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Abstract

Cryptocurrencies have become more and more popular of the last years. They can be respon-

sible for large returns, however this comes at a cost of large volatility and therefore brings more

risk. This paper constructs forecasts for the conditional Value-at-Risk (CVaR) and conditional

expected shortfall (CES) measures. In a simulation study, the performance of the Hill estimator

versus the performance of the MR estimator is examined. Also the use of a data-dependent

choice of upper order statistics used in the methodology is investigated. An application to stock

indices and cryptocurrency prove that the MR estimator which seems to improve forecasts in

the simulation study, does not work well with empirical data.
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1 Introduction

Modeling risk and volatility of assets is a highly researched topic in econometrics and economics

as investors are always concerned about the risk-and-return trade-off in their portfolios. Especially

downside risk is of interest as downside risk implies losses which are less preferred than positive

extreme returns. Therefore, research has been done in modeling tail risk measures. Which are

relevant measures for estimating the risk. Cryptocurrencies form an asset class that is known for

their extreme volatility. They have gained a lot of popularity over the last five years leading to a

total global market capitalization of over 2.2 trillion USD, with Bitcoin (BTC) being the largest

cryptocurrency with a market capitalization of 1.08 trillion USD. Cryptocurrencies are known to

have possible high returns, high volatility, large skewness, and extreme kurtosis (Zhang et al., 2018).

This makes the modeling of risk of cryptocurrencies even more challenging.

To model time series of financial returns, ARMA-GARCH models are often used. Hoga (2019)

shows that they have overall good performance in estimating conditional tail risk measures. Popular

risk measures are Value-at-Risk (VaR) and expected shortfall (ES) which are also widely used to

measure (downside) risk.

In this paper, I investigate the performance of these conditional tail risk measures as applied to

cryptocurrency data. Conditional Value-at-Risk is by Hoga (2019) defined as follows: ’the loss that

is exceeded only with some small probability given the history of past returns’, where the conditional

shortfall is referred to as: ’the expected loss beyond CVaR conditional on past returns’. I investigate

some methods using extreme value theory (EVT) in constructing confidence intervals for the tail

risk measures. I formulate the following research question:

Does the moments ratio (MR) estimator for the extreme value index give better CVaR and CES

predictions than the Hill estimator for cryptocurrency data?

First, I investigate whether using the moments ratio (MR) estimator of Danielsson et al. (1996) or

the Hill estimator of Hill (1975) gives better results. Furthermore, I compare the benefit of using

the idea of self-normalization in computing the confidence intervals as opposed to using the normal

approximation. The methods are applied to different cryptocurrencies and a cryptocurrency index

to examine which method gives the best CVaR and CES forecasts with corresponding confidence

intervals.
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1.1 Literature review

Hoga (2019) applies extreme value theory to derive extreme conditional Value-at-Risk (CVaR) and

conditional expected shortfall (CES) estimates. They construct confidence intervals using the con-

cept of self-normalization. They show that a data-dependent choice of the number of upper-order

statistics included in the estimation gives better simulation results. Also, they show in the simu-

lation study that the MR estimator is slightly more preferable than the Hill estimator when using

self-normalization. The empirical application to stock market indices showed that these methods

lead to improvements in the CVaR and CES forecasts.

Feng et al. (2018) investigates the extreme characteristics of seven cryptocurrencies. They found

that among cryptocurrencies, the right-tail correlations are much less strong compared to the left-tail

correlations. However, the left-tail correlations, as well as the cross-tail correlations, were indepen-

dent with selected stock indices which suggests that cryptocurrencies can be a good diversifier for

a traditional portfolio. Chuen et al. (2017) uses the Cryptocurrency Index (CRIX) to investigate

the risk and return characteristics of a portfolio consisting of cryptocurrencies. They show that the

risk-return performance of a traditional portfolio is improved when CRIX is added to the portfolio

but the results need to be handled with care.

In this paper, I apply the methods to three cryptocurrencies and to a cryptocurrency index. To

my knowledge, there has not been research into these specific measures applied to cryptocurrency.

Therefore, this paper adds to the existing literature on cryptocurrencies.

According to the simulation results, the MR estimator does improve the CVaR and CES forecasts.

It significantly improves the coverage of the estimated intervals, but it comes at the cost of wider

intervals. Furthermore, the use of self-normalization instead of normal approximation in constructing

the intervals also largely improves the coverage but again leading to larger intervals. The application

to stock indices opposes this result and shows that the MR estimator does not perform well in

forecasting the CVaR, but the Hill estimator does. Lastly, the application to cryptocurrency data

shows that the Hill estimator performs better than the MR estimator. The data-dependent method

for choosing the number of upper order statistics also proofs to be unsuitable for cryptocurrency

data.

This paper proceeds as follows; in section 2, I will explain the used models and develop the

estimators. In section 3 the used data is discussed and relevant statistics are presented. Section 4

shows the results of the simulation study. Then, in section 5.1 the application to stock indices is
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performed and in section 5.2 the application to cryptocurrencies is executed. Lastly, in section 6 the

results are concluded.

2 Methodology

2.1 Model Setup

Following and using the notation of Hoga (2019), I will work with an ARMA(p̄, q̄) model for the loss

returns {Xi}i∈Z by negating the returns of an asset. In this way, we can examine the right tail of

{Xi} and thereby examine the risk measures of the returns.

Xi =

p̄∑
j=1

φ◦jXi−j + εi −
q̄∑
j=1

ϑ◦jεi−j . (1)

I use a GARCH(p, q) model for the errors {εi}i∈Z,

εi = σiUi with σ2
i = ω◦ +

p∑
j=1

ψ◦j ε
2
i−j +

q∑
j=1

β◦j σ
2
i−j . (2)

Here {Ui} are independent and identically distributed (iid) with E[U1] = 0 and V ar(U1) = 1.

Define θ = (φ1, . . . , φp̄, ϑ1, . . . , ϑq̄, ω, ψ1, . . . , ψp, β1, . . . , βq)
> a generic parameter vector where the

superscript ◦ is used to indicate the true unknown parameters.

These are the right-tail measures, however, for applications it makes more sense to use the left tail

CVaR and CES as this is of much more interest to investors. To estimate the risks (left tail) I

convert the return series to a ’loss return’ series by negating the observations: {Xneg
i = −Xi}. In

this way we can examine the right tail of the loss returns and thereby examine the risk measures of

the data.

Next, I filter out the error terms for given θ:

εi(θ) = Xi −
p̄∑
j=1

φjXi−j +

q̄∑
j=1

ϑjεi−j(θ), (3)

σ2
i (θ) = ω +

p∑
j=1

ψjε
2
i−j(θ) +

q∑
j=1

βjσ
2
i−j(θ). (4)

Here, εi(θ) in (3) and σ2
i (θ) in (4) will be estimated later on.
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2.2 Estimators

For estimation I use sample X1, ..., Xn, we set X̃i = Xi for i = 1, ..., n. Next, we set 0 = X̃0 =

X̃−1 = ..., 0 = ε̂0(θ) = ε̂−1(θ) = .. and 0 = σ̂2
0(θ) = σ̂2

−1(θ) = ... . The following estimators are

used for given θ:

ε̂i(θ) = X̃i −
p̄∑
j=1

φjX̃i−j +

q̄∑
j=1

ϑj ε̂i−j(θ), (5)

σ̂2
i (θ) = ω +

p∑
j=1

ψj ε̂
2
i−j(θ) +

q∑
j=1

βj σ̂
2
i−j(θ). (6)

Then, Ûi is defined as the residual and calculated as follows: Ûi := ε̂i(θ̂)/σ̂i(θ̂), where θ̂ is the

parameter vector with estimated coefficients.

Throughout this paper I assume that Ui has distribution function F . Hoga (2019) defines the

(1− 1/x)-quantile U(x) as U(x) := F←(1− 1/x), where F← is the left-continuous inverse of F . We

assume that U(·) has extreme value index γ > 0. This extreme value index is a measure for the

heaviness of F←, the index is larger for heavier right-tail. Following the procedure of Hoga (2019)

we reform the ARMA-GARCH model as; Xn+1 = µn+1 + σn+1Un+1. Here, µn+1 and σn+1 are the

estimated mean and volatility of the returns respectively.

In order to estimate the CVaR and CES, µn+1 and σn+1 need to be estimated first. µn+1 will

be estimated recursively according to:

µ̂n+1 = φ̃1Xn − ϑ̃1(Xn − µ̂n) (7)

σ̂n+1 is estimated as the root of equation (6). Thereafter, the VaR ((1 − α)-quantile) and the

expected shortfall of Ui need to be estimated. These are defined as x̂Uα and ŜUα below.

Define the order statistics of the observations {Û1, . . . , Ûn}: U1:n ≤, . . . ,≤ Un:n. I use the choice

of k, the number of upper order statistics included in the estimators x̂Uα and ŜUα , as stated in Hoga

(2019). The method for choosing this k is given in Appendix A.

Hoga (2019) gives the following estimator for the (1-α)-quantile (x̂Uα ) and the expected shortfall

(ŜUα ) of Ui using top order statistics:

x̂Uα := Un−k:n

(nα
k

)−γ̂
(8)
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ŜUα :=
x̂Uα

1− γ̂
, (9)

where Un−k:n is the (n−k)th order statistic and γ̂ the extreme value index. There are two potential

estimators for γ. The Hill estimator of Hill (1975):

γ̂H :=
1

k

k∑
i=0

log

(
Un−i:n
Un−k:n

)
. (10)

Alternatively, γ̂ can be estimated with the MR estimator of Danielsson et al. (1996) with

γ̂MR :=
1

2

1
k

∑k
i=0 {log (Un−i:n)− log (Un−k:n)}2

γ̂H
. (11)

γ > 0 is required due to some restrictions and γ < 1 is required for ES to be finite. All the above

combined results in the following point estimators for the CVaR and the CES:

x̂α,n = µ̂n+1 + σ̂n+1x̂
U
α , (12)

Ŝα,n = µ̂n+1 + σ̂n+1Ŝ
U
α , (13)

respectively.

I do not include the first few residuals in the estimation as they are possibly affected by initial-

ization effects. Also, in some cases, the last few observations are excluded as well. We include the

subsample Ûmn , . . . , Ûbntc, where 0 < t ≤ 1 is the fraction of elements omitted.By using EVT some

last observations are excluded by specifying t. We define x̂α,n(t) and Ŝα,n(t) as the estimators where

x̂Uα and ŜUα are calculated using observations until Ûbntc. Where k is replaced by bktc.

Theorem 1 in Hoga (2019) suggests that under mild conditions, which can be found in their

paper, the following (1-τ)-confidence interval can be calculated:

I1−τ
na :=

[
ẑα,n(1) exp

{
−Φ

(
1− τ

2

)
σ̂γ̂,γ

log(k/(nα))√
k

}
, ẑα,n(1) exp

{
Φ
(

1− τ

2

)
σ̂γ̂,γ

log(k/(nα))√
k

}]
(14)

where z ∈ {x, S}, and na stands for the method of normal approximation which is used. Φ(·)

indicates the distribution function of a normal distribution. ẑα,n(1) is the estimator for CVaR or

CES where t = 1, meaning all last observations are included in the estimation. The interval can also
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be computed using the idea of self normalization which gives the following equation:

I1−τ
sn :=

[
ẑα,n(1) exp

{√
Vt0,1−τ

∫ 1

t0

t2 log2

(
ẑα,n(t)

ẑα,n(1)

)
dt

}
, ẑα,n(1) exp

{
−

√
Vt0,1−τ

∫ 1

t0

t2 log2

(
ẑα,n(t)

ẑα,n(1)

)
dt

]
(15)

Here, ẑα,n(t) is the estimator for CVaR or CES as mentioned above, where t determines the fraction

of observations left out of the estimation subsample Ûmn , . . . , Ûbntc. t0 is the lowest t we use. Vt0,1−τ

is the (1-τ)-quantile of Vt0 which is defined as follows:

Vt0 =
W 2(1)∫ 1

t0
[W (t)− tW (1)]2 dt

, (16)

where W (·) is a standard Brownian motion.

2.3 Simulation study

I conduct a simulation study where I examine the coverage of the CVaR and CES intervals for a

sample series of n = 1000 observations. I use t0 = 0.2 so the minimal sample size is 200. To prevent

invalidity of the CES estimate I follow Hoga (2019) and use Ŝα(t) = x̂Uα (t)/(1 − min{γ̂(t), 0.9}).

Furthermore, I use the same settings as Hoga (2019): 10,000 replications, α = 2, 5%, 1%, 0.5% and

mn = 10. For the choice of k, formula (27) is used, where kmin = 50 and kmax = 200. The following

three models are simulated:

Xi = εi, where εi = σiUi, Ui ∼ st3(5), σ2
i = 0.95 · 202

252
+ 0.15 · ε2

i−1 + 0.8 · σ2
i−1 (17)

Xi = εi, where εi = σiUi, Ui ∼ st4.2(0), σ2
i = 3.2 · 10−6 + 0.0349 · ε2

i−1 + 0.9373 ·σ2
i−1, (18)

Xi = 0.2714Xi−1+εi, where εi = σiUi, Ui ∼ st5.3(0.8531), σ2
i = 3.4·10−6+0.1407·ε2

i−1+0.7914·σ2
i−1.

(19)

Here, stν(ξ) means Ui is distributed with a skewed Student’s t distribution with ν degrees of freedom

and ξ the skewness parameter. If ξ = 0, the skewed Student’s t distribution simplifies to a Student’s

t distribution. As stated in section 2.1, unit variance of the innovation terms is assumed. Therefore,
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I standardise the sampled Ui by subtracting the mean and dividing by the standard deviation.

2.4 Empirical application

I investigate what the best methods are to estimate the CVaR and CES for cryptocurrencies. There-

fore, I apply the method developed to loss returns of three different cryptocurrencies: Bitcoin (BTC),

Ethereum (ETH) and Ripple (XRP). Also, I apply the methodology to an index of cryptocurrencies,

the Cryptocurrency Index (CRIX). I compare the results to 3 global indices in the stock market:

the NASDAQ from North America, the Nikkei 225 from Asia and the CAC 40 from Europe.

3 Data

For the three global indices NASDAQ, Nikkei 225, and CAC 40, I downloaded data from fi-

nance.yahoo.com for the period 1/1/1997 to 31/12/2016, following Hoga (2019). These indices

are not traded 24/7 and on some days (holidays etc) the markets are closed and no stocks or indices

are traded. This means there are missing observations in the data. For the NASDAQ composite,

I downloaded 5034 observations, for the Nikkei 25 5052 observations, and for the CAC 40 5159

observations. As these indices belong to different regions in the world they are open and closed on

different days.

For the three cryptocurrencies, I got their closing prices from coindesk.com. As these cryptocur-

rencies are a much newer asset class than the stock indices it is not possible to download the data

for the same timeframe. I decided to download the cryptocurrency data for the entire period of

their existence. This means for Bitcoin I used the period 1-10-2013 to 7-5-2021 (2761 observations).

For Ethereum I used the period 9-8-2015 to 7-5-2021 (2084 observations). For Ripple, I used the

period 3-7-2014 to 7-5-2021 (1058 observations). For the CRIX I downloaded the closing data from

data.thecrix.de for the time period 3-7-2014 to 6-5-2021 (2472 observations).

Figure 1 shows the closing prices of the three indices. The closing prices are adjusted for dividends

and splits. We see that the indices move in the same direction even though they originate from

different markets in different areas of the world. The figure shows that the N225 reacts much more

to events in the market than the other two indices. It is more volatile.

Figure 2 shows the closing prices of the three cryptocurrencies. Bitcoin was created much earlier

than the other two cryptocurrencies, so it already had a higher closing price when later the other

two were created. Therefore the Bitcoin is more known and this could be a reason why its closing

7
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Figure 1: Closing prices of CAC40 (FCHI), NASDAQ composite (IXIC) and Nikkei 225 (N225)
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Figure 2: Closing prices of Bitcoin (BTC), Ethereum (ETH) and Ripple (XRP)

price is much higher than the other two. The graphs of the prices of the cryptocurrencies separately

can be found in the appendix. Bitcoin seems to be the most volatile currency.

Table 1 shows the summary statistics of the log returns of the three global stock indices, the three

cryptocurrencies and the cryptocurrency index respectively. We observe from the CRIX column very

extreme values for the minimum and maximum, the skewness, kurtosis and the Jarque-Bera statistic.

When we have a look at the graph of the closing prices of this index (given in the appendix),

we see one very big outlier at 25/03/2021. This outlier is probably the cause of the remarkable

values. Indeed, if we remove this observation from the data we get the statistics as presented in the

last column. These are much more logical as these are comparable to the properties of the three

cryptocurrencies.

We can observe from the first three columns that the three indices have comparable properties.

Which we would expect when inspecting the graphs of the closing prices mentioned earlier. The three

cryptocurrencies are also comparable in their characteristics. But if we compare the cryptocurrencies

to the global indices we observe that the cryptocurrencies have larger standard deviations, larger

8



skewness and larger kurtosis. These assets therefore are more volatile and more likely to produce

large negative or large positive returns. All of the assets have a very high Jarque-Bera statistic with

p-values equal to zero. This means that the returns do not follow a normal distribution. Thus it

would not be suitable to use a normal distribution when estimating the returns. It would be wiser

to use a heavy-tailed distribution like (skewed) Student’s t or a Laplace distribution.

Table 1: Summary statistics of global stock indices, cryptocurrencies and the cryptocurrency index

IXIC N225 FCHI BTC ETH XRP CRIX CRIX
Adjusted

Mean 0.000 0.000 0.000 0.002 0.004 0.001 0.002 0.002
Maximum 0.133 0.132 0.106 0.306 0.433 0.370 2.748 0.214
Minimum -0.102 -0.121 -0.095 -0.316 -0.424 -0.450 -2.811 -0.447
St. dev 0.016 0.015 0.015 0.043 0.065 0.056 0.089 0.040
Skewness -0.056 -0.349 -0.069 -0.440 0.233 0.510 -0.989 -0.788
Kurtosis 8.170 8.539 7.320 10.322 9.731 14.855 783.884 14.133
Jarque-Bera 5608.441 6217.795 3929.194 6255.007 3951.282 6235.181 62782359 13010.570
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table shows summary statistics of three major global stock indices (the NASDAQ composite, the Nikkei 225,
and the CAC40), three cryptocurrencies (Bitcoin, Ethereum, Ripple) and a cryptocurrency index (CRIX) respectively.
The last column represents the statistics of the CRIX where the observation of 25/03/2021 is removed.

I will work with loss-returns which I calculate manually from the closing prices according to the

following formula:

Xi = −log(Pt/Pt−1), (20)

where Pt is the closing price of the asset at time t.

4 Simulation results

We first estimate quantiles of Vt0 . Table 2 shows the result of the simulation.

Table 2: Quantiles Vt0,τ of Vt0

τ t0 0.50 0.60 0.70 0.80 0.90 0.95 0.975 0.99 0.995

Vt0 0.3 4.557 7.572 12.641 21.127 41.094 65.851 99.408 149.155 189.821
0.2 3.940 6.479 10.760 17.990 34.316 56.752 84.935 130.803 157.779
0.1 3.522 5.924 9.672 16.089 30.424 48.207 72.089 105.301 138.345

For the simulations I used an adapted version of the code belonging to Hoga (2019). A point

of criticism on Hoga (2019) can be made. They use information on the data generating process in
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there simulation. However, this is a little dishonest. Therefore in my simulations, I considered the

simulated data as ’given’ and did not use information on the process in the estimation. I estimated

a GARCH(1,1) model for all three simulations. The results of these simulation can be found in table

3. A table with the simulation results following the methodology of Hoga (2019) can be found in

Appendix C.

From table 3 we observe that the use of the MR estimator, instead of the Hill estimator, consid-

erably lowers the RMSE for most of the values for α and the three models. Only for model 17 for

α equal to 1% and 0.5% the RMSE is not improved when using the MR estimator.

Nominal coverage for all intervals is 95%. For all models, the MR estimator substantially im-

proves the coverage of the intervals created by normal approximation (na in the table). For the

intervals constructed by using self normalization (sn in the table), this is not the case. Here, the

coverage of the intervals is worse for the MR estimator compared to the Hill estimator for two of

the three models (model 18 and model 19). But the improved coverage for the MR estimator for

the na intervals comes at the cost of much-enlarged intervals. Most interval lengths are doubled in

size for the MR estimator when compared to the Hill estimator. Therefore, the intervals give a less

precise estimate for the CVaR or CES values.

When we compare the method of normal approximation to that of self normalization, most of

the time the coverage improves when using the self normalization approach. Only for models 18

and 19, the self normalization approach combined with the MR estimator gives worse coverage. So

we can conclude that using self normalization, in general, improves the coverage of the constructed

intervals.

Lastly, we study the influence of the level of α. For model 17, larger values of α give smaller

bias and RMSE. For model 18, for the Hill estimator, larger values of α give smaller and RMSE.

But for the MR estimator, for larger α, the CVaR estimates give larger bias, but the CES estimates

give smaller bias. For the RMSE the results are more mixed, where values of RMSE are largest for

α equal to 1%. In general, larger values for α give smaller bias and RMSE.

According to Theorem 1 of Hoga (2019) the following approximations hold:

1

σ̂γ̂,γ

√
k

log(k/(nα))
log

(
ẑα,n(1)

zα,n

)
D−→

(n→∞)
N (0, 1), and (21)

log2

(
ˆ̂za,n(1)
za,n

)
∫ 1
t0
t2 log2

(
Ẑσ,n(t)
za,n(1)

)
dt

D
(n→∞)

W 2(1)∫ 1
t0

[W (t)− tW (1)]2 dt
=: Vt0 . (22)

10



Table 3: Simulation results for the three simulation models 17, 18 and 19.

Coverage Int. length

Model Estimator k∗ z α Bias RMSE I0.95
na I0.95

sn I0.95
na I0.95

sn

17 Hill 67 CVaR 2.5% -0.18 1.30 14.6 53.9 0.13 0.77
1% -0.34 1.17 12.1 63.4 0.15 1.30
0.5% -0.53 1.86 11.9 66.3 0.16 2.63

CES 2.5% -0.38 2.42 19.9 65.4 0.35 5.88
1% -0.53 1.66 22.4 73.8 0.46 3.10
0.5% -0.69 2.64 21.7 74.2 0.52 17.60

MR 93 CVaR 2.5% -0.07 1.22 43.1 60.2 0.54 0.91
1% -0.22 1.10 45.7 69.6 0.78 1.45
0.5% -0.40 1.82 45.1 69.6 1.08 5.31

CES 2.5% -0.22 1.67 38.3 67.4 0.69 1.49
1% -0.40 1.69 39.6 74.7 1.09 4.05
0.5% -0.57 3.26 38.3 74.1 1.83 331.69

18 Hill 58 CVaR 2.5% -0.78 5.94 25.6 73.0 3.37 6.96
1% -2.08 13.94 24.4 79.6 4.61 13.96
0.5% -3.40 11.16 26.9 83.1 5.71 23.64

CES 2.5% -3.40 10.42 70.1 83.3 11.33 19.72
1% -7.73 26.45 64.3 86.5 18.52 39.03
0.5% -11.57 22.37 57.7 85.1 25.72 62.91

MR 62 CVaR 2.5% 0.33 5.62 89.6 68.3 13.69 7.34
1% 0.21 12.72 88.9 71.7 22.09 13.34
0.5% 0.00 9.41 90.5 74.4 30.24 20.99

CES 2.5% -0.45 8.68 87.7 76.0 20.37 16.09
1% -2.08 22.65 87.3 81.3 33.21 31.88
0.5% -4.27 17.36 88.2 83.6 45.73 49.75

19 Hill 58 CVaR 2.5% -1.05 4.13 18.4 42.8 1.31 3.01
1% -1.74 6.92 20.9 58.7 1.69 5.61
0.5% -0.80 2.93 32.4 89.5 1.72 8.06

CES 2.5% -2.39 6.05 38.3 62.0 3.79 7.37
1% -4.12 10.42 41.4 75.7 5.66 13.69
0.5% -3.16 5.79 48.8 91.0 6.32 17.87

MR 67 CVaR 2.5% -0.46 3.80 62.6 44.7 5.05 3.27
1% -0.64 6.22 69.5 54.1 7.36 5.39
0.5% 0.75 2.18 84.3 70.9 6.22 4.70

CES 2.5% -1.09 5.07 65.0 59.5 6.82 6.28
1% -2.01 8.74 70.1 68.6 9.95 11.12
0.5% 0.00 3.06 85.8 85.2 8.30 9.33

The table shows in the columns the average of k∗, bias RMSE, coverage probabilities in %, and average interval
lengths for the Hill and MR estimator respectively. For simulation models 18 and 19, the results are multiplied
by 103.
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These approximations determine the quality of the na and sn intervals respectively. To asses this

quality, I plot the left and right hand side of these approximations in a probability-probability plot.

The more the plot follows the diagonal line, the more accurate the approximation. Figure 3 shows

the pp-plot for model 18 for the CES estimates and α = 0.01. The results for model 17 and 19 can

be found in Appendix B. Results for other values for α or for CVaR estimates can be requested from

the author of this paper.

Figure 3: Probability-probability plots for left and right hand side of 21 and 22 for model 18.

In Figure 3 , the top row resembles equation 21 for normal approximation and the bottom two

graphs represent equation 22 for self normalisation. We observe that the self normalization is a

better fit to the empirical distribution for both the Hill and the MR estimator. Consistent with

the findings in Table 3 we see that, for the normal approximation, the MR estimator follows the

empirical distribution better than the Hill estimator. For self normalization, this seems to be the

other way around.

We furthermore investigated what the influence of k is on the simulation results. Plots for the

coverage, interval length, bias ,and RMSE for all possible k ∈ {50, ..., 200} are depicted in figure 4

for model 17. For model 18 the results can be found in Appendix B and show a similar result. For

model 19 the results are very similar and therefore omitted, but can be requested from the author.

Figure 4 shows that the choice of k heavily influences the coverage, interval lengths, bias, and

12



Figure 4: Simulation results for model 17 as a function of k
(a) Coverage probabilities, and interval lengths as functions of k, for 1% CES estimates for model
17. The solid line depicts intervals based on normal approximation and the dotted line represents
intervals based on self normalisation. The horizontal line in the top plots depicts the nominal
coverage of 95%. The bottom plots depict the bias (solid, left scale) and RMSE (dotted, right

scale) for the Hill estimator. (b) Everything the same but for the MR estimator.

RMSE for the Hill estimator. For the MR estimator the choice of k has smaller influence on the

results. Consistent with the results in table 3 we observe that the value of k for which coverage is

highest, is higher for the MR estimator than for the Hill estimator.

From the simulation results, we conclude that, overall, the MR estimator improves coverage for both

the na and sn intervals. Also using self normalization instead of normal approximation considerably

improves coverage. However, the coverage for the Hill estimator seems to give a more reliable result.

To summarise, using the Hill estimator in combination with the self normalization approach proves

to be the best method.
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5 Application

5.1 Stock indices

Table 4: Backtesting CVaR and CES forecasts of global stock indices

Index Method UC CC Quantile score AL log score

NASDAQ G-k-H 0.1687 0.0967* 0.9527 -8489.1
AG-k∗-H 0.4798 0.1136 0.9411 -8598.2†
AG-k∗-MR 0.1927 0.0006*** 0.9462 -8501.6

Nikkei 225 G-k-H 0.4989 0.0902* 1.1030 -7135.2
AG-k∗-H 0.8294 0.0000*** 1.0993 -7168.6
AG-k∗-MR 0.2432 0.0000*** 1.1060 -7110.3

CAC 40 G-k-H 0.2429 0.9997 1.0157 -8219.5
AG-k∗-H 0.9573 0.9925 1.0090 -8264.7
AG-k∗-MR 0.2888 0.0097*** 1.0112 -8178.2

The table shows in the columns p-values of the backtests of Berkowitz et al. (2011) (CC)
(significance at 10%,5%, and 1% marked with *, **, and ***), Quantile scores and AL
log scores respectively.

For an application of the constructed procedure, we apply the methods to three major global

stock indices. We introduce 3 different models to investigate their fit to the stock index data.

The first model comprises a GARCH(1,1) model with a fixed value for k and the use of the Hill

estimator. k is equal to b1.5(log(n))2c. The second model uses an AR(1)-GARCH(1,1) model with

the data-driven choice of k proposed by Hoga (2019) using the Hill estimator. The third model

uses an AR(1)-GARCH(1,1) model with the data-driven choice k too but uses the MR estimator in

calculating the optimal k and the estimators.

Table 4 shows the results of the backtesting procedures. We use rolling forecasts for a window

of n equals 1000 for the estimation sample. For days j ∈ n, ..., N − 1 we forecast the CVaR and

CES estimates x(m)
i and S(m)

i respectively. Where N denotes the total number of observations in

the entire time series.

We then test the quality of these forecasts by checking the amount of data entries that exceed

the forecasted CVaR value (called violations from now). These violations should be independently

Bernoulli distributed with success probability α. We use the test of Kupiec (1995) (UC in the table)

which tests the unconditional coverage; if the expected amount of violations indeed is approximately

equal to α. Second, we test for independence of the violations where we use the test of Berkowitz

et al. (2011) (CC in the table). To compare the absolute performance between models, we introduce

two statistics. We use two scoring functions which quantify the loss associated with a forecast.
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Therefore lower values are preferred. The scoring functions I use are the quantile score and the

asymmetric Laplace (AL) log score. The quantile score is calculated as:

SVaR (xi, Xi) = (Xi − xi)
(
α− I{Xi≤xi)

)
, (23)

The AL log score is calculated as:

SES (xi, Si, Xi) = − log

(
α− 1

Si

)
−

(Xi − xi)
(
α− I[Xi≤xi}

)
αSi

. (24)

Here, xi denotes the forecasted CVaR, Si denotes the estimated CES and Xi denotes data, where I

use the loss returns.

We report in the table the realised scores which are calculated as:

S̄
(m)
VaR =

1

N − n

N∑
i=n+1

SVaR

(
x

(m)
i , Xi

)
and (25)

S̄
(m)
ES =

1

N − n

N∑
i=n+1

SES

(
x

(m)
i , S

(m)
i , Xi

)
(26)

Where we use the quantile score to evaluate the CVaR forecasts and the AL log score to evaluate

the CES forecasts. I printed the lowest values in the table bold. From Table 4 we observe that

the model AG-k∗-MR is always rejected based on independence. The other two models seem more

satisfactory. For two of the three stock indices, the AG-k∗-H model is never rejected for all the

significance levels.

From the table, we can deduce that for all three stock indices, the AG-k∗-H model performs

best in forecasting the CVaR and CES. Lastly, we perform the test of Diebold and Mariano (2002)

to test the significance between the realized scores for the first model and the second model. I left

the third model out of consideration as we already observed this model as not very suitable. In the

table, I denoted a significant difference (5% level) with a dagger. We conclude from the results that

the AG-k∗-H model performs the best for global stock index data. The use of the MR estimator

does not enhance the performance of the models when compared to the Hill estimator.
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Table 5: Backtesting CVaR and CES forecasts of cryptocurrencies

Index Method UC CC Quantile score AL log score

BTC G-k-H 0.0633* 0.0008*** 2.0385 -1000.3
AG-k∗-H 0.0633* 0.0008*** 1.9445† -1153.6†
AG-k∗-MR 0.3055 0.0029*** 1.8312 -1166.3

ETH G-k-H 0.1765 1 1.7575 -289.8
AG-k∗-H 0.8695 0.0000*** 1.7064 -394.8†
AG-k∗-MR 0.0271** 0*** 1.7824 -311.8

XRP G-k-H 0.8010 1.000 0.3886 -70.6
AG-k∗-H 0.5272 0*** 0.3904 -78.2
AG-k∗-MR 0.5272 0*** 0.4295 -79.6

CRIX G-k-H 0.6384 0.9998 4.7248 1643.7
AG-k∗-H 0.9020 0.9993 4.6329 1658.2
AG-k∗-MR 0.3590 0.9894 4.6486 2143.5

The table shows in the columns p-values of the backtests of Berkowitz et al. (2011)
(CC) (significance at 10%,5%, and 1% marked with *, **, and ***), Quantile scores
and AL log scores respectively.

5.2 Cryptocurrencies

In addition to stock indices, I apply the methods to three different cryptocurrencies and to one

cryptocurrency index. For these series, I used an estimation window of n = 800 because for the

cryptocurrencies, there is very limited data available due to the short existence of the currencies.

Table 5 shows results for the backtests of the CVaR and CES forecasts. From the table, we

observe that based on the unconditional coverage test of Kupiec (1995) and the independence test

of Berkowitz et al. (2011) there is not a clear method that works best. For Bitcoin, all of the models

are rejected based on the independence of the violations. For Ethereum and Ripple, the model

using the fixed value for k and the GARCH(1,1) model is never rejected. When we examine the

quantile scores, we observe that for every cryptocurrency another model gives the lowest value for

the quantile score. This also accounts for a part for the AL log score. Therefore we can not deduce

from this analysis which model or method gives consistently better predictions. When we examine

the cryptocurrency index (which gives a more general image of the cryptocurrencies in general), it

rejects no model based on the correct unconditional coverage test or the independence test. The

model using the data dependent varying k and the Hill estimator gives the lowest value for the

quantile score. The benchmark GARCH(1,1) model using fixed k gives the lowest value for the AL

log score.

We try to find a explanation why for Bitcoin, none of the models seem to work. When we look

at the first (benchmark) model, G-k-H , we plot the data (loss-returns) with the forecasted VaR

16



values in Figure 5 to be able to examine the violations. A violation happens when the loss return is

higher than the forecasted VaR value for that period. For Bitcoin we observe only four violations:

at the times 11/6/2018, 14/11/2018, 20/11/2018 and 11/3/2020.

Figure 5: Loss returns for Bitcoin (solid) and the forecasted VaR values (dotted) for the forecast
period 11/12/2015 - 7/5/2021.

We tried to connect these dates to news around Bitcoin or cryptocurrency. On 10/6/2018, the

South Korean cryptocurrency exchange Coinrail was hacked. Therefore, during 10/6/2018, the

price of Bitcoin declined from 7531.98 USD to 6786.02 USD (9% decrease). However, on 11/6/2018

the price went up again to 6906.92 USD. None of the models accurately predicted this increase.

14/11/2018 was the start of a large, fast decrease of the price of Bitcoin. It was the end of what

became known as the Bitcoin crash which started in the beginning of 2018 and ultimately became

larger than the burst of the Dot-Com bubble. On 15/11/2018, the Market capitalisation of Bitcoin

fell below $100 billion for the first time since October 2017. Also, that day a Bitcoin hard Fork

happened with Bitcoin Cash, which is a different cryptocurrency created by another hard fork of

Bitcoin which happened in August 2017. The end of the sharp decrease of the price of Bitcoin

seemed to be 21/11/2018. There does not seem to be an obvious reason why the models where not

able to predict this occurrence correctly. However, all models are rejected based on the argument of

independence. We could argue that this is caused by the fact that there are only very few violations,

and two of those violations (14/11/2018 and 21/11/2018) are rather close to each other. Leading to

the CC test rejecting the model. The last violation on 11/3/2020, happened alongside a large sell

off which happened in other markets as well due to the Corona virus breakout. For example, in the

stock market, the S%P 500 decreased with 5%, the oil price fell by 4%, and even the Gold price was
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down 1%, which is regarded by many investors as a ’safe haven’.

For Ethereum and Ripple, the benchmark GARCH(1,1) model with fixed k performs well. To

investigate further why the other models do not work, we examined the values for k∗ for the Hill and

MR estimators. The value of fixed k for n equals 800 is 67. The mean values for k∗ for Ethereum

are 54 and 66 for the Hill and MR estimator respectively. The value for the MR estimator is very

close to the value for the fixed k so this does not explain why the model does not perform well. To

investigate further, we plot the values for k∗ for all forecasted values. Figure 6 shows that the value

for k∗ varies a lot and is most of the time far away from 67. For Ripple the mean values for k∗ are

61 and 50 for the Hill and MR estimator respectively. The value for the MR estimator is too small.

The k∗ searches for the optimal number of upper order statistics to resemble a Pareto distribution.

However, when there are very large outliers present in the data, the upper order statistics do not

resemble a Pareto distribution, which drives the k∗ down by much. As there are indeed more outliers

in cryptocurrency data than for example in stock index data, as shown in section 3, this causes the

very low values for k∗ which is illustrated by Figure 6.

Figure 6: Values for k∗ for the MR estimator for the forecast sample.

For the Cryptocurrency index these values are 54 and 68 which are much closer to the fixed k.

This could be a reason why for Ethereum and Ripple the models with k∗ do not work and for the

Cryptocurrency index they do.

To investigate further, I applied four more models; AR(1)-GARCH(1,1) with fixed k and the Hill

estimator (AG-k-H), AR(1)-GARCH(1,1) with fixed k and MR estimator (AG-k-MR), GARCH(1,1)

with k∗ and Hill estimator (G-k∗-H) and GARCH(1,1) with k∗ and MR estimator (G-k∗-MR). The

results are presented in Table 6
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Table 6: Backtesting results for additional models

Index Method UC CC Quantile score AL log score
ETH AG-k-H 0.3391 0.9999 -1.7720 -238.0

AG-k-MR 0.0271** 0*** -1.7687 -344.7
G-k∗-H 0.8695 0.000*** -1.6960 -406.7
G-k∗-MR 0.0271** 0*** -1.7910 -308.9

XRP AG-k-H 0.8010 1.000 0.3886 -69.4
AG-k-MR 0.5271 0*** 0.4184 -82.1
G-k∗-H 0.5271 0*** 0.3912 -78.2
G-k∗-MR 0.5271 0*** 0.4304 -79.2

The table shows in the columns p-values of the backtests of Berkowitz et al. (2011)
(CC) (significance at 10%,5%, and 1% marked with *, **, and ***), Quantile scores
and AL log scores respectively.

From Table 6 we conclude that models with k∗ never work for Ethereum and Ripple. Further-

more, from the table we deduce that the Hill estimator does give well performing models, where the

MR estimator does not.

From the cryptocurrency application we conclude that the use of the MR estimator does not

improve forecasts of CVaR and CES. This is in line with the findings from the application to stock

indices. Also the use of an optimal k∗ which is calculated from the data is not a suitable approach for

forecasting the CVaR and CES of cryptocurrency data. A disadvantage is that for cryptocurrencies

a lot less data is available than for stock indices as most cryptocurrencies are very new. Therefore

there are also very few data points available to use for forecasting and evaluation.

6 Conclusion

In this paper, we examined the influence of the moments Ratio (MR) estimator versus the Hill

estimator in the forecasting of the CVaR and CES measures. From the simulation results, we found

that the MR estimator does improve coverage of the estimated intervals for the CVaR and CES

forecasts. However, it comes at the cost of larger intervals. Furthermore, the use of self normalization

instead of normal approximation in constructing the intervals also improves the coverage of the

intervals, but also enlarging the intervals. Therefore these intervals give a less precise view of the

CVaR and CES values.

From the application to stock indices we found that the use of the Hill estimator leads to better

performing models for forecasting the CVaR values for the returns of stock indices. This contradicts

the findings of the simulation study, where we found that the MR estimator performs better than
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the Hill estimator. For the application to cryptocurrencies, we found similar results, as the use of

the Hill estimator gave better results than the use of the MR estimator, as they gave lower scores

and passed the backtests. Furthermore, we found that the use of the data-dependent method of

choosing the upper-order statistics is not a good method for cryptocurrencies, as these assets prove

to be incompatible with this choice. The larger amount of outliers present in the cryptocurrency

data compared to the stock index data could be an explanation for this.

The results are of limited reliability as for the cryptocurrencies a lot less data is available com-

pared to other asset classes like stocks or commodities. For future research, it would be interesting

to look at other values or methods for choosing the number of upper-order statistics. There could

also be research into how to keep the improved coverage of the MR estimator but also decreasing

the interval length and with that, give more precise estimations for the CVaR and CES measures

which is very relevant to investors and institutions who want to minimize their risk while still trying

to get high returns.
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Appendix A: supplementary formulas

Choice of k

kmin and kmax are the lower and upper bound for k respectively and kmax > kmin > 1.

k∗ := arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

|Un−j,n − q(j, k)|

]
, (27)

with q(j, k) = Un−k,n

(
j
k

)−γ̂
and Un−j,n is the observed quantile.

Appendix B: supplementary graphs
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(a) Model 17

(b) Model 19

Figure 9: Probability-probability plots for left and right hand side of 21 and 22
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Figure 10: Simulation results for model 18 as a function of k
(a) Coverage probabilities, and interval lengths as functions of k, for 1% CES estimates for model
18. The solid line depicts intervals based on normal approximation and the dotted line represents

intervals based on self normalisation. The horizontal line in the top plots depicts the nomial
coverage of 95%. The bottom plots depict the bias (solid, left scale) and RMSE (dotted, right

scale) for the Hill estimator. (b) Everything the same but for the MR estimator.
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Appendix C: supplementary results

Table 7: Simulation results for the three simulation models 17, 18 and 19 following the
methodology of Hoga (2019)

Coverage Int. length

Model Estimator k∗ z α Bias RMSE I0.95
na I0.95

sn I0.95
na I0.95

sn

17 Hill 68 CVaR 2.5% -0.00 0.51 20.4 72.1 0.09 0.48
1% -0.09 0.63 18.3 78.0 0.11 0.77
0.5% -0.19 1.13 13.9 84.7 0.12 1.17

CES 2.5% -0.04 0.59 33.5 81.4 0.22 0.91
1% -0.10 0.77 31.2 87.2 0.28 1.40
0.5% -0.15 1.36 28.7 89.8 0.35 1.97

MR 77 CVaR 2.5% 0.08 0.52 56.8 73.7 0.36 0.63
1% -0.00 0.62 61.3 80.5 0.49 0.96
0.5% -0.10 1.04 57.9 83.9 0.60 1.37

CES 2.5% 0.04 0.62 50.7 80.8 0.43 1.11
1% -0.01 0.79 49.6 82.6 0.57 1.65
0.5% -0.06 1.28 45.6 82.2 0.70 2.20

18 Hill 58 CVaR 2.5% -2.53 11.70 25.3 67.5 3.94 8.47
1% -4.60 14.20 24.2 74.6 5.26 16.39
0.5% -7.82 24.82 25.9 78.5 6.79 28.02

CES 2.5% -6.88 20.00 63.8 76.1 13.74 23.84
1% -12.91 26.17 59.4 79.8 21.82 47.51
0.5% -19.77 46.54 52.9 80.5 31.93 77.41

MR 62 CVaR 2.5% -1.29 11.00 84.2 63.7 16.30 9.09
1% -2.00 12.30 88.4 67.8 25.14 15.01
0.5% -3.66 21.67 87.2 68.7 35.86 23.27

CES 2.5% -3.37 17.2 82.1 72.0 24.72 19.45
1% -6.50 20.64 84.5 76.3 38.37 35.20
0.5% -10.64 38.57 83.6 75.7 55.50 55.22

19 Hill 57 CVaR 2.5% 0.00 1.78 25.7 73.6 1.14 2.86
1% -0.22 2.24 26.9 82.6 1.45 4.84
0.5% -0.80 2.93 32.4 89.5 1.72 8.06

CES 2.5% -0.69 2.60 66.9 87.5 3.21 6.46
1% -1.75 3.93 58.9 90.5 4.75 11.39
0.5% -3.16 5.79 48.8 91.0 6.32 17.87

MR 67 CVaR 2.5% 0.59 1.72 82.3 65.6 4.23 83.02
1% 0.75 2.18 84.3 70.9 6.22 4.70
0.5% 0.57 2.55 88.4 77.7 8.27 6.96

CES 2.5% 0.45 2.18 82.9 78.9 5.67 5.64
1% 0.00 3.06 85.8 85.2 8.30 9.33
0.5% -0.75 4.27 88.5 87.1 11.13 13.74

The table shows in the columns the average of k∗, bias RMSE, coverage probabilities in %, and
average interval lengths for the Hill and MR estimator respectively. For simulation models 18 and
19, the results are multiplied by 103.

25


	Introduction
	Literature review

	Methodology
	Model Setup
	Estimators
	Simulation study
	Empirical application

	Data
	Simulation results
	Application
	Stock indices
	Cryptocurrencies

	Conclusion
	References
	Appendix A: supplementary formulas
	Appendix B: supplementary graphs
	Appendix C: supplementary results

