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Abstract

In this report, we evaluate the performance of the column generation (CG) frame-

work in building disjunctive normal form rule sets for fair binary classification.

Furthermore, we investigate whether the fair column generation framework offers

a solution for building models in circumstances where false negatives have high

(societal) costs. Experiments on six data sets are executed and the performance

is measured upon the following metrics: accuracy, fairness, and predictive value.

Thereby, the CG model is tested in imperfect circumstances, such as small data

sets, and is benchmarked with the accuracy-tuned model with and without the

sensitive variable. We find that models built by the CG framework subject to

fairness constraints achieve superior fairness with comparable accuracy. The frame-

work should be considered as a global discrimination reducer since it substantially

reduces overall discrimination. It treats all discrimination similarly which causes

reverse discrimination.

The views stated in this thesis are those of the author and not necessarily those of Erasmus

School of Economics or Erasmus University Rotterdam.
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1 Introduction

Machine learning, an area of artificial intelligence, is one of the most disruptive tech-

nological innovations in the last century. Implications in labor-intensive tasks save us

a lot of time and can be used for endlessly many possibilities. These highly efficient

data-driven algorithms are often used for tasks such as classification, regression, and re-

inforcement learning in fields like advertising, education, recruitment, credit, and many

others. Its applications range from feed optimisation on social media (Twitter) to navi-

gation of self-driving cars (Tesla) and deep voicing (Baidu). Another application worth

mentioning is IBM’s Watson, which can accurately recommend treatments against can-

cer and makes shopping suggestions in the retail branch. All these newly invented tools

are useful, though the consequences they have on our lives are unforeseen.

There is scepticism about the role automated decision-making should play in our lives

as these algorithms are not perfect. The effects on society should always be considered,

as people trust these algorithms and their results to a large extent. For instance, a

Reuter investigation (Dastin, 2018) found that Amazon’s AI curriculum selection tool

exhibited a large gender bias. While the tool was built to simply select and hire the best

candidates, it led Amazon to consider almost only male candidates. When considering

fairness of such algorithms, it is crucial to understand there are numerous ways to define

and measure fairness. We desire methods that do not discriminate and therefore do not

favour certain groups. It is of special importance for applications in fields like health

and criminal justice, given that decisions in these fields have life-changing impact. For

patients who are hoping to get experimental treatment for their illness, crime victims,

or people desperate for a second mortgage, it is vitally important that these procedures

are conducted fairly. In this report, we will look at the cases where false-negatives have

a large impact. As the urge for fair decision-making models is obvious, this research

carries out a variety of experiments to investigate methods assuring fairness in binary

classification.

The focus of this research lies on evaluating the approach proposed in Lawless and

Günlük (2021) to attain fairness in machine learning algorithms. We will measure the

improvement in fairness the equality of opportunity constraints have on the models build

by the column generation framework by two evaluation methods; namely the maximum

disparity between false-negative rates (Lawless and Günlük, 2021) and the detection
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of explainable and illegal discrimination (Mehrabi et al., 2019). The main goal of this

paper is to answer the following question: ‘How does the column generation framework

with equality of opportunity constraints perform in building binary decision rule sets

based upon fairness, accuracy, and predictive value?’. Consequently, the following sub-

questions are considered:

• How does the column generation framework perform based on the level of overall

and illegal discrimination?

• How does the column generation framework perform in imperfect circumstances?

• To what extent do the findings hold for data on other domains?

Based on the measures of fairness and discrimination introduced by Lawless and Günlük

(2021) and Mehrabi et al. (2019), this paper tries to answer these questions. Where

the former measure gives an indication of overall fairness. And the latter examines

the explainable part of the discrimination. For example in the Amazon case, part of

the discrimination can be explained by the fact that most technical people are male.

Nonetheless, this should be handled by observing someone’s technical skills and not by

gender. On basis of these measures, we contribute to a more complete overview of the

trade-off between fairness and accuracy for machine learning in binary classification in

the following ways:

• A more detailed overview of the performance is given by looking into the explain-

able and unexplainable parts of the discrimination. We will quantify the effect

which the added equality of opportunity constraints have on these measures and

analyse possible underlying reasons for this. Thereby, it will be checked whether

the proposed building method causes reverse discrimination. The fairness im-

provement of the column generation (CG) is evaluated with a naive approach -

excluding the protected variable - as a benchmark.

• By carefully explaining how the constraints affect the classifier’s fairness, we get

insights into the implementation details of the proposed approach. We attempt

to explain how the methods work with different kinds of data. More specifically,

the effect of including the fairness constraints on the accuracy-fairness trade-off

in samples with few observations and already fair data is tested. We determine
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whether data is already fair or not based upon our fairness metric, the false-

negative rate.

• Data sets on other domains are included to examine to what extent the results

apply for classification on educational, marketing, and medical data. This is of

great importance since there are a lot of real-life applications in these fields.

The rest of the paper is structured as follows. Section 2 discusses current solutions

to remove unfairness, their limitations and motivate why the CG framework is chosen.

Followed by an explanation, in Sect. 3, of the methods used in this research. Section 4

addresses the data and its added value, followed by the most important analyses of some

experiments. Thereafter, Sect. 5 will give an in-depth discussion of the results and the

fit of the solution for our intended goal. Section 6 wraps up with a concise summary of

our main findings and provides some implications for future research.

2 Related Literature

In this section, we discuss relevant literature to our work. First, an overview of the

research on fairness in machine learning is given and approaches to tackle these are

categorized. Thereafter, we discuss solutions to remove unfairness, their limitations and

motivate why the CG framework is chosen.

2.1 Fairness in the Field of Machine Learning

There has been a lot of research on fairness in machine learning (ML). The Human-

computer interaction (HCI) community has researched the subject from political (Binns,

2018), social (Hamidi et al., 2018), and psychological (Woodruff et al., 2018) perspec-

tives. Thereby, substantial effort has gone into determining what measures can be used

as a stepping stone for mitigating unethical biases in such algorithms. While the field

is maturing and algorithmic methods are becoming available, there is little real-world

application yet (Holstein et al., 2019). Evidently, the hurdles are that fairness is context

and application dependent, and that industries are not able to efficiently implement

these solutions due to technical and organisational barriers.

Further, there are a lot of studies focusing on monitoring the fairness of ML algo-

rithms. From Kamiran et al. (2010), it is known that there is an essential condition
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for the use of fair ML techniques: the huge amount of unbiased data that is needed to

train the algorithms. If this condition is not met, we should correct for it. Supervised

learning methods are unbiased in the sense that they are objective with regard to data.

If an algorithm is provided with biased data, it incorporates these biases which could

result in biased decision-making. Therefore, it should always be questioned whether

an automated decision-making process performs reasonably for everyone. Otherwise,

resources and opportunities might be restricted for certain subgroups.

There are numerous ways to overcome unfairness, which can be categorized into

three groups; pre-, in-, and post-processing (Bruha, 1999). Defined, respectively, as

removing the underlying bias in the data, adjusting the optimization such that it is fair,

and correcting the predictions of our model. Pre- and post-processing techniques try

to correct for the bias and do not attempt to tackle the core problem. Existing data

transformation approaches (pre-processing) try to find methods that transform data

such that it becomes unbiased, leading to a not effective removal of unfairness (Agarwal

et al., 2018). Adjusting the predictions of the classifier (post-processing) for the sensitive

attribute is not always possible and often not the optimal solution. Therefore, our

preference goes out to guaranteeing fairness by in-processing adjustments. This can be

done by either imposing fairness constraints (Lawless and Günlük, 2021) or including

fairness measures in the objective function. Fairness measure should be considered as

a representation of the distance from the ideal fair situation. It is important not to

confuse these measures with actual fairness. It follows that this paper tries to achieve a

certain level of fairness (by imposing constraints) and does not attempt to optimise for

it - as that would not mean optimising fairness, but a measure of it.

2.2 Limitations of Solutions

In Corbett-Davies and Goel (2018), three approaches of fairness are amplified for remov-

ing the unfairness in algorithms. The first approach is anti-classification which refers to

excluding protected variables such as gender, race, marital status, or belief. Pedreshi

et al. (2008) and Schwarcz (2020) show that this naive approach for removing the un-

fair differentiation does not work effectively as correlated explanatory variables, proxies,

are used by the machine learning algorithms to discriminate - this is called red-lining.

Red-lining poses a big problem for enforcing non-discrimination and data protection
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laws. For instance, the proxies ‘weight’ and ‘height’ can often give away an individual’s

gender. Discrimination caused by these proxies is nonetheless unethical and unfair.

Anti-classification is used as a benchmark, as we think a good method should at least

outperform this simplistic solution. For the remainder of this paper, it is referred to as

the naive approach.

The second approach is the requirement of equal predictive performance measures

imposed by Dwork et al. (2012). There are a variety of these so-called classification parity

requirements. For fair classification, Zafar et al. (2019) describe that a model should

have no disparity treatment (Agarwal et al., 2018), impact, or mistreatment. In their

paper, classification parity requirements are divided into these three groups. From these,

we focus on disparity mistreatment, which means that misclassification rates should be

equal. Conversely, the other two do not depend on the true label. Moreover, we use

the equality of opportunity requirement (Hardt et al., 2016) as statistical measure for

fairness, corresponding to the parity in false-negative rates among groups. Alternative

disparity mistreatment requirements include measures such as equalized odds (Hardt

et al., 2016), the balance of the negative class (Kleinberg et al., 2016), error-rate balance

(Chouldechova, 2017), or overall accuracy equality (Berk et al., 2018). As the goal of

this paper is to find a way to effectively guarantee equality for those cases where false-

negatives have high costs, our preference goes out to equality of opportunity proposed

by Hardt et al. (2016) as statistical definition for fairness.

Last, we could balance predictions such that treatment and opportunities are equal

conditional on risk estimates - this condition is referred to as calibration. Unfortunately,

Pleiss et al. (2017) show that this approach is only compatible with one fairness con-

straint and does not outperform randomizing a percentage of predictions for an existing

classifier on a variety of data sets.

Where anti-classification and classification parity cause reverse discrimination for the

groups they are designed to protect; calibration gives little guarantee of fair decision-

making. This paper focuses on analysing the effect classification parity has on the

fairness and accuracy of an algorithm as we consider it the most promising approach.

We will consider the column generation framework for building rule sets as it is shown by

Lawless and Günlük (2021) to be a good way to construct fair and interpretable models.

Note that we only evaluate this approach with the equality of opportunity constraint,

but other measures of fairness could be included as well.
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3 Methodology

In this section, the rule set builder used for binary classification is explained. In a sim-

ilar way as Lawless and Günlük (2021), Boolean decision rules in Disjunctive Normal

Form (DNF) are considered to solve the linear relaxation of the Integer Problem (IP) for

binary classification. When solving the IP with a column generation (CG) framework

the equality of opportunity constraints will be included in order to correct for unfair

differentiation. The process of building fair and interpretable rule sets can be decom-

posed into the following parts: Binarizing data; Integer program; Column generation;

Evaluation methods.

3.1 Binarizing Data

First of all, the data is transformed into a binary-valued format. Which makes it simple

to make DNF-rule sets, because classification based on a subset of features comes down to

a specific combination of 0s and 1s. For categorical data, such as a person’s occupation,

one-hot encoding is applied. For numerical data, we make ten quantiles by determining

threshold values. Note that this is not restrictive, but creates a lot of features. All these

features could be selected to determine the optimal rule set. Because the features are

binary-valued we have (2p−2) feasible rule sets, where p denotes the number of features.

Evaluating all of these possibilities would be very inefficient, hence CG techniques are

used, similar to Dash et al. (2018).

3.2 The Integer Problem

Before introducing the IP let us introduce notations. Let K denote the set of all possible

DNF rules and ck the corresponding complexity of a rule. Ki ⊂ K is the set of rules

met by observation i ∈ I, where I is the set of all observations. The complexity is

determined by the number of conditions in the rule plus one. Further, let us have two

subsets that give the true value of the dependent variable, namely P = {i ∈ I : yi = 1},

and Z = {i ∈ I : yi = 0}. Data points are labeled by group gi ∈ G based on their

characteristic feature. The formulation for the IP subject to fairness constraint is as

follows:
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zmip = min
∑
i∈P

ζi +
∑
i∈Z

∑
k∈Ki

wk (1)

s.t. ζi +
∑
k∈Ki

wk ≥ 1 i ∈ P (2)

Cζi +
∑
k∈Ki

2wk ≤ C i ∈ P (3)

∑
k∈K

ckwk ≤ C (4)

w ∈ {0, 1}|K|, ζ ∈ {0, 1}|P| (5)

1

|P1|
∑
i∈P1

ζi −
1

|P2|
∑
i∈P2

ζi ≤ ε (6)

1

|P2|
∑
i∈P2

ζi −
1

|P1|
∑
i∈P1

ζi ≤ ε (7)

Where (1) corresponds to the objective function, also known as the Hamming loss func-

tion (Dash et al., 2018). This function is used as a proxy for classification error. Let

wk and ζi denote whether rule k is selected in the rule set and whether observation i

is misclassified, respectively. Thus the objective of the IP is to minimize the sum of

the misclassified data points plus the number of rules selected. The second term will

penalize complex rule sets and be in favour of rule sets that are easy to grasp. (2)

and (3) force the correct specification of falsely predicted points. If no rule is satisfied,

e.x. wk = 0 ∀ k, ζi must be 1. When any rule is satisfied ζi must be 0. (4) ensures

the interpretability of the model by restricting the maximum complexity. (6) and (7)

denote the fairness constraints of equality of opportunity as in Hardt et al. (2016).

When ε is set to 0, strict equality of opportunity is imposed. Models build under

these restrictions are referred to as Strict Fair CG. Although, Strict Fair CG does not

necessarily correspond to a completely fair model; ε = 0 means that the average false-

negative rate is equal among groups. Deviating from strict fairness does not necessarily

mean obtaining an inferior model since this measure is merely a representation of fair-

ness. In our analysis, tests for a variety of tolerance levels are provided. The level of

tolerance that best improves fairness at the cost of a reasonable amount of accuracy loss

and predictive value is chosen. Models build under the restriction ε = 1 are referred to

as accuracy-tuned models, as models automatically met these restrictions.
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3.3 The Column Generation Framework

Due to the large number of feasible rule sets, an efficiently way to solve the problem

is needed. The linear programming (LP) of the IP, displayed on the previous page, is

solved using the CG framework. The linear relaxation makes the IP computationally

less hard, by relaxing integrality constraint (5). The framework proposed in Dash et al.

(2018) starts off with a small subset of all possible rules. This initial LP is solved and

a rule set S ={k ∈ K : wk = 1} is found. Next, a search for the rule with the most

negative reduced cost is performed. The search for such a missing variable j ∈ J , the set

of binary features, is called the pricing problem and can be done by solving the below

IP. The pricing problem is considered until no other variables with negative reduced cost

can be found.

The objective function (8) corresponds to the reduced costs. Where the first is

the number of misclassified observations, the second term is the improvement in false-

negative rate, and the third term the increased cost of the additional rule. Let (αi, µi, λi)

denote the optimal solution for the initial restricted LP, where these variables are asso-

ciated with constraints (2), (3), and (4), respectively. Further, zj denotes whether the

rule concerns feature j. The term (1+
∑

j∈J zj) can thus be interpreted as the complex-

ity of a rule. Constraints (9), (10) and (11) have similar purposes as (2), (3), and (4),

namely enforcing correct specification and restricting the rule complexity. All rules in

set I− (rules with a negative coefficient in the objective function) are considered until

no new rule is found. The maximal complexity of a rule D can be independently set of

the complexity C in the master problem. We will consider the case where D = C − 1.

zcg = min
∑
i∈Z

δi +
∑
i∈P

(2αi − µi) δi + λ

1 +
∑
j∈J

zj

 (8)

s.t. δi +
∑
j∈Si

zj ≤ D i ∈ I− (9)

δi +
∑
j∈Si

zj ≥ 1 i ∈ I+ (10)

∑
j∈J

zj ≤ D (11)

z ∈ {0, 1}|J |, δ ∈ {0, 1}|P| (12)
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3.4 Evaluation Methods

After solving the master problem with the CG framework, the results should be evalu-

ated accordingly. However, this is not as simple as it sounds. There is no straight way to

quantify fairness. As mentioned, we concentrate on fairness defined as no mistreatment

among groups. Which basically means equal false-negative rates between groups - as the

focus is on undesirable outcomes in situations with high (societal) stakes. This section

discusses the two evaluation methods used to evaluate the performance of the models

built by the Fair CG framework.

3.4.1 Maximum Disparity

Lawless and Günlük (2021) noted that strict equality of the false-negative rate between

groups is not a realistic assumption, as it is too restrictive. Hence, Lawless and Günlük

(2021) took a more practical approach in evaluating the proposed framework and used

the maximum disparity between groups in false-negative rate, displayed in (13). Where

∆(d), the maximum disparity, is bounded by ε in constraints (6) and (7). Note that the

maximum disparity regards the whole effect as direct discrimination.

∆(d) = max
g,g′∈G

∣∣P(d(X) = 0 | Y = 1, G = g)− P
(
d(X) = 0 | Y = 1, G = g′

)∣∣ . (13)

3.4.2 Quantifying Explainable and Illegal Discrimination

Part of the discrimination might be explained by valid underlying reasons. We quantify

the explainable and illegal part of the discrimination in a similar way as Mehrabi et al.

(2019). The explainable effect of every binary variable of the Fair CG and accuracy-

tuned model will be calculated. With the difference in characteristic group proportions

and equality within variable groups, we are able to quantify the explainable part. These

insights are used to examine to what extent the CG framework with fairness constraints

mitigates illegal discrimination. It is desired to see that Fair CG will reduce the amount

of illegal discrimination and will not create reverse discrimination.

To illustrate the quantification of the explainable and illegal part of the discrimi-

nation, here follows an example: We consider the COMPAS data set, which is a set

commonly used for binary classification. Our task is to classify persons as risky or not.

It has been found that this assessment is biased, where blacks are more often classified as

risky. The explanatory variable 45 years or older seems useful for determining whether
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a person is risky or not. According to Ulmer and Steffensmeier (2014), younger people

are more prone to committing crimes. If the proportion of younger persons is higher

among blacks in the dataset this can explain part of the discrimination.

Table 1: Illegal discrimination quantification for accuracy tuned model on COMPAS data

Age >= 45 Age < 45 Agregated

B W B W B W

Observations 1475 2707 628 468 2103 1661

Actually positive (non-risky) 652 1469 170 192 822 1661

Predicted negative (risky) 322 442 129 105 451 547

False-negative rate 49.4% 30.1% 75.9% 54.7% 54.9% 32.9%

Combined false-negative rate 39.7% 65.3% -

Expected predicted negative 259.1 583.7 111.0 125.3 - -

Table 1 shows the proportions for the binary variable 45 years or older for the

accuracy-tuned model, this model is not bound by fairness constraints and is therefore

regard as start situation. The level of discrimination is defined as the difference between

the false-negative rates between blacks (B) and whites (W), we find a 21.93% difference

in the false negative rates. Further, the part of discrimination that can be explained by

equating the false-negative rate between characteristic groups based on the explanatory

variable group therein. In Table 1, the combined false-negative rates for the explanatory

variable are calculated. Thereafter, expected number of negative predictions is given,

and we are able to calculated the explainable discrimination. For the accuracy-tuned

model the explainable discrimination is 2.33% and the illegal discrimination is 19.60%.

Table 2: Illegal discrimination quantification for Fair CG model on COMPAS data

Age >= 45 Age < 45 Agregated

B W B W B W

Observations 1475 2707 628 468 2103 1661

Actually positive (non-risky) 652 1469 170 192 822 1661

Predicted negative (risky) 285 668 130 125 415 793

False-negative rate 43.7% 45.5% 76.5% 65.1% 50.5% 47.7%

Combined false-negative rate 44.6% 70.8% -

Expected predicted negative 290.7 655.1 120.3 135.9 - -

Now we consider a model build with the fairness constraints, the Fair CG. Table

2 shows that the overall, explainable, and illegal discrimination for the fairness tuned

model are 2.74%, 2.39%, and 0.35% respectively. This shows that most of the discrim-

ination has been removed. More specifically, almost all the discrimination removed is

illegal discrimination. These computations will be done for all explanatory variables that
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occur in the final models. Again, the naive approach (removing the sensitive variable)

is used for comparison.

4 Experiments

As mentioned, the imposed equality of opportunity constraints improves fairness by en-

forcing equal false-negative rates among groups. This improvement is important but

should not come at the expense of the performance of the model. Therefore, the per-

formance of the model is measured upon the following standards: The accuracy-fairness

trade-off, the effectiveness of reducing the false-negative rate gap among groups, and

the predictive value. First, we explain what data is used for our experiments and why.

Second, the results will be discussed per category. Finally, we will go into the illegal

and overall discrimination reduction of the Fair CG.

4.1 Data

In this academic report, we aim to provide a more complete evaluation of how the

method used in Lawless and Günlük (2021) performs. In fields like hiring and credit

lending, we have seen that equality of opportunity requirements are successfully applied.

We are curious if this is also the case for other areas such as marketing, health, and

education. So six data sets, that are often used in machine learning, in different domains

are included in our analysis. The Adult, Default, ILDP, Student Performance, and Bank

Marketing data set can be found in the UCI machine learning data set repository Dua

and Graff (2017). Further, the COMPAS and Student Performance data are obtained

from Kaggle.

In Table 3 an overview of the data sets and their classification task is given. It

can be seen that the sets differ in sample size. The ILDP and Student Performance

sets will be considered as a separate category as we are wondering how the models

perform on small sets. The other data sets can be separated into those that already fair

(Default and Bank Marketing) and those who are not (Adult and COMPAS). Equality of

opportunity focuses on the false-negative rate. That is why, it is much more relevant for

applications where the consequences of false negatives outweigh those of false positives.

Therefore, this is more interesting for the application on the COMPAS, Default, ILDP,

and Student Performance data sets than on the Adult and Bank Marketing data sets. We

12



are interested in the potential difference between these groups. Note that the ILDP and

Student Performance data sets are of fairly small sample size for machine learning. We

would like to see how the rule set builder performs with not only the fairness constraints,

but also by a limited amount of data to learn from. The Bank Marketing classification

has Marital status as protected variable. We hypothesize that the data and protected

variable used, do not significantly alter the results of the Fair CG.

Table 3: Data description

Dataset # observations # features Discrimination factor Area Goal classification

Adult 32562 14 Gender Economic Income greater than 50.000

COMPAS 5279 7 Race Crime/justice Risk assessment of felons

Default 30000 23 Gender Finance Default credit risk

ILDP 584 10 Gender Health Diagnoses of liver diseases

Bank Marketing 45211 17 Marital status Marketing Willingness for term deposit

Student Performance 480 16 Gender Education High grade (>7)

4.2 Maximum Disparity

As mentioned, the result can be categorized on its features and will be discussed accord-

ingly. First, the COMPAS and Adult data sets are large unfair data samples. Second,

the Default and Bank Marketing represent the fair data samples. Last, the ILDP and

Student Performance data set are considered as small and unfair.

4.2.1 COMPAS and Adult

(a) (b) (c)

Figure 1: The 10-fold mean accuracy (a), total negative rate (b), and proportion of true predictions (c) of the

fairness tuned model are plotted against target gap ε for the COMPAS data set

One can find the three measures for a variety of ε-values for the COMPAS data set in

Figure 1. For Strict Fair CG, the model does not perform well. It has a mean accuracy

of 53.8% and only predicts a negative label, meaning a person is considered non-risky,

in 3% of the cases. The proportion of data points actually considered risky is 47.0%

in the COMPAS data, which is displayed by the orange line in Figure 1c. Therefore, a
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default prediction of negative would have an accuracy of 53.0%. As the number of false-

negatives is minimized, it is logical that the percentage of predicted non-risky persons is

much lower than the actual portion in the data. In practice, our model should at least

predict a positive label in a substantial portion of the cases. For instance, when making

a model for distinguishing whether a person must be considered a potential danger to

society, as in the COMPAS data. After all, there is little use for a model if it does not

split the risky from non-risky persons. Therefore, it is needed to evaluate a variety of

larger values for ε.

As the fairness constraints are relaxed both the accuracy of the model and the

number of positive label predictions increases. It can be seen, in Figures 1a and 1b,

that after slightly increasing ε, the model performs much better and is almost similar

in mean accuracy as the accuracy-tuned model. As the constraints are relaxed more,

the actual false-negative rate increases rapidly. The challenge is finding a value for ε

for which all three performance measures are acceptable. A more gradual increase in

fairness was expected, so that there would be flexibility in picking an accuracy-fairness

level. The value of ε must always be chosen based on the accuracy, the fairness, the

proportion of positive labels, and the classification task - and must be done with care.

We found that the models for the Adult and COMPAS data set performed best for the

values 0.05 and 0.01, respectively, of ε. The results for the Adult data set are in line

with these results, hence these results and more implementation details are included

in Appendix A. In addition, we have included an analysis for the Adult data set with

maximum complexity 100 for comparison with our reference paper Lawless and Günlük

(2021).

Table 4, reports the accuracies, fairness, and their associated standard deviation for

four different models. It can be seen that a substantial improvement in the mean fairness

only has a small penalty on the mean accuracy for the Fair CG. It can be seen that the

Fair CG models outperform the naive approach (removing the sensitive variable) and

Strict Fair CG on fairness.
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Table 4: Mean accuracy and fairness for 10-fold cross-validation

Adult COMPAS

Accuracy Fairness Accuracy Fairness

Accuracy-tuned model 81.1 (1.1) 4.6 (0.9) 65.7 (2.6) 19.8 (3.4)

Naive approach 80.1 (1.2) 3.9 (1.3) 66.0 (2.3) 19.7 (3.3)

Fair CG 78.6 (0.8) 1.5 (1.7) 63.6 (2.4) 4.4 (2.1)

Strict Fair CG 76.0 (0.4) 0.0 (0.1). 53.8 (3.0) 0.8 (2.6)

4.2.2 Default and Bank Marketing

(a) (b) (c)

Figure 2: The 10-fold mean accuracy (a), total negative rate (b), and proportion of positive predictions (c) of

the fairness tuned model are plotted against target gap ε for the Default data set

In Figure 2a, it can be seen that increasing ε does not alter the performance of the model

as the total negative rate is close to zero for all values. This indicates that the equality of

opportunity constraints, (6) and (7), are easily met and do not restrict the optimisation.

In Table 5, one can observe that the default set contains only a very limited amount of

unfairness. With the exception of the case of ε = 0, results look the same for the Bank

Marketing data set. For that case, a very low mean accuracy is found due to the strict

fairness constraint. For all other values of ε, the classification models for the Default

and Bank Marketing data set are not outperforming a default negative prediction. This

is probably caused by the skewness in the data; the proportion of positive labeled data

points is 22.2% and 11.7% for the Default and Bank Marketing data sets respectively.

An unsurprising but important thing to note is that the imposed constraints do not

worsen the results if already satisfied; so imposing them never hurts the performance

of a model. As there is little unfairness in the data, additional investigation would not

give new insights. Therefore, we leave it at this.
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Table 5: Mean accuracy and fairness for 10-fold cross-validation

Default Bank Marketing

Accuracy Fairness Accuracy Fairness

Accuracy-tuned model 77.8 (0.6) 0.1 (0.1) 89.3 (0.5) 0.5 (0.3)

Naive approach 77.9 (0.7) 0.1 (0.0) 89.3 (0.5) 0.5 (0.3)

Fair CG 77.9 (0.6) 0 (0) 89.4 (0.5) 0.5 (0.3)

Strict Fair CG 77.8 (0.6) 0.1 (0.1) 58.0 (39.6) 0.1 (0.1)

4.2.3 ILDP and Student Performance

(a) (b) (c)

Figure 3: The 10-fold mean accuracy (a), total negative rate (b), and proportion of positive predictions (c) of

the fairness tuned model are plotted against target gap ε for the ILDP data set

The difference in the mean train and test accuracy in Figure 3a indicates that the model

is overfitted, which leads to poor performance. When looking at the start of the course

in 3b, a steep increase in the total negative rate is observed. A clear explanation for this

is not found. The steep increase is followed by a much more slow increase compared to

the larger data sets. This shows that the fairness constraints work, but in a different

way than in the larger data sets. Further, it can be seen that for both data sets only

around 10% of the predictions are positive, while in reality around 30% is labeled positive.

While this seems low, it is not worse than the accuracy-tuned model. In practice, you

can imagine that even such a small selection might be enough to be a cost-efficient

solution for automated decision-making in large operations.

The results for the ILDP and Student Performance data sets in Table 6 are surprising

as an improvement in accuracy is found by imposing the fairness constraints, which is

counter-intuitive. It must be noted that the magnitude of the standard deviation is very

large, which can be explained by the fact that the data sets only consist of 584 and 480

observations. In hope to find more accurate results, a 5-fold evaluation is performed.

This analysis still had large standard deviations and did not give better results, in the

sense that we could draw better conclusions from it. It is included in the Appendix.
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Similar to the COMPAS and Adult data sets, the Strict Fair CG model performs

approximately the same as a default negative prediction on its accuracy as seen in Table

6. Moreover, the 10-fold cross-validation results give a good indication that the Fair CG

works properly. Unfortunately these should be taken with a grain of salt, because it is

hard to draw conclusions with such high mean standard deviations.

Table 6: Mean accuracy and fairness for 10-fold cross-validation

ILDP Student Performance

Accuracy Fairness Accuracy Fairness

Accuracy-tuned model 70.0 (7.0) 8.8 (7.0) 72.5 (5.8) 6.6 (6.4)

Naive approach 72.2 (8.9) 5.5 (5.0) 74.0 (5.3) 3.3 (3.4)

Fair CG 71.2 (8.0) 3.3 (2.4) 74.2 (6.5) 3.0 (2.7)

Strict Fair CG 71.3 (8.8) 0 (0) 71.0 (5.3) 0.8 (2.6)

4.3 Illegal and Reverse Discrimination

Next, we investigate to what extent Fair CG removes illegal discrimination for the

COMPAS and Adult data. The maximum disparity experiments show that the fairness

constraints reduce the overall level of discrimination. However, some of the discrimina-

tion might be justifiable. For example, in the Adult data set men on average earn more

than women. This can be partly explained by the fact that men on average work more

hours per week in the data set. A fair model should differentiate based on the number

of hours worked and not on gender. Completely equating pay for gender would cause

reverse discrimination. In this section, we will investigate how the proposed fairness

constraints handle these cases.

In Figure 4, the level of overall and illegal discrimination are displayed for the model

tuned for accuracy, Fair CG, and the naive approach. The explanatory variables are or-

dered based on the correlation with the sensitive variable and only the highest correlated

binary variable of a feature is shown. In this case, the score factor high is the variable

most correlated with the sensitive variable with a correlation of 0.341. As Kamiran et al.

(2013) describe, these variables are called proxies and cause red-lining. It can be seen

that the naive approach does not remove the discrimination effectively and also does

not succeed in reducing the illegal portion of discrimination in the model. Conversely,

the Fair CG seems to substantially reduce the amount of discrimination in the model

from 21.93% to 2.74%. Furthermore, it looks like the line of illegal discrimination is
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vertically shifted to the new level of overall discrimination. As the proposed Fair CG

treats all explanatory variables as equally discriminated, it can be considered as a global

discrimination reduction. With the consequence of causing reverse correlation for the

variables correlated with the sensitive variable, because of this the blacks with a high

score factor will actually be positively discriminated due to the fairness tuned model.

Figure 4: Overall and illegal discrimination for multiple models for

the COMPAS data set

Table 7: Correlation between sensi-

tive variable and explanatory variables

in the COMPAS data set

Explanatory variable Correlation

Score factor high 0.341

Age above 45 0.148

Male 0.137

Age below 25 0.129

Misdemeanor 0.108

Priors years above 2 0.086

The analysis for the Adult data set gives similar results. It can be seen that the

Fair CG effectively reduces the amount of overall discrimination from 11.87% to 0.26%.

The naive approach offers a small improvement and achieves a level of 10.63%. In line

with previous results, it is seen that the Fair CG is really good at removing overall

discrimination. Compared to the results for the COMPAS data set, Fair CG seems

to create reverse discrimination to a lesser extent. Other than just shifting the line

vertically, it looks like the model does handle some of the explainable discrimination.

Given that it only treats a small portion of discrimination as illegal and causes reverse

discrimination, we regard Fair CG more as a global than a local discrimination reducer.

Further, it is surprising to see that the binary variable Black is correlated with the

sensitive variable Gender in Table 8; as we know from biology that these variables are

not correlated.
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Figure 5: Overall and illegal discrimination for multiple models for

the Adult data set

Table 8: Correlation between sensi-

tive variable and explanatory variables

in the Adult data set

Explanatory variable Correlation

Married civilian spouse 0.447

Occupation: Adm-clerical 0.243

Black 0.132

Unknown workclass 0.100

College 0.069

Hours per week above 24 0.046

Years of education above 10 0.038

Age above 58 0.037

census above 65716 0.034

5 Discussion

All in all, the results from the previously stated experiments suggest that the Fair

CG is a good solution to solve unfairness in automated decision-making. It can be

seen that, for the right parameters, the models substantially improve on fairness with

comparable accuracy and predictive value. It was expected to see a more gradual increase

in unfairness with the target gap ε, such that there would be the flexibility to select the

desired accuracy-fairness level. Instead, we found that the increase was abrupt, hence

we emphasize the importance of picking a good level of target gap ε. Moreover, our

experiments indicate that the implication of the equality of opportunity constraints

never worsens the models’ performance. Most importantly, we have seen the DNF

sets built by the column generation framework with fairness constraints achieve better

fairness and a comparative accuracy compared to the benchmark, the naive approach.

Furthermore, we have seen that the column generation framework with fairness con-

straints effectively removes overall discrimination, but causes reverse discrimination for

proxies of the protected variable. So it does not solve conditional discrimination. There-

fore, we suggest (for proper usage) to first remove these dependencies, before applying

the column generation framework for building fair DNF rule sets. The Fair CG frame-

work should be regarded as a global discrimination reducer. We consider local dis-
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crimination reducers a promising area for future research. While computationally more

intensive, these solutions might be able to deal with illegal discrimination better.

In our experiments, we found some instructions for the usage of the fair binary

decision-rule model builder. The model must be trained on enough balanced data. We

have seen that the model performs fine for a skewness up to 30%, more skewness causes

the model to tend to a default negative prediction as in all similar machine learning cases.

Further, we have seen that for smaller data sets the models have some mixed results.

While the constraints seem to be working, they do so to a lesser extent. A phenomenon

not strange to observe in machine learning, where the model is only as good as its data.

Moreover, we have seen that the model causes reverse discrimination in cases where

the explanatory variables are correlated with the protected variable. Hence, we suggest

using the Fair CG framework when building a binary classification model on a large

balanced data set with uncorrelated attributes.

It is suggested to use these kinds of models for informative and non-crucial decision-

making in time-intensive tasks as they do not work perfectly and can not remove dis-

crimination completely. The fair rule set building method is great for purposes where

false-negatives are not acceptable to reduce the workload such as health, hiring, ed-

ucation, and justice. It can also be used in analysis or selection procedures in fields

like marketing, and finance, however these decisions should not hugely influence peo-

ple’s lives. Another insight mention-worthy is that our experiments do not indicate the

fairness improvement of the Fair CG framework to be domain-specific, as no substan-

tial difference among data sets is observed. Because of the improvement in fairness of

the automated decision-making models, we suggest the usage in applications such as

medical treatments, loans, and justice which have a large impact on people’s lives. For

companies already depending on these kinds of systems, it is a huge improvement.

We can conclude that the implication of the equality of opportunity constraints in the

column generation framework can effectively reduce the inequality of the false-negatives

as a global discrimination reducer. Unfortunately, it is not possible to completely remove

the unfairness in the model. For the usage of such models, it should also be noted that

the proposed adjustment is conclusive in only a small part of the cases. This has

the consequence that frequently positive observations are labeled negative. Because we

try to minimize the false-negative predictions, the model is more careful in predicting

positive values. Therefore, it is only recommended to use this model in cases where the
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consequences of false-negatives are far more important than false-positives. It should

be stressed that these models are important for detecting and information purposes and

not able to make automated decisions yet.

6 Conclusion

The goal of this research was to find out whether the column generation framework

with fairness constraints is a good method to build fair binary classification models.

Where fairness is interpreted as no disparity mistreatment among groups. The research

question of this paper is: ‘How does the column generation framework with equality of

opportunity constraints perform in building binary decision rule sets based upon fairness,

accuracy, and predictive value?’. The executed experiments show that the Fair CG is

able to create superior models based upon its fairness, with comparable accuracy. The

Fair CG framework is useful for building models in applications where false-negatives

have high (societal) costs when used with the correct level of ε. The models are able

to substantially reduce the level of overall discrimination. The models treat almost

all discrimination as illegal discrimination, while some of the discrimination may be

explainable. Therefore, Fair CG can be considered global discrimination reducers, which

has the possible side-effect of causing reverse discrimination. As for all machine learning

algorithms, we have seen that the building works properly on balanced and large data

sets. When one of these criteria is not fulfilled, the performance of the Fair CG seems

to deteriorate.

For future research, we would suggest investigating how the column generation frame-

work could be used to minimise illegal discrimination instead of the overall discrimina-

tion. Furthermore, we are curious how the equality of opportunity constraints can be

used in existing local discrimination reducers. Thereby, it would be interesting to see

how the proposed method performs in a non-binary setting. Another reference for future

research is to investigate how the column generation framework with the balance of the

negative class requirements, as defined in Kleinberg et al. (2016), performs in binary

classification tasks where false-positives are of interest such as online advertising and

marketing.
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A Appendix. Additional Results

This section gives additional figures and information which is supplementary and pro-

vides a supportive view to the finding of this paper. For all data sets not displayed

in the main text, the accuracy, total negative rate, and proportion of true predictions

are plotted against the false-negative rate gap target ε. Additionally, the most striking

features will be highlighted. This section is broken up by data set in arbitrary order.

A.1 Adult

(a) (b) (c)

Figure 7: The 10-fold mean accuracy (a), total negative rate (b), and proportion of true predictions (c) of the

fairness tuned model are plotted against target gap ε for the Adult data set for complexity 20

In our analysis, we have chosen to work with a maximal complexity of 20, as for all

other data set, but also report results for a maximal complexity of 100 for comparison

with Lawless and Günlük (2021). Contradicting to the results of the COMPAS data set

we observe that with the strict equality of opportunity constraints, ε = 0, the model

actually manages to predict 20.10% with a positive label and reports a fairness of 0.0.

When we look more closely at the 10 models, since we use 10-fold cross-validation, it

can be seen that some models report an accuracy of around 25%. These do not make

much sense and are therefore disregarded. Figure 7(b) shows that for other values of ε

the model is only good for a minor reduction in fairness.

Figure 8 gives the results for a maximum complexity of 100, these look more promis-

ing. Like the fairness-tuned model for the COMPAS data, we see for strict fairness the

model is similar to a default false prediction. When relaxing the constraints the model

starts to also predict positive cases, the mean accuracy of the model increases along with

the total negative rate gap. In line with our previous results, it can be seen that the

column generation framework subject to fairness constraints performs reasonably well

for small values of targeted ε. As the accuracy does not increase after a certain point,

we take the value for which the model has a reasonable proportion of true predictions
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(ε = 0.05). Additional investigation for values of the target gap between 0.01 and 0.05

might yield an even better solution. Furthermore, we observe that the total negative rate

gap gradually increases with the target gap. All in all, the column generation framework

performs well in building a model that is superior in its fairness. The numbers in the

paper are obtained with a maximum complexity of 100.

(a) (b) (c)

Figure 8: The 10-fold mean accuracy (a), total negative rate (b), and proportion of true predictions (c) of the

fairness tuned model are plotted against target gap ε for the Adult data set for complexity 100

A.2 ILDP

(a) (b) (c)

Figure 9: The 5-fold mean accuracy (a), total negative rate (b), and proportion of true predictions (c) of the

fairness tuned model are plotted against target gap ε for the ILDP data set

The ILDP data set was one of the more useful analyses we did. As the small data

set did exhibit unfairness, we were able to see how the fair CG performed in imperfect

circumstances. In Figure 9, the results for the 5-fold cross-validation are displayed. We

observe that the model is pretty overfitted as the mean accuracy is much higher for the

train sample than the test sample. Due to the small sample size, the results should be

taken with a grain of salt. The results are in line with those found in the COMPAS

and adult models; Table 9 shows that the model has superior fairness with comparable

accuracy. However, note that the model is outperformed by the naive approach. We see

no clear indication for this.
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Table 9: Mean accuracy and fairness for 5-fold cross-validation

ILDP Student Performance

Accuracy Fairness Accuracy Fairness

Accuracy-tuned model 67.9 (4.0) 13.1 (6.4) 71.5 (5.5) 2.5 (2.6)

Naive approach 68.6 (3.6) 3.7 (3.4) 73.5 (4.2) 3.9 (2.5)

Fair CG 67.2 (3.8) 6.5 (3.7) 72.5 (6.4) 2.8 (2.1)

Strict Fair CG 71.5 (3.7) 1.3 (0.7) 70.2 (5.2) 0.7 (1.5)

A.3 Bank Marketing

(a) (b) (c)

Figure 10: The 10-fold mean accuracy (a), total negative rate (b), and proportion of true predictions (c) of the

fairness tuned model are plotted against target gap ε for the Bank Marketing data set

For the Bank Marketing data set, we see a very poorly performing model for the strict

fairness restriction. While not exhibiting a large portion of unfairness, the model is

definitely influenced by the equality of opportunity constraint. No underlying reason

for this can be found. For further relaxations of the constraints, it can be seen that

increasing ε does not alter the performance of the model. This indicates that the fairness

constrictions are easily met. As stated in Table 5, it can be seen in the Default set

contains only a very limited amount of unfairness. As addition investigation would not

give new insights we leave it at this.

A.4 Student Performance

(a) (b) (c)

Figure 11: The 5-fold mean accuracy (a), total negative rate (b), and proportion of true predictions (c) of the

fairness tuned model are plotted against target gap ε for the Student Performance data set
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The results for the Student Performance model are surprising. Similar to other models,

strict fairness is too restrictive for the model. However, we see a remarkable thing when

relaxing the fairness constraints. At first, we see a steep increase, meaning the model

does not perform well based on its fairness. After further increases we see the model

improving, something we have not seen in other data sets. We see that for the values

0, 0.01, 0.05, 0.1 for the gap target the complexity of the rule set increases, this might

explain the reduction in unfairness. In Table 6, it can be seen that the models. Similar

to the 5-fold ILDP analysis, both shown in Table 9, We see some mixed results. For

instance, it is very counter-intuitive to see that the restricted models achieve higher

accuracy. As these results do not make much sense and the standard deviations are

relatively high, we do not put too much weight on these results.

B Appendix. Programming Code

In the provided zip-file, the code for the Bachelor Thesis ‘Evaluation of Fair Boolean

Rule Set Builder for Binary Classification’ can be found. Thankfully, I could build

upon the previous results of Connor Lawless. My starting point was his GitHub page:

https://github.com/conlaw. My contributions can be found in the Jupyter Notebook

file (ending with the .ipynb extension). Data and results have been excluded to keep

this map as small as possible.

If you wish to reproduce my findings and run the experiments found in the paper, you

should execute the code in the following order: Split into Cells, Fair CG Rule Generation,

Fair CG Trials, Accuracy Experiment, Quantifying (Illegal) Discrimination.

Hopefully, this will be helpful. For questions, you can reach out to me.
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