
Thesis in Quantitative Logistics

Constructing Adversarial Examples for Deep Neural
Networks using Mixed Integer Linear Optimization

and Local Search Heuristics

ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Author Supervisor

Leoni van Dijk MSc. B.T.C. van Rossum

Second assessor

Dr. T.A.B. Dollevoet

July 4, 2021

Abstract

Deep Neural Networks (DNNs) are a popular type of machine learning architecture, due to their

ability to learn from experience. A common weakness of DNNs is their likeliness to overfit a

model, causing their performances to be inaccurate in practise. In this paper, we use a 0-1

Mixed Integer Linear Programming (MILP) formulation to model given DNNs, following the

research of Fischetti and Jo (2018). We show that this formulation can be used to gain insights

into features of the network and to investigate the network’s accuracy. For the latter, we use

the MILP to construct (optimal) adversarial examples capable of ’fooling’ the network such that

they are falsely classified. As our results show that this process is computationally costly for

larger DNNs, we propose a general framework for a local search matheuristic. We experiment

on multiple interpretations of this heuristic and show that it is capable of approaching optimal

solutions for instances that generate favorable initial solutions.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Contents

1 Introduction 2

2 Literature review 3

3 Research design and Methods 5

3.1 A 0-1 MILP Model . 5

3.1.1 DNN structure . 5

3.1.2 Encoding ReLU . 6

3.1.3 (basic) Model formulation . 7

3.1.4 Bound tightening procedure . 7

3.2 Application models . 8

3.3 A local search matheuristic . 9

3.3.1 Building blocks . 10

4 Data and Experimental setup 13

5 Results 14

5.1 Replication . 14

5.1.1 Feature Visualisation . 15

5.1.2 Building adversarial examples . 16

5.2 A local search heuristic . 18

5.2.1 Constrained neighborhood . 20

5.2.2 Fixed absolute perturbation . 20

5.2.3 Local point escapes . 21

5.3 Comparison and discussion . 22

6 Conclusion and future work 23

References 25

A Database analysis 27

B Parameters of the heuristic 28

C Overview of programs 28

1

1 Introduction

Deep Neural Networks (DNNs) are a popular type of machine learning architecture, due to their

ability to learn from experience (Goodfellow, Bengio, Courville, & Bengio, 2016). A DNN is built

up out of multiple layers, each consisting of a certain number of neurons. This structure allows the

network to partition complicated inputs into separated characteristics. During the training process,

the DNN learns in what way certain combinations of characteristics are related to classify inputs

correctly.

For the first layer of the DNN, inputs must be translated to specific values for the input neurons

(values which will be further referred to as activations). For example, for DNNs built to recognize

hand written digits such as in Erhan, Bengio, Courville, and Vincent (2009), every neuron of the

input layer corresponds to a pixel of the image, where the activation of the neuron represents the

pixel’s opacity. In fully connected layers, the activation of neurons in any hidden layer (i.e., not

an input layer) or output layer is obtained by performing arithmetic operations on all activations

of the previous layer. Additionally, a nonlinear operator is applied to every activation, such as

the commonly used rectified linear unit (ReLU) (Nair & Hinton, 2010). This operator returns the

maximum between zero and the activation input.

Now that we have introduced in what way the different layers in DNNs are connected, one

can understand that DNNs can be treated as piecewise linear functions (Serra, Tjandraatmadja, &

Ramalingam, 2018). For a given network with known parameters, feeding the DNN input will result

in a certain output. This enables us to model a DNN as a Mixed Integer Linear Program (MILP),

as is done by Fischetti and Jo (2018). Such formulations can then be used to evaluate various

properties of the DNN, specified by some objective function. In the past four years, applications of

this MILP approach for DNNs have been appearing in scientific literature, together with techniques

on how these problems can be solved more efficiently. Despite these developments, solving MILPs

for larger DNNs seems to remain a huge challenge.

The first goal of this research is to replicate and validate the results of Fischetti and Jo (2018).

In their paper, characteristics of five DNNs of increasing complexity are investigated by means of

a 0-1 MILP formulation. First, the formulation is used to construct input examples that maximize

the activations of specific neurons. Then, another model is solved to construct so-called adversarial

examples. Adversarial examples are input examples that the DNN was able to correctly classify,

but that are now slightly perturbed such that it fools the DNN. These examples are of great use to

2

evaluate the accuracy and robustness of the network. The DNNs used in their research all contain

no more than 70 neurons in hidden layers, yet computational difficulties are experienced for the

largest networks.

To extend the research of Fischetti and Jo (2018), the second goal of this research is to build a

heuristic capable of constructing adversarial examples for larger DNNs within reasonable computa-

tional time. To our knowledge, heuristics for this purpose do not yet exist in the scientific literature.

The construction of a heuristic is an iterative process of trial and error, for which we will set out

the foundations in this paper. In its core, a heuristic consists out of three building blocks: a search

rule, a stopping rule and a decision rule (Gigerenzer, 2008). We will perform various experiments

for different configurations of these building blocks in the search of a heuristic of good quality,

hopefully while benefiting from the MILP formulation.

The remainder of this paper is organized as follows. Section 2 will give an overview of the

scientific literature concerning our problem. The methodology used for the replication and extension

is stated in section 3, which is followed by an overview of our data and experimental setups in

section 4. The results of the experiments will be presented and discussed in section 5, followed by

a conclusion with recommendations for future research in section 6.

2 Literature review

Modelling DNNs using the 0-1 MILP framework is a relatively recent development in Artificial-

Intelligence centered literature. The contribution of the MILP approach proposed in these articles

is substantial. For a given - and thus already trained - DNN it can be used to investigate all sorts of

strengths and weaknesses of the network. For instance, MILP formulations can be used to study the

complexities of given DNNs (Serra et al., 2018), or to simplify them (Serra, Kumar, & Ramalingam,

2020).

A common weakness of DNNs is their likeliness to over fit a model (Srivastava, Hinton, Krizhevsky,

Sutskever, & Salakhutdinov, 2014). A DNN subject to overfitting is likely to be vulnerable to ad-

versarial attacks (Szegedy et al., 2014). Recent literature reveals that the flexibility of the MILP

approach is of great use to evaluate a DNN’s vulnarability to such adversarial examples. Cheng,

Nührenberg, and Ruess (2017) solve a MIP to compute maximum bounds on how much sensory

input can be perturbed while still giving correct classifications. Fischetti and Jo (2018) use sim-

ilar LP constraints in their formulation to show how MILP models can be used for constructing

3

adversarial examples. Additionally, they present a bound-tightening technique for the continuous

variables in 0-1 MILP models to reduce solution times.

Yet still being connected to the evaluation of DNN accuracy, a slightly more general application

of the MILP framework is the reachability problem. Reachability analysis aims to find out whether

a certain state can be reached given the initial states of the system. Lomuscio and Maganti (2017)

introduce the link between this problem and linear programming. Dutta, Jha, Sankaranarayanan,

and Tiwari (2018) combine the use of local search with MILP solvers to estimate the range of

possible output values the network given certain constraints on inputs. This seems to outperfom

using solely a MILP approach for larger networks with over 1000 neurons, however it still needs

excessive computational times for some of the larger networks.

Above mentioned articles are limited in the sense that their methods are only applicable to small

networks. MILP solvers are not able to find solutions for larger DNNs, considering the combinatorial

time and memory complexity these have. Cheng et al. (2017) propose a number heuristics for MIP

to reduce solving times, but these are not tested for larger DNNs in their research. Tjeng, Xiao,

and Tedrake (2019) were the first to verify adversarial test accuracy for DNNs with over 100.000

neurons. This is done by using a progressive bound tightening technique on the inputs to non-

linearities and via a presolve algorithm that uses the information from a restricted input domain.

However, much work still needs to be done in the search for faster optimization methods.

In this paper, we will follow the recommendations of Fischetti and Jo (2018) and try to find

heuristic methods to construct adversarial examples for larger DNNs within reasonable computation

time. Together, Wilbaut and Hanafi (2009) and Fischetti and Lodi (2010) give a good overview of

the existing heuristic methods to solve 0-1 MILPs, of which the greatest part is based on a relaxation

of the integer variables. However, modern MILP solvers make use of the well known big-M strategy

to deal with indicator constraints as proposed in the formulation of Fischetti and Jo (2018), of

which LP relaxations are weak (Belotti et al., 2016). As a result, the use of these methods does

not seem promising for our problem. Park and Boyd (2017) and Gigerenzer (2008) suggest more

general frameworks for (local-search) heuristics, on which we intend to base our novel algorithms.

As we are trying to construct adversarial examples as close to the original figure as possible, local

search algorithms seem to be very suitable. A matheuristic is a heuristic solving method in which

a mathematical programming model is used to solve smaller subproblems (Fischetti & Fischetti,

2018). We will try to construct a local search matheuristic as this allows us to benefit from the

proposed MILP formulation for DNNs, provided in the first part of the paper.

4

3 Research design and Methods

In this section, the methods used in this paper will be discussed. The first two subsections give a

summary of the methods used by Fischetti and Jo (2018), as the first goal of this research is to

replicate and verify their results. Section 3.1 explains how DNNs with ReLUs can be formulated in

the MILP framework. Furthermore, a bound thightening procedure will be explained which reduces

solution times. Section 3.2 shows how this general MILP formulation can be extended to solve two

types of applications. Finally, in section 3.3 the research methods that we will use to construct the

heuristic will be presented.

3.1 A 0-1 MILP Model

As is briefly mentioned in the introduction, one can view a DNN with given parameters as a

piecewise linear function. The activation of every neuron in the network is the result of a series of

mathematical operations on the input values. In this section, the formulations used to model DNNs

as a 1-0 MILP are presented, following the work of Fischetti and Jo (2018). This MILP formulation

can then be used to find optimal examples of input figures for certain features of the network one

wants to investigate.

3.1.1 DNN structure

A DNN is built up out of multiple layers, each consisting of a certain number of neurons. This

structure is visualized by Figure 1, which gives an illustration of a simple neural network. Every

neuron has its own activation value, which is the result of a weighted sum of the activations of the

neurons in the previous layer, adding a bias and the performance of a non-linear operator.

The following notation is used. Every layer of the DNN is numbered from 0 to K, resulting in

a total of K + 1 layers. Layers 0 and K correspond to the input- and output layers respectively.

Every layer k consists out of nk neurons (or units), each having an activation value akni
. Let ak be

the complete activation vector of layer k. Generally, for any k ≥ 1, the activations ak are computed

through the following formula:

ak = δ(W k−1ak−1 + bk−1) (1)

where δ(.) represents a non-linear function, for which in this paper is chosen for the ReLU. Moreover,

W k−1 is a matrix of weights and bk−1 is a vector of biases, both containing trainable parameters.

5

Figure 1 Simple example of a neural network with 5+4 internal units in 2 hidden layers.

3.1.2 Encoding ReLU

The so-called rectified linear unit (ReLU) (Nair & Hinton, 2010) is a commonly used non-linear

activation function in DNNs. Avoiding negative activations, its output value is just the maximum

between its input value and zero. To be able to translate this into a MILP model, one needs to

consider the following equations.

a = ReLU(wT y + b) =


wT y + b if wT y + b ≥ 0

0 = wT y + b+ s if wT y + b < 0, s ≥ 0

(2)

which can be summarized into the linear conditions

wT y + b = a− s s > 0, a ≥ 0 (3)

This constraint on its own is not sufficient in modelling the ReLU operator. To ensure the uniqueness

of solutions (x, s), a binary activation variable z is introduced to impose a set of indicator constraints.

These constraints are accepted by the solver as big-M constraints and are as follows.
z = 1 → a ≤ 0

z = 0 → s ≤ 0

z ∈ {0, 1}

(4)

6

3.1.3 (basic) Model formulation

The basic structure of a MILP formulation for a DNN with fully connected ReLU layers can now

be presented as the following.

min
K∑
k=0

nk∑
j=1

ckja
k
j +

K∑
k=1

nk∑
j=1

γkj z
k
j (5)

nk−1∑
i=1

wk−1
ij ak−1i + bk−1j = akj − skj k = 1, . . . ,K, j = 1, . . . , nk (6)

zkj = 1→ akj ≤ 0 k = 1, . . . ,K, j = 1, . . . , nk (7)

zkj = 0→ skj ≤ 0 k = 1, . . . ,K, j = 1, . . . , nk (8)

lb0j ≤ a0j ≤ ub0j j = 1, . . . , n0 (9)

lbkj ≤ akj ≤ ubkj k = 1, . . . ,K, j = 1, . . . , nk (10)

l̄b
k
j ≤ skj ≤ ūb

k
j k = 1, . . . ,K, j = 1, . . . , nk (11)

akj , s
k
j ≥ 0 k = 1, . . . ,K, j = 1, . . . , nk (12)

zkj ∈ {0, 1} k = 1, . . . ,K, j = 1, . . . , nk (13)

The objective function in equation (5) serves as an example and can be defined according to the

specific application one is studying. Here, ckj and γkj are constant parameters. As this model

formulation is not suitable for training, weights and biases parameters wk
ij and bki are assumed to

be known. Constraints (6)-(8) define the ReLU output as described in section 3.1.2, in combination

with the bounds imposed on the variables in (12) and (13). Finally, constraints (9)-(11) allow for

tighter bounds on these variables. In the next section, a method will be presented to tighten the

bounds for our specific case.

3.1.4 Bound tightening procedure

The big-M strategy modern MILP solvers use when dealing with indicator constraints comes with

the drawback of resulting in weak MILP relaxations (Belotti et al., 2016). Fischetti and Jo (2018)

propose a bound-tightening mechanism to strengthen the weak bounds coming from these relax-

ations, and thus reduce the solution times. This mechanism contains features of the Iterative domain

reduction technique proposed by Belotti et al. (2016), where a sequence of MIPs is solved.

The bound tightening procedure forms the preprocessing phase of solving the MILP. First, for

a given DNN with weights and biases, lower and upper bounds must be chosen for the input layer.

7

These bounds depend on their physical meaning and highly influence the bounds of the activations

in further layers. In our case, activations of the input layer must be between 0 and 1, as our input

units represent grey-levels of pixels. This thus means that lb0j = 0 and ub0j ,= 1, for j = 1, . . . n0.

After this, for every neuron of every layer k = 1, . . .K, upper bounds on the akj and skj variables

are calculated by solving two smaller MILP models. This can be done either exact or by using the

slightly weaker bounds found by terminating the calculation after a short time limit. To find upper

bounds on the variables of the current neuron, all constraints and variables related to all other

neurons in the current layer and in the subsequent ones are removed. For this smaller model, two

maximizations are performed; one for the value of akj and one for skj . When solving these models for

deeper layers of the DNN, the tightened bounds of the previous layers constrain the optimization.

After having calculated all bounds in every layer, they can be saved to use in any optimization

for the same DNN.

3.2 Application models

In this subsection, the methods that Fischetti and Jo (2018) use to apply the MILP model for two

applications are described. For the replications, the same dataset and DNN structures will be used

as in this paper, which will be further elaborated on in the section 4. The first application concerns

feature visualization (Erhan et al., 2009), where the MILP model is used to find input examples that

maximize the activation any neuron j of layer k in the network. This will be done by maximizing

akj as the objective function. Fischetti and Jo (2018) showed that no nice visual pattern could be

recognized when investigating some max-activating input examples generated for a simple DNN.

We will compare our results of this procedure to verify their conclusion.

For the second application, the model formulation is used to construct so-called adversarial

examples (Szegedy et al., 2014). These examples are slightly perturbed inputs such that the DNN

produces incorrect output, which are of great use to evaluate the network’s accuracy. Formally,

for a given input figure ā0 which the DNN correctly classifies as being a certain digit d̄, we now

need to find a similar figure a0 which is incorrectly labeled as d 6= d̄. In the model is chosen for a

predetermined misclassification digit, namely d = (d̄ + 5) mod 10. This means that a ”0” image

should be classified as ”5”, and a ”6” as a ”1”. For this application, we add the following constraints

to the general MILP formulation:

8

min

n0∑
j=1

dj (14)

aKd+1 ≥ 1.2aKj+1 j ∈ {0, . . . , 9} \ {d} (15)

−dj ≤ a0j − ā0j ≤ dj j = 1, . . . , n0 (16)

dj ≥ 0 j = 1, . . . , n0 (17)

Where dj is a continuous variable minimizing the amount of perturbation that will be added by

means of constraint (16) and objective function (14). Constraint (15) imposes that the activation

of the required wrong digit is at least 20% higher than the activations of all other digits.

3.3 A local search matheuristic

When tackling models with excessive computation times, it is common to use heuristics to approx-

imate optimal solutions. A great advantage of the 0-1 MILP framework for modelling DNNs is

that it enables the use of matheuristics. In a matheuristic, the mathematical programming model

is used to solve smaller subproblems which are used within the heuristic environment (Fischetti &

Fischetti, 2018). In our case, we seek to find an adversarial example as close to the original input

figure as possible. This objective suits the idea of performing a local search, where close neigh-

bourhood solutions of an initial solution are investigated. In the remainder of this section, we will

present the methods that we will use to place local search into the matheuristic framework.

Pseudocode 1.1 presents the general outline of the matheuristic, which we will further refer to

as the Cheapest Deceive Heuristic (CDH). In this algorithm, perturbations are added iteratively

until the stopping condition is reached. This way, no more perturbation is added than necessary

for the DNN to reach sufficient confidence in the classification of the wrong label. In this code,

A∗ stands for the highest activation in the output layer, without the activation of the FalseLabel.

The activation for FalseLabel is represented by FA. In line 7 an objective is added to the model

and in line 8 a decision rule is used. For the results to approximate optimal values we need to

discover what are effective and efficient choices for these aspects of the heuristic. We outline some

candidates for these choices that we will experiment on in the following subsection.

9

Pseudocode 1.1 Cheapest Deceive Heuristic (CDH) - General Outline

1: Image← correctly classified image, Perturbations← array of zeros,

Output← compute output layer activations for current Image,

FalseLabel← (correct label + 5) mod 10, Ratio← FA/A∗

Search in the neighborhood of Image

2: while Ratio is not larger or equal than 1.2 do

3: for every input neuron j in the neighborhood do

4: initialize basic MILP model and tighten bounds

5: initialize disturbance variables and add constraints (16),(17) to the MILP

6: set UB = LB = Image[i] for every i is not j in the input layer

7: add objective to model and solve

8: perform perturbation according to decision rule:

9: add value of dj to Perturbations and Image, compute output activations

10: Ratio← FA/A∗

3.3.1 Building blocks

In this subsection, we view the CDH as a modular system. Generally, a local search heuristic is

built out of three building blocks (Gigerenzer, 2008). First we have the search rule, determining

what the searching area is and how it is going to be investigated. Then, a decision rule specifies

which solution is accepted for the current iteration. Iterations are performed until we reach the

stopping rule, which in our case is reaching the ratio of 1.2. On top of the three general building

blocks, we consider some solve rules. These rules involve procedures to avoid local optima and

different methods to solve the subproblems. In the remainder of this subsection, we discuss several

interpretations of these building blocks, of which we will evaluate the performances in the results

section.

Search rules

The search rules for this heuristic can be divided into rules regarding the size of the neighbour-

hood and the objective functions used to inspect this neighbourhood. For our experiments we

use two types of objective functions:

1. Simple objective: max aKj ,

2. Diff objective: max aKj −
∑10

i=1,i 6=j a
K
i where j is the desired false label.

The first objective function maximizes the activation of the neuron corresponding to the de-

sired false label. This is simple in the sense that the solver is only focused on maximizing the

10

value of one specific variable. The second objective tries to find a solution that maximizes

the difference between the activation of the false label-neuron and those of the other output

layer neurons. This increases the complexity of solving the subproblems, but could decrease

the number of iterations necessary to reach stopping rule due to a more directed search.

As stated in Pseudocode 1.1, for every neuron in the searching area we construct and solve

a MILP. This causes the algorithm to require more computational time if the searching area

is large. For the search rules regarding the size of the neighborhood we experiment with the

following:

1. Complete neighborhood

2. Constrained neighborhood

When we speak of searching in the complete neighborhood, we refer to the process of iter-

ating over all 784 input neurons. To reduce the number of calculations performed during an

iteration, we propose a heuristic approach that focuses on a smaller area of the input image,

which we call the constrained neighborhood. This process is based on the idea of Xue, Yuan,

He, Wang, and Liu (2021), who use an adaptive mask to constrain the area and intensities of

added perturbations. For this, we construct a probability mask based on the set of images the

DNNs are trained on. This probability mask constrains the searching area to neurons which

have a probability larger than 0.01 to be activated if it was part of an image portraying the

label, plus the neurons that have an activation value larger than zero in the current input

figure. The probability mask is further elaborated on in section 4.

Solve rules

When constructing a matheuristic, one needs to make decisions on the size of the subprob-

lems that are being solved. We expect that the bigger the subproblems are, the better the

matheuristic is able to approach a solution computed by an exact algorithm. However, bigger

subproblems come with the drawback of requiring more computational time. We experiment

on this trade-off by means of the following subproblems:

1. Unbounded perturbation

2. Fixed absolute perturbation

For the first subproblem, the solver computes the best feasible perturbation value of an individ-

ual neuron in the input layer corresponding to the objective value. For the second subproblem,

the solver only needs to make the decision of adding or subtracting a certain fixed parameter.

11

If both of these options are not feasibily possible (due to constraints on the bounds of the in-

put activations), the operation is performed for which the perturbation parameter needs to be

decreased the least. For this second subproblem, we expect to find a trade-off in computional

time and objective quality for different values of the perturbation parameter, as low values

require more iterations but approach the required ratio with more precision.

During every iteration of the heuristic, the solution that is accepted according to the

decision rule highly depends on the current image that is being perturbed. If we reach a

configuration for which the algorithm does not see any possibility of increasing the current

ratio, we have reached a local optimum. In their description of the framework and applications

of iterated local search algorithms, Lourenço, Martin, and Stützle (2019) state that a random

move in the neighborhood of a solution can often result in an escape from the local optimum.

Therefore, in an attempt to escape from these points, we consider the following methods:

1. Random perturbation

2. Guided random perturbation

For the first method, we draw a random neuron from the input layer and evaluate its activation.

If it is lower or than 0.5, we set its value to 1 and if it is higher than 0.5 we set it to zero. For the

second method, we make use of the probabilities computed for the constrained neighborhood

search rule. If not yet fully activated, we set the activation of a randomly selected input neuron

with an activation probability larger than ph to 1. Moreover, if not yet fully deactivated, we

set the activation of a randomly selected input neuron with an activation probability lower

than pl to 0. This way we hope to guide the randomization method towards perturbations

that are likely to help increasing the ratio.

The randomization methods contain several parameters. maxRand indicates the maximum

number of times a randomization may be performed for a single instance. k represents the

number of random neurons that are perturbed at once. We expect that higher values for k lead

to a faster escape of the local point, but also to higher objective values as these perturbations

are non-controlled. For a complete list of parameters and their default values in our experiments

we refer to appendix B.

Decision rules

The decision rule specifies what aspects of a solution we consider to be ‘good’ or ‘promising’

to reach the stopping rule as efficiently as possible. In this research we consider the following

two possibilities:

12

1. Largest increase in ratio

2. Largest increase in objective value

For the sake of time and the length of this paper, for every experimental configuration of

the heuristic we choose the biggest increase in confidence ratio as the decision rule. Small

experiments were performed for the second rule, but we decided to stop investigating this

option as we noticed that this process was much more prone to get stuck in local optima and

required more iterations.

4 Data and Experimental setup

To replicate the results of Fischetti and Jo (2018) we use five DNNs with different structures. Each

DNN is trained to recognise handwritten digits by using the MNIST database (LeCun & Cortes,

2010). This database contains 60.000 training examples and 10.000 test examples. Every example

consists of the correct label and a 28 x 28 image, for which each of the 784 pixels holds a value

between 0 and 1. These values indicate the grey-levels of the figure where 0 means white and 1

means black. For the probability mask used in the heuristic experiments we performed a small

probability analysis of the different images present in the MNIST training set. To see which input

neurons are typically activated for a specific label, we summed all possible images of this label and

then divided all activations by the number of images present for this label. Visual results of this

process can be found in Appendix A. Note that this procedure is promising for our specific training

set, but not so much for training sets where for example the digits are not centered.

Table 1 gives an overview of the characteristics of the five DNNs we use in our experiments. The

structure of a DNN is described by a sequence of integers. Every integer represents a layer in the

network, its value denoting the number of neurons within this layer. Hidden layers are made bold.

Table 1 Characteristics of the DNNs used

Hidden Trainable Test-set

Model Structure layers parameters accuracy

DNN1 784 - 8 - 8 - 8 - 10 3 6,280 0.93

DNN2 784 - 8 - 8 - 8 - 8 - 8 - 8 - 10 6 6,730 0.91

DNN3 784 - 20 - 10 - 8 - 8 - 10 4 16,160 0.96

DNN4 784 - 20 - 10 - 8 - 8 - 8 - 10 5 16,232 0.95

DNN5 784 - 20 - 20 - 10 - 10 - 10 - 10 5 16,660 0.96

Every DNN is trained in the same setting as in Fischetti and Jo (2018), meaning that they are trained

13

for 50 epochs and Stachastic Gradient Descent (SGD) is used for optimization. For training, we

use the Python programming language (Van Rossum & Drake Jr, 1995) and especially the Keras

package for deep learning (Chollet et al., 2015). While training, it turns out that using ReLU as

the nonlinear operator in every single layer does not result in the same high test-set accuracy as

Fischetti and Jo (2018) report in their paper. This problem has been adressed to the authors but

sadly a response has yet to be given. As it is important to have DNNs with a high test-set accuracy

to replicate further results of Fischetti and Jo (2018), we solve this problem by using the soft-max

operator in the output layers. This operator squeezes every input value of these neurons to a value

between 0 and 1, and transforms the output vector such that its values sum up to 1. The use of this

soft-max operator has no effect on the replication of the results by means of the MILP formulation.

This is because the soft-max operator is merely a normalization, where the rankings between highest

and lowest activations do not change.

5 Results

In this section, the computational results of the methods discussed in section 3 are presented.

Computations are performed by the state-of-the-art MILP solver IBM ILOG CPLEX 20.1 (IBM-

Corporation, 2020) on a notebook with an Intel Core i5-8250U CPU at 1.60GHz and 8 GB RAM.

Note that the notebook of Fischetti and Jo (2018) is equiped with 16 GB RAM, possibly causing

differences in computational times. This section is devided into two parts. In the first subsection,

we present replications of the results of Fischetti and Jo (2018) and compare our results with those

stated in their paper. Then, this section continues by presenting the results of the experiments

performed in the process of constructing a heuristic for adversarial examples.

5.1 Replication

In fashion of the results provided by Fischetti and Jo (2018), in the following sections we make use

of three types of models. The model as described in section 3.1.3 will be referred to as the “basic

model”. The “improved model” is the basic model incorporating the bounds calculated in the (exact)

bound tightening procedure explained in section 3.1.4. Finally, when speaking of the ”improved

model with weaker bounds”, we refer to the basic model for which the bounds are obtained by

terminating each bound computation after 1 second. In the remainder of this subsection, we first

perform a feature visualisation and then continue with the construction of adversarial examples.

14

5.1.1 Feature Visualisation

A common problem with the use of DNNs is that there exists no clear theoretical understanding of

the way these networks learn. In the hope to gain some insight in the patterns a network possibly

recognizes, one can perform a Feature Visualisation, as is done by Fischetti and Jo (2018). They

show results for two hidden units and find no visual patterns. Figure 2 presents the results that

we obtained when replicating their approach. Figures 2a and 2b resemble those of Fischetti and

Jo (2018) but we do not agree that no visual pattern can be identified. Even though it is not very

clear, one could argue that a slight curve is visible in 2a and a that the dark pixels in 2b are in a

somewhat circular shape.

Another common issue with DNNs is the problem of overfitting. In this case the network fails to

capture the generality of the inputs, causing it to perform well on training data but poorly on test

data. This is a problem that gets more serious for larger networks (Hagiwara & Fukumizu, 2008).

When comparing an optimal input example for DNN4 (Figure 2c), which is a larger network, to the

input examples for DNN1 (Figures 2a, 2b), one can observe that the pixels in this image are even

more scattered than those of the other two images. This result illustrates the concept of overfitting

fairly well. For computations the improved model of DNN4 was used with weak bounds, which was

solved to optimality in a matter of seconds.

(a) Input for layer 2, neuron 2

(DNN1)

(b) Input for layer 3, neuron 7

(DNN1)

(c) Input for layer 4, neuron 5

(DNN4)

Figure 2 Input examples that maximize the activations of given hidden units.

Finally, the feature visualization formulation can be used to investigate to what extent the network

understands what a certain label looks like. This is done by maximizing the activation of a neuron

in the output layer, rather than in the hidden layers as we did before. In Figure 3a we present

the outcomes for the maximization of digit 1 for DNN1. No clear pattern is visible. In the process

of analyzing these types of input examples we noticed that a high activation of one neuron does

not necessarily implicate low activations of other neurons in the output layer, indicating a lack of

confidence in certain classifications. Figure 3b shows the optimal input example for maximizing the

15

activation of neuron 1 minus the activation of all other neurons in the output layer. This input figure

shows much more of a pattern, yet we still do not recognize digit 1. The two objective values used

for these two images correspond with the simple- and diff-objective we proposed in section 3.3.1.

The fact that we do see more of a pattern in the second image argues in favor of its corresponding

objective function, which is something we experiment further on while constructing the heuristic

for adversarial examples.

(a) Maximizes activation for

digit 1

(b) Maximizes activation for

digit 1 minus other activations

Figure 3 Input examples that maximize activations in the output layer, for different objective functions. (DNN1)

5.1.2 Building adversarial examples

Adversarial examples are slightly perturbed inputs such that the DNN produces the wrong output

classification. The following results relate to experiments for which correctly classified input figures

are perturbed as little as possible such that it is receives a false a priori determined classification.

Figure 4 shows adversarial examples that fool DNN1. In line with the results of (Fischetti & Jo, 2018),

only a few well placed perturbations are necessary to cause the DNN to give the wrong classification.

For 4a and 4b, no upper bound was set on the perturbation variables. For the examples in Figure

4c however, no pixel can be changed for more than the value of 0.2.

(a) fools DNN1 to be a 7 (b) fools DNN1 to be a 6 (c) fools DNN1 to be a 7

Figure 4 Input examples that fool DNN1

The following tables report statistics of the process of constructing adversarial examples for five

different DNN architectures. Each statistic represents an average value over 100 runs for each DNN

16

and each model. For reliable comparisons of the computational performances of the models for

different DNNs, we use the same set of 100 MNIST images for each run.

Table 2 shows the performance of the basic MILP formulation for this application and compares

it with the model with tighter bounds. In this table, column “%solved” reports what percentage

of the instances is solved to optimality. This strongly relates to the column “%gap”, which shows

the average optimality gaps when solving the problems. A gap equal to 0% corresponds with the

solver having found an optimal solution. Columns “Nodes” and “Time(s)” give the average number

of branching nodes and computing time in seconds, respectively. For DNN4 and DNN5, some results

are given within parenthesis. For these results, the improved model with weak bounds is used. We

see from these results that when one wants to want to have a shorter preprocessing phase, these

bounds serve as a good alternative.

When comparing the performance of the Basic model to that of the Improved model, it is obvious

that the Improved model produces the best results. This conclusion was also made by (Fischetti

& Jo, 2018). Apart from this similarity, we find many differences when comparing our table to

that of the author’s. The most striking difference is in the “%solved” column, namely that the

number of instances that are solved within the time limit of 300 seconds is much lower. It should

be noted however, that the overall low average optimality gaps indicate that our results were close

to optimality. The second most difference seems to be the performance of the models applied to

DNN3. More specifically, the performance for DNN4 is better, whereas in the results of (Fischetti

& Jo, 2018) this is not the case. It will require further investigation to identify the cause of this

problem, which is beyond the scope of this paper.

Table 2 Statistics of constructing adversarial examples, with a time limit of 300 seconds, averages for

100 different input examples.

Basic model Improved model

%solved %gap Nodes Time(s) %solved %gap Nodes Time(s)

DNN1 89 0.00 2,575 2.10 94 0.00 959 1.23

DNN2 66 0.61 85,055 53.37 80 0.00 14,092 13.78

DNN3 16 25.44 366,672 211.83 40 4.00 123,770 92.65

DNN4 18 19.67 324,213 200.02 44 0.00 80,561 65.83

(44) (0.31) (100,730) (75.49)

DNN5 1 73.67 342,071 293.36 5 34.07 189,230 250.94

(4) (39.42) (212,657) (253.05)

17

For the results in Table 3, we accept a solution to be sufficiently “solved” if it is guaranteed that it

is within 1% of optimality. Especially for the improved model, we expect to find a large number of

such solutions given the low gaps presented in Table 2. In contrast to the time limit of 3600 seconds

that Fischetti and Jo (2018) imposed during these computations, we used one of 300 seconds to

keep the time to calculate these statistics reasonable. Even after only 300 seconds, our results are

close to those stated in the original paper. If one does not necessarily need an optimal example, but

is content with an adversarial example somewhat close to this, working with these limiting settings

seems to be the current best option.

Table 3 Statistics of constructing adversarial examples, with a time limit of 300 seconds, averages for 100 different

input examples. Computations are stopped when solutions are 1% or less away from the true optimum.

Basic model Improved model

%solved* %gap Nodes Time(s) %solved* %gap Nodes Time(s)

DNN1 100 0.54 2,575 2.00 100 0.47 961 1.23

DNN2 99 1.46 84,151 50.77 100 0.83 13,572 12.21

DNN3 47 24.82 363,578 207.88 85 6.20 124,814 92.04

DNN4 58 19.02 315,646 190.56 99 0.94 79,123 60.66

DNN5 4 76.60 297,723 292.33 34 34.86 189,362 246.41

*solved within 1% of optimality

5.2 A local search heuristic

In this subsection we present the performance of various configurations of the CDH. We perform

multiple experiments for different choices of the building blocks presented and explained in 3.3.1.

As our goal of building a heuristic is to be able to find adversarial examples for larger DNNs within

reasonable computational time, we focus mainly on results for DNN5. However, we also perform

experiments on DNN1, as we expect this to require less computational time.

To compare the performances of the heuristic methods to those of the best methods currently

available, we summarize the relevant information of Tables 2 and 3 into Table 4. Moreover, we add

the corresponding averages of the best objective values that the solver was able to find within the

time limit. Based on the results in this table, we know that a good heuristic should find adversarial

examples for DNN5 in under 250 seconds, for an average total perturbation value of around 8.5.

Important is the difference in non-solved models in this table and that of the heuristic. For the

exact models, the required confidence ratio of 1.2 is included as a constraint in the model. Therefore,

18

it could still be possible to use a non-optimal solution as an adversarial example. For our heuristics,

not finding a solution means that the required ratio is not reached. With this in mind, we decided

not to put time limits on the construction of an adversarial example by the heuristic.

Table 5 shows results for the most basic setup of the CDH. In this Table, we see that for the

fixed absolute perturbation solve rule, the results are the same for both objective functions. Based

on the results, it seems that the heuristic with this solve rule finds examples faster and is less prone

to get stuck in local optima than with the unbounded perturbation method.

Table 4 Recap of relevant performances of currently known methods. Aver-

ages for 100 different input examples, with time limits of 300 seconds.

Improved model, gap = 0.0 Improved model, gap ≤ 0.01

%solved Time(s) Obj %solved* Time(s) Obj

DNN1 94 1.23 8.71 100 1.23 8.71

DNN5 5 250.94 8.51 34 246.41 8.52

*solved within 1% of optimality

Table 5 Comparisons of objective functions and perturbation methods, averages of solved instances.

Searching in the complete neighbourhood, without local point escape methods. Applied to DNN5.

Unbounded perturbation Fixed absolute perturbation (dj = 1)

Function %solved Time(s) Obj Iterations %solved Time(s) Obj Iterations

simple 74 399.19 13.86 14.70 77 330.76 12.34 13

diff 75 334.31 10.81 11.88 77 330.36 12.34 13

It is obvious that these versions of the heuristic do not outperform the current methods available:

both the average objective values as the computation times are higher than the desired targets for

a good heuristic. The following subsections show and discuss results for the different choices in

search and solve rules we explained in section 3.3.1. First, we investigate the effects of constraining

the neighborhood by means of the probability mask. Then, we solve models for different parameter

values of the fixed absolute perturbation solve rule to see if there exists a trade-off in objective

value and computation time. Third, we try two different local point escape methods to increase the

number of solved instances. Finally, we discuss the performance of the best found version of the

heuristic.

19

5.2.1 Constrained neighborhood

In this section, we evaluate the effect of constraining the searching neighborhood by means of the

probability mask. Figure 5 shows the number of times a neuron’s activation was perturbed during

the (successful) construction of 77 out of 100 adversarial examples. Figure 5a contains results for

the search in the complete neighborhood, which can be compared to the results for the constrained

neighborhood as presented in Figure 5b. From the results in these figures, we see that the overall

pattern of perturbation remains the same, while the computational times are almost halved (from

around 165 seconds to 90 seconds for the complete and constrained neighbourhood, respectively).

(a) Complete neighborhood search.

Time(s) = 164.58, obj = 11.11

(b) Constrained neighborhood search.

Time(s) = 89.91, obj = 11.39

Figure 5 Dispersal of perturbations for different searching neighborhoods, sum of 77 instances. Experi-

ments were performed on DNN1, with the diff-objective and with fixed absolute perturbations (dj = 1.0).

5.2.2 Fixed absolute perturbation

In this section, we test different parameter values for the fixed absolute perturbation solve rule.

Furthermore, we investigate whether the two types of objective functions behave differently for

these experiments. In Table 5, we already observed that the use of this method with parameter

value dj = 1 results in lower computational times than when we use unbounded perturbation as a

solve rule. Figure 6 shows that for lower values of dj , the algorithm requires more time to find a

solution while the objective value does not necessarily decrease. Again, the two objective functions

produce similar results. For the highest values of the parameter, solution times are lower than the

target. However, the objective values are at least 30 % higher and it should be noted that the

non-solved instances are not included in these averages.

20

0 0.2 0.4 0.6 0.8 1
0

500

1,000

1,500

dj

T
im

e(
s)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

dj

O
b

j

target
simple
diff

Figure 6 Performance statistics for different values of the fixed absolute perturbation parameter. Experiments

were performed on DNN5, while searching in the constrained neighbourhood with the diff-objective and the random

local-point escape method. Averages computed for solved instances.

5.2.3 Local point escapes

In Table 5, we see that currently our best found configuration of the heuristic is able to find an

adversarial example for 77% of the instances. In the other cases, the Local Search algorithm got

stuck in a local optimum where it could not find any improvements according to the specified rules.

In our methodology, we proposed two possible local point escape techniques: random perturbation

and guided random perturbation. In comparison to the other experiments done in this paper, we

ran the experiments for these two methods on multiple desktop computers with Intel Cores i5-8500U

CPU at 1.60GHz and 16 GB RAM. Therefore, the results on computation time will only be used

for comparisons with each other and not with other results in this paper.

Table 6 shows the results of various experiments for the two local point escape techniques. In

this table, “k” represents the number of random perturbations performed in a single iteration of the

escape method. We see that increasing k often resulted in a higher solving percentage, but at the

expense of a higher computation time and objective value. “#rand” stands for the total number of

times the escape method is invoked for the instance set consisting out of 100 images. We see that a

higher k declines this number. Still, not a large difference in objective values is visible. A possible

reason for this is that the random perturbations can also undo earlier added perturbations.

The guided random perturbation method fully activates one neuron and deactivates another.

Table 6 shows results for two sets of parameter values for this method, where ph (pl) is the

probability mask-value a neuron should have to be fully activated (deactivated). Sadly, the results

in this table do not give a clear image of the way these parameters influence the algorithm.

21

When comparing the results displayed in this table, we see that both escape methods are able

to increase the number of solved instances. However, it is not clear which of the two methods

works best in practice. In the next section, we present our preferred version of the heuristic for

final comparisons. In this configuration we included the local point escape method which is shaded

grey in the table, as this method solves a high percentage of instances with reasonable time and

objective statistics.

Table 6 Performance of two local point escape methods, averages of solved instances. Searching in the

constrained neighbourhood with fixed absolute perturbation (dj = 1), applied to DNN1.

maxRand %solved Time(s) Obj #rand %solved Time(s) Obj #rand

No escape method

71 50.22 10.05

Random perturbation method

k = 1 k=2

10 81 60.44 11.49 233 79 53.03 10.78 236

15 81 55.19 11.02 330 84 57.98 11.83 298

25 83 60.05 11.65 524 86 88.99 11.63 489

75 88 77.88 12.17 1337 92 141.26 15.11 858

Guided random perturbation method

ph = 0.5, pl = 0.01 ph = 0.65, pl = 0.001

10 77 83.01 10.76 252 77 52.12 10.97 251

15 82 96.52 10.99 368 84 57.75 11.62 317

25 87 61.89 11.86 528 90 63.81 11.85 464

75 95 74.60 13.34 757 89 57.46 11.56 993

5.3 Comparison and discussion

In this section, we combine all our main findings to construct a final version of the CDH. We analyze

the results of this heuristic, and compare it to those of the methods used for Tables 4 and 5. For

this final version of the heuristic, we search in the constrained neighbourhood, use the fixed absolute

perturbation rule with dj = 1 and escape local optima by means of the guided random perturbation

method. The results for when we apply this heuristic to 100 instances for DNN5 are presented in

Figure 7. We see substantial improvements compared to the performance of the basic setup of the

CDH as presented in Table 5. Moreover, for the instances that were solved, examples were found

on within our time target of 250 seconds.

In practise, randomization methods were often invoked when the starting confidence ratio’s for

the false label were close to zero. In these cases, the local search method was not able to find

22

sufficient improvements as the desired solution was not in the close neighborhood. To illustrate

the importance the starting conditions of the input figures for the CDH, we turn to Figure 7. In

this Figure, the output of the CDH is compared to the output of the MILP model with tightened

bounds and a 300 second time limit for two instances with different starting ratio’s. From these

results, we clearly see that the CDH is capable of approaching optimal solutions in a very short

time for examples with favorable starting conditions, whereas it performs badly for initial solutions

far distanced from the optimum.

Table 7 Final configuration of the CDH applied to DNN5

.
%solved Time(s) Obj

84 185.45 10.96

(a) MILP: Time(s) = 132.2, Obj = 3.4(b) CDH: Time(s) = 45.4, Obj = 4.0

(c) MILP: Time(s) = 300, Obj = 14.7
(d) CHD: Time(s) = 688.3, Obj =

35.8

Figure 7 Comparing the output of the CDH and the MILP model for different starting

ratio’s. The first adversarial example had a starting ratio of 0.665, the second 0.046.

6 Conclusion and future work

As stated in the introduction, the research in this paper was conducted to reach two goals. First, we

aimed to replicate and validate the results of Fischetti and Jo (2018), who use a 0-1 Mixed Integer

Linear Programming formulation to model Deep Neural Networks with ReLUs. While replicating

23

their results, we have seen that this formulation is of great use to gain insights in a given network’s

features and accuracy by means of creating optimized input examples. In particular, to investigate a

network’s accuracy and robustness the authors applied their models to adversarial machine learning.

This is a particular area of machine learning that focuses on fooling a deep neural network with

a slightly perturbed, initially correctly classified image. Based on our results for this matter, we

come to the same conclusions as Fischetti and Jo (2018). For small networks, optimal adversarial

examples can be constructed using the model in just a matter of seconds. However, for larger

networks, computation times may excessive.

The second goal of this paper was to construct a heuristic capable of building adversarial ex-

amples for DNNs within reasonable computational time. We have outlined a framework of a local

search matheuristic and presented multiple detailed interpretations. Although its performance was

not optimal, we still believe we have established a great foundation for further developments in

this field. We have shown how available training-data can be used to narrow down the searching

area and therefore speed up the heuristic. Furthermore, our findings demonstrate that the use of

random perturbation methods increases the probability of the heuristic successfully constructing an

adversarial example.

To improve the performance of the heuristic proposed in this paper, further research should

focus on increasing this probability of finding an adversarial example. As addressed in the previous

section, the heuristic often failed to find a solution if the starting conditions were non ideal. We

expect that the construction of a method for better initial solutions can increase the probability of

finding an adversarial example for these cases, as well as decrease solving times for input examples

with a better starting point.

During our work, we were limited by the fact that computing the reported statistics was com-

putationally costly. Therefore, we were not be able to run experiments for a sufficient number of

model parameters. Further research on this topic is therefore recommended.

24

References

Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gómez, A., & Salvagnin, D.

(2016). On handling indicator constraints in mixed integer programming. Computational

Optimization and Applications, 65 (3), 545–566.

Cheng, C.-H., Nührenberg, G., & Ruess, H. (2017). Maximum resilience of artificial neural networks.

In International symposium on automated technology for verification and analysis (pp. 251–

268).

Chollet, F., et al. (2015). Keras. https://github.com/fchollet/keras. GitHub.

Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Output range analysis for deep

feedforward neural networks. In Transactions on computational science xxxviii (p. 121–138).

Transactions on Computational Science XXXVIII. doi: 10.1007/978-3-319-77935-5 9

Erhan, D., Bengio, Y., Courville, A., & Vincent, P. (2009). Visualizing higher-layer features of a

deep network. University of Montreal , 1341 (3), 1.

Fischetti, M., & Fischetti, M. (2018). Matheuristics. In Handbook of heuristics (Vol. 1-2, pp.

121–153). Springer. doi: 10.1007/978-3-319-07124-4 14

Fischetti, M., & Jo, J. (2018). Deep neural networks and mixed integer linear optimization.

Constraints, 23 (3), 296–309.

Fischetti, M., & Lodi, A. (2010). Heuristics in mixed integer programming. Wiley Encyclopedia of

Operations Research and Management Science.

Gigerenzer, G. (2008). Why heuristics work. Perspectives on psychological science, 3 (1), 20–29.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1) (No. 2). MIT

press Cambridge.

Hagiwara, K., & Fukumizu, K. (2008). Relation between weight size and degree of over-fitting in

neural network regression. Neural networks, 21 (1), 48–58.

IBM-Corporation. (2020). Ibm ilog cplex optimization studio 20.1.0 [Computer software manual].

LeCun, Y., & Cortes, C. (2010). MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/. Retrieved 2016-01-14 14:24:11, from http://

yann.lecun.com/exdb/mnist/

Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward relu

neural networks.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2019). Iterated local search: Framework and

25

https://github.com/fchollet/keras
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

applications. In Handbook of metaheuristics (pp. 129–168). Springer.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In

Icml.

Park, J., & Boyd, S. (2017). General heuristics for nonconvex quadratically constrained quadratic

programming. arXiv preprint arXiv:1703.07870 .

Serra, T., Kumar, A., & Ramalingam, S. (2020). Lossless compression of deep neural networks. In

International conference on integration of constraint programming, artificial intelligence, and

operations research (pp. 417–430).

Serra, T., Tjandraatmadja, C., & Ramalingam, S. (2018). Bounding and counting linear regions of

deep neural networks.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:

a simple way to prevent neural networks from overfitting. The journal of machine learning

research, 15 (1), 1929–1958.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014).

Intriguing properties of neural networks.

Tjeng, V., Xiao, K., & Tedrake, R. (2019). Evaluating robustness of neural networks with mixed

integer programming.

Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual. Centrum voor Wiskunde en

Informatica Amsterdam.

Wilbaut, C., & Hanafi, S. (2009). New convergent heuristics for 0–1 mixed integer programming.

European journal of operational research, 195 (1), 62–74.

Xue, M., Yuan, C., He, C., Wang, J., & Liu, W. (2021). Naturalae: Natural and robust physical

adversarial examples for object detectors. Journal of Information Security and Applications,

57 , 102694. doi: 10.1016/j.jisa.2020.102694

26

A Database analysis

For every possible label in the training set, we computed the average activation value to represent the

probability that a neuron is activated. The following images are a visualization of the corresponding

probability masks:

27

B Parameters of the heuristic

Table 8 A complete list of the parameters used in the CDH, together with the values we used in our experiments.

Category Symbol Used value Description

Stopping rule - 1.2 Required false-label confidence

ratio.

Search rule Constrained neighborhood - 0.01 Minimum activation probability

for a neuron to be included in the

probability mask.

Solve rule Fixed absolute perturbation dfixedj exp.

Solve rule Local point escape maxRand exp. Maximum number of times a

randomization method can be in-

voked for a single instance.

Solve rule Local point escape k exp. Number of random neurons that

are perturbed in a single run of

the randomization method.

Solve rule Random perturbation - 0.5 Threshold value for activat-

ing/deactivating a randomly

drawn neuron.

Solve rule Guided random perturbation ph exp. Minimum activation for a neuron

to be drawn for a random activa-

tion.

Solve rule Guided random perturbation pl exp. Maximum activation for a neu-

ron to be drawn for a random de-

activation.

Solve rule Guided random perturbation maxIter 500 Maximum number of draws

when the guided random per-

turbation method is invoked, to

avoid infinitely cycling if no

suitable neuron can possibly be

found.

“exp.” indicates that we perform experiments on multiple values

C Overview of programs

28

Table 9 An overview of the programs used to compute our results. Contains descriptions of all classes, and

highlights the most important methods.

type name description

class MILP Used for the replication of the paper. Uses a CPLEX

object to model a DNN into the MILP framework us-

ing our provided mathematical formulation, together

with methods to retrieve information about solved in-

stances.

class Main Used for mainly the replication of the paper. In addi-

tion to the methods that follow, it also contains meth-

ods to write and read text files.

method classify Uses the parameters of a given DNN to classify an in-

put image.

method compute bounds Computes upper bounds for the activation variables of

a MILP, layer by layer.

method feature-

visualization

Uses a MILP to maximize a certain activation of a

neuron and writes the activations of the input layer

into a text file.

method construct

adversarial

examples

Uses a MILP to construct a set of 100 adversarial ex-

amples.

class MILPsub Used for the matheuristic. Very similar to the MILP

class but with small adaptations in the way the distur-

bance variables are programmed.

class MainHeuristics Used for all experiments regarding the CDH. Makes

uses of the MILPsub class for small subproblems.

Also uses guidedRand and Classification instances and

methods to read and write text files.

method matHeuristic-

Constrained

CDH formulation with unbounded perturbation, the

constrained neighbbourhood and random local point

perturbation. Can easily be adapted for complete

neighbourhood search or guided random perturbation.

29

method constant-

Heuristic

CDH formulation with fixed absolute perturbation, the

constrained neighbbourhood and guided random local

point perturbation. Can easily be adapted for complete

neighbourhood search or random perturbation.

method highest-

without

Method used to compute the ratio’s necessary for the

stopping rule of the heuristic. Computes the highest

value of the output layer, excluding the desired false

label

method constrain-

inputlayer

Returns a boolean for every neuron in the inputlayer.

If it is true, it can be included in the search area. If

not, it should be skipped.

method change-

random-

activation

Corresponds with the random perturbation method to

escape local optima.

method activation-

probsets

A method for the guided random perturbation rule.

Creates two sets of input neurons according to their

activation and the value of the ph, pl parameters, from

which random neurons can be drawn later on.

method change-

guided-

random-

activation

Corresponds with the guided random perturbation

rule.

class Classification This class was created for easy access to output layer

activations. Stores the current classification, the array

of output activations and contains a method to com-

pute the ratio needed for the stopping rule of the CDH.

class guidedRand Creates objects for the guided random perturbation

methods. Enables useful storing of both drawn neurons

and their effects on the current image.

30

	Introduction
	Literature review
	Research design and Methods
	A 0-1 MILP Model
	DNN structure
	Encoding ReLU
	(basic) Model formulation
	Bound tightening procedure

	Application models
	A local search matheuristic
	Building blocks

	Data and Experimental setup
	Results
	Replication
	Feature Visualisation
	Building adversarial examples

	A local search heuristic
	Constrained neighborhood
	Fixed absolute perturbation
	Local point escapes

	Comparison and discussion

	Conclusion and future work
	References
	Database analysis
	Parameters of the heuristic
	Overview of programs

