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Abstract

This paper will extend the research of Naji-Azimi et al. (2012). It concerns locating satelite distribution

centers (SDCs) to supply humanitarian aid in disaster areas. People are instructed to visit an SDC in order

to obtain the survival goods, as relief teams can not visit everyone. The SDCs need to be located such that

every home is within walking distance of at least one SDC. The SDCs need to be supplied from a central

depot, using a heterogenous and capacitated vehicle fleet. The problem is formulated as a generalization of

the covering tour problem and a heuristic approach is proposed by Naji-Azimi et al. (2012). The heuristic

approach obtains lower quality solutions, but better computation times. This paper will also regard an

extension to the heuristic, which obtains better solutions than the original heuristic. There is a trade-off

between quality and computation time.
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1 Introduction

The amount of natural disasters has been growing over the past few years, which caused the interest

in emergency logistics to explode in the last ten years (Naji-Azimi et al. 2012). It is difficult, but

crucial to create an efficient aid delivery network. There are several tasks that need to be con-

sidered for an efficient emergency network: establishing a command center, gathering information

on the affected area, identifying appropriate sites for shelter, creating an evacuation plan, deliver-

ing relief material and installing the emergency facilities (fire, medical and emergency construction).

In this paper, the research of Naji-Azimi et al. (2012) will be replicated and extended. The main

focus of this paper is on the distribution of survival goods to the inhabitants of the disaster area.

”Distribution networks for humanitarian aid are often compared to classic industrial distribution

networks, replacing suppliers with humanitarian agencies and distribution centers with public sites

that are temporarily adapted to store and handle goods” (Naji-Azimi et al. 2012). Also, the re-

tailers are replaced by mobile distribution booths that are placed in locations with easy and public

access. Finally, the objective function for a classic industrial distribution network is to maximize

overall profit, while the objective of the humanitarian aid problem is to attain the highest level of

efficiency and fairness for aid delivery (Naji-Azimi et al. 2012).

The distribution network for humanitarian aid consists of multiple central depots (CDs). Each of

these CDs is responsible for aid delivery in the area that it is located in. In this paper we consider

optimizing the efficiency for one of these CDs, assuming that a CD has been opened for the given

region.

The CDs do not deliver aid directly to the affected people. They supply satellite distribution cen-

ters (SDCs) where citizens can go to to receive aid. Emergency managers have to choose several

locations from a set of potential locations, the chosen locations will be used as SDCs. The victims

from the affected areas need easy access to these locations. Therefore, all the victims’ homes should

be within a maximum distance of the SDCs. This maximum distance is set by the emergency man-

agers, the maximum distance is from now on referred to as the covering distance. The locations for

the SDCs have to be chosen in such a way that all demand points (victims’ homes) are covered.
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The demand of the SDC (the demand of all victims that are covered by that SDC) is supplied by a

fleet of heterogenous and capacitated vehicles. The fleet departs from the central depot and makes

sure that every SDC can supply aid to all the victims assigned to it. It is possible for multiple

vehicles to visit the same SDC. The problem at hand is how to choose the optimal locations for the

SDCs, the allocation of the vehicles to the SDCs and how much the vehicles supply to a certain SDC.

This paper provides a mathematical model to determine the number and location of the SDCs.

The model follows an exact algorithm and is for this reason not applicable in real-size instances.

Therefore, a heuristic is proposed by Naji-Azimi et al. (2012) to provide an approximation of the

optimal value. The heuristic does an initialization and then a local search to try and find the min-

imum objective value. We found the heuristic to obtain, on average, higher objective values than

the exact algorithm. Also, the computation times of the heuristic were significantly longer than

the computation times found by Naji-Azimi et al. (2012). To improve these results, the heuristic

was extended. An additional local search operator was added to the heuristic and the heuristic

will be stopped if it finds no improvement after a (local search) iteration. This resulted in lower

computation times and lower objective values. The goal of this paper is to provide a useful tool for

emergency managers in their decision making about the SDC locations.

The rest of this paper is structured as follows. Section 2 reviews relevant literature on the subject of

covering problems. Section 3 defines the problem and mathematical formulation. Section 4 presents

the methods used to solve the problem as proposed by Naji-Azimi et al. (2012). Section 5 describes

how the data was obtained and what the data consists of. Section 6 shows the results of the paper

and compares the results of this paper to the results of Naji-Azimi et al. (2012). Section 7 discusses

the extension that is done. Section 8 concludes the paper.

2 Literature review

The problem at hand is a covering problem. There are multiple options to formulate a covering

problem. In this section the options will be discussed and distinguished. The most important cov-

ering problems are the covering salesman problem, the covering tour problem and the median cycle

problem.
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The Covering Salesman Problem (CSP) aims to minimize the cost of a tour through a subset of p

cities. All other cities should be within a certain covering distance of a city in the subset. Arkin and

Hassin (1994) introduced a geometric version of the CSP. Each of the n salesman’s clients specified

a neigbourhood in which they were willing to meet. The goal was to compute the shortest tour

that intersects all of the buyers’ neighbourhoods. The major difference between this problem and

the problem discussed in this paper, is that each client has a different covering distance, compared

to the constant covering distance in this paper. Current and Schilling (1989) also used the CSP to

obtain routes in disaster areas. Healthcare teams had to visit a subset of the affected villages while

the rest of the affected villages should be within walking distance of one of the visited sites.

Two bi-objective variants to the CSP were introduced by Current and Schilling (1994); the Median

Tour Problem (MTP) and the Maximal Covering Tour Problem (MCTP). The first objective is to

minimize the length of a tour through only p of all the villages. This is the same for both problems.

The second objective for the MTP is to minimize the total distance between each unvisited village

and the nearest visited village. The second objective for the MCTP is to maximize total demand

that can be assigned to a tour stop, where demand can be assigned if the demand points are within

a predetermined maximum distance of the stop.

The Covering Tour Problem (CTP) was studied by Gendreau et al. (1997). The following sets

were defined: W1, W2 and W̄ ⊂W1. W1 is a set of vertices that are optional for visits, W2 is a

set of vertices that have to be covered and W̄ is a set of vertices that must be on the route. The

objective of the CTP is to find a Hamiltonian cycle with minimum length over a subset of W1,

such that all vertices in W2 are covered and all vertices in W̄ are visited. To solve the problem,

an exact branch-and-cut algorithm and an algorithm combining a set covering and TSP heuristic

were proposed. In extension to this, Hachicha et al. (2000) investigated three heuristics to solve a

multi-vehicle covering tour problem. In this paper, a common application for the delivery of health

care by mobile units in developing countries is discussed, which resembles the purpose of this paper.

The Median Cycle Problem (MCP) can be studied in two versions. The MCP1 and MCP2 version.

In MCP1, the objective is to minimize the length of the cycle and the assignment distance of the

vertices not in the cycle, where the assignment distance is the distance to the nearest vertex in the

cycle. This problem is also referred to as the ring star problem (Kedad-Sidhoum and Nguyen 2010).
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The MCP2 aims to minimize the length of the route, where the assignment distance has an upper

bound. Both versions of the problem were solved by Pérez et al. (2003) and Renaud et al. (2004).

Pérez et al. (2003) used a variable neighbourhood tabu search heuristic and Renaud et al. (2004)

used an evolutionary algorithm.

In Table 1 we can find the characteristics of the discussed problems. All characteristics of our

problem are discussed, except for the amount of products greater than one. As every problem has

at least one similarity to our problem, all discussed literature might prove to be useful. However,

none of the problems discussed, are completely the same as the problem in this paper.

Problem name Objective Function No. of Kinds of node Covering Nodes No. of No. of
vertices in distance with products vehicles
the subtour demand

CSP * Min. cost Fixed, p One Yes No 1 1
CSP ** Min. distance Fixed, p One Yes No 1 1
MTP Min. distance and Fixed, p One No Yes 1 1

assignment cost
MCTP Min. distance and Fixed, p One Yes Yes 1 1

max. demand within
a covering distance

CTP Min. distance Free W1 can be Yes No 1 1
while covering visited, some
nodes of W2 must be visited

and W2 must
be covered

m-CTP Min. distance while Maximum of p W1 can be Yes No 1 m
covering nodes of vistied, some
W2, subject to must be visited
maximum number of and W2 must
nodes and maximum be covered
distance per route

MCP1 Min. distance and Free One No No 1 1
assignment cost

MCP2 Min. distance Free One No No 1 1
subject to a
maximum assignment
cost

This paper Min. distance Free J can be visited Yes Yes s m
and I must be
covered

The CSP was solved * by Arkin and Hassin (1994) and ** by Current and Schilling (1989).

Table 1: Related problems

3 Problem formulation

In this paper we use the following definitions for the problem formulation. Let G = (V,A) be a

complete directed graph. The set V contains all vertices, V = {0} ∪ I ∪ J , where 0 is the central

depot; I = {1, ..., n} the set of demand points and J = {1, ...,m} the set of potential SDC’s. Every
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vertex in I must be covered while the covering of vertices in J is optional. The set A contains all

arcs, A = {(vi, vj) : vi, vj ∈ V }. A distance matrix is defined over A with cij the distance between

vertex i and j ∈ V . The amount of aid type s(s = 1, ..., t) required at demand point i ∈ I is dis.

The weight of each aid unit s is equal to ws. As stated before, there is a fleet of l heterogenous

vehicles available. The vehicles’ capacity is defined as Qk for each vehicle k = 1, ..., l. A n ∗ m

matrix α is defined where αij is equal to 1 if demand point i is within covering distance τ from

SDC j and 0 otherwise.

For the model, the following decision variables are defined:

Disjk quantity of demand type s at demand point i supplied by vehicle k while visiting SDC j
xijk equals 1 if arc (i, j) is visited by vehicle k, 0 otherwise
yjk equals 1 if SDC j is visited by vehicle k, 0 otherwise
uik a free variable used in the sub-tour elimination constraints
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The model is formulated as follows:

min
m∑
i=0

m∑
j=0

l∑
k=1

cijxijk (1)

s.t.
m∑
i=0

xijk = yjk j ∈ {1, ...,m}, k ∈ {1, ..., l} (2)

m∑
i=0

xjik = yjk j ∈ {1, ...,m}, k ∈ {1, ..., l} (3)

m∑
j=0

x0jk = 1 k ∈ {1, ..., l} (4)

m∑
j=0

xj0k = 1 k ∈ {1, ..., l} (5)

m∑
j=1

l∑
k=1

αijDisjk ≥ dis i ∈ {1, ..., n}, s ∈ {1, ..., t} (6)

n∑
i=1

t∑
s=1

wsDisjk ≤ Qkyjk k ∈ {1, ..., l}, j ∈ {1, ...,m} (7)

t∑
s=1

n∑
i=1

m∑
j=1

wsDisjk ≤ Qk k ∈ {1, ..., l} (8)

uik − ujk + (m+ 1)xijk ≤ m i, j ∈ {1, ...,m}, k ∈ {1, ..., l} (9)

xijk ∈ {0, 1} i, j ∈ {1, ...,m}, k ∈ {1, ..., l} (10)

yjk ∈ {0, 1} j ∈ {1, ...,m}, k ∈ {1, ..., l} (11)

uik ≥ 0 i ∈ {1, ...,m}, k ∈ {1, ..., l} (12)

Disjk ≥ 0 i ∈ {1, ..., n}, s ∈ {1, ..., t}, j ∈ {1, ...,m}, k ∈ {1, ..., l} (13)

The objective (1) is to minimize the travel distance of all vehicles combined. Constraints (2) and

(3) make sure that for each SDC j and each vehicle k, there are the same amount of incoming arcs

as outgoing arcs. Constraints (4) and (5) ensure that each vehicle leaves from the central depot and

returns to the central depot. Constraints (6) ensure that all demand points i have their demand

fulfilled. Constraints (7) link the distribution variables Disjk to the use of vehicle k for a delivery

to demand point j. Constraints (8) ensure that each vehicle is not loaded with more weight than

its capacity allows for and constraints (9) are the sub-tour elimination constraints as proposed by

Miller et al. (1960). Constraints (10) - (13) are the decision variable definitions.
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4 Methodology

This section describes the heuristic approach used to solve the problem. The first step in the

heuristic is the Preprocessing step. This step checks whether there are certain possible locations

for SDCs that have to be used. Next up is the Initialization to provide an initial solution. Then,

a Local search algorithm is used to find the optimal solution. The final step is the Diversification,

this is done in order to give the solution some flexibility. The pseudocode of the heuristic can be

found in Figure 1 at the end of this section.

4.1 Preprocessing step

The aim of the preprocessing step is to find demand points that have only one SDC within the

covering distance. If this is the case, it means that the demand point can only be supplied from one

SDC. Therefore, this SDC must be selected in every feasible solution. For each SDC j, a subset Tj

is constructed containing all demand points within the maximum covering distance from that SDC.

4.2 Initialization

The initialization finds an initial feasible solution. This step randomly selects a vehicle k, an SDC

j ∈ J and a demand point i ∈ Tj . If the total demand from the demand point is less than or equal

to the remaining capacity of the vehicle, demand point i is assigned to SDC j. When all demand

points in Tj are assigned, the next SDC on route k is selected as the SDC closest to j where the set

Tj+1 contains at least one demand point that is not yet assigned to an SDC.

When there is not enough capacity left in vehicle k to supply all demand from the next demand

point, the vehicle is filled with as many products as possible for this demand point. After visiting

the last SDC, the vehicle returns to the central depot. A new vehicle is randomly selected and

the process continues with the demand point that was not fully supplied. This algorithm continues

until all demand points are assigned to an SDC. The obtained feasible solution is now used in the

next step to get an approximation of the optimal solution.

4.3 Local search

The Local search algorithm consists of four procedures, each designed to deal with specific charac-

teristics of the current solution. These four procedures are repeated for a given number of iterations
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(# LocalSearch iterations).

4.3.1 Delete-Redundant-SDC

The Delete-Redundant-SDC procedure tries to remove unnecessary SDCs from routes. A stop is

unnecessary if after removing the stop, the solution is still feasible. This is the case if every demand

point assigned to an SDC j, can be supplied by another SDC in the solution. The Delete-Redundant-

SDC procedure considers each route and for each SDC j on that route, it evaluates if the SDC can

be removed. Verifying the feasibility of the solution after removing SDC j can be done by checking

if all demand points served by SDC j can be served by another SDC on the same route. If the

solution remains feasible, the SDC can be removed. The next step is to assign all demand points

previously supplied by SDC j to another SDC. The algorithm tries to assign as many demand

points as possible to the closest SDC to j. If not all demand points are covered by the closest SDC,

the algorithm moves on to the second closest SDC to j, this continues until all demand points are

assigned to other SDCs on the same route.

4.3.2 Swap

The Swap procedure tries to reduce the length of a route. This can be achieved by changing the

order of visits within a route or even by swapping SDCs between different routes. Changing the

order of visits within a route will always result in a feasible solution, as no changes are made to

the fulfilled demand. However, swapping SDCs between routes will result in a different allocation

of demand, which might exceed the vehicles’ capacity. Therefore, this is not always possible.

First, each duo of SDCs on a route is considered for a swap. If the swap results in a shorter route

length, the swap is performed. This procedure continues for all routes. Next, swaps between differ-

ent routes are considered. As stated before, this will not always result in a feasible solution, which

makes it a more difficult procedure. Each SDC serves different demand points, which results in

different amounts of demand assigned to different SDCs. Therefore, if the remaining capacity of a

vehicle was close to zero before the swap, the remaining capacity could become negative and would

thus become infeasible after the swap.

To illustrate this problem, consider a swap between SDC j1 and SDC j2 visited by vehicles k1 and

k2 respectively. The remaining capacities of the vehicles are denoted as R1 and R2 respectively. The
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capacity required for the SDCs is denoted as d1 and d2 (d1 =
∑∑

Disj1k1ws, d2 =
∑∑

Disj2k2ws

for all s and i). To remain feasible, the following condition needs to be satisfied:

min(R1 + d1 − d2;R2 + d2 − d1) ≥ 0

The procedure checks potential swaps for each SDC j on each route k. A list of the closest SDCs

to j is created. All swaps between SDC j and SDCs in the top Φ of the list are considered for a

swap. If the feasibility condition holds, the total length of the two routes before and after the swap

are computed. If the total length after the swap is shorter, the swap is performed.

4.3.3 Drop & Add

The Drop & Add procedure tries to replace a currently chosen location in a non-optimal route by

one or more unchosen locations. It is possible that visiting more and different SDCs will reduce the

length of the route. Another possibility occurs when looking at an SDC that is visited on multiple

routes, the route length might be reduced by replacing this SDC with two or more SDCs in the

neighbourhood.

Each visited SDC is considered to be dropped. If an SDC j gets dropped, some demand points

become uncovered. The algorithm tries to reassign these demand points to other SDCs on the route.

If not all demand points can be reassigned to another SDC on the route, the algorithm considers

adding unvisited SDCs to the route, starting with the one closest to SDC j. If an unvisited SDC

covers at least one of the uncovered demand points, the SDC is added to the route such that the

route length is minimized. Next, the algorithm tries to assign as many uncovered demand points to

the newly added SDC. This proces continues until all demand points are covered. When the proces

is done, the total route length is computed. The removal of the SDC which leads to the shortest

total route length, will be performed, even if the total route length is increased in comparison to

the current solution.

4.3.4 Extraction-Insertion

The last operator is the Extraction-Insertion. This procedure tries to move an SDC j currently on

route k to another route k′, in order to optimize vehicle capacity. To check whether it is possible to

insert SDC j in route k′, the volume required (dj =
∑∑

Disjkws) to transport demand for SDC j
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should be less than or equal to the remaining capacity of vehicle k′. If SDC j can be supplied by

vehicle k′, the algorithm inserts the SDC in route k′, such that the route length increase is minimized.

For each route, each SDC is considered for a transfer to every other route. The procedure is only

performed if it reduces the total route length. As long as improvements are found, the procedure is

repeated.

4.4 Diversification

After all iterations of the local search operations are completed, there is one last Diversification

procedure. The goal of this procedure is to allow the local search operations in the next iteration

to perform changes. The Diversification randomly selects φ unvisited SDCs and inserts them into

the routes of the current solution. This is done in such a way that the increase in total route length

is minimized. The combination of the Local search and the Diversification is repeated for a certain

number of iterations (# iterations).

Figure 1: Pseudocode heuristic

For r=1 to # of restarts
Preprocessing

Initialization

For i=1 to # iterations
For j =1 to # LocalSearch iterations
Delete-Redundant-SDC

Swap

Drop & Add

Extraction-Insertion

next j
Diversification

next i
next r

5 Data

The data used in this paper is not the same as the data used in Naji-Azimi et al. (2012). The

results might be different for this reason. The data used in this paper is provided by the Erasmus

University of Rotterdam. For the parameter testing 20 instances were generated, each with 100

demands points, 20 SDCs, 2 product types and 2 vehicle types. For the computational results, the

amount of demand points, SDCs, product types and vehicle types varied. The amount of demand
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points is either 20, 30 or 40. The amount of SDCs is either 4, 6, 8, 9, 12 or 16. The amount of

product types and vehicle types ranges from 2 to 4. For each of the used combinations, five instances

were generated. In total, 100 instances were generated.

The data files contain the following information: the maximum covering distance, distance matrix,

covering matrix, weights of the aid units, demand at demand points per product type and the

vehicle fleet with corresponding capacities.

6 Results

In this section the best combination of parameters will be tested. Once this is done, the best

combination will be used to calculate the objective values of the instances. The objective values

will be calculated using the heuristic as described by Naji-Azimi et al. (2012). These objective

values will then be compared to the exact solution. All codes are written in Java, using Eclipse IDE

2018-12. Algorithms are executed on a computer with an Intel Core i5-8250U CPU at 1.60GHz and

8 GB RAM.

6.1 Parameter setting

The number of restarts for the parameter testing is fixed to five. The following parameter combi-

nations were considered:

Number of iterations: 10, 20
Number of local search iterations: 10, 15, 20
Number of SDCs considered in swap procedure (Φ) : 4, 6, 8
Number of SDCs considered in diversification (φ) : 3, 5, 7

These combinations were tested on instances with 100 demand points, 20 SDCs, 2 types of products

and 2 vehicle types. The results can be found in Table 2. The results range from 2152 to 2315,

where the best result was obtained using 20 iterations, 20 local search iterations, φ equal to 3 and Φ

equal to 8. This combination of parameters will be used for the computational results. Especially

the parameter for the amount of swaps seems to have a big impact on the results. As we can see,

the objective values decrease as Φ increases.
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Table 2: Heuristic parameters setting

# iterations # local search iterations φ Φ
4 6 8

10 10 3 2277 2231 2184
5 2262 2262 2205
7 2270 2210 2170

15 3 2283 2214 2193
5 2290 2194 2201
7 2315 2216 2155

20 3 2297 2229 2180
5 2276 2235 2169
7 2281 2245 2168

20 10 3 2289 2249 2197
5 2280 2248 2181
7 2272 2220 2156

15 3 2289 2253 2174
5 2269 2237 2198
7 2277 2200 2169

20 3 2272 2225 2152
5 2261 2202 2165
7 2268 2217 2177

6.2 Computational results

In this sub-section, the performance of the heuristic is evaluated. To evaluate the performance,

the objective values and computation times of the heuristic will be compared to those of the exact

algorithm. For the exact algorithm, a time limit of 1800 seconds per instance was set. For each

combination of demand points, SDCs, products and vehicles, the objective is the average of the five

instances. The computation time is the sum of the five computation times.

For the heuristic, the following parameters were used: 3000 restarts, 20 iterations, 20 local search

iterations, φ equal to 3 and Φ equal to 8. In Table 3 we can see that the heuristic, on average, finds a

higher objective value than the exact algorithm (average gap is positive). The average computation

time for the heuristic is shorter than for the exact algorithm, but when we look at Table 3 again,

we can see that this is mostly caused by an outlier for the instances with 8 SDCs, 4 product types

and 4 vehicles. Most of the other heuristics’ computation times are significantly longer than the

computation times of the exact algorithm. Therefore, the exact algorithm outperforms the heuristic

on small instances.

13



For the larger instances (30 demand points or more), the computational times for the heuristic are,

on average, almost a third of the computational times for the exact algorithm (Table 4). However,

an average optimality gap of 4.62% is found. This indicates that the heuristic does not consistently

perform for the greater instances.

Table 3: Computational results for smaller instances

Demand points SDCs products vehicles Exact Heuristic
Objective Seconds Objective Seconds Gap(%)

20 4 2 2 385.2 4.92 403.8 312.7 4.83
2 3 328.0 0.59 328.0 264.3 0.00
2 4 294.2 0.26 294.2 206.7 0.00
3 2 449.6 47.35 449.8 548.7 0.04
3 3 422.8 2.10 424.0 459.9 0.28
3 4 306.2 3.61 303.8 503.3 -0.78
4 2 779.6 37.20 795.4 899.4 2.03
4 3 423.8 3.00 423.8 610.5 0.00
4 4 478.8 14.29 491.0 549.6 2.55

6 2 2 420.6 69.96 422.8 472.0 0.52
2 4 285.4 1.35 286.2 294.1 0.28
4 2 680.0 2410 710.0 1009 4.41
4 4 334.2 29.27 342.2 767.1 2.39

8 2 4 385.8 444.0 385.0 453.8 -0.21
4 2 723.4 7242 703.8 1241 -2.71
4 4 419.0 1972 422.6 828.8 0.86

Average 767.6 588.8 0.91

Table 4: Computational results for larger instances

Demand SDCs products vehicles Exact Heuristic
points Objective Gap(%) Seconds Objective Seconds Gap(%)
30 9 4 4 735.8 42.15 9000 741.4 2880 0.76

12 4 4 638.8 41.01 9000 655.2 2634 2.57
40 12 4 4 833.6 47.92 9000 915.2 3795 9.79

16 4 4 866.4 58.01 9000 913.0 4119 5.37
Average 47.27 9000 3357 4.62

6.3 Discussion results replication

The results obtained through the heuristic by Naji-Azimi et al. (2012) are better than the results

obtained in this paper. Their heuristic returned lower objective values than the exact algorithm,

which can not be said about the results in this paper. This might be caused by the fact that the

triangle inequality does not hold for some of the instances used in this paper, where Naji-Azimi

et al. (2012) stated that it holds for their instances. This was tested on a single instance, on which

the effect was not too great, so only a small portion of the difference can be explained by this.

14



Furthermore, the implementation could be different, which can also result in different objective

values.

The heuristic of Naji-Azimi et al. (2012) also had lower computation times. There could be dif-

ferences in the implementation of the heuristic, which could explain the difference in computation

time. Another possible argument is that it is unknown how many restarts they did for the heuristic.

In this paper the amount of restarts was 3000, based on the fact that Naji-Azimi et al. (2012) did

3000 restarts for their parameter testing. However, it is not clear whether or not they changed the

amount of restarts for the computational results.

7 Extension

The extension of the original paper will consist of three parts. First, the heuristic parameter Φ

considered will not be constant, where it was set to eight for the heuristic. Second, the heuristic

will be stopped early if no improvement is found for two iterations. Third, a 3-Opt-Exchange will

be added to the heuristic. The 3-Opt-Exchange operator picks three SDCs on a route and tries to

rearrange them in such a way that the route length is reduced. The pseudocode for the extended

heuristic can be found in Appendix A.

7.1 Variable Swap Parameter

As stated above, the parameter was fixed to eight in the heuristic. Allowing Φ to vary, can reduce

computation times. At the start of the extension, the parameter is set to four, but when the

improvement after a local search iteration is not greater than ρ, the amount of swaps considered

will increase by two. From the parameter setting, we concluded that Φ had a significant impact

on the quality of the solutions. Therefore, a relatively big ρ of at least 10% was chosen. With

a relatively big ρ, Φ will increase fast and the objective values will not be affected by this. The

increase of two is inspired by the possibilities suggested for the parameter setting by Naji-Azimi

et al. (2012). Once a whole iteration has passed (20 local search iterations), Φ is set back to four.

ρ = objectiveV alue/10 + 2

The goal of this part of the extension is to reduce computation times. In the result section we found

the computation times for the heuristic to be longer than the computation times for the exact
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algorithm. Limiting the amount of SDCs considered for the Swap-procedure until the improvement

is too small, can reduce computation time.

7.2 Stopping early

The heuristic will be stopped when no improvement is found for two iterations, the heuristic has

found a local optimum. If this is the case while not all iterations have been performed, the com-

putation time can be reduced by simply stopping the heuristic. Since the heuristic is already in a

local optimum, no further improvements would have been found.

7.3 3-Opt-Exchange

As we saw in the results section, the results of the exact algorithm are, on average, better than

the results obtained through the heuristic. To improve the objective values of the heuristic, an

additional local search operator can help to find solutions that would not have been found without

this operator.

The 3-Opt-Exchange picks three SDCs on a single route and tries to rearrange the order of visits in

such a way that the route length is minimized. As the SDCs are still visited by the same vehicle,

the remaining capacities remain unchanged. Therefore, the new solution will always be feasible.

The procedure calculates the current length of the route and the route lengths of the possible new

routes. All possible routes are compared and the one with the shortest route length is set as the

new route. The idea was to also check possibilities for exchanging three SDCs between routes, but

due to the computation times increasing exponentially, this could not be implemented.

7.4 Results

We can still see in Table 5 that the computation times for small instances are often higher for the

extended heuristic. However, the computation times of the extended heuristic for the large instances

are only a fraction of the computation times from the exact algorithm. Compared to the original

heuristic, the computation times are significantly shorter with an average reduction in computation

time of 86.98% (Table 6). The goal to reduce computation times was achieved. We can also see that

the objective values of the extension are on average lower than the replications’ objective values.

Overall, the extended heuristic performs much better than the original heuristic.
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On average, the extended heuristic still obtains higher objective values than the exact algorithm.

The second goal of the extension was to obtain lower objective values through the extra local search

operator. This goal was achieved, but not in significant measures, as the exact algorithm still

obtains lower values.

Table 5: Extension

Demand points SDCs products vehicles Exact Extension
Objective Seconds Objective Seconds Gap(%)

20 4 2 2 385.2 4.92 403.2 20.48 4.67
2 3 328.0 0.59 328.0 15.64 0.00
2 4 294.2 0.26 294.2 13.20 0.00
3 2 449.6 47.35 449.6 27.57 0.00
3 3 422.8 2.10 424.6 57.74 0.43
3 4 306.2 3.61 302.2 33.76 -1.31
4 2 779.6 37.20 792.0 110.5 1.59
4 3 423.8 3.00 423.8 74.12 0.00
4 4 478.8 14.29 484.4 34.01 1.17

6 2 2 420.6 69.96 422.8 66.25 0.52
2 4 285.4 1.35 286.2 43.34 0.28
4 2 680.0 2410 717.2 165.9 5.47
4 4 334.2 29.27 341.2 97.54 2.09

8 2 4 385.8 444.0 383.8 77.95 -0.52
4 2 723.4 7242 687.8 212.2 -4.92
4 4 419.0 1972 422.8 137.5 0.91

30 9 4 4 735.8 9000 746.2 348.6 1.41
12 4 4 638.8 9000 653.0 457.0 2.22

40 12 4 4 833.6 9000 919.2 742.5 10.26
16 4 4 866.4 9000 896.8 1185 3.51

Average 2051 196.0 1.39

8 Conclusion

This paper examined a heuristic approach to locating satellite distribution centers to deliver hu-

manitarian aid in disaster areas. However, in general, the heuristic did not find better results than

the exact approach and the computation times were far greater than the exact approach for small

instances. For the extended heuristic, the results were also not as good as the ones provided by the

exact approach, but the computation times were only a fraction of the computation times of the

exact approach when applied to larger instances. On average, the extended heuristic supplied lower

objective values than the replicated heuristic. Therefore, the extended heuristic would definitely be

preferred over the replicated heuristic. The choice between the exact algorithm and the extension

will be a trade-off between objective values and computation times.
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Table 6: Comparison between heuristic and extended heuristic

Demand SDCs products vehicles Heuristic Extension Improvement
points Gap(%) Seconds Gap(%) Seconds Gap Seconds

reduction(%)
20 4 2 2 4.83 312.7 4.67 20.48 0.16 93.45

2 3 0.00 264.3 0.00 15.64 0.00 94.08
2 4 0.00 206.7 0.00 13.20 0.00 93.61
3 2 0.04 548.7 0.00 27.57 0.04 94.98
3 3 0.28 459.9 0.43 57.74 -0.15 87.45
3 4 -0.78 503.3 -1.31 33.76 0.53 93.29
4 2 2.03 899.4 1.59 110.5 0.44 87.71
4 3 0.00 610.5 0.00 74.12 0.00 87.86
4 4 2.55 549.6 1.17 34.01 1.38 93.81

6 2 2 0.52 472.0 0.52 66.25 0.00 85.96
2 4 0.28 294.1 0.28 43.34 0.00 85.26
4 2 4.41 1009 5.47 165.9 -1.06 83.56
4 4 2.39 767.1 2.09 97.54 0.30 87.28

8 2 4 -0.21 453.8 -0.52 77.95 0.31 82.82
4 2 -2.71 1241 -4.92 212.2 2.21 82.90
4 4 0.86 828.8 0.91 137.5 -0.05 83.41

30 9 4 4 0.76 2880 1.41 348.6 -0.65 87.90
12 4 4 2.57 2634 2.22 457.0 0.35 82.65

40 12 4 4 9.79 3795 10.26 742.5 -0.47 80.43
16 4 4 5.37 4119 3.51 1185 1.86 71.23

Average 1.65 1142 1.39 196.0 0.26 86.98
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Appendix A

Pseudocode Extension

prevObj = Integer.MAX V ALUE
For r=1 to # of restarts
Preprocessing

Initialization

For i=1 to # of iterations
obj = this.getObjective
For j =1 to # of local search iterations
Delete-Redundant-SDC

Swap

3-Opt-Exchange

Drop & Add

Extraction-Insertion

curObj = this.getObjective
If prevObj-curObj < ρ

Φ+ = 2
prevObj = curObj

next j
Φ = 4
Diversification

If obj = this.getObjective
iter++
If iter >= 2
return

Else
iter = 0

next i
next r

Appendix B

The Extension.java file contains the code for the extended heuristic. First it gives an overview of

what the heuristic will do. Next, it describes the preprocessing method and the initialization. Then

all local search operators and the diversification method are described. After that, a few methods

used in the previously mentioned code are described.

The Heuristic.java file contains the code for the replicated heuristic. First, it describes the prepro-

cessing method and the initialization. Next, all local search operators and the diversification method

are described. After that, a few methods used in the previously mentioned code are described.
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The Main.java file contains the code used for running the heuristics and the model. It also contains

a method that reads the data.

The Model.java file contains the code for the exact algorithm. First, the variables are created and

the process of doing this is described. Next, all constraints are created. Then the objective is

created and after that there are a few methods that are helpful in printing the results.

A more extensive description is given in the comments of the java files.
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