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1 Introduction

In the Modern Portfolio Theory, founded by Nobel laureate Markowitz (1952), the precision ma-

trix of the stock returns, Σ−1, plays a crucial role regarding mean variance portfolio optimization.

Essentially, optimal portfolio weights w can be obtained by the following proportionality rela-

tionship w ∝ Σ−1µ, where µ are the expected returns of the assets in the portfolio. Therefore,

we propose two versions of a mean variance optimizer for the precision matrix, where the mean

variance optimizer is generally defined as Ψ ≡ Σ−1.

When the objective is to find a set of weights w that yield the lowest portfolio variance

possible, we use the mean variance optimizer to obtain the global minimum variance (GMV)

portfolio w ∝ Σ−11N . In this paper we use two variants of the mean variance optimizer in order

to achieve risk reduction, which will be introduced later.

Although the Modern Portfolio Theory provides a clear and strong theoretical foundation,

empirical results of J David Jobson and R. M. Korkie (1981) and DeMiguel, Garlappi, and Uppal

(2009) show that mean variance optimization is difficult to implement in practice. The sample

covariance matrix seems to play an important role in this because it tends to be susceptible

to large estimation errors. Such errors have a tendency to occur when there are not enough

historical stock return observations (T ) relative to the amount of stocks in the portfolio (N)

(i.e. larger N/T ratio), or when the correlations between the stocks in the portfolio are high.

Kan and Zhou (2007) found that when N is relatively large compared to T , estimation errors in

the sample covariance matrix are the most problematic. Empirically, this poor estimation lead

to unstable and unreliable optimal weights.

This paper builds upon the work of Goto and Xu (2015). The aim is to improve the estimation

of the precision matrix, i.e. the mean variance optimizer, Ψl ≡ Σ−1, l ∈ {ρ, λ}. Here Ψρ denotes

the proposed mean variance optimizer of Goto and Xu (2015), and Ψλ is our own proposed mean

variance optimizer. Stevens (1998) have found that Σ−1 possesses optimal hedging relations in

their rows (or columns), that is, the row of stock ith is proportional to that stock’s hedge

portfolio. In this hedge portfolio, a long position is taken in stock i and a short position in

the other N − 1 stocks. Thereby, the N − 1 stocks track the ith stock return to minimize the

tracking error variance. This implies that the off-diagonal elements of row i, i ∈ {1, ..., N} in ψp,

can be regarded as regression coefficients from a scaled ordinary least squares (OLS) estimation

of stock i on the other N − 1 stocks. The link of the elements of Ψk with a regression model

opens the door for more advanced Econometric methods to reduce estimation errors and improve

robustness.

In a general regression model, when the number of explanatory variables (N) are high relative
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to the number of observations (T ), multicollinearity subjects the coefficients to large estimation

errors. The same sort of problem also arises in the context of portfolio optimization. To

conquer this multicollinearity problem and make the proposed mean variance optimizer sparse

(i.e. set some off-diagonal elements to 0), we propose two strategies. The strategies are based on

penalization procedures, where in every row i of ψ the regression coefficients are shrunk toward

0 to curtail extreme hedge positions, and redundant stocks are dropped in each hedge portfolio

(subset selection).

The first strategy is the one of Goto and Xu (2015). To obtain shrinkage and sparsity when

estimating ψρ, the ’lasso’ method by R. Tibshirani (1996) served as an important tool. With

this method, the l1 norm, i.e. the sum of the absolute values of the off-diagonal elements of Ψρ

(which serves as an additional regularizer penalty in the cost function), is penalized to tackle

multicollinearity. Because the precision matrix needs to be positive definite and symmetric,

Goto and Xu (2015) used quasi-maximum likelihood (QML) with a contraint on the l1 norm,

similarly to Yuan and Lin (2007) and Rothman et al. (2008). This way the N hedge regressions

are estimated jointly as a group. Friedman, Hastie, and R. Tibshirani (2008) have found that

the QML method is equivalent to a N -coupled lasso problem. So the ’graphical lasso’ (glasso)

algorithm can be employed, as also done by Goto and Xu (2015), to solve the QML estimation

problem.

The second strategy is based on the approach of Zou and Hastie (2005), namely Elastic Net

regression. This yields an Elastic Net type of penalty with a combination of the l1 and l2 norm,

(where the l2 norm is in this case the sum of the squared values of the off-diagonal elements of

Ψλ). The algorithm builds upon the glasso algorithm of Friedman, Hastie, and R. Tibshirani

(2008). This approach also uses the same hedging relations to achieve shrinkage and subset

selection. However, it also includes a diagonal target matrix for the precision matrix, in the

form of an identity matrix.

The main goal of the two mean variance optimizers, Ψρ and Ψλ, is to achieve risk reduction.

To assess their out-of-sample performance, we used the first three data sets also used by Goto

and Xu (2015). This data is publicly available on the Web site of Ken French (http://mba.tuck

.dartmouth.edu/pages/faculty/ken.french/data library.html). The portfolios used for evaluation

are based on size and book-to-market ratio, as well as Fama and French’s (1997) 48 industry

portfolios. N/T ratios range from 0.400 to 1.233. To look whether risk reduction is achieved with

our proposed estimators Ψρ and Ψλ, we compare GMV portfolio performances of our proposed

estimators with different estimators for Σ−1.

When we assess the portfolios empirically, we see that Ψρ and Ψλ both achieve significant out-
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of-sample portfolio risk reduction compared to the alternative portfolios. Thereby, the Sharpe

ratios of our proposed mean variance optimizers are both substantially high and significantly

higher compared to the Sharpe ratios of much of our alternative portfolios. Lastly, when we

look at the certainty equivalent returns adjusted for turnover/transaction costs, the results of

the portfolios with Ψρ and Ψλ are promising.

The rest of the paper has the following organisation. Section 2 is the theory section, where

we give a more detailed explanation about the hedging relations in Σ−1 founded by Stevens

(1998), as well as a literature review about the subject and our proposed estimators. Section 3

is the data section which shows how the data has been gathered and processed. In section 4 the

methodology section can be found, where the used methods are presented. Section 6 contains

the results of this paper. Finally, we finish the paper with the conclusion in section 7.

2 Theory

2.1 Hedging Relations In The Precision Matrix

Stevens (1998) found out that the precision matrix contains optimal hedge relations of the stocks.

Specifically, the rows (or columns) consist of proportional hedge portfolios, where in the hedge

portfolio for stock i a long position is taken in stock i and a short position in the other N − 1

stocks. This short position tracks the return of stock i in order to minimize the variance of the

tracking error without any constraints. The following regression formula shows how the hedging

portfolio can be estimated:

ri,t = αi +
N∑

k=1,k 6=i
βi|krk,t + εi,t, (1)

where ri,t is the return for stock i in period t; βi|k is the marginal contribution of stock k

to the hedge of stock i beyond the other N − 2 stocks in the hedging portfolio; and εi,t is the

idiosyncratic component of stock i, where the variance of εi,t is denoted by vi = var(εi,t), i.e. the

idiosyncratic risk of stock i. In each hedge regression, the objective is to minimize vi. Therefore,

the regression in (1) can be regarded as an OLS estimation problem.

Stevens (1998) calls the formula in (1) a “regression hedge” and with the help of this regres-

sion equation the hedging relations in the precision matrix can be made clear. That is, if we

have an N x N precision matrix denoted by Σ−1 = Ψ = [ψij ] (where ψij denotes the (i, j)th

element of Ψ), the following relationship between (1) and Ψ can be obtained (as founded by

Stevens (1998)):
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ψij =


−βi|j

vi
if i 6= j

1
vi

if i = j

(2)

As already discussed, the βi|j coefficient represents a marginal hedging ability for stock j to

hedge stock i beyond the other N−2 stocks. Therefore, ψij can also be viewed as a measurement,

scaled by vi, of marginal hedging ability between stocks i and j conditional on all the other stocks

in the concerned portfolio. The relationship shown by (2) also reveals that if stocks i and j have

no correlation with each other, conditional on the other stocks in the portfolio, βi|j = 0, which

implies that ψij = 0.

To get a more intuitive feeling about this important relationship, the ith row of the precision

matrix can be represented as follows:

Ψ(i, ·) =
1

vi
[−βi|1, ...,−βi|i−1, 1,−βi|i+1, ...,−βi|N ]. (3)

This equation shows that the ith row of the precision matrix can be regarded as a vector of

stock holdings in the ith stock’s hedge portfolio. The coefficients imply that a unit long position

is taken in stock i (the 1 coefficient), and a short position in the hedge portfolio denoted by the

regression in equation (1). The holdings of each stock are also scaled by 1
vi

, which makes that

when the unhedgeable risk of stock i is smaller, the optimal portfolio takes a larger position in

that particular stock. So in order to minimize portfolio risk, we have shown that hedge trades

play an important role when working with the mean variance optimizer Ψ.

2.2 Improved Estimation Of The Precision Matrix

2.2.1 Dealing With Multicollinearity

Estimation of the precision matrix Σ−1 plays a crucial role in mean variance portfolio opti-

mization. With the described characteristics of Σ−1 in the preceding section, it is clear that

mean variance optimization is prone to large estimation errors. A hedge regression, as shown

in equation (1), contains a constant and N − 1 stocks as independent variables. In many cases

these stock returns are highly correlated. Also in practice, the number of available historical

returns relative to the number of stocks to estimate the regression is not sufficient enough to get

a reliable estimation result. Therefore, in most practical situations the hedge regression estima-

tion suffers from multicollinearity. The consequences of multicollinearity are that the estimated

hedge coefficients (β̂′s) are inefficient, i.e. have large estimation errors. This gives unstable and

unreliable estimates of the (β̂′s). This implies that the off-diagonal elements of Ψi are also prone
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to large estimation errors, as made clear by the relationships given in equation (2).

To handle the multicollinearity problem, one first solution might be to get higher frequency

returns, such as daily returns, to estimate the sample covariance matrix. Jagannathan and Ma

(2003) used such daily returns instead of monthly for estimating the sample covariance matrix

and found more reliable estimates. However, daily returns are less used in the day to day practice

by investment professionals and monthly returns are more of a standard. So our approach to

conquer the multicollinearity problem is to penalize the the l1 and l2 norms of the regression

coefficients that need to be estimated.

2.2.2 Estimation With Glasso Estimator

With the mean variance optimizer proposed by Goto and Xu (2015), Ψρ, the l1 norm is penalized

to tackle the multicollinearity problem. R. Tibshirani (1996) proposed the ”lasso” method,

where the sum of the absolute values of the regression coefficients are penalized with this l1

norm. When we connect this with the hedge regression in equation (1), we obtain the following

”lasso” estimation problem:

β̂lassoi|k = argminβ


T∑
t=1

(ri,t −
N∑

k=1,k 6=i
βi|krk,t)

2 + γ
N∑

k=1,k 6=i
|βi|k|

 . (4)

When the regressors are orthonormal, we obtain the following relationship between the lasso

coefficient β̂lassoi|k and the OLS coefficient β̂OLSi|k :

β̂lassoi|k = (|β̂OLSi|k | − γ/2)+sign(β̂OLSi|k ); k = 1, ..., N, k 6= i, (5)

where (x)+ = max(x, 0), and the penalty parameter γ is the soft threshold. Absolute values

of OLS point estimates below this soft threshold give a lasso solution β̂lassoi|k which is set to 0.

When the absolute value is above the soft threshold, β̂lassoi|k is shrunk toward 0 by the magnitude

of the soft threshold, but it never actually crosses 0 or alternates sign. With this approach the

lasso solution achieves shrinkage and subset selection in each hedge regression.

However, the orthonormal condition necessary for the relationship in (5) to hold is hardly

satisfied, and we often see correlations between the regressors. When this is the case, the β̂lassoi|k

can be obtained in an iterative way. Denote with β̃
(γ)
i|k the current estimate for βi|k at penalty

parameter γ. Then, Friedman, Hastie, Höfling, et al. (2007) find the unique convergence to the

following lasso estimate:
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β̃
(γ)
i|k = S(β̃

(γ)
i|k +

T∑
t=1

rk,tx(ri,t −
N∑

j=1,j 6=i
β̃

(γ)
i|k rj,t)

 , γ); k = 1, ..., N, k 6= i, (6)

where S(b, γ) = sign(b)(|b| − γ)+ denotes the soft-thresholding operator.

When the number of assets is larger than the number of return observations for the assets,

i.e. N > T , each hedge regression has an infinite number of least-squares solutions. However, the

lasso algorithm is still able to obtain an unique solution, as long as the regressors are continuous

random variables, regardless what the specific numbers of N and T are (R. J. Tibshirani et al.

(2013)).

The value from which we start the iteration can be obtained with different methods, because

the starting value has no influence on the final solution. In practice, the Moore–Penrose pseu-

doinverse (via singular value decomposition) can be used to provide us the starting iteration for

the least-squares estimate.

Because of the hedging relations which Stevens (1998) found in the precision matrix, we

could apply lasso to each hedge regression to estimate each row (or column) in order to achieve

shrinkage and variable selection. Meinshausen, Bühlmann, et al. (2006) already implemented

such a method, which they called nodewise-regression, and found asymptotically correct esti-

mates of the nonzero elements under certain conditions (in more general context). Callot et al.

(2019) used a similar approach, but then in the context of portfolio optimization, and also found

promising results compared with other shrinkage based approaches. However, the precision ma-

trix needs to be positive definite and symmetric for portfolio optimization, and the proposed

row-by-row (or column-by-column) lasso estimation (nodewise-regression) does not restrict the

precision matrix towards those conditions. This could be a problem in practical applications,

especially now in our portfolio optimization method. Therefore, a joint instead of separate

estimation of the N hedge regressions can help to prevent this problem.

To obtain a joint estimation, i.e. all elements of the precision matrix are estimated all at once,

we follow the methods used by Yuan and Lin (2007), Banerjee, El Ghaoui, and d’Aspremont

(2008), and Friedman, Hastie, and R. Tibshirani (2008). They use a quasi-maximum likelihood

(QML) method with l1 norm penalty of its off-diagonal elements. The QML estimation problem

(7) can be solved with the graphical lasso (glasso) algorithm of Friedman, Hastie, and R. Tibshi-

rani (2008), because they demonstrated that this problem (7) is equivalent to a N-coupled lasso

problem. With the glasso algorithm the following negative l1-regularized likelihood function is

minimized:
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argminΨρ=[ψij ]ρ

{
−ln(det(Ψρ)) + trace(ŜΨρ) + ρ||Ψρ||1

}
, (7)

where det and trace denote respectively the determinant and trace of the matrix, Ŝ is

the sample covariance matrix, ρ is the regularization parameter and ||Ψρ||1 denotes the l1

norm of the off-diagonal elements of Ψρ, where the off-diagonal elements can be specified as∑N
i=1,i 6=j

∑N
j=1,j 6=i |ψij |ρ. The value of ρ ≥ 0 denotes the penalty given to the the l1 norm of the

off-diagonal elements of The larger the value of ρ, the more the sparsity of Ψρ is promoted. Note

that when ρ = 0, the last term of the formula in (7) falls away, so then the solution becomes

the same as the unconstrained QML solution. The optimal choice of ρ will be discussed in the

methodology section.

2.2.3 Estimation With Elastic Net Estimator

The other mean variance optimizer we propose is Ψλ and here the l1 and l2 norms are penalized

to conquer multicollinearity. Lasso regression is a regression tool which uses the l1 norm, and

ridge regression uses the l2 norm. To achieve a combination of them we use the elastic net

regression method of Zou and Hastie (2005). The estimation problem can be denoted as follows:

β̂elastici|k = argminβ


T∑
t=1

(ri,t −
N∑

k=1,k 6=i
βi|krk,t)

2 + γ

N∑
k=1,k 6=i

|βi|k|+ η

N∑
k=1,k 6=i

β2
i|k

 . (8)

Note that compared to formula (4), we now have two penalty parameters γ and η. In

addition to the l1 norm now the l2 norm is also added, where the sum of the squared values of

the regression coefficients are penalized with this norm. With an orthogonal design, the following

relationship between β̂elastici|k and β̂OLSi|k can be defined:

β̂elastici|k =
(|β̂OLSi|k | − γ/2)+

1 + η
sign(β̂OLSi|k ); k = 1, ..., N, k 6= i. (9)

Because the regressors are hardly orthonormal, the relationship shown in (9) does not hold

in general. Thus, to obtain an elastic net estimation for the precision matrix, we use a modified

version of the glasso algorithm of proposed by Kovács et al. (2021). This gives rise to the

following negative likelihood which needs to be minimized:

argminΨρ=[ψij ]ρ

{
−ln(det(Ψρ)) + trace(ŜΨρ) + λ(α||Ψρ||1 +

1− α
2
||Ψρ||2)

}
, (10)

where λ is a regularization parameter, α ∈ [0, 1] is the tuning parameter and Ŝ is the sample
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covariance matrix. Again we have the l1 norm of the off-diagonal elements of Ψρ denoted by

||Ψρ||1, with off-diagonal elements specified as
∑N

i=1,i 6=j
∑N

j=1,j 6=i |ψij |ρ. Now we also have the l2

norm of the off-diagonal elements of Ψρ, denoted by ||Ψρ||2. Here the off-diagonal elements are

specified as
∑N

i=1,i 6=j
∑N

j=1,j 6=i(ψij)
2
ρ. Minimizing the expression in (10) is called the Graphical

Elastic Net (gelnet) (Kovács et al. (2021)).

Note that instead of two regularization parameters for both the l1 and l2 norm, we only have

one regularization parameter λ. The tuning parameter α can be set to values between 0 and 1,

where setting α to 0 gives us the ridge regression and setting α to 1 gives us the lasso regression.

For the elastic net penalty, α is set to be 0.5.

In the gelnet algorithm we can use different target matrices. With a target matrix included,

the estimation problem now becomes:

argminΨρ=[ψij ]ρ

{
−ln(det(Ψρ)) + trace(ŜΨρ) + λ(α||Ψρ − T ||1 +

1− α
2
||Ψρ − T ||2)

}
. (11)

This expression also contains a known diagonal positive definite target matrix T . The in-

clusion of such target matrices which are suitable in the context could considerably improve

estimation results. An arbitrary positive semi-definite matrix might be more flexible than a

diagonal matrix, but in practice many target matrices used for this purpose were diagonal ma-

trices. For example, all target matrices that Van Wieringen and Peeters (2016) and Kuismin,

Kemppainen, and Sillanpää (2017) used were diagonal matrices. The target matrix we use in

our gelnet procedure is the identity matrix, because we consider this target as a good way to

promote sparsity.

3 Data

To evaluate the out-of-sample performance of our proposed mean variance optimizers Ψ̂ρ and Ψ̂λ,

we use the first three data sets also used by Goto and Xu (2015). In Table 1 some characteristics

about the data are presented. The data sets are all from assets in U.S markets. All the data sets

have monthly returns ranging from July 1963 to December 2010. The data has been gathered

on Web site of Ken French (http://mba.tuck.dartmouth.edu/ pages/faculty/ken.french/data

library.html).

The first data set consists of 100 portfolios formed on size and book-to-market ratio (data

set 1), the second data set of Fama and French’s (1997) 48 industry portfolios (data set 2), and

the third one a combination of the preceding two data sets consisting of 148 portfolios (data set
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3).

All the returns are exclusive dividend, and the risk-free rate is subtracted from all the returns

to obtain excess returns. When a particular return was missing, excess market return data from

the Fama/French 5 Factors model with compatible date from the same Web site of Ken French

replaced that particular return.

As also mentioned by Goto and Xu (2015), the data sets used have relatively many assets

compared to the number of available observations per asset, which causes higher N/T ratios.

We already discussed that data with high N/T ratios are more prone to estimation errors, so

our data gives a good opportunity to test how Ψ̂ρ handles in an environment where such errors

are more likely to happen.

Table 1: Data Characteristics

Abbreviation Description N N/T

Data Set 1 SZBM100
100 (10 × 10) portfolios
formed on size and BM

100 0.833

Data Set 2 IND48 48 industry portfolios 48 0.400

Data Set 3 SZBM100 + IND48
Combination of
SZBM100 and IND48

148 1.233

Table 1 gives a description about the different portfolios we consider, where N denotes the number of
assets in the portfolios, T is the number of return observations, and N/T represents the ratio between
them. Note that higher N/T ratios are more prone to estimation errors due to multicollinearity.

4 Methodology

4.1 Portfolio Performances

We want to evaluate the out-of-sample performance of the minimum variance portfolio with the

risky assets (stocks) as described in the data section. We do not incorporate risk-free assets in

the portfolio, which implies that the portfolio requires full initial investments in risky assets.

This imposes the familiar portfolio constraint 1
′
Nw = 1, i.e. the weights should sum up to one.

For the out-of-sample portfolio performance evaluation, we use the same standard ”rolling-

horizon” approach as Goto and Xu (2015). We focus on the GMV portfolio, therefore we only

need an estimator of the precision matrix Σ−1. So when we want to construct the GMV portfolio

for a particular month t, stock returns from the past 10 years (hence the ”estimation window

is T = 120, because we work with monthly returns) are used to obtain an estimator for Σ−1.

This estimation window is chosen according to standard practices in the literature. With this

estimator the portfolio weights can be computed, and this weights are used to calculate the

portfolio returns in month t + 1 out-of-sample (i.e. the holding period is one month). For the

next iteration, we drop the earliest returns and add the returns for the next period from the data
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set to get new weights. This iterative procedure is repeated until we acquire portfolio returns

for 330 months (T = 330).

For a given estimator Σ̂−1, the weights for the GMV portfolio can be calculated with the

following formula:

wGMV =
1

1
′
N Σ̂−11N

Σ̂−11N . (12)

Now we use Ψ̂ρ (the proposed estimator by Goto and Xu (2015)), Ψ̂λ (our own proposed

estimator) and some alternative estimators for Σ̂−1. This way we can compare the performance

of the GMV portfolios constructed with those different estimators using various performance

measurements. All the used estimators are summarized in table 2.

Table 2: Estimators For GMV Portfolio

Abbreviation Portfolio Weights

Glasso GMV-Ψ̂ρ (1
′
N Ψ̂ρ1N )−1Ψ̂ρ1N

Elastic GMV-Ψ̂λ (1
′
N Ψ̂λ1N )−1Ψ̂λ1N

Sample-Based GMV-Ŝ−1 (1
′
N Ŝ
−11N )−1Ŝ−11N

Equal-Weighted GMV-EW (1
′
N1N )−11N

Jagannathan and Ma GMV-JM (1
′
N Ŝ
−11N )−1Ŝ−11∗

N

Ledoit and Wolf GMV-LW (1
′
N Σ̂−1

LW1N )−1Σ̂−1
LW1N

Table 2 represents the different methods we use to calculate the precision matrix, where the GMV
portfolios all have an abbreviation regarding their method. Additionally, we also present the formula
which can be used to obtain optimal portfolio weights for the particular methods.

The first two in the table are the already thoroughly explained estimators where this paper

focuses on. The third one is the sample-based GMV portfolio, with the common inverse of the

sample-covariance matrix as estimator. The fourth one is the equal-weighted portfolio, where

no estimation of the precision matrix is required. The fifth one is proposed by Jagannathan and

Ma (2003) and also uses the inverse of the sample-covariance matrix S−1, but also imposes a no-

short-sale constraint (∗). Specifically, in their method they minimize w
′
Ŝw subject to 1

′
Nw = 1

and wi ≥ 0. The last row in the table is a GMV-portfolio with a shrinkage estimator constructed

by Olivier Ledoit and Wolf (2004b). Their shrinkage estimator is a convex combination of two

positive definite estimators, so therefore positive definite as well. In the rest of the paper we

refer to this portfolios by their abbreviation.

4.2 Regularization Parameters ρ and λ

The proposed estimators Ψ̂ρ and Ψ̂λ depend respectively on the regularization parameters ρ and

λ. We use the log predictive Gaussian likelihood function to get an empirical measure for the

performance of different values of ρ and λ. To avoid a look-ahead bias, the first 10 year period
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(120 months) has been used as in-sample period, starting from July 1963 until July 1973. The

log predictive Gaussian likelihood function with a certain precision matrix estimator Σ̂−1 can

be expressed as follows:

L(Σ̂−1) =
1

Tf

Tf∑
t=1

(ln(det(Σ̂−1
t−1))− R̃′tΣ̂−1

t−1R̃t), (13)

where Tf is the number of out-of-sample testing periods, which is 120 in this case. R̃t =

Rt − 1
Tf

denotes the demeaned return vector, computed by taking the time series mean of the

in-sample training period and subtract it from the out-of-sample return in the testing period,

for all individual assets.

To obtain the optimal values of ρ and λ, we start at July 1963 and use the in-sample period

consisting of T = 120 observations to compute the necessary compartments of the formula (4).

This is done in an iterative way for 120 periods, whereafter we arrive at an average predictive

likelihood score for different values of respectively ρ and λ. The values of ρ and λ ranged from

0.4 to 3.0, and we used a grid search procedure with increments of 0.1 to arrive at values of ρ

and λ that maximize the predictive likelihood. Table 3 shows the founded optimal regularization

parameter values with the previously described method, together with the sparsity values for

Ψ̂ρ and Ψ̂λ.

Table 3: Regularization Parameters And Sparsity Values

Abbreviation ρ λ Sparsity Ψ̂ρ Sparsity Ψ̂λ

Data Set 1 SZBM100 1.1 2.1 75.2% 74.2%
Data Set 2 IND48 1.3 1.9 55.7% 48.8%
Data Set 3 SZBM100 + IND48 1.3 2.7 79.7% 78.2%

Table 3 shows the found optimal regularization parameters for our proposed mean variance optimizers
Ψ̂ρ and Ψ̂λ. It also presents the sparsity values, which is the average percentage of the zero values of the
off-diagonal elements.

4.3 Performance Measurements

4.3.1 Out-of-Sample Portfolio Risk

The main interest is whether the proposed estimators Ψ̂ρ (by Goto and Xu (2015)) and Ψ̂λ

(by us) are able to reduce the out-of-sample portfolio risk. With the described methods earlier

in this section, we acquire GMV weights and out-of-sample portfolio returns for the six used

estimators (as shown in Table 2) on the three data sets (described in the data section). With

this out-of-sample portfolio returns we can calculate out-of-sample portfolio variances. From

this variances we calculate the out-of-sample portfolio standard deviations, denoted by σΨ̂ρ
,

σΨ̂λ
, σŜ−1 , σEW , σJM , and σLW .
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Now we can compare all the out-of-sample portfolio risks (measured by standard deviations)

with each other. The null hypothesis we test is the one of no difference in out-of-sampling

portfolio risk. To this end, we compute bootstrap two-sided confidence intervals for σŜ−1 − σΨ̂i
,

σEW −σΨ̂i
, σJM −σΨ̂i

, σLW −σΨ̂i
, where i ∈ {ρ, λ}. So each of the proposed estimators Ψ̂ρ and

Ψ̂λ are compared with the four alternative estimators. Lastly, we also compare the two proposed

estimators with themselves, i.e. σΨ̂ρ
−σΨ̂λ

. We use a nominal level 1−α, i.e. when this interval

does not contain a 0, the null hypothesis is rejected at the nominal level α. For bootstrapping,

we apply the ”stationary bootstrap” (i.e., the block resampling with block lengths having a

geometric distribution) approach from Politis and Romano (1994), because portfolio standard

deviations display serial dependence. The mean block size for each data set is chosen using the

optimal block size proposed by Politis and White (2004).

4.3.2 Out-of-Sample Sharpe Ratio

The Sharpe ratio can be obtained by dividing the mean excess return by the standard deviation

of a portfolio. It is one of the most widely used performance measures in finance, even tough

mean returns are susceptible to estimation errors. If the mean returns stay the same, the Sharpe

ratio can improve when the portfolio risk has been reduced. Because the main purpose is to

look whether out-of-sample risk reduction can be achieved, we follow the line of Goto and Xu

(2015) and calculate out-of-sample Sharpe ratios for all the portfolios we construct.

We also compare the calculated Sharpe ratios in the same way as we compared the standard

deviations. However, it should be noted that due to large estimation errors in mean returns, it

is difficult to gather reliable differences in the Sharpe ratios. The generally used test proposed

by J Dave Jobson and B. M. Korkie (1981) is also not suitable through the presence of fat

tails, serial correlation, and volatility clustering. Hence we use the studentized circular block

bootstrap method of Oliver Ledoit and Wolf (2008), also with the optimal block size according

to the approach of Politis and White (2004). The null hypothesis here is no difference in Sharpe

ratios.

4.3.3 Optimized Portfolio Weights

The sample covariance matrix is susceptible to estimation errors, which could cause unstable and

extreme valued portfolio weights. This implies that a more reliable estimation method for the

sample covariance matrix can possibly help to avoid this problem. We already discussed some

methods to estimate the sample covariance matrix in this section. For example, Olivier Ledoit

and Wolf (2003), (2004a), (2004b) suggest a shrinkage method, Jagannathan and Ma (2003)
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propose a method with explicit non-negativity constraints on the portfolio weights themselves,

Goto and Xu (2015) take an approach with direct shrinking of the precision matrix. Our

own proposed elastic net regression method also shrinks the precision matrix. Therefore, it

is worthwhile to compare the optimized portfolio weights and their behavior for the different

constructed portfolios.

For the different constructed portfolios with the three data sets, we tabulate the minimum,

1st, 5th, 95th, and 99th percentiles, as well as the maximum of the portfolio weights. We also

calculate the Herfindahl index of optimized portfolio weights, denoted by (1/T )
∑T

t=1(
∑N

i=1 ŵ
2
i,t),

where ŵ2
i,t is the optimized weight on asset i at period t. When all assets receive equal weights,

the Herfindahl index takes the lowest value. This implies that the index takes larger values when

the weights are more variable across each other.

We can also look at the monthly variability of the optimized weights over time from each

method by looking at the monthly turnover. The turnover can be interpreted as the average

fraction of wealth traded in each rebalancing period. We use the formula from DeMiguel,

Garlappi, Nogales, et al. (2009) to calculate it, denoted by

Turnover =
1

T − τ − 1

T−1∑
t=τ

N∑
j=1

(|wij,t+1 − wij,t+ |). (14)

In the definition of turnover, wij,t denotes the portfolio weight taken in asset j at time t, with

used portfolio construction method i. The shown formula consists of wij,t+ , the portfolio weight

before rebalancing but at t + 1, and wij,t+1, the portfolio weight at t + 1 but after rebalancing

(i.e. the desired portfolio weight). The interpretation of the turnover, as can be seen by the

formula, is that you look at the sum of the absolute differences of the weights before and after

rebalancing for every asset j, over T − τ − 1 trading dates, normalized by the total number of

trading dates.

4.3.4 Economic Gains from Improved Portfolio Optimization

The aim of the proposed methods is to accomplish portfolio risk reduction beyond the EW

(1/N) diversification rule in mean variance portfolio optimization. To achieve this we have to

rebalance the weights to their optimal weights for every month in the testing period. However,

to assess whether the portfolio risk reduction is economically significant, we also have to take

into account the transaction costs of this monthly trades. Such costs can grow rapidly with

certain methods, like with the hedge-trade-induced turnovers with the method of Goto and Xu

(2015).
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The measurement we use to evaluate the economic significance is the annualized certainty

equivalent excess return (CER) of each portfolio, after adjustment with the transaction costs

(T COST ) through subtraction. Specifically, the T COST ADJUSTED CER can be denoted

as

T COST ADJUSTED CER q = µ̂q −
γ

2
σ̂2
q − T COSTq, (15)

where µ̂q and σ̂2
q are the time series of respectively the annualized mean and variance of

out-of-sample excess returns for portfolio q. The risk aversion coefficient γ is set at 5, as also

done by Brandt (2010). The T COSTq for portfolio q denotes the annualized turnover costs for

that portfolio, measured by the annualized turnover (which we also calculated) multiplied by

proportional transaction costs of 50 basis points (bps) per trade. This is according to standard

practice in the recent literature. The T COST ADJUSTED CER q can be interpreted as

an asset that guarantees the risk-free rate plus some (positive) return value, which makes the

investor indifferent between holding that asset or a certain risky portfolio q (after accounting

for transaction costs). This implies that higher values of the T COST ADJUSTED CER q

indicate a risk-return characteristic which is more desirable by the investor.

5 Results

5.1 Out-of-Sample Portfolio Risk Minimization

In table 4 we present the out-of-sample variances of the six portfolios for the three data sets we

used, denoted in percentages. It can already be seen that in the GMV-Ŝ−1 portfolio the variances

increase substantially when the number of assets N approach the number of observations T in

magnitude. Furthermore, the GMV-Ŝ−1 portfolio cannot even be constructed when T < N ,

because Ŝ is singular and non-invertible then, i.e. Ŝ−1 does not exist. For the GMV − EW ,

GMV − JM and GMV − LW portfolios, we see that the variances vary in a more moderate

way. When we look at the variances of our two proposed mean variance optimizer portfolios

GMV-Ψ̂ρ and GMV-Ψ̂λ, we see that they generate lower out-of-sample portfolio variances than

the alternative portfolios for all data sets.

Table 4: Return Variances (%)

Abbreviation σ2
Ψ̂ρ

σ2
Ψ̂λ

σ2
Ŝ−1 σ2

EW σ2
JM σ2

LW

Data Set 1 SZBM100 13.88 13.84 58.81 25.80 18.37 18.87
Data Set 2 IND48 12.32 12.43 17.31 22.64 13.26 12.94
Data Set 3 SZBM100 + IND48 10.78 10.65 T<N 24.23 12.70 12.04

Table 4 lists the computed monthly return variances (in %), of all our used GMV portfolios, for all the
data sets. This has been done over a out-of-sample period of 330 months.
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We also used a bootstrap method (as explained in the methodology section) to compare

the out-of-sample portfolio risks (measured by the standard deviation) for GMV-Ψ̂ρ as well as

GMV-Ψ̂λ and the alternative portfolios. The results of this comparisons are shown in table 5

and 6 for GMV-Ψ̂ρ and GMV-Ψ̂λ, respectively. Note that ***, **, and * indicate significance at

1%, 5%, and 10% levels, respectively. It can be immediately seen that the two tables have quite

comparable results. We also see that all the differences are positive and significantly different at

the 1% level, which implies that both the GMV-Ψ̂ρ and GMV-Ψ̂λ generate lower portfolio risks

than their alternatives. What also can be noted is that the GMV portfolios where the covariance

matrices are obtained via regularization/shrinkage methods (GMV-Ψ̂ρ, GMV-Ψ̂λ, GMV-LW) all

outperformed the näıve diversification rule (GMV-EW).

Table 5: σALT − σΨ̂ρ
(%)

Abbreviation σŜ−1
σEW σJM σLW

Data Set 1 SZBM100 3.95*** 1.36*** 0.57*** 0.62***
Data Set 2 IND48 0.65*** 1.24*** 0.14*** 0.09***
Data Set 3 SZBM100 + IND48 T<N 1.63*** 0.29*** 0.19***

Table 5 shows the mean differences between the out-of-sample standard deviations (in %) of the alter-
native used portfolios (except GMV-Ψ̂λ), and the GMV-Ψ̂ρ portfolio. We used the stationary bootstrap
method of Politis and Romano (1994), with optimal expected block size computed with a method pro-
posed by Politis and White (2004). The null hypothesis tested is the one of no difference in the two-sided
bootstrap intervals, where ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.

Table 6: σALT − σΨ̂λ
(%)

Abbreviation σŜ−1
σEW σJM σLW

Data Set 1 SZBM100 3.95*** 1.36*** 0.57*** 0.62***
Data Set 2 IND48 0.64*** 1.23*** 0.12*** 0.08***
Data Set 3 SZBM100 + IND48 T<N 1.65*** 0.31*** 0.21***

Table 6 shows the same as Table 5, but now for GMV-Ψ̂λ.

5.2 Out-Of-Sample Sharpe Ratio

In table 6 we present the monthly Sharpe ratios for all the GMV portfolios. We see that GMV-Ψ̂ρ

and GMV-Ψ̂λ generate the highest Sharpe ratios compared to the alternative portfolios for data

set 1 and data set 3. For data set 2, GMV-EW and GMV-JM attain higher Sharpe ratios than

GMV-Ψ̂ρ and GMV-Ψ̂λ, but they are still considerably close. The Sharpe ratios are calculated

for the testing period between July 1983 and Dec. 2010 and range between 0.147 and 0.211 for

GMV-Ψ̂ρ and between 0.140 and 0.229 for GMV-Ψ̂λ. To get a more intuitive feeling for this

Sharpe ratios, note that the value-weighted U.S. market portfolio had a Sharpe ratio of 0.113

during the same period.
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Table 7: Monthly Sharpe Ratios

Abbreviation Ψ̂ρ Ψ̂λ Ŝ−1 EW JM LW
Data Set 1 SZBM100 0.211 0.211 0.127 0.104 0.113 0.150
Data Set 2 IND48 0.147 0.140 0.097 0.174 0.148 0.133
Data Set 3 SZBM100 + IND48 0.210 0.229 T<N 0.127 0.171 0.193

Table 7 presents the monthly out-of-sample sharpe ratios of all the used portfolios, for all the data sets.

The results of the difference of Sharpe ratios between our proposed mean variance optimizers

and the alternative portfolios, computed with the studentized circular block bootstrap approach

from Oliver Ledoit and Wolf (2008), are tabulated in table 5 and table 6 for respectively GMV-

Ψ̂ρ and GMV-Ψ̂λ. Note that ***, **, and * indicate significance at 1%, 5%, and 10% levels,

respectively. We find that for data set 1, GMV-Ψ̂ρ as well as GMV-Ψ̂λ significantly (at 5%

level) higher Sharpe ratios than GMV-EW and GMV-JM. For data set 3, the Sharpe ratios of

GMV-Ψ̂ρ and GMV-Ψ̂λ are also significantly higher than GMV-EW at respectively the 10%

and 5% level. Data set 2 does not seem to give significantly different results between Sharpe

ratios of our used portfolios. The difference between GMV-Ψ̂ρ and GMV-Ψ̂λ themselves is not

statistically significant (not presented in the table). Note that finding reliable differences is hard

due to large estimation errors when calculating the mean returns needed for computation of

the Sharpe ratios. This implies that we cannot make strong conclusions about this particular

results.

Table 8: Difference SRs GMV-Ψ̂ρ And Alternative Portfolios

Abbreviation Ŝ−1 EW JM LW
Data Set 1 SZBM100 0.083 0.107** 0.098** 0.063
Data Set 2 IND48 0.049 -0.028 -0.002 0.014
Data Set 3 SZBM100 + IND48 T<N 0.083* 0.039 0.017

Table 8 lists the differences between monthly Sharpe ratios between GMV-Ψ̂ρ and the alternative used

portfolios (except GMV-Ψ̂λ). We used the studentized circular block bootstrap method of Oliver Ledoit
and Wolf (2008) with an optimal block size. The null hypothesis tested is the one of no difference in
the two-sided bootstrap intervals, where ***, **, and * indicate significance at 1%, 5%, and 10% levels,
respectively.

Table 9: Difference SRs GMV-Ψ̂λ And Alternative Portfolios

Abbreviation Ŝ−1 EW JM LW
Data Set 1 SZBM100 0.084 0.108** 0.098** 0.064
Data Set 2 IND48 0.042 -0.035 -0.009 0.007
Data Set 3 SZBM100 + IND48 T<N 0.101** 0.058 0.036

Table 9 shows the same as Table 8, but now for GMV-Ψ̂λ.
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5.3 Behavior of Optimal Portfolio Weights

In table 10 we tabulate the 0% (minimum), 1%, 5%, 95% and 100% (maximum) percentiles of

the optimized weights of all the used portfolios for the three data sets. The trivial GMV-EW

portfolio weights are excluded from this table. GMV-Ŝ−1 takes quite extreme weights for data

sets 1 and 2, with a range from -2.246 to 1.826 for data set 1, and a range from -0.707 and

0.875 for data set 2. Especially in data set 1, GMV-Ŝ−1 seems to have far more extreme weights

compared with the other portfolios. It can also be seen that the GMV-JM portfolio with the

no-short-sale constraint tends to produce portfolios which are highly concentrated, because the

95% value is very low in all the three data sets. The portfolios which use hedge trades (GMV-Ψ̂ρ,

GMV-Ψ̂λ, and GMV-LW) use both long- and short positions and do not seem to employ weights

which are that extreme.

Table 10: Distribution of Portfolio Weights

Abbreviation Portfolio Min 1 % 5 % 95 % 99 % Max

Data Set 1 SZBM100 GMV-Ψ̂ρ -0.243 -0.146 -0.105 0.145 0.208 0.305

GMV-Ψ̂λ -0.246 -0.147 -0.106 0.146 0.209 0.306

GMV-Ŝ−1 -2.246 -0.720 -0.494 0.526 0.820 1.826
GMV-JM 0 0 0 0.080 0.231 0.461
GMV-LW -0.198 -0.132 -0.092 0.143 0.205 0.353

Data Set 2 IND48 GMV-Ψ̂ρ -0.235 -0.151 -0.104 0.159 0.379 0.518

GMV-Ψ̂λ -0.245 -0.166 -0.110 0.164 0.401 0.543

GMV-Ŝ−1 -0.707 -0.359 -0.200 0.246 0.524 0.875
GMV-JM 0 0 0 0.109 0.523 0.717
GMV-LW -0.256 -0.148 -0.103 0.174 0.490 0.664

Data Set 3
SZBM100 +
IND48

GMV-Ψ̂ρ -0.152 -0.092 -0.056 0.075 0.114 0.244

GMV-Ψ̂λ -0.178 -0.108 -0.068 0.091 0.142 0.284

GMV-Ŝ−1 T <N
GMV-JM 0 0 0 0.023 0.149 0.700
GMV-LW -0.186 -0.110 -0.077 0.111 0.185 0.423

Table 10 lists the distribution of the monthly weights of our portfolios (except GMV-EW). We
present the 0% (minimum), 1%, 5%, 95% and 100% (maximum) percentiles of the optimized
weights, for all the data sets.

We present the calculated Herfindahl indices in table 11. The index takes larger values when

the weights are more variable across each other. So as already expected, the Herfindahl index

for the GMV-Ŝ−1 portfolio takes large values, which we denote with VLN (very large number).

Furthermore, the Herfindahl indices for the hedge regression portfolios (GMV-Ψ̂ρ, GMV-Ψ̂λ,

and GMV-LW) for data set 1 and 2 seem quite comparable. The GMV-JM portfolio has the

lowest Herfindahl indices for all the data sets, which could be due to the fact that they entail

highly concentrated portfolios with relatively less assets hold compared to the other portfolios.
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Table 11: Herfindahl Index

Abbrev. Portfolio
Herfindahl
index
(%2)

Abbrev. Portfolio
Herfindahl
index
(%2)

Data 1 SZBM100 GMV-Ψ̂ρ 5,923 Data 2 IND48 GMV-Ψ̂ρ 4,122

GMV-Ψ̂λ 5,961 GMV-Ψ̂λ 4,440

GMV-Ŝ−1 VLN GMV-Ŝ−1 VLN
GMV-JM 1,810 GMV-JM 3,058
GMV-LW 5,439 GMV-LW 5,223

Data 3
SZBM100 +
IND48

GMV-Ψ̂ρ 2,638

GMV-Ψ̂λ 3,694

GMV-Ŝ−1 T<N
GMV-JM 2,883
GMV-LW 5,099

Table 11 lists the Herfindahl Index of our portfolios (except GMV-EW). The more variable the weights
are across each other, the higher the index value.

The monthly portfolio turnovers are presented in table 12. It is clearly that the GMV-EW

portfolio has the lowest turnovers for all the data sets, because with this näıve diversification rule

only small rebalancing trades have to be made every month. The GMV-JM portfolio also has

low turnovers, likely due to the no-short-sale constraint. It can also be seen that the portfolios

who employ hedge trades (GMV-Ψ̂ρ, GMV-Ψ̂λ, GMV-LW) contain a higher turnover. However,

the GMV-Ŝ portfolio attains the highest turnover for all data sets, with an average monthly

turnover of 7.005 for data set 1.

Table 12: Portfolio Turnover (Monthly)

Abbreviation Ψ̂ρ Ψ̂λ Ŝ−1 EW JM LW
Data Set 1 SZBM100 0.561 0.564 7.005 0.024 0.133 0.588
Data Set 2 IND48 0.297 0.326 0.775 0.033 0.077 0.329
Data Set 3 SZBM100 + IND48 0.465 0.601 T<N 0.027 0.092 0.769

Table 12 reports the monthly turnover of the used portfolios, following the calculation method of
DeMiguel, Garlappi, Nogales, et al. (2009). T < N indicates that the sample covariance matrix is
invertible, thus the portfollio cannot be constructed.

5.4 Economic Gains from Improved Portfolio Optimization

In table 9 we report the T COST-ADJUSTED CERs of the six portfolios. Our proposed GMV-

Ψ̂ρ and GMV-Ψ̂λ portfolios clearly accomplish better economic gains than the GMV-Ŝ portfolio.

Moreover, although GMV-Ψ̂ρ and GMV-Ψ̂λ have much larger transaction costs due to the hedge

trades which need to be made, they outperform GMV-EW and GMV-JM portfolios (which have

less transaction costs) in many data sets due to the gains in risk reduction. This implies that in

many situations for the investor with a risk-aversion coefficient of γ = 5, the reduced portfolio
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risk outweighs the transaction costs. If we look at the hedge regression portfolios and compare

them with each other, we see that GMV-Ψ̂ρ and GMV-Ψ̂λ both have more favorable economic

gains than the GMV-LW portfolio of Olivier Ledoit and Wolf (2004b), for all data sets. The

economic gains of GMV-Ψ̂ρ and GMV-Ψ̂λ do not vary that much from each other.

Table 13: T COST-ADJUSTED CERs (annual %)

Abbreviation Ψ̂ρ Ψ̂λ Ŝ−1 EW JM LW
Data Set 1 SZBM100 2.30 2.32 -47.29 -1.37 -0.34 -1.21
Data Set 2 IND48 0.88 0.39 -4.87 3.44 2.24 0.02
Data Set 3 SZBM100 + IND48 2.58 2.52 T<N 0.34 3.19 0.12

Table 13 lists the T COST-ADJUSTED CERs of the used portfolios, shown in annual percentage points.
Transaction costs are calculated as 50 bps times monthly turnover times 12 (to annualize).

5.5 Differences with Goto and Xu (2015)

Many of our results are quite comparable with the paper of Goto and Xu (2015), but some of

them are different. This is likely due to the fact that the data sets which have been used were

modified last year. It could also be because the methods we used to obtain the results differed in

some aspects compared to the methods Goto and Xu (2015) used. Note that we do not intend

to claim that our methods or results are superior to the ones of Goto and Xu (2015). On the

contrary, our aim was to replicate their methods and come up with the same results, so we

acknowledge our possible shortcomings.

6 Conclusion

The aim of this paper is to use the insight that the precision matrix contains optimal hedging

relations among stocks, which allows us to reduce estimation errors by shrinkage methods. The

proposed mean variance optimizers, Ψρ and Ψλ, both achieve sparsity, i.e. a significant part of

their off-diagonal elements are set to 0.

We have shown that the GMV-Ψ̂ρ and GMV-Ψ̂λ portfolios both accomplish significant and

robust out-of-sample risk reduction compared to the standard GMV-Ŝ−1 portfolio, especially

when the sample covariance matrix is singular. We also see that the out-of-sample performance of

the GMV-Ψ̂ρ and GMV-Ψ̂λ portfolios compare favorably to the portfolios GMV-EW, GMV-JM

and GMV-LW in many situations. Furthermore, while the turnover costs are quite substantial

for our proposed portfolios, the gains in risk reduction outweigh this costs in many situations.

The results are in line with the theoretical motivation of why we wanted to implement this

methods in the first place. By mitigating the estimation errors in the hedging relations of the
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precision matrix, the proposed mean variance optimizers can significantly reduce the out-of-

sample portfolio risk.
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