryptocurrency and financial markets and

how does this vary over time?

Addressing above research question aids in establishing causal inferences for volatility fore-

casting in the crypto markets; as crypto’s inter-linkage with financial markets has not been

established yet. Thus, by also accounting the evidence of the leverage effect being present in

equity (Bekaert & Wu, 2000) and crypto markets (Zhang et al., 2018), this research contributes

towards understanding how upside- and downside volatility of financial markets impact crypto

markets and vice versa. On the social relevance side, this analysis helps with reducing downside

volatility and helps to better anticipate upside volatility, such that situations like the hedge

fund Cryptolab Capital losing 100% of its assets under management can be prevented (Phillips,

2020). This research thus contributes towards (uninformed) investors seeking to improve port-

folio diversification and risk evaluation strategies that are branching into the crypto markets.
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This research addresses the spillovers with realised variances using high frequency intraday

returns among two major cryptos, Bitcoin (BTC ) and Ethereum (ETH ) and three major finan-

cial markets, S&P 500 (SP500 ), Euro Stoxx 50 (STO50 ) and Nikkei 225 (N225 ) between 2017

and 2021. In addition, to assess the asymmetry of volatility spillovers, positive and negative

semivariances are used, conditioned on positive and negative innovations in the returns of above

markets (also known as good and bad volatilities). Such analysis is commonly performed using

a vector autoregressive (VAR) model, but due to evidence of a large number of structural breaks

in all markets, the time-varying parameter VAR (TVP-VAR) model is more suitable, where the

variable ordering is determined using the directed acyclic graph (DAG) technique. From the

estimated TVP-VAR coefficients and variance-covariance matrices, the volatility spillovers are

determined using orthogonalised impulse response functions (IRFs) and forecast error variance

decompositions (FEVDs) over several time horizons. The asymmetry of such spillovers is as-

sessed with spillover asymmetry measures (SAM), the difference between the spillovers due to

positive and negative semivariances. This is performed by looking at the total SAM and the

contribution of individual markets to the asymmetry in the volatility transmission mechanism.

This analysis reveals that uni-directional exogenous shock transmissions from financial to

crypto markets are present in the orthogonalised IRFs, as financial markets are immune to

shocks in ETH and BTC. While the 1-day horizon FEVDs only show that BTC’s variance is

partially explained by ETH innovations, the 30-day horizon FEVDs display that SP500 inno-

vations explain the largest part of the forecast error variances of all markets, though positive

SP500 innovations have a larger impact than negative innovations. The most surprising result is

that BTC innovations have little to no impact on other markets’ variance, while negative ETH

innovations explain a big part of all markets’ variance at the end of 2018, due to the reduced

crypto mining difficulty. Finally, the total volatility spillovers report that spillovers increase after

bear markets, likely linked to the risk appetite being altered after a crisis, leading to investors

homogenising market beliefs. In terms of volatility spillover asymmetry with SAMs, positive

spillovers dominate negative spillovers during the stable bull market between the two bear mar-

kets, but due to the COVID-19 crisis, the overall negative spillovers quickly surge relative to

positive spillovers.

The remainder of this paper contains the literature review in section 2, the methodology

in section 3, the data section in 4, the results in section 5 and the conclusion & discussion in

section 6.
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2 Literature review

Forecasting volatility is a longstanding field of interest in the financial industry for risk evalua-

tion, as equity- and crypto return data contain evidence for volatility clustering and leptokurtosis

(Zhang et al., 2018). Models arose that deemed suitable to capture such properties in financial

time series, such as generalised autoregressive conditional heteroskedasticity (GARCH ) models,

which can capture volatility persistence floating around the long-term mean (Bollerslev, 1986).

As GARCH models assume symmetric distributions, further extensions have been proposed to

improve forecasting performance, as evidence of the leverage effect was found in equity (Bekaert

& Wu, 2000) and crypto markets (Zhang et al., 2018). This led to asymmetric modifications

of the GARCH model, such as GJR-GARCH (Glosten et al., 1993) or Beta-t-EGARCH models

(Harvey & Sucarrat, 2014), which have been shown to outperform the forecasting performance

of the common volatility index VIX (Stein et al., 2020).

While above models are one-dimensional, Ross (1989) found that return volatility depends on

the rate of information flow and that such information can be utilised for predicting volatility of

other assets. Therefore, a N-dimensional adaptation of the univariate autoregressive models, the

VAR model, is a better fit for analysing volatility spillovers. As the estimated parameters do not

have a direct interpretation, VAR models are used in a moving average (MA) form, which enables

VAR models to give economic interpretations through IRFs and FEVDs. IRFs and FEVDs track

the effect of an exogenous shock in a specific variable at time t over a specific horizon. As such,

VAR models are mainly used to analyse monetary policy effects on unemployment and inflation

(C. A. Sims, 1980), but its application has been expanded to other financial variables, such

as investigating the transmission mechanism among exchange rates of major currencies (Lee &

Chinn, 1998), the transmission effects of Gross National Product (GNP) of several countries

(Elwood, 1997) and (asymmetric) volatility spillovers between crude oil and financial markets

(Wang & Wu, 2018).

To capture the dynamic transmission mechanism among variables in multivariate linear

structures, C. Sims (1993) and Stock & Watson (1996) introduced a VAR model with drifting

coefficients, though without time-varying residual variance-covariance matrices nor a dynamic

simultaneous relationship among variables. Cogley & Sargent (2005) emphasised though that

ignoring heteroskedasticity of innovations can estimate unreliable coefficients. Primiceri (2005)

thus proposed a TVP-VAR model, that considered both time-varying coefficients and residual

variance-covariance matrices, which would reflect the changing simultaneous relations among

variables and heteroskedasticity (Primiceri, 2005). However, this model is an extreme case, as

the coefficients and covariance matrices alter at every time period and thus assumes a structural
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break at every time period. Relaxations of this TVP-VAR model have been proposed in the form

of a mixture innovation model, which only re-estimates the coefficients and covariance matrices

at significant structural breaks (Koop et al., 2009). Nevertheless, we show that the high number

of structural breaks for all markets still justifies the use of the TVP-VAR model of Primiceri

(2005). Applications using TVP-VAR models also range from analysing monetary policy effects

(Koop et al., 2009) to studying Gross National Product (GNP) of OECD countries (Chib &

Greenberg, 1995), this time using a dynamic approach.

To use IRFs, it is assumed that the residual covariance matrix is diagonal. However, this

usually does not hold in practice, as contemporaneous correlation among errors exists, implying

that a shock in one variable may not be distinguishable from a shock in another variable, mak-

ing IRFs biased (Swanson & Granger, 1997). This issue can be resolved through orthogonalised

IRFs, using the Cholesky decomposition’s lower triangular matrix. This ensures that all shocks

become independent of each other, but also including the contemporaneous shock in other vari-

ables. However, its interpretability depends on the ordering of the variables, which assumes a

subjective structural model of errors (Wang & Wu, 2018). To make the ordering of variables

more data-driven, Swanson & Granger (1997) propose the DAG technique, to determine the

ordering based on partial correlations and over-identifying restrictions on the contemporaneous

shocks. Since Swanson & Granger (1997)’s methodology assumes a causal ordering with a re-

cursive causation structure (meaning that each variable has only one cause), developments have

been made which enable variables to have multiple causes, such as the PC algorithm by Spirtes

et al. (2000).

(Asymmetric) volatility spillovers have been widely researched on several asset classes, such

as credit risk spillovers among financial institutions (Yang & Zhou, 2013), spillovers between

crude oil and financial markets (Wang & Wu, 2018) and in the forex market (Baruńık et al.,

2017). All papers found that asymmetry among good and bad volatility spillovers exists and

that it changes over time due to events affecting the volatility spillovers, such as the financial

crisis of 2008 in most of the findings. Furthermore, volatility spillovers have also been researched

among cryptos (Wajdi et al., 2020), finding that spillovers among cryptos are bi-directional, but

asymmetries in spillovers are dominated by bad rather than good volatilities. However, research

is lacking in volatility spillovers between crypto markets and other asset classes, with only

Malhotra & Gupta (2019) finding that uni-directional spillovers from Bitcoin to major Asian

equity markets exist, while also showing that Bitcoin is a leading indicator of volatility for the

remaining cryptos.

This paper fills the gap in research in asymmetric volatility spillovers between crypto- and
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financial markets on several details. Firstly, asymmetric volatility spillovers between cryptos and

the major equity markets, such as the United States and Europe, have not been established yet.

Secondly, Malhotra & Gupta (2019) only used squared daily returns in determining historical

volatility, whereas realised variances and semivariances with intraday returns are better estimates

of the true volatility (Andersen et al., 2001). Thirdly, this paper uses recent intraday return data

between 2016 and 2021, a time period for which research has been sparse but contains important

events, such as the Bitcoin and Ethereum crash at the start of 2018 and the COVID-19 crisis.

Lastly, the models used in above research assume a constant mean over the full sample such that

estimated coefficients are not time-varying, even though there is evidence of heteroskedasticity

in both financial- and crypto markets (Gkillas & Katsiampa, 2018). Therefore, the TVP-VAR

model by Primiceri (2005) is used to account for a dynamic volatility transmission mechanism.

3 Methodology

The code to execute the methods described below can be found in the accompanied .zip file,

with a detailed description of all the scripts and functions to be found in Appendix A.

3.1 Realised variance, positive and negative semivariances

To analyse asymmetric volatility spillovers between crypto- and financial markets, realised vari-

ances, RVt, are used as a proxy for the true daily volatility, as it gives a better indication of

the reaction on price discovery while being an unbiased and consistent estimator of σ2
t , the true

daily variance (Andersen et al., 2001). At time t, the realised variance is calculated as follows,

assuming that rt,j denotes the return of the jth interval of length 1/N during time t and that

rt,j |It−1 ∼ i.i.d(0, σ2
t /N):

RVt =

N∑
j=1

r2
t,j , t = 1, . . . , T. (1)

An asymmetric interpretation can be obtained from the realised variance through the positive

and negative semivariances RS+
t and RS−t , such that RVt = RS+

t +RS−t , where the variance is

captured due to positive- and negative returns respectively (i.e. good and bad volatilities) and

provides a good proxy for realised semivariances (Barndorff-Nielsen et al., 2008). RS+
t and RS−t

are calculated as follows, where I(...) serves as an indicator function, as shown in (4):

RS+
t =

N∑
j=1

I(rt,j ≥ 0)r2
t,j , (2) RS−t =

N∑
j=1

I(rt,j < 0)r2
t,j . (3)

I(rt,j ≥ 0) =

1, if rt,j ≥ 0

0, otherwise

(4)

3.2 VAR and its applications

To analyse volatility spillovers of multiple markets at the same time, a VAR model is used to

obtain some of the specifications for the TVP-VAR model. As first introduced by C. A. Sims
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(1980), a VAR(p) of lag order p is presented in (5), where RVt and εt represent Nx1 vectors

of endogenous variables (i.e. the realised variances) and white noise errors respectively for all

t. The requirements for white noise errors are that E(εt) = 0, Σε= E(εtε
′
t) is non-singular and

εt and εv are independent when t 6=v. Ai represents the NxN coefficient matrix for the ith lag

order and the residual variance-covariance matrix Σε = FDF ′, where F is a lower triangular

with ones on the diagonal and D a diagonal matrix.

RVt = µ+

p∑
i=1

AiRVt−i + εt (5)

Even though IRFs, FEVDs and (asymmetric) volatility spillover indices are obtained with

parameters from the TVP-VAR model, the VAR(p) model is used to obtain the optimal lag

order p* for the TVP-VAR model. This is achieved using the Bayesian information criterium

(BIC ) and evaluating VAR(p) models with lag orders 1 to 15. Moreover, the residuals of the

VAR(p*) model rather than the residuals of the TVP-VAR(p*) model are used to obtain a

causal ordering of the markets with the DAG technique, due to reasons outlined in subsection

3.3.4.

3.3 TVP-VAR

3.3.1 TVP-VAR model description

Rather than employing the time-invariant VAR(p) model as introduced at (5), a TVP-VAR

model is used, such that the coefficients and the residual variance-covariance matrices are dy-

namic, based on the relationship among the volatilities of the markets over time (Primiceri,

2005). The model is implemented in Matlab, using an adaptation of the code provided by Koop

& Korobilis (2010). Assuming that the variances of all markets are stationary, the TVP-VAR(p)

with lag order p is provided in (6), where RVt and εt are Nx1 vectors of endogenous variables and

white noise residuals respectively at time t, Ai,t an NxN coefficient matrix of the ith lag order

at time t and the residual variance-covariance matrix Σε,t=FtDtF
′
t , where Ft is lower triangular

with ones on the diagonal, Dt a diagonal matrix at time t. As can be seen, Ai,t, Ft and Dt are

generalisations of the same variables in the VAR(p) model, such that they are time-varying.

RVt = µt +

p∑
i=1

Ai,tRVt−i + εt (6)

To ensure that all markets are stationary for all variance types, the Augmented Dickey-Fuller

(ADF ) test is performed for every market in RVt, RS
+
t and RS−t , with H0 that a unit root is

present (thus non-stationary) and Hα that a unit root is not present. Also, as discussed in the

literature review, the TVP-VAR(p) model of Primiceri (2005) assumes a changing coefficient

and variance-covariance matrix at every time t, rather than a TVP-VAR(p) model that changes

only at significant structural breaks (Koop et al., 2009). To show that all the variance types of
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all markets contain a high number of structural breaks that would justify the use of Primiceri’s

model, a Chow structural break test (see Chow (1960) for details on this test) at 5- and 10%

significance levels is used to iteratively test with H0 that a structural break is not present at

every single time t and Hα otherwise.

As the coefficients of Ai,t, Ft and Dt are time-varying, the evolutions of Ai,t and Ft are

designed as a random walk model, as in (7) and (8) respectively, where αt = vec(A′t) with

At = [A1,t, . . . , Ap,t] and φt is a (N(N−1)
2 )x1 vector of non-zero and non-one elements of the

rows of F−1
t . The standard deviations, where σt is a Nx1 vector of the diagonal elements of

D
1/2
t , are modelled as a geometric random walk, as in (9). Moreover, all the innovations from

(6)-(9); εt, ωt, ψt and ξt follow a joint normal distribution with the corresponding variance-

covariance matrix in (10), implying that all innovations are independent from each other. It is

assumed that the variance-covariance matrix Ψ is block diagonal, with each block corresponding

to parameters from separate equations, related to the different markets in RVt. The reasoning

behind this assumption becomes clear in the next section.

αt = αt−1 + ωt , ωt ∼ N(0,Ω) (7) φt = φt−1 + ψt , ψt ∼ N(0,Ψ) (8)

log σt = log σt−1 + ξt , ξt ∼ N(0,Ξ) (9) V = V ar




εt

ωt

ψt

ξt



 =


Σε 0 0 0

0 Ω 0 0

0 0 Ψ 0

0 0 0 Ξ

 (10)

3.3.2 Bayesian estimation of TVP-VAR parameters

For ease of understanding the concepts below, xT = [x′1, . . . , x
′
T ]′ denotes a vector of variables

xt, which are time-varying, until a certain time period T.

The TVP-VAR(p) is a type of state space model, where the parameters αT , φT , σT and

the hyperparameters of matrix V are estimated using a Bayesian Markov Chain Monte Carlo

(MCMC ) simulation approach, the Gibbs sampler. A Bayesian approach is chosen rather than a

maximum likelihood estimation (MLE ) for a number of reasons. First, MLEs dealing with high

dimensionality and nonlinearity have multiple peaks and may end up with estimated parameters

far from the actual parameter space (Primiceri, 2005). Second, given that a TVP-VAR is a

high-dimensional model, maximising MLE becomes a computationally demanding task. On the

other hand, Bayesian methods handle high parameter dimensionality efficiently, as estimation

problems are broken down into simpler ones.

The Gibbs sampler is a type of MCMC simulation method that can obtain any posterior

distribution’s statistic from N simulated draws, given that N is sufficiently large. However,

this posterior distribution may be unknown and usually entails taking integrals, which may be

9



intractable (Yildirim, 2012). The Gibbs sampler rather draws samples from the easier conditional

posterior distributions of the parameters in question, holding all the other parameter values

fixed. After an initial burn-in period, the draws converge to the joint posterior density. With

a sufficient amount of draws, any point of the posterior density is guaranteed to be reached.

Given the unobserved parameters αT , φT , σT and the hyperparameters of V (as given in (10),

except Σε as it can be derived from (6)), samples can be drawn from their conditional posterior

distributions:

p(αT |RV T , φT , σT , V ), (11) p(φT |RV T , αT , σT , V ), (12) p(σT |RV T , αT , φT , V ), (13)

p(Ω|RV T , αT , φT , σT ), (14) p(Ψ|RV T , αT , φT , σT ), (15) p(Ξ|RV T , αT , φT , σT ). (16)

For αT , the density p(αT |RV T , φT , σT , V ) = p(αT |RV T , φT , σT , V )
∏T−1
t=1 p(αt|αt+1, RV

T , φT , σT , V ),

where αt|αt+1, RV
T , φT , σT , V ∼ N(Bt|t+1, Pt|t+1), such that Bt|t+1 and Pt|t+1 represent the

mean and the variance, respectively. As follows, the αT vector can be easily drawn for all time

periods t from this conditional distribution, as Bt|t+1 and Pt|t+1 can be derived by forward

recursion (also known as the Kalman filter, see Carter & Kohn (1994) for more details) and

backward recursion, given the models in (6) and (7). Furthermore, the hyperparameters of the

model, being the diagonal blocks of V: Ω, Ξ and the diagonal blocks of Ψ, all follow an inde-

pendent inverse-Wishart posterior distribution, as will be shown in section 3.3.3. Conditioned

on the other fixed parameters as in (14)-(16), drawing samples from this distribution is easy as

all innovations are observable.

Due to issues outlined in Appendix B, drawing samples of φT is not as easy as with αT and

requires the additional assumption of Ψ being block diagonal, such that the Kalman filter and

backward recursion can be used equation by equation. The recursive procedure can then recover

µi,t|t+1 = E(φi,t|φi,t|t+1, RV
t, αT , σT , V ) and νi,t|t+1 = V ar(φi,t|φi,t|t+1, RV

t, αT , σT , V ) for the

ith equation, which would give p(φi,t|φi,t+1, RV
t, αT , σT , V ) ∼ N(µi,t|t+1, νi,t|t+1). Then as with

αT , it is easy to draw samples from this Gaussian distribution. Furthermore, drawing samples

of σT involves a more elaborate methodology, which can be found in Primiceri (2005).

After all the simulation draws, the burn-in draws will be discarded and the remaining draws

are used to calculate the posterior means, which are essentially the estimated parameters and

hyperparameters, for all time periods. To summarise, all the parameters are obtained using the

Gibbs sampler’s pseudo-code, as outlined below.

3.3.3 Initialising priors

As shown in the pseudo-code, all the parameters have to be initialised, such that the Gibbs

sampler can be guaranteed to converge to the true joint posterior density during the burn-in
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Algorithm 1 The Gibbs sampler for obtaining draws of the (hyper)parameters

1: Initialise φT , σT , sT , V ;
2: for i := 1 to (burn-in draws + draws) do
3: Draw αT from p(αT |RV T , φT , σT , V );
4: Draw φT from p(φT |RV T , αT , σT , V );
5: Draw σT from p(σT |RV T , αT , φT , V );
6: Draw V, by drawing Ω, Ψ and Ξ from p(Ω,Ψ,Ξ|RV T , αT , φT , σT ) =
p(Ω|RV T , αT , φT , σT )*p(Ξ|RV T , αT , φT , σT )*p(Ψ1|RV T , αT , φT , σT )*. . . *p(Ψn−1|RV T , αT , φT , σT );

7: if i > burn-in draws then
8: Store αT , φT , σT and V draws;

9: End for
10: Obtain the average of the αT , φT , σT and V draws, representing the posterior mean;

draws. The approach of Primiceri (2005) is used to calibrate the prior distributions as seen in

(17)-(22), using the first 20% of observations of RVt, RS
+
t and RS−t , denoted by τ . This initial

subsample is used to derive coefficient estimates of a standard VAR(p*) (as in (5)), α̂OLS , which

is fed into the Gaussian distribution of α0. The same method is used to estimate φ̂OLS , that

feeds into the Gaussian distribution of φ0. For log σ0, the mean of the Gaussian distribution is

set to the log of the point estimate of the standard errors of the normal VAR(p*) and the identity

matrix is to be arbitrarily chosen as the variance. As mentioned before, all hyperparameters of

V follow an inverse-Wishart prior distribution. The inverse-Wishart distributions use kΩ = 0.01,

kΨ = 0.1 and kΞ = 0.01, as recommended by Primiceri (2005), though he also found that results

are rather robust to different ks. Do note that the ks do not influence the time variation, but

rather the prior beliefs about the magnitude of time variation.

α0 ∼ N(α̂OLS , 4 ∗V (α̂OLS)) (17) φ0 ∼ N(φ̂OLS , 4 ∗ V (φ̂OLS)) (18) log σ0 ∼ N(log σ̂OLS , IN ) (19)

Ω ∼ IW (k2
Ω ∗ τ ∗ V (α̂OLS), τ) (20) Ξ ∼ IW (k2

Ξ ∗ IN , 2) (21) Ψ ∼ IW (k2
Ψ ∗ V (φ̂OLS), 2) (22)

3.3.4 Ordering of variables: Directed acyclic graph technique

As introduced, the ordering of the variables of a VAR is important for the Cholesky decom-

position, as with different orderings, the conclusions of IRFs and FEVDs are altered, in case

contemporaneous correlation among errors exists. Therefore, the DAG technique is employed to

obtain a data-driven ordering of the variables. However, Primiceri (2005) stated that the order-

ing of the variables for a TVP-VAR(p) model only slightly altered the analysis. Nevertheless,

this paper aims for a more credible ordering of markets rather than a random ordering, based

on a combination of subjective and data-driven reasoning, which would ease the interpretation

of the results.

The DAG technique makes use of partial correlations and over-identifying restrictions on

contemporaneous shocks. As the DAG technique cannot be directly applied to a TVP-VAR

model, this paper uses the residuals of the VAR(p*) process to obtain a causal ordering for
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RVt, RS
+
t and RS−t , together with economic reasoning. While the details of the DAG technique

can be found in Hoover (2005), the PC algorithm is used, developed by Spirtes et al. (2000) and

the Python code provided by Kalisch & Bühlman (2007), to obtain the causal ordering among

the residuals of the VAR(p*) process over the full sample.

The PC algorithm assumes at first that all markets are linked with each other with an

undirected link, from which two main stages take place: elimination and orientation. First, the

elimination stage removes the links between markets that are not unconditionally correlated,

which are markets that have no direct (directional) link with each other. Contrarily, conditional

correlation implies that two markets are indirectly correlated with each other, if these two

markets have both a causal link with another market. Then, the partial correlations between

two markets, conditioned on a third market, are used to eliminate links between any market pair

that is unconditionally uncorrelated. It then further tests for absence of conditional correlation

among market pairs, then on sets of three or more markets. With this information, links are

eliminated when no conditional correlation is present. Lastly, in the orientation stage, every

conditionally uncorrelated market pairs and pairs causally connected along undirected paths

through a third market are considered, whether improvements of the paths can be made. Thus,

using this method, a DAG can be obtained, based on significant correlations among the markets.

As this is a standard procedure in previous research (Hoover, 2005), the correlations are tested

whether they are significantly different from zero at a 1% significance level.

3.4 Orthogonalised impulse response functions

To improve the interpretability of the TVP-VAR model, orthogonalised IRFs are used, as im-

plemented by Lütkepohl (2005). IRFs describe the response of a variable to an exogenous shock

in one variable at time t, which is otherwise not directly observed through the noisy coefficient

estimates. Before introducing this application, it is important to rewrite the TVP-VAR(p) as a

TVP-VAR(1) process as in (23), where RVt and et are Npx1 vectors of the endogenous variables

from the last p lagged observations and the residuals respectively at time t (Notice that these

vectors are different from the vectors of a TVP-VAR(p) process) and At is a NpxNp matrix,

which contains the coefficient matrices of the TVP-VAR(p) model in the first N rows. Please

refer to Appendix B as to why these forms of the TVP-VAR model are equivalent.

RVt = AtRVt−1 + et,where RVt =


RVt

...

RVt−p+1

 , et =


εt

0
...

0

 , At =


A1,t . . . Ap−1,t Ap,t

IN . . . 0 0
...

. . .
...

...

0 . . . IN 0


(23)

This TVP-VAR(1) representation can be converted into an MA representation as in (24),
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where the orthogonalised coefficient matrix Θi,t = Φi,tPt and the orthogonalised residuals vector

wt = P−1
t εt, with Φi,t = JAi

tJ
′, where J = [IN : 0 : . . . : 0] is a NxNp matrix and At is

the coefficient matrix from the TVP-VAR(1) model from (23). Pt is a lower triangular matrix

coming from the Cholesky decomposition of the residual variance-covariance matrix Σε,t = PtP
′
t

and εt being the residual vector from the TVP-VAR(p) process.

RVt =
∞∑
i=0

Φi,tPtP
−1
t εt−i =

∞∑
i=0

Θi,twt−i. (24)

This MA representation enables us to track an exogenous shock’s effect throughout time.

Through orthogonalisation, which is achieved by post- and pre-multiplying Φi,t and εt with

Pt and P−1
t respectively, it is ensured that a shock in one variable is uncorrelated and thus

independent from a shock in another variable in contemporaneous time. While the details are

left for Appendix B, this means that the orthogonalised IRF, at time t, can be traced over a

certain time horizon H as follows, where the kth column of Θi,t corresponds to the response of

all markets to an exogenous shock of the kth market:

Θ0,t = Pt , Θ1,t = Φ1,tPt , . . . , ΘH,t = ΦH,tPt. (25)

Thus, the initial shock at time t is the Cholesky decomposition’s lower triangular matrix Pt,

propelled over the H time observations with Φi,t. Notice though that Φi,t from (24) could be

calculated using At from the time periods t, t+1, ... , t+H, with the extra given information at

each time period. However, this approach is not used as it would be computationally demand-

ing. Nevertheless, due to Pt varying over time, the orthogonalised IRFs are still time-varying,

adjusting to the changing dynamics among the volatility spillovers across the markets.

While the rest of the methods focus on the asymmetry among good and bad volatilities, the

orthogonalised IRFs are only used with RVt, such that the effect of exogenous shocks among the

realised variances of the markets can be explored. Given that such an analysis is time-varying,

orthogonalised IRFs are only performed at time periods when the highest realised variance is

noted for the market in which the exogenous shock occurs. This effect is illustrated over a

time horizon of 21 days. Moreover, the orthogonalised IRFs are scaled, by dividing it by the

variance of the corresponding market extracted from Σε,t, such that the IRFs of all markets can

be shown together. This gives insight as to how all the markets absorb an exogenous shock,

more specifically a higher than usual exogenous shock in a particular market and how this differs

across shocks from different markets. Since At and Pt can be generated at every draw in the

Gibbs sampler, orthogonalised IRFs are performed at every draw of the simulation, from which

the average impulse response is obtained. To account for the uncertainty of impulse responses,

the IRFs of all markets are displayed with the 16th and 84th quantiles of the impulse response
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draws in Appendix D, such that these are the results ±1 standard deviation away from the mean

of the Gaussian distribution.

3.5 Forecast error variance decompositions

IRFs only focus on the response of an exogenous shock. On the other hand, FEVDs focus on

the fraction of variance of a certain variable that is explained by a shock in another variable.

Furthermore, by looking at different time horizons, the evolution of this explanatory power in

explaining variance can be observed. This would give insightful information as to how long and

to what extent volatilities of crypto markets impact volatilities in the financial markets, and

vice versa. As with IRFs, FEVDs also vary over time due to the dynamic coefficient matrix At

and Cholesky decomposition’s lower triangular matrix Pt. As with IRFs, the FEVDs are also

implemented using the method of Lütkepohl (2005).

FEt,H =

H−1∑
h=0

Θi,twt+H−h (26)
MSEj,t,H =

N∑
n=1

(θ2
jn,0,t+. . .+θ

2
jn,h−1,t) =

H−1∑
i=0

N∑
n=1

θ2
jn,i,t (27)

By still using the orthogonalised MA representation of the TVP-VAR(p) process in (24),

the optimal forecast error for a certain time horizons H is presented in (26), with Θi,t and wt

still defined exactly the same. Θi,t is built up of θmn,i,t, representing the mn-th element of this

matrix, where the jth row represents the forecast error for the jth market. Intuitively, this means

that the jth row’s forecast error is composed of the orthogonalised residuals of all the markets,

w1t, . . . , wNt and thus the forecast error consists of a combination of these orthogonalised shocks.

Do note that this does not mean that every market’s shock affects another market’s forecast

error, as θmn,i,t may be zero. For the FEVD, the jth varaible’s Mean Squared Error (MSE) is

required, as derived in (27).

FEV Djk,t,H =

∑H−1
i=0 (e′jΘi,tek)

2

MSEj,t,H
(28)

The contribution of the kth market’s innovation to the forecast error variance of the jth

market for a certain forecasting horizon H, represented by FEV Djk,t,H , can be obtained as

in (28). The multiplication (e′jΘiek)
2, where ej is the jth column of the identity matrix IN ,

retrieves the kth market’s innovation effect on the jth market’s variance. By dividing it by the

MSEj,t,H , the FEV Djk,t,H can be obtained. As previously explained, the FEV Djk,t,H changes

over time, due to the time-varying coefficient matrix. Therefore, the FEV Djk,t,H is recorded for

all time t for every market, with the hope that significant events in the crypto- and/or financial

markets can be seen to significantly affect FEVDs. Moreover, the asymmetry between the effect

of positive and negative innovations on the forecast error variance is analysed, by comparing

FEVDs with RS+
t and RS−t . As with IRFs, FEVDs can be also recorded at every Gibbs
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Sampler’s draw, from which the empirical mean is obtained for visualisation purposes. Lastly,

FEVDs are performed with forecasting horizons of 1, 10 and 30 days, such that a decomposition

can be obtained in the short-term, medium-term and long-term.

3.6 Asymmetric volatility spillovers indices

Besides IRFs and FEVDs, the linkages between the cryptos and financial markets in terms of

volatility can be further explained by volatility spillovers indices. For better understanding, the

non-orthogonalised MA form of a TVP-VAR(p) process is used, as in (29), where it still holds

that Φi,t = JAi
tJ
′.

RVt =
∞∑
i=0

Φi,tεt−i (29)

Following Diebold & Yılmaz (2014) and Wang & Wu (2018), the directional volatility

spillover from market j to i, SHi←j,t, is determined by (30), where φh,ij,t is the ijth element

of the Φh,t matrix that tracks the H-step-ahead forecast error variance of market i due to shocks

in market j at time t, whereas the denominator accounts for the total H-step-ahead forecast

error variation. It is an approximate measure of the volatility spillovers’ intensity between those

two markets. Notice that φ2
h,ij,t could be replaced by φ2

h,ij,t+H−h in (30), but this would imply

using out-of-sample information which is undesirable, given that we are determining the fore-

cast error. And as with impulse responses, using φ2
h,ij,t+H−h would also be computationally

demanding, thus substantiating enough reasoning for using φ2
h,ij,t only at time t. Also note that

SHi←j,t and SHj←i,t could differ from each other, due to bilateral imports and exports differences

(Wang & Wu, 2018). But as can be seen, this volatility spillover uses FEVDs to give further

interpretation to the TVP-VAR(p) model.

SHi←j,t =

∑H−1
h=0 φ

2
h,ij,t∑H−1

h=0 trace(Φh,tΦ
′
h,t)

(30) SHt =
1

N

N∑
i,j=1i 6=j

SHi←j,t =
1

N

∑N
i,j=1i6=j

∑H−1
h=0 φ

2
h,ij,t∑H−1

h=0 trace(Φh,tΦ
′
h,t)

(31)

(30) is a stepping stone for the total directional spillover index in (31), by summing over all

the non-diagonal elements of Φh,t for every h within the time horizon H. This index quantifies

all the markets’ spillover of volatility shocks and determines its contribution to the total forecast

error variance. This method complements Diebold & Yılmaz (2014) and Wang & Wu (2018),

through having a time-varying coefficient rather than a rolling or expanding window Φh, which

further helps with capturing the volatility dynamics among the crypto- and financial markets.

The above volatility spillover indices can be extended to examine asymmetries among good

and bad volatilities. Rather than using RVt as the endogenous variable vector in the TVP-

VAR(p) model, it can be replaced by the positive semivariance RS+
t and the negative semivari-

ance RS−t vectors. By using the estimated coefficients from the models with these endogenous
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variables, the total spillover indices for the semivariances can be obtained using (31), represented

by S+,H
t and S−,Ht , which can also be referred to as positive and negative spillovers, respectively.

From Baruńık et al. (2016), the total spillover asymmetry measure (SAM ) as in (32) is used

to quantify the positive and negative spillovers’ difference. These SAMs can be interpreted

in multiple ways: it displays whether positive or negative spillovers dominate, thus serving as

an estimate of the positive and negative market expectations at any given time, while it can

also indicate how investors react to good and bad news and thus provide a sign of optimism or

pessimism of the overall financial landscape. When SAMH
t > 0, it implies that spillovers from

RS+
t are larger than the spillovers from RS−t , with SAMH

t < 0 otherwise.

SAMH
t = S+,H

t − S−,Ht (32)

SAMH
i→•,t = S+,H

i→•,t − S
−,H
i→•,t (33) SAMH

i←•,t = S+,H
i←•,t − S

−,H
i←•,t (34)

This total SAM can be also be decomposed into identifying asymmetric volatility spillovers

from a specific market i to all other markets, as in (33). S+,H
i→• and S−,Hi→• are derived from

(31), where the summation
∑N

i,j=1i 6=j in the nominator is replaced by
∑N

j=1,j 6=i, such that the

nominator becomes the sum of all the elements of just the ith row of Φh,t for i 6= j. A similar

asymmetric spillover identification can be calculated going from all other markets to market j,

as in (34). S+,H
i←• and S−,Hi←• are derived from (31), but this time the

∑N
i,j=1i 6=j in the nominator

is rather replaced by
∑N

i=1,j 6=i, such that the nominator becomes the sum of all the elements of

just the jth column of Φh,t for i 6= j. This approach complements the approach of Baruńık et

al. (2016), as rather than using a rolling window Φi, this paper uses Φi,t that is derived from

the posterior mean of At from the Gibbs Sampler, therefore bypassing directly the rolling or

expanding window approach.

4 Data

The research is performed on two cryptocurrencies and three stock indices. The cryptos Bitcoin

(BTC ) and Ethereum (ETH ), expressed in USD, are used as these currently are the two most

valuable cryptos, while BTC and ETH are also known to propel other smaller cryptos. For the

financial markets, the S&P 500 (SP500 ), Eurostoxx 50 (STO50 ) and Nikkei 225 (N225 ) indices

are used, as these are representable of the state of financial markets in the United States, Europe

and Asia, respectively. All indices are based on the weighted free-float market capitalization of

the underlying assets and are highly liquid. Do note that the crypto and financial markets differ,

in the sense that crypto markets are open for trade 24/7, whereas financial markets are open

for trade only on weekdays for a limited time. Therefore, only the days on which data from all

markets is available are used.
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Due to ETH only existing from late 2015, overlapping closing prices of the above-mentioned

markets are obtained at a 30-minute frequency between 10th May 2016 and 30th April 2021,

giving a total of 1551 observations for RVt, RS
+
t and RS−t . Higher frequency intraday data,

such as 5-minute intervals, were not found, though Wang & Wu (2018) found that the SAM

indices were robust to lower frequency data. BTC and ETH closing prices are retrieved from

Crypto Data Download from the Gemini exchange, while closing prices for the stock indices are

extracted from Bloomberg.

As described in section 3.3.3, the first 20% of observations are used to calibrate the prior

conditional distributions, thus the first 230 observations (2016/05/10-2017/04/25) are used.

Therefore, all the IRFs, FEVDs and volatility spillover indices are covered between 2017/04/26

and 2021/04/30. Even though the dataset only contains four years, it still contains two major

bear markets, partly resembled by the heightened volatility observed in those time periods:

December 2017- February 2018, related to the first time the crypto market’s bubble burst, where

ETH and BTC saw returns of -38.95% and -58.26% respectively and the financial markets taking

an average hit of -9%. The second bear market is the COVID-19 crisis during February 2020-

March 2020, when the financial markets narrowed by an average of 31% and ETH and BTC lost

50% and 37% of its value, respectively. What then followed, was a remarkable recovery of the

markets. Other interesting events occured, such as ETH hitting its all time high on 2018/10/01

due to the Cryptokitties craze and BTC also hitting all time highs in April 2021, due to Tesla

accepting Bitcoin as a method of payment.

Table 1: Descriptive statistics for RVt , RS+
t and RS−t

Mean Std.dev. Skew Kurt Min Max

RVt

ETH 0.00523 0.01615 17.00442 411.31533 0.00000 0.42714
BTC 0.00235 0.00853 19.87679 515.99921 0.00000 0.23790
N225 0.00014 0.00034 9.56917 142.00363 0.00000 0.00678
STO50 0.00015 0.00054 12.97151 208.59638 0.00000 0.01032
SP500 0.00012 0.00051 15.05690 304.05599 0.00000 0.01231

RS+
t

ETH 0.00241 0.00513 6.27413 57.63413 0.00000 0.07668
BTC 0.00101 0.00244 10.01749 157.98359 0.00000 0.04986
N225 0.00007 0.00019 9.18936 111.56571 0.00000 0.00285
STO50 0.00007 0.00017 7.44491 64.48720 0.00000 0.00202
SP500 0.00006 0.00006 11.41223 165.84608 0.00000 0.00379

RS−
t

ETH 0.00282 0.00282 25.51270 763.81900 0.00000 0.42637
BTC 0.00134 0.00133 26.60013 808.32271 0.00000 0.23763
N225 0.00007 0.00025 11.90041 212.82508 0.00000 0.00546
STO50 0.00008 0.00045 16.14352 300.94403 0.00000 0.00980
SP500 0.00007 0.00041 20.87345 528.93258 0.00000 0.01139

Table 1 presents the descriptive statistics for every market for RVt, RS
+
t and RS−t . ETH
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enjoys the highest mean volatility across all variance types, reaching a max of 0.00523 with

RVt, but it should also be noted that the mean and standard deviations of both cryptos are

proportionately much higher than the volatilities of the financial markets, with the mean ranging

between 0.00101 and 0.00523 for both cryptos across all variance types, whereas for N225, STO50

and SP500 ranges between 0.00006 and 0.00015. This exemplifies the high volatility that crypto

markets have compared to financial markets. Comparing RS+
t with RS−t , the mean volatility is

higher for RS−t for all markets except for N225, where the RS+
t and RS−t mean volatilities are

the same. This thus illustrates the leverage effect that is found in both crypto- and financial

markets, whereby investors are more concerned about downside- rather than upside risk. Lastly,

all markets under all variance types exhibit skewnesses significantly different 0, while all kurtoses

range between 57.634 and 808.322. This strongly indicates that the variances of all markets do

not follow a normal distribution, and are heavy tailed.

Table 2: The correlation matrix for RVt

Markets ETH BTC N225 STO50 SP500

ETH 1.000
BTC 0.849 1.000
N225 0.151 0.206 1.000
STO50 0.101 0.157 0.532 1.000
SP500 0.110 0.188 0.495 0.779 1.000

Besides the descriptive statistics, Table 2 contains the correlations among the market for

RVt, with the correlations for RS+
t and RS−t presented in Table C.1 in the Appendix. It can

be clearly seen that ETH and BTC are highly correlated with each other, with a value of 0.849.

Meanwhile, both cryptos are less correlated with the stock indices, but still significantly different

from 0, ranging between 0.101 and 0.151 for ETH and 0.157 and 0.206 for BTC with the N225,

STO50 and SP500 markets. Among the financial markets, the highest correlation is observed

between STO50 and SP500, while the correlation is around 0.5 for both markets with N225.

This already gives a clue that the volatility transmission mechanism is likely to not be high

between the crypto- markets and financial markets, but it does display that within the crypto

and financial markets, higher volatility spillovers are likely to be seen.

5 Results

5.1 Checking assumptions of TVP-VAR(p)
As stated in the methodology, the number of structural breaks, the optimal lag order and whether

or not all markets are stationary under all variance types are examined for the TVP-VAR(p)

model. Firstly, Table 3 shows that most markets under all variance types have a high number of

significant structural breaks, according to the Chow test, with BTC, N225, STO50 and SP500
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Table 3: The number of significant structural breaks per market, for 5- and 10% significance
levels.

Significance level 0.05 0.1

RVt RS+
t RS−t RVt RS+

t RS−t

ETH 164 1061 21 192 1068 36
BTC 476 653 116 564 708 276
N225 764 696 434 860 878 566
STO50 1069 1098 960 1085 1104 1024
SP500 454 451 374 492 493 415

having on average a structural break every 1 to 3 days (over a total of 1551 observations). ETH

is the anomaly among the markets, by only having 164 and 21 significant structural breaks for

RVt and RS−t respectively, though having 1061 significant breaks for RS+
t at the 5% significance

level. For BTC, the number of significant breaks for RS−t is much lower than for RVt and RS+
t .

Nevertheless, the majority of the markets show that a lot of significant structural breaks are

present in the dataset, likely due to the high number of volatility outliers as seen in Table 1.

This provides evidence that a TVP-VAR(p) with time-varying parameters at every time period

is reasonable to be adopted for this paper’s purposes.

Table 4: Test-statistics for the augmented Dickey-Fuller test for stationarity

ETH BTC N225 STO50 SP500

RVt -14.340*** -20.329*** -5.840*** -7.226*** -6.257***

RS+
t -6.389*** -5.753*** -6.949*** -5.869*** -4.889***

RS−
t -32.302*** -22.097*** -5.980*** -6.758*** -5.860***

Note. * = p < 0.1, ** = p < 0.05, *** = p < 0.01.

In terms of the TVP-VAR(p*) process itself, according to the BIC, the optimal lag orders for

a time-invariant VAR(p*) process are 5, 3 and 5 for RVt, RS
+
t and RS−t , respectively. However,

Primiceri (2005) stated that parameters would be ill-determined, if the number of estimated

parameters is high for the limited number of iterations to be run with the Gibbs Sampler. To

reduce the chance of ill-determined parameters, the TVP-VAR(p) process for all variance types

is of lag order 3. Lastly, Table 4 shows that all markets for all variance types are significant at

the 1% level for the ADF-test for stationarity. Therefore, all the assumptions required for the

TVP-VAR(p) process hold for our dataset.

Having obtained all the necessary information for the TVP-VAR(3) model, it is estimated

using the Gibbs Sampler with 22000 iterations, whereby the first 2000 iterations are discarded

for convergence. The standard number of iterations is 11000, with the first 1000 iterations

discarded (Raftery & Lewis, 1991), but due to the high number of parameters to be estimated,

more iterations are required.
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5.2 DAG structural results

The DAG-derived causal ordering of the contemporaneous shocks of the markets at a 1% sig-

nificance level are displayed in Figure 1, applied to the residuals of the time-invariant VAR(3)

models with RVt, RS
+
t and RS−t . For RVt in Figure 1a, the exogenous shocks from all the

markets seem to cause the shocks in SP500, whereas for RS+
t in Figure 1b, STO50 seems to be

at the top of the hierarchy. For RS−t in Figure 1c, BTC is at the top of hierarchy, inferring neg-

ative volatility shocks all seem to transfer to the negative shocks in BTC. The linkage between

ETH and BTC is bi-directional, which resembles the growing interdependence among cryptos as

found by Koutmos (2018), as well as for N225 and STO50 at this significance level. But looking

at the results of the negative shock transfer of RS−t in Figure 1c, it seems reasonable to assume

that ETH shocks cause BTC shocks. In the same manner, by looking at the positive shocks for

RS+
t in Figure 1b, N225 shocks seem to cause STO50 shocks, which is in line with the findings

of Wang & Wu (2018), but for the time period 2002-2014.

(a) DAG results for RVt (b) DAG results for RS+
t (c) DAG results for RS−t

Figure 1: The DAG results for the residuals of a VAR(3) for RVt, RS
+
t and RS−t , at 1% signifi-

cance level.

As discussed in the methodology, a more data-driven ordering of markets for the TVP-

VAR(3) processes is preferred, even though the TVP-VAR(p) model was found to be empirically

robust to different variable orderings (Primiceri, 2005). Considering the DAG structures above,

along with subjective reasoning, the ordering of markets in (35) for RVt seems to be most

reasonable. The same ordering is applied for RS+
t and RS+

t as well.

RV1,t : ETH → RV2,t : BTC → RV3,t : N225 → RV4,t : STO50 → RV5,t : SP500 (35)

5.3 Orthogonalised impulse response functions results

The orthogonalised IRFs are implemented for all markets, based on exogenous shocks in a

particular market on the days of its maximum variance. As the asymmetry analysis is left for

FEVDs and the asymmetric spillover indices, the orthogonalised IRFs for only RVt are shown

in Figure 2, with the maximum variance dates for each market to be found in Table D.1 in

the Appendix. The IRFs are scaled by the variance of the market itself, such that it can be

simultaneously compared to each other. This means that a unit shock for the market in which

the exogenous shock occured is visible at day 0, as well as contemporaneous responses of other
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markets to the unit shock. The unscaled orthogonalised IRFs can be found in Figures D.2-D.6

in the Appendix.

(a) From N225 shock (b) From SP500 shock

(c) From STO50 shock (d) From ETH shock (e) From BTC shock

Figure 2: The orthogonalised impulse responses of all markets, on an exogenous shock in a
particular market on the day of its maximum variance, across a 21-day horizon.

The orthogonalised IRFs from shocks in N225, SP500 and STO50 are in Figures 2a, 2b and

2c respectively, with all IRFs performed in March 2020, as the highest variance of all markets

is clearly due to the COVID-19 crisis’ pessimistic market expectations. From an initial shock

in N225, both STO50 and SP500 respond contemporaneously, by a scaled magnitude of 0.2 and

0.05 respectively. From a STO50 shock, only the SP500 has a contemporaneous response of

about 0.1, whereas no market reacts immediately to an exogenous shock in SP500. This leads

to all financial market responses to monotonically decrease after shocks in N225 and STO50,

except after an SP500 shock, where STO50 and N225 initially respond positively up to 0.4

at day 3, eventually converging to 0 at day 9. Furthermore, both cryptos do not respond

contemporaneously to shocks in any of the financial markets. Nevertheless, ETH and BTC have

a relatively high positive response from a shock in N225, rising to 0.6 at day 3 but quickly

converging back to 0 at day 12. For shocks in SP500 and STO50, both ETH and BTC react

negatively, with maximally reaching -0.3 and -0.6 for shocks in STO50 and SP500 respectively

at day 3 after the exogenous shock, but also quickly converging back to 0 at about day 9. The

IRFs thus imply that cryptos are more influenced by shocks in N225 and SP500, rather than
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by STO50 shocks. This is of course due to cryptos also having been negatively affected by the

COVID-19 crisis, but this can also be attributed to cryptos being most frequently traded in

the Asian and North-American continent (Futures, 2018), thus more investors are exposed to

volatility of both Asian/American financial- and crypto markets than investors in Europe.

The ETH and BTH orthogonalised IRFs can be seen in Figures 2d and 2e, with both maxi-

mum variances occuring on 2018/12/07. This time period is marked by BTC’s mining difficulty

being decreased due to power consumption concerns (Centieiro, 2019), consequently leading to

major devaluations of BTC and ETH. A shock in ETH causes a contemporaneous shock in BTC

with a magnitude of 50, much larger than any other market. The responses of the financial

markets become unclear due to BTC’s big response, but in Figure D.2 in the Appendix, the

responses of the financial markets seem minimal. But with an initial shock in BTC, all markets,

including ETH, seem to be immune to shocks coming from the BTC market, while BTC’s re-

sponse quickly declines to 0.2 after 3 days, eventually converging to 0 after 9 days. These IRFs

seem to conclude that financial markets are unidirectionally connected to the crypto markets,

in terms of volatility spillover, as ETH and BTC shocks do not seem to greatly impact financial

markets, but this conclusion is also deemed logical, as the mining difficulty being dropped does

not have any fundamental value for the financial markets.

5.4 Forecast error variance decomposition results

After the orthogonalised IRFs, the asymmetries among FEVDs for positive and negative semi-

variances are explored. This was performed on the short-term 1-day, medium-term 10-day and

long-term 30-day forecast horizons. As observed in the IRFs, all the responses on exogenous

shocks die out after 9 to 12 days, which means that medium- and long-term FEVDs are prac-

tically indistinguishable from each other for all markets. Therefore, only the 1-day and 30-day

horizon FEVDs are explored, with the 10-day horizon FEVDs to be found in Figures E.1-E.2 in

the Appendix for all variance types.

(a) FEVD of BTC for RS+
t (b) FEVD of BTC for RS−t

Figure 3: Forecast error variance decompositions of BTC for 1 day horizon for RS+
t and RS−t .
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By exploring the 1-day FEVD horizon, more insights are gathered as to how innovations of

markets affect the forecast error variance of a particular market contemporaneously, but also

how the decompositions differ among positive and negative innovations. Figure 3 displays the

FEVDs of BTC for the 1-day horizon. For all other markets, the fraction of variance explained

by innovations in other markets is solely attributed to innovations of the market itself, which

can be observed in Figures E.3 and E.4 in the Appendix. For BTC in contemporaneous times,

only ETH and BTC innovations affect BTC’s variance for both RS+
t and RS−t , reinforcing the

findings of Koutmos (2018) of the high interconnectedness of cryptos. The findings for ETH do

not resemble this interconnectedness, as due to the ordering of variables, ETH’s variance can

only be affected by exogenous shocks of itself in contemporaneous times.

(a) FEVD of ETH for RS+
t (b) FEVD of ETH for RS−t

(c) FEVD of BTC for RS+
t (d) FEVD of BTC for RS−t

Figure 4: Forecast error variance decompositions of ETH and BTC for 30 day horizon for RS+
t

and RS−t .

It is therefore more interesting the analyse the long-term FEVDs. Figure 4 displays the

findings for ETH and BTC and Figure 5 for the financial markets for RS+
t and RS−t . Firstly,

it can be noticed that innovations of SP500 explain most of the forecast error variance of all

markets for both semivariances. Negative SP500 innovations seem to have a 10% larger effect on
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forecast error variances than positive SP500 innovations, which peaked during the COVID-19

crisis for the N225 and STO50 markets for RS−t in Figures 5b and 5d respectively. However, the

fraction attributed to negative SP500 innovations drops significantly for ETH and BTC during

the COVID-19 crisis, as negative ETH innovations seem to have emerged as the major source

of variance for both cryptos during that time period. For positive semivariances, the fraction of

SP500 innovations remains fairly constant over time.

(a) FEVD of N225 for RS+
t (b) FEVD of N225 for RS−t

(c) FEVD of STO50 for RS+
t (d) FEVD of STO50 for RS−t

(e) FEVD of SP500 for RS+
t (f) FEVD of SP500 for RS−t

Figure 5: Forecast error variance decompositions of N225, STO50 and SP500 for 30 day horizon
for RS+

t and RS−t .

In terms of ETH and BTC, it can be noted that innovations of both cryptos have a relatively

small impact on the variances of the financial markets. It is interesting to see though that for

all markets except BTC itself, BTC innovations for both semivariances have little to no impact.

Even for its own market in Figures 4c and 4d, positive BTC innovations explain at most 40%
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(beginning of 2021) of its own forecast error variance. For ETH, two things are noticeable: first,

for the crypto markets, positive and negative ETH innovations suddenly explain a quite large

fraction of the variance at the start of 2018 and then during the COVID-19 crisis, clearly related

to the two major bear markets. Second, towards the end of 2018, only negative ETH innovations

explain a significantly high fraction of all markets (see RHS sub-Figures of Figures 4 and 5),

with the fractions in descending order from the cryptos, to N225, to STO50 and finally SP500.

As with the orthogonalised IRFs, this activity is linked to the decreased mining difficulty of

cryptos at the time, and clearly has a negative impact on all markets, though it is a short-lived

peak in terms of forecast error variance explained.

The N225 and STO50 results in Figures 5a-5d, also show that FEVD asymmetries exist for

such markets. Positive STO50 innovations have a 10% larger impact on forecast error variance

for all markets than with negative STO50 innovations, though it is interesting to find that of

all markets, the positive STO50 innovations bear the lowest fraction of variance explained for

SP500. The reverse asymmetric results can be found for N225, as negative N225 innovations

explain larger fractions of variances than with positive N225 innovations. Moreover, negative

N225 innovations seem to affect crypto variances for RS−t , as can be seen in Figures 4b and 4d,

more than N225 itself and SP500. As explained before, this is related to most of the cryptos

being traded and mined in the Asian continent. In general, positive STO50 innovations explain

more of the variance of all markets than positive N225 innovations. However, this pattern is

reversed for negative semivariances, such that negative N225 innovations have a larger impact

on the markets’ variances.

5.5 Volatility spillover indices

As a follow-up on orthogonalised IRFs and FEVDs to study the asymmetries in the volatility

transmission mechanism among the crypto- and financial markets, further understanding of the

asymmetries can be obtained with several spillover indices, that are presented below for a 7-day

horizon.

5.5.1 Total volatility spillover

Before focusing on the asymmetries of the volatility transmission mechanism, the connectedness

of the crypto- and financial markets are studied, using the total volatility spillover index, derived

with the time-varying coefficients of the TVP-VAR(3) process with RVt. The realised variances

of all markets, using the LHS y-axis, and the total volatility spillover index, using the RHS

y-axis, is presented in Figure 6. Do note that the LHS y-axis is limited to the range between 0

and 0.1, as otherwise the extreme volatile periods for ETH and BTC at the end of 2018 and the

COVID-19 crisis in 2020 hinder the visibility of the less volatile time periods. As described in

the Data section, the two major bear markets at the start of 2018 and the COVID-19 crisis of
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March 2020 are clearly visible due to the heightened realised variance of all markets, with the

cryptos clearly displaying relatively higher volatility than the financial markets.

Figure 6: Plot of the total volatility spillover index and the realised variances of all markets.

The Figure shows that after major bear markets, the total spillover significantly increases,

whereas during stable bull markets, the volatility transmission mechanism decreases. The total

spillover index peaks at the start of 2019 at 0.024, and the second peak is observed in late

2020, at 0.01. Burns et al. (2012) argued that the financial crisis of 2008 altered the way market

participants perceive risks, which led to a higher post-crisis connectedness of markets as investors

homogenised market beliefs. This finding can also be found here for the time period 2017-2021

for the studied markets, as major downturns in one of the markets displays downturns in all

other markets as well.

However, the total spillover index keeps rising until late 2019 after the bear market at the

start of 2018. But after the COVID-19 crisis, the spillover index firstly keeps rising for a shorter

time period. Secondly, the magnitude of this spillover increase is much lower. During the bear

market of 2018, the crypto market bubble burst, where the crypto prices recovered only recovered

the original level just in 2020. For the financial markets, SP500 and STO50 only recovered their

original levels in late 2019, with N225 also just recovering before the COVID-19 crisis. This

suggests that the total spillover mechanism rises when a stable market follows after a major

bear market. However, with the COVID-19 crisis, the financial- and crypto markets quickly

recovered and soared to all-time highs. Therefore, with such a quick-recovery bull market as in

2020, the total spillover index evidently does not rise as much.

5.5.2 Total spillover asymmetry measure

The focus is now to uncover the asymmetry of the volatility transmission mechanism, due to

good and bad volatilities. The total spillover indices of RS+
t and RS−t over time are presented

in Figure 7a, with the difference between these spillovers being represented by the total SAM

in Figure 7b.
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(a) Asymmetry spillover indices (b) Total SAM
Figure 7: Plots of the asymmetry spillover indices and the total SAM .

Between the two described bear markets, the good spillovers dominate the bad spillovers,

inferring that there was optimism present in crypto- and financial markets. On the other hand,

before the bear market of 2018 and after the COVID-19 crisis, the negative spillovers dominate,

which seems immiment due to investors reacting to the bad news of the COVID-19 pandemic,

and the corresponding pessimism that spread across the markets due to the higher volatility

transmission mechanism at the time. It can be seen that negative spillovers monotonically

decline between 2017 and February 2020, after which the negative spillovers quickly increase.

In terms of the good spillovers, the ’small’ bear market of 2018 decreases the good spillovers at

the same rate as the negative spillovers. After February 2018, good spillovers rise to its highest

level of the studied period at about 0.02, which resembles the rather stable financial period,

in which clearly good rather than negative spillovers dominate. However, from mid-2019, the

good spillovers decrease up until the COVID-19 crisis. This is in line with the decreasing total

spillover index in Figure 6 over the same time frame, as it seems that markets become less

interconnected due to optimistic market expectations, characterised by the stable bull market

leading up to the COVID-19 crisis.

5.5.3 Spillover asymmetry measures from- and to markets

The total SAM can be further broken down to reveal asymmetries among the studied markets,

by examining the contribution of individual markets towards asymmetry of the positive and

negative volatility spillovers with SAM from a specific market i, SAMH
i→•,t, and SAM to a

specific market i, SAMH
i←•,t. Figure 9 displays these SAM measures for the ETH and BTC

markets, whereas the N225, STO50 and SP500 contributions are displayed in Figure 9.
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(a) SAM from Ethereum (b) SAM to Ethereum

(c) SAM from Bitcoin (d) SAM to Bitcoin

Figure 8: Plots of the SAM from and to the ETH and BTC markets.

For ETH in Figures 8a and 8b, even though the difference between positive and negative

spillovers is minimal, negative spillovers from ETH slightly dominate. The gap between positive

and negative spillovers increases until 2020. After the COVID-19 crisis, positive spillovers quickly

catch up with the negative spillovers, likely linked to the quick recovery of financial market after

the crisis. Inversely, SAM to ETH seems very similar to the total SAM , by also observing

a positive SAM in the period between the two major bear markets, likely transcending the

positive spillovers from the financial markets. As stated with the total SAM , good rather than

negative spillovers are more likely to transfer during financially stable time periods. For BTC in

Figures 8c and 8d, the SAM from BTC is positive until mid-2020, clearly seeing that negative

spillovers rose compared to positive spillovers due to the COVID-19 crisis. It can also be noted

that after the Bitcoin crash at the start of 2018, the SAM from BTC monotonically decreases

until mid-2019, suggesting that negative spillovers rose compared to positive spillovers, reflecting

a more pessimistic view of crypto investors after the bear market of 2018. The SAM to BTC

suggests that relatively more negative spillovers are transmitted from other markets.

Compared to the cryptos, financial markets reveal different results. The SAM from N225

and SP500 show that positive spillovers are decreasing the gap with negative spillovers, whereas

SAM from SP500 grows from -0.1 to 0.3 and SAM from N225 also grows from -0.03 to 0.01.
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(a) SAM from Nikkei225 (b) SAM to Nikkei225

(c) SAM from Eurostoxx 50 (d) SAM to Eurostoxx 50

(e) SAM from S&P 500 (f) SAM to S&P 500

Figure 9: Plots of the SAM from and to the N225, STO50 and SP500 markets.

However, SAM from STO50 in Figure 9c shows that negative spillovers are becoming more

dominant between 2017 and the end of 2018, after which SAM quickly rises to a positive level

right before the COVID-19 crisis, eventually settling at a level of 0.01. Notice that the SAM

from SP500 coincides with the total SAM in Figure 7b. This logically follows from the long-term

FEVD results, where it is seen that SP500 innovations largely dominate the decomposition of

forecast error variances of all markets, for both positive and negative semivariances. The other

main difference is that negative spillovers, compared to good positive spillovers, from SP500
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gain more ground than negative spillovers from the N225 and STO50 markets. This leads to

a negative SAM from SP500 after the COVID-19 crisis, whereas the SAMs from N225 and

STO50 actually becomes positive, likely due to the stock rally that is seen after the crisis. In

terms of SAM to the financial markets in Figures 9b, 9d and 9f, due to the scale of SP500,

any asymmetry in transmission of good and bad volatilities seems negligible. SAM to STO50

is also rather small in scale, but negative spillovers seem to slightly dominate positive spillovers

entering the STO50 market across the whole time period, though it can be clearly seen that

positive spillovers gain ground compared to negative spillovers during and after the COVID-19

crisis.

6 Conclusion and Discussion

The research question: Are asymmetric volatility spillovers present between cryptocurrency and

financial markets and how does this vary over time? has been explored with the cryptocurrencies

Bitcoin and Ethereum and the three major financial markets Nikkei 225, Eurostoxx 50 and S&P

500 between 2017 and 2021. The analysis is performed using a time-varying parameter VAR

approach developed by Primiceri (2005) such that coefficients and variance-covariance matrices

change at every time period, estimated using a Bayesian Gibbs Sampler method for realised

variance RVt, positive and negative semivariances, RS+
t and RS−t . The (asymmetric) volatility

spillovers are quantified with a number of applications, as described below.

Firstly, the effect on other markets by an exogenous shocks in a specific market is studied

using orthogonalised impulse response functions, in terms of RVt. It is found that the financial

markets are uni-directionally connected to the cryptos, as exogenous shocks in STO50 and

SP500 initially create negative responses for ETH and BTC and positive responses for ETH

and BTC from a shock in N225, but shocks in ETH and BTC do not impact the financial

markets significantly. Secondly, forecast error variance decompositions are used to analyse the

asymmetry in decomposition among good and bad volatilities using RS+
t and RS−t , based on

1-, 10- and 30-day forecasting horizons. For the 1-day horizon, most market variances are not

influenced by other markets’ innovations, except for the BTC market being affected by positive

and negative innovations of ETH, as expected. For the 10- and 30-day horizons, positive and

negative SP500 innovations are the biggest explanatory component for all markets’ variance,

though negative SP500 innovations explain a larger fraction of variances than positive SP500

innovations. Positive STO50 innovations explain larger fractions of forecast error variances than

positive N225 innovations, however this relationship reverses for negative innovations. Moreover,

it is surprising to see that BTC innovations have little to no impact on the variances of any of the

markets, whereas ETH innovations are more prominent, especially with the negative innovations

at the end of 2018, related to the mining difficulty of cryptos being reduced.
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The volatility spillovers are then further studied using the total spillover index, which show

that spillovers, thus the markets’ connectedness, increase after major bear markets. However,

total spillovers would not reach as high levels, when a quick recovery is seen after a bear market,

which is seen after the COVID-19 crisis. This relates to the market connectedness increasing in

times of crises and/or bear markets, whereby investors homogenise beliefs across different asset

classes. This total spillover index is further disassembled into positive and negative spillovers due

to RS+
t and RS−t respectively, through the SAM . As expected, the good spillovers dominate

the bad spillovers between the two bear markets, inferring optimism in the crypto- and financial

markets. But this reverses after the COVID-19 crisis, as negative spillovers dominate, which ties

in with the reaction of investors to the bad news and market expectations at the time. Lastly,

the contribution of each market towards the SAM is evaluated. For the main market SP500,

good spillovers from SP500 to other markets dominate negative spillovers, until the COVID-19

crisis shows that relatively more negative spillovers from SP500 transfer to other markets. For

SAM from N225 and STO50 though, both markets rise to a positive SAM level, thus relatively

more positive spillovers are transferred to other markets after the COVID-19 crisis. For the

cryptos, asymmetries in good and bad volatilities from ETH and BTC are minimal and rather

see more volatility asymmetries receiving from all the other markets. This thus shows evidence

that asymmetries in spillovers is uni-directional, mostly transferring to the crypto markets.

It can thus be concluded that asymmetric volatility spillovers among cryptocurrencies and

financial markets indeed exist and that it varies over time dependent on the financial environ-

ment, as major bear markets clearly alter the dynamics of the volatility asymmetries, especially

with the bear markets at the start of 2018 and the COVID-19 crisis. However, the extent of

BTC’s good and bad volatilities affecting volatilities in other markets is minimal, with ETH

rather emerging as the crypto that is most interconnected with the financial markets.

The findings of this paper are interesting with regards to previous discoveries. Wang & Wu

(2018) found that financial markets transmit more volatility to each other after major crises,

which is also found in this paper after the bear markets of 2018 and the COVID-19 crisis. This

finding is further enhanced by this paper, through differentiating for how volatility spillovers

would continue to rise and to what extent the spillovers would increase. Wang & Wu (2018) also

observed that SP500 explained the forecast error variance of good volatilities more than of bad

volatilities between 2002-2014, while this paper discovers the reverse between 2017-2021. This

paper also finds that both good and bad volatilities from the N225 market influence volatilities in

ETH and BTC uni-directionally, though Malhotra & Gupta (2019) findings revealed that rather

uni-directional spillovers from cryptos to major Asian Equity markets were present. Neverthe-
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less, ETH and BTC still seem more interconnected with N225 and SP500 rather than STO50,

likely due to these cryptos being most frequently traded in the Asian and American markets.

Lastly, Wajdi et al. (2020) uncovered that bad rather than good volatilities are transmitted

across cryptos. However, this paper finds evidence for the transmission of both semivariances,

dependent on the time period, eg. positive volatilities between cryptos are notable during the

two bear markets, whereas bad volatilities from ETH especially dominate at the end of 2018.

For future research, the following suggestions may give further insights in asymmetric volatil-

ity spillovers among crypto- and financial markets. First, the TVP-VAR model of Primiceri

(2005) assumes the parameters vary at every time period, though no markets are found to have

significant structural breaks at every single time period. Therefore, it would be interesting to

review the results with the mixture innovation variant of the TVP-VAR model (Koop et al.,

2009). Given that this model would only estimate new parameters and variance-covariance ma-

trices at times when the structural break is significantly present, this would give insight as to

whether the parameters of Primiceri’s TVP-VAR are ill-determined or not. Second, even though

Primiceri (2005) stated that the results from different orderings of variables is rather robust,

contemporaneous results in orthogonalised IRFs and FEVDs are affected. For example, ETH

is the most exogenous market and thus could not have been affected by innovations from other

markets contemporaneously. Further research could overcome this problem by obtaining the

average result from all the possible orderings of the markets. Last, the asymmetric volatility

spillover indices are estimated using TVP-VAR models for positive and negative semivariances

separately. By extending the model through including both positive and negative semivariances

of all markets as endogenous variables, the transmission mechanism between good and bad

volatilities across markets could then also be examined.
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Baruńık, J., Kočenda, E., & Vácha, L. (2017). Asymmetric volatility connectedness on the forex

market. Journal of International Money and Finance, 77 , 39–56.

Bekaert, G., & Wu, G. (2000). Asymmetric volatility and risk in equity markets. The Review

of Financial Studies, 13 (1), 1–42.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics, 31 (3), 307–327.

Brauneis, A., & Mestel, R. (2018). Price discovery of cryptocurrencies: Bitcoin and beyond.

Economics Letters, 165 , 58–61.

Burns, W. J., Peters, E., & Slovic, P. (2012). Risk perception and the economic crisis: A

longitudinal study of the trajectory of perceived risk. Risk Analysis: An International Journal ,

32 (4), 659–677.

Carter, C. K., & Kohn, R. (1994). On gibbs sampling for state space models. Biometrika,

81 (3), 541–553.

Centieiro, H. (2019). What is happening to the bitcoin mining difficulty? Hen-

rique Centieiro. https://henriquecentieiro.medium.com/what-is-happening-to-the

-bitcoin-mining-difficulty-c865f2bbb089.

Chib, S., & Greenberg, E. (1995). Hierarchical analysis of sur models with extensions to

correlated serial errors and time-varying parameter models. Journal of Econometrics, 68 (2),

339–360.

Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions.

Econometrica: Journal of the Econometric Society , 591–605.

Cogley, T., & Sargent, T. J. (2005). Drifts and volatilities: monetary policies and outcomes in

the post wwii us. Review of Economic Dynamics, 8 (2), 262–302.

Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions:

Measuring the connectedness of financial firms. Journal of Econometrics, 182 (1), 119–134.

Elwood, S. K. (1997). Estimating permanent and transitory components of gnp using consump-

tion information. Southern Economic Journal , 567–575.

33

https://henriquecentieiro.medium.com/what-is-happening-to-the-bitcoin-mining-difficulty-c865f2bbb089
https://henriquecentieiro.medium.com/what-is-happening-to-the-bitcoin-mining-difficulty-c865f2bbb089


French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock returns and

volatility. Journal of Financial Economics, 19 (1), 3.

Futures, F. (2018). Infographic: Which country trades the most bitcoin? FINTECH

FUTURES . https://www.fintechfutures.com/2018/08/infographic-which-country

-trades-the-most-bitcoin/.

Gkillas, K., & Katsiampa, P. (2018). An application of extreme value theory to cryptocurrencies.

Economics Letters, 164 , 109–111.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected

value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48 (5),

1779–1801.

Harvey, A., & Sucarrat, G. (2014). Egarch models with fat tails, skewness and leverage.

Computational Statistics & Data Analysis, 76 , 320–338.

Hoover, K. D. (2005). Automatic inference of the contemporaneous causal order of a system of

equations. Econometric Theory , 21 (1), 69–77.
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Appendix A

Appendix A provides a description of all the scripts that are used to generate the results in this

paper. All the scripts that are described below can be found within the .zip file, that is provided

alongside this paper.

The data pre-processing and generating some of the results, such as generating realised

variances, positive and negative semivariances, is performed in Python 3.5 (Van Rossum &

Drake Jr, 1995) with the packages pandas (McKinney et al., 2010), numpy (van der Walt et

al., 2011) and statsmodels (Seabold & Perktold, 2010). Two Python scripts are created named

TVP-VAR data preparation.py and Data characteristics.py, which can be found in the folder

data generation (Python) within the uploaded .zip file.

The script TVP-VAR data preparation.py is used to import the data for all the crypto- and

financial markets that is required to obtain the realised variances, positive and negative semi-

variances. Then, the script Data characteristics.py is used to obtain the descriptive statistics,

correlation matrices, the optimal lag order and stationarity tests for all the markets and variance

types. The maximum variance for each market is also obtained in this script, alongside the day

on which the maximum variance occurred.

After the data pre-processing in Python, the rest of the results are obtained in Matlab. As

mentioned in the methodology, the TVP-VAR model is run using the code provided by Koop

& Korobilis (2010), with adaptations such that all the results can be obtained, as listed below.

The following scripts and functions are created:

• main.m: this is the main script, which uses all the below-listed functions/scripts. It runs

the TVP-VAR model for every variance type. Then, it creates all the required figures which

are used in this paper, such as impulse responses, forecast error variance decompositions

over time and all the (asymmetric) spillover indices.

• structural break counts.m: this script counts the number of structural breaks that are

significant, using the Chow test for every market and variance type.

• hetero TVP VAR func.m: runs the heteroskedastic TVP-VAR model, as provided by Koop

& Korobilis (2010) (by heteroskedasticity is meant that the variance-covariance matrix is

also time-varying). The parameters are estimated using the Gibbs sampler, after which

the posterior means of the parameters, impulse responses and forecast error variance de-

compositions (FEVD) of all the draws are calculated. This function then outputs the

estimated coefficient matrices, the impulse responses and the FEVDs. Lastly, it also cre-

ates the figures for the impulse responses, both the scaled and the unscaled versions (which

includes the 16th and 84th quantile, representing the confidence interval).
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• ts prior.m: extracts the parameters required for the initialisation of the prior conditional

distributions, as described in subsection 3.3.3.

• quantile.m: This function obtains the xth quantile of a certain vector. This is especially

used when the posterior means of all the estimated parameters are calculated in the Gibbs

sampler and extracting the 16th and 84th quantiles of the impulse responses.

• IRA tvp.m: this script generates the impulse responses at every draw of the Gibbs sampler

for the given dates, based on the maximum variance of the studied markets. Furthermore,

the forecast error variance decompositions are also calculated for every time period.

• mlag2.m: given Y as input matrix, it creates the lagged Y matrix, based on the lag order of

the TVP-VAR model. if Y is a TxN matrix, where T stands for the number of observations

and N for the number of parameters, then lagged Y would be a Tx(Np) matrix, where p

represents the lag order of the TVP-VAR model.

• draw sigma.m: within the Gibbs sampler, this function draws the elements of Dt, the

diagonal matrix.

• SVRW2.m: this function is responsible for drawing the stochastic volatility, which is used

to draw the elements of Dt.

• draw alpha.m: within the Gibbs sampler, this function draws the elements of φt, the lower

triangular matrix with ones on the diagonal positions.

• draw beta.m: within the Gibbs sampler, this function draws the elements of Ap,t, the

coefficient matrix of the pth lag order at time t.

• wish.m: extracts observations from the Wishart distribution, with scale matrix h and

degrees of freedom being ν, using Bartlett’s decomposition. Observations from the Wishart

distribution are needed to make draws of the hyperparameters of V, from (10), which all

follow an inverse-Wishart distribution as described in subsection 3.3.3.

• corrvc.m: this function computes the correlation matrix from the variance-covariance

matrix. This function is used when deriving the time-varying variance-covariance matrix

at every draw of the Gibbs sampler.

• carter kohn.m: this script provides the Kalman filter (see Carter & Kohn (1994) for more

details on the Kalman filter) and the backward recursion, which are required to calculate

all the observations of a certain parameter, within a draw of the Gibbs sampler.

• mvnrnd.m: this function generates a matrix of random numbers, with a predetermined

length, from a multivariate normal distribution that has mean µ and variance-covariance

matrix Σ. This is especially used within the scripts draw alpha.m and draw beta.m, when

draws of these matrices are taken from the conditional posterior distribution.
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• create fevd figures.m: this function creates the figures of the forecast error variance de-

compositions of all markets for the 1-day, 10-day and 30-day horizons.

• get spillovers indices.m: this function calculates the total spillover index and also the

contribution of individual markets to this total volatility spillover. This is done by deter-

mining the volatility spillover from a specific market to all the other markets, but also the

volatility spillovers from all markets to a specific market.

• create spillover figures tomarkets.m: This function creates the figures for SAM to a specific

market, with volatility spillovers coming from all the other markets.

• create spillover figures frommarkets.m: this function creates the figures for SAM from a

specific market, with the volatility spillover going to all other markets. Separate functions

are created for SAM from- and to markets, such that the figures have the correct titles

and labelling.
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Appendix B

B.1: Sample drawing of φT

To understand why samples of φT cannot be drawn as easily as with αT , we use the original

representation of the TVP-VAR(p) model:

RVt = ct +A1,tRVt−1 + . . .+Ap,tRVt−p + εt (36)

As defined in the methodology, the residual variance-covariance matrix, Σε,t = FtDtF
′
t , where

Ft is a lower triangular matrix with ones on the diagonal and Dt a diagonal matrix at time t,

as below:

Ft =


1 0 . . . 0

φ21,t 1
. . .

...
...

. . .
. . . 0

φN1,t . . . φNN−1,t 1

 , Dt =


σ1,t 0 . . . 0

0 σ2,t
. . .

...
...

. . .
. . . 0

0 . . . 0 σN,t

 (37)

By using Ft and Dt, it follows from (36) that the TVP-VAR process can be rewritten to

(38). By stacking the coefficient matrices through a vectorisation process of all the ith lagged

coefficient matrices on the right hand side (RHS) of the equation, it can be further condensed

into (39), where ⊗ denotes the Kronecker product.

RVt = ct +A1,tRVt−1 + . . .+Ap,tRVt−p +A−1
t Σtut , where V (ut) = IN . (38)

RVt = X ′tAt +A−1
t Σtut , where Xt = IN ⊗ [1, RV ′t−1, . . . , RV

′
t−p]. (39)

The system of equations in (39) is then further manipulated as seen below in (40), where

R̂V t is observable when AT is given (which is the case as we would draw AT before drawing φT

in the Gibbs Sampler). Given that Ft is a lower triangular matrix with ones on the diagonal,

(40) can be further condensed, as in (41), where φt is the same as in (8) such that it is a

(N(N−1)
2 )x1 vector of non-zero and non-one elements of the rows of the matrix F−1

t and Zt is a

N x N(N−1)
2 matrix, denoted by (42). the notation R̂V [1,..,i], t in Zt represents the row vector

[R̂V 1,t, R̂V 2,t, . . . , ˆRVi,t].

Ft(RVt −X ′tAt) = FtR̂V t = Dtut. (40) R̂Vt = Ztφt +Dtut (41)

Zt =



0 . . . . . . 0

−R̂V 1,t 0 . . . 0

0 −R̂V [1,2],t
. . .

...
...

. . .
. . . 0

0 . . . 0 −R̂V [1,..,N−1],t


(42)
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From (41), it becomes evident that the model has a nonlinear Gaussian representation,

through the time-varying coefficient at every time t. However, the problem is that the observable

R̂V t appears on both the LHS and RHS (in Zt) of the equation. This means that [R̂V t, φ̂t]

are not jointly normal, implying that the conditional distributions also cannot be derived using

the normal Kalman filter recursion, as with αT . But by having the additional assumption of

Ψ, the variance of the residual from the random walk model of φt, being block diagonal, the

matrices can be broken down equation by equation, on which the Kalman filter and the backward

recursion can be applied. There are two reasons why this works: First, the endogenous variable

of the ith market’s equation, R̂V i,t is not on the RHS of the same equation anymore. Second, the

row vector R̂V [1,...,i−1],t becomes predetermined in the ith equation, as the endogenous variable

vector for i<k for the kth equation would be recursively derived before.

As explained in the methodology, this allows us to decompose φT equation by equation,

where φi,t represents the ith block of φt that corresponds with the ith equation’s coefficients in

(41). φi,t can be recursively drawn from the Gaussian distribution p(φi,t|φi,t+1, RV
t, αT , σT , V )

∼ N(ai,t|t+1, νi,t|t+1), where ai,t|t+1 = E(φi,t|φi,t|t+1, RV
t, αT , σT , V ) and

νi,t|t+1 = V ar(φi,t|φi,t|t+1, RV
t, αT , σT , V ) for the ith equation.

B.2: Rewriting a TVP-VAR(p) process into a TVP-VAR(1) process

For orthogonalised IRFs and FEVDs, it is useful to rewrite the TVP-VAR(p) process (as can

be seen in (43)) as a TVP-VAR(1) process (as can be seen in (44)). In terms of the inputs,

the TVP-VAR(p) process has RVt and εt as Nx1 vectors of the endogenous variables and the

residuals respectively at time t and Ai,t as the NxN coefficient matrix of the ith lag at time t.

The vectors and matrices are different for the TVP-VAR(1) process, where RV t is an Npx1

vector of the endogenous variables of the p lagged observations stacked up one below the other,

et is an Npx1 vector of residuals where only the first N elements are the elements of εt and zero

otherwise and At is an NpxNp coefficient matrix, where the first N rows contain the coefficient

matrices Ai,t from the TVP-VAR(p) process, the lower-left N(p-1)xN(p-1) block of the matrix

has NxN identity matrices on the diagonal and the last N columns of the lower N(p-1) rows only

contain zeros.

RVt = µt +

p∑
i=1

Ai,tRVt−i + εt (43)

RVt = AtRVt−1 + et,where RVt =


RVt

...

RVt−p+1

 , et =


εt

0
...

0

 , At =


A1,t . . . Ap−1,t Ap,t

IN . . . 0 0
...

. . .
...

...

0 . . . IN 0


(44)
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To show that both TVP-VAR processes are equivalent, example vectors and matrices of the

TVP-VAR(1) process are presented below using the optimal lag order used in this paper, p=3:

RVt =


RVt

RVt−1

RVt−2

 , et =


εt

0

0

 ,At =


A1,t A2,t A3,t

IN 0 0

0 IN 0

 (45)

By inputting these vectors and matrices into (44) and multiplying everything out, it can be

seen below that the first N rows become the TVP-VAR(p) process RVt =
∑p

i=1Ai,tRVt−i+εt and

the remaining N(p-1) rows show that the lagged RVt−i for i=1,2 are equal to itself. Therefore,

both TVP-VAR representations are equivalent.
RVt

RVt−1

RVt−2

 =


A1,t A2,t A3,t

IN 0 0

0 IN 0



RVt−1

RVt−2

RVt−3

 +


εt

0

0

 =


A1,tRVt−1 +A2,tRVt−2 +A3,tRVt−3 + εt

RVt−1

RVt−2


(46)

B.3: Derivation of the orthogonalised impulse response functions

This section follows Lütkepohl (2005) and elaborates as to why the orthogonalised impulse

responses, for a certain time horizon H, are denoted by Θi,t of the orthogonalised MA represen-

tation of the TVP-VAR(p) process:

Θ0,t = Pt , Θ1,t = Φ1,tPt , . . . , ΘH,t = ΦH,tPt. (47)

First, consider the zero mean TVP-VAR(p) model:

RVt = A1,tRVt−1 + . . .+Ap,tRVt−p + εt (48)

This model can be rewritten such that the residuals of the equations related to the different

markets are independent of each other. Therefore, a decomposition of the residual variance-

covariance matrix Σε,t = FtDtF
′
t is chosen, where Ft is lower triangular with ones on the diagonal,

Dt a diagonal matrix at time t. This can be obtained from the Cholesky decomposition, Σε,t =

PtP
′
t , where Pt is a lower triangular matrix. By establishing a diagonal matrix ∆t, where the

diagonal elements are equivalent to the diagonal elements of Pt, Ft and Dt can be specified as

follows: Ft = Pt∆
−1
t and Dt = ∆t∆

′
t. By pre-multiplying (36) with Bt = F−1

t , it provides

BtRVt = A∗1,tRVt−1 + . . .+A∗1,pRVt−p + ut, (49)

where A∗i,t = BtAi,t for all t and i = 1, ..., p and ut = (u1,t, ..., uN,t) = Btεt. It then follows

that ut has a diagonal variance-covariance matrix Σu,t = E(utu
′
t) = BtE(εtε

′
t)B
′
t = BtΣε,tB

′
t.

Next, by adding (IN−Bt)RVt on each side of (49) gives (50), where A∗0,t = IN−Bt. As previously

defined, Ft is a lower triangular matrix with ones on the diagonal. This then also indicates that

Bt should be lower triangular. Therefore, A∗0,t becomes the lower triangular matrix as described

in (51), with the diagonal elements becoming zero.
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RVt = A∗0,tRVt +A∗1,tRVt−1 + . . .+A∗p,tRVt−p + ut (50)

A∗0,t =



0 0 . . . 0 0

a∗21,t 0 . . . 0 0
...

. . .
. . .

...
...

. . .
. . .

...

a∗N1,t a∗N2,t . . . a∗N(N−1),t 0


(51)

As can be seen in (51), the first row, or the equation corresponding to the first market, does

not contain any non-zero elements. To interpret it in terms of a TVP-VAR(p) process, this

means that the first equation does not have any instantaneous RVs on the RHS. To generalise

it for the kth equation, it can only contain instantaneous RVi,t for i<k. By recursively tracking

ui,t, the innovation of the ith market at time t with a size of one standard error, the Θi,t, which

is the coefficient matrix from the orthogonalised MA representation of a TVP-VAR(p) model,

becomes the impulse response. This can be concluded, if the system in (50) is solved for RVt,

by pre-multiplying both sides by (IN −A∗0,t)−1:

RVt = (IN −A∗0,t)−1A∗1,tRVt−1 + . . .+ (IN −A∗0,t)−1A∗p,tRVt−p + (IN −A∗0,t)−1ut (52)

Notice that (IN − A∗0,t)−1 = Ft = Pt∆
−1
t . This shows that the responses to a one standard

deviation exogenous shock in a particular market is shown by Ft∆t = Pt = Θ0,t, due to the

diagonal elements of ∆t being the standard deviations of ut. The Θi,ts are then recursively

calculated using Φi,t, being the coefficient matrix of the normal MA representation of the TVP-

VAR(p) process at the ith time horizon within the impulse response horizon h.
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Appendix C

Table C.1: The correlation matrix of all markets with RS+
t and RS−t

RS+
t RS−t

Markets ETH BTC N225 STO50 SP500 ETH BTC N225 STO50 SP500

ETH 1.000 1.000
BTC 0.603 1.000 0.929 1.000
N225 0.108 0.137 1.000 0.075 0.115 1.000
STO50 0.159 0.235 0.555 1.000 0.069 0.107 0.489 1.000
SP500 0.225 0.359 0.525 0.771 1.000 0.079 0.121 0.286 0.741 1.000

44



Appendix D

Table D.1: The dates at which the maximum variance of all markets is noted, for RVt

Market Date of maximum variance Maximum variance

ETH 2018/12/07 0.4271
BTC 2018/12/07 0.2379
N225 2020/03/13 0.0068
STO50 2020/03/16 0.0095
SP500 2020/03/16 0.0123

(a) Response of ETH, from ETH (b) Response of BTC, from ETH

(c) Response of N225, from ETH (d) Response of STO50, from ETH (e) Response of SP500, from ETH

Figure D.2: Orthogonalised impulse response functions, from an exogenous shock in Ethereum,
with the 16th and 84th quantiles.
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(a) Response of ETH, from BTC (b) Response of BTC, from BTC

(c) Response of N225, from BTC (d) Response of STO50, from BTC (e) Response of SP500, from BTC

Figure D.3: Orthogonalised impulse response functions, from an exogenous shock in Bitcoin,
with the 16th and 84th quantiles.

(a) Response of ETH, from N225 (b) Response of BTC, from N225

(c) Response of N225, from N225 (d) Response of STO50, from N225 (e) Response of SP500, from N225

Figure D.4: Orthogonalised impulse response functions, from an exogenous shock in Nikkei225,
with the 16th and 84th quantiles.
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(a) Response of ETH, from STO50 (b) Response of BTC, from STO50

(c) Response of N225, from STO50
(d) Response of STO50, from
STO50

(e) Response of SP500, from
STO50

Figure D.5: Orthogonalised impulse response functions, from an exogenous shock in Eurostoxx
50, with the 16th and 84th quantiles.

(a) Response of ETH (b) Response of BTC

(c) Response of N225 (d) Response of STO50 (e) Response of SP500

Figure D.6: Orthogonalised impulse response functions, from an exogenous shock in S&P 500,
with the 16th and 84th quantiles.
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Appendix E

(a) FEVD of ETH, 10 day horizon

(b) FEVD of BTC, 10 day horizon

(c) FEVD of N225, 10 day horizon (d) FEVD of STO50, 10 day horizon

(e) FEVD of SP500, 10 day horizon
Figure E.1: Forecast error variance decomposition of all markets for 10 day horizon for RS+

t .
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(a) FEVD of ETH, 10 day horizon (b) FEVD of BTC, 10 day horizon

(c) FEVD of N225, 10 day horizon (d) FEVD of STO50, 10 day horizon

(e) FEVD of SP500, 10 day horizon
Figure E.2: Forecast error variance decomposition of all markets for 10 day horizon for RS−t .
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(a) FEVD of ETH for RS+
t (b) FEVD of ETH for RS−t

(c) FEVD of N225 for RS+
t (d) FEVD of N225 for RS−t

Figure E.3: Forecast error variance decompositions of ETH and N225 for 1 day horizon for RS+
t

and RS−t .
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(a) FEVD of STO50 for RS+
t (b) FEVD of STO50 for RS−t

(c) FEVD of SP500 for RS+
t (d) FEVD of SP500 for RS−t

Figure E.4: Forecast error variance decompositions of STO50 and SP500 for 1 day horizon for
RS+

t and RS−t .
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