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Abstract Fan, Liao, and Yao (2015) proposed a technique to boost the power of testing a high-

dimensional vector H0: θ = 0 against sparse alternatives where the null hypothesis is violated

by only a few components. In this paper I improve their technique by dividing the vector θ into

two sub-vectors: θS and θD, where θS is a sparse vector containing the sparse alternatives and

θD=θ-θS is dense. Instead of empowering all the elements of θ as Fan, Liao, and Yao (2015)

did, only θS is empowered in this research, which leads to a new power enhancement method.

A new power enhancement component is formed through a screening technique, which screens

out the elements of θS that are bigger than a critical value. The proposed power enhancement

is applied to testing the factor pricing models and validating the cross-sectional independence

in panel data models. Simulation results show that the proposed power enhancement not only

reduces size distortion under the null hypothesis, but also provides more power under sparse

alternatives in comparison with the power enhancement method of Fan, Liao, and Yao (2015).
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1 Introduction

The effect of dimensionality on power properties of tests has witnessed a lot of growing attention

in recent years. Existing tests based on quadratic statistics are known to have low power against

subsets of the parameter space in high dimensions(Kock and Preinerstorfer 2017). Fan, Liao,

and Yao (2015) introduced a power enhancement principle, which is a technique to boost the

power of testing a high-dimensional vector against sparse alternatives where the null hypothesis

is violated by only a few components. In their paper they test the following high-dimensional

structural parameter:

H0 : θ = 0, (1)

where N=dim(θ) is allowed to grow faster than the sample size T . The power enhancement

introduced by Fan, Liao, and Yao (2015) is defined on the whole parameter space. To improve

their method I divide the vector θ into two sub-vectors: θS and θD. θS is a sparse vector and

contains the sparse alternatives, whereas θD=θ-θS is dense. The method in this paper prevents

wrong rejection of the null hypothesis because θD is not included in the power enhancement

component. Furthermore, it can enhance the power of the test under the alternative hypothesis

and decrease the size distortion under the null hypothesis. This research not only is theoretically

relevant, but also has great use for traders in practice. Namely, it can show whether a stock is

mispriced or not based on testing the null hypothesis so that it potentially improves the discovery

of mispriced stocks. For example, if one wants to test the null hypothesis for N stocks, only

the θ’s of the stocks that are suspected to be non-zero need to be empowered instead of all the θ’s.

A typical example to test the power enhancement on is the factor pricing models in economics.

Factor models play a fundamental role in the arbitrage theory and practice of capital asset

pricing (Ross 1976). It uses multiple common factors to capture the systematic risk and explain

financial market occurrences such as the co-movements of securities and equilibrium of asset

prices. In this paper, the following factor model is used:

yit = θi + bi ∗ ft + uit for i = 1, . . . , N t = 1, . . . , T, (2)

where yit denotes the excess return of the ith asset at time t, θi is the intercept of asset i,

ft is the K-dimensional observable factors, bi is a vector of factor loadings, uit represents the

idiosyncratic error, N = dim(θ) and T is the sample size. I am interested in testing zero θi’s

through the null hypothesis as stated in equation (1).

Testing the validity of pricing models has always been essential to the asset pricing theory

and practice. Jensen (1968) suggested a validity test based on standardized t-statistics using
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ordinary least squares regression for each asset. Gibbons, Ross, and Shanken (1989) proposed a

multivariate F-test under the assumptions that the errors follow a normal distribution. Pesaran

and Yamagata (2012) proposed a quadratic-form test statistic based on an adaptive thresholding

estimator of the error covariance matrix. Fan, Liao, and Yao (2015) introduced the power

enhancement test and applied it to the factor pricing model. The power enhancement test adds

a power enhancement component J0 ≥ 0 to an asymptotically pivotal statistic constructed from

the Wald test statistic, denoted by J1. The proposed power enhancement statistic J0 of Fan,

Liao, and Yao (2015) is determined through the pivotal statistic J1, and the power is improved

via the contributions of sparse alternatives that survive the screening process. In this paper I

propose a new power enhancement component Jn, of which the screening process is done only

on the sparse vector θS instead of on the whole vector θ.

In addition to studying the factor pricing model, another example to study is a cross-sectional

independence in mixed effect panel data models:

yit = γi + ζi ∗ xit + µi + uit for i = 1, . . . , n t = 1, . . . , T. (3)

For this model, the cross-sectional independence is tested by the null hypothesis:

H0 : ρij = 0 for all i 6= j, (4)

where ρij denotes the correlation between uit and ujt. Therefore, the n × n covariance matrix

Σu of uit is diagonal under the null hypothesis. In the literature, most of the testing statistics

for the mixed effect panel data models are based on the sum of squared residual correlations

(Baltagi, Feng, and Kao 2012).

The purpose of this paper is to answer the following research question: ”Does an empowerment

only on the sparse alternatives lead to an improvement of the power enhancement testing?”

The remainder of this paper is organized as follows. Section 2 formulates the new power

enhancement component. Section 3 explains how to select θS . Section 4 discusses applications

of the power enhancement components. Section 5 describes the simulations using the power

enhancement component in the paper of Fan, Liao, and Yao (2015) and the new power enhancement

component in this research, respectively. Section 6 discusses the comparisons of the results.

Section 7 provides the conclusions inferred by this research together with suggestions for further

research.
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2 Power enhancement components

The power enhancement technique considers the hypothesis testing problem ofH0 : θ = 0 against

sparse alternatives. Literature has shown that traditional tests, such as the Wald test, have a

low power. To enhance the power, Fan, Liao, and Yao (2015) introduced a power enhancement

component which is zero under the null hypothesis with high probability and diverges quickly

under sparse alternatives. Their power enhancement test has the form of J = J0 + J1, where

J1 is a test statistic that has a correct asymptotic size that may suffer from low powers under

sparse alternatives. The power enhancement component J0 augments the test and has to be

chosen such that it satisfies the following power enhancement properties (a)-(c):

(a) J0 is non-negative.

(b) No size distortion after adding J0: under H0, P(J0 = 0 |H0) → 1.

(c) Power enhancement: J0 diverges in probability under some specific regions of alternatives

Hα.

J0 is constructed by a screening procedure. The screening set S0 screens out most of the

estimation noises so that it contains only a few indices of the non-zero entries and is defined as

follows:

S0 = {j : |θ̂j | > v̂
1/2
j ∗ δN,T , j = 1, . . . , N}, (5)

where v̂j is a data-dependent normalizing constant that is taken as the estimated asymptotic

variance of θ̂j and δN,T is the critical value that depends on (N,T). δN,T is chosen to be slightly

larger than the noise level maxj≤N |θ̂j − θj |/v̂1/2
j , specifically:

inf
θ∈Θ

P

Å
max
j≤N
|θ̂j − θj |/v̂1/2

j < δN,T

ã
→ 1. (6)

Fan, Liao, and Yao (2015) proposed δN,T for the factor model as follows:

δN,T = log(logT )
»
log(N). (7)

The screening statistic J0 is then defined as:

J0 =
√
N
∑
j∈S0

θ̂2
j ∗ v̂−1

j . (8)

J0 can then be added to another test statistic with an accurate asymptotic size J1, so that the

constructed power enhancement test takes the form J = J0 + J1. Fan, Liao, and Yao (2015)

choose J1 as the standardized Wald statistic:

J1 =
θ̂
′
v̂ar(θ̂)−1θ̂ −N√

2N
, (9)
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Consequently, J is N(0,1) asymptotically distributed under the null hypothesis. Because of

equation (5) and (6), J0 satisfies the non-negativeness and no-size-distortion properties. Under

H0 : θ = 0, it holds that:

P (J0 = 0|H0) = P (Ŝ = ∅|H0) = P

Å
max
j≤N
|θ̂j |/v̂1/2

j < δNT |H0

ã
→ 1. (10)

In this paper, the vector θ is divided into two sub-vectors: θS and θD. θS contains the sparse

alternatives and θD contains the remaining elements of θ, which is dense. Fan, Liao, and Yao

(2015) empower all the elements of θ. I propose to empower only θS , which leads to a different

screening set Sn and a different power enhancement component Jn:

Sn = {j : |θ̂j | > v̂
1/2
j ∗ δr,N,T , j = 1, . . . , N θ̂j ∈ θS}, (11)

Jn =
√
N
∑
j∈Sn

θ̂2
j ∗ v̂−1

j , (12)

where r is the number of elements in θS . Jn also satisfies the non-negativeness property (a) and

the no size distortion property (b) since Jn is smaller than J0 used in Fan, Liao, and Yao (2015).

This Jn is added to the standardized Wald statistic J1 in equation (9) so that the constructed

power enhancement test takes the form:

J = J1 + Jn. (13)

For the factor pricing model, the threshold δr,N,T is defined by replacing N in δN,T in equation (7)

with a linear combination of N and R :

δr,N,T = log(logT )
»
log(αN + βr) with α+ β = 1 and α, β ≥ 0. (14)

The first extreme case for δr,N,T is when α=1 and β=0. In this case δr,N,T=δN,T , the same as Fan,

Liao, and Yao (2015) used for the screening procedure for J0. When δr,N,T=δN,T , J1+Jn rejects

the null hypothesis less than J1+J0, and therefore lowers the size distortion. By enhancing only

θS instead of the entire θ vector, it is guaranteed that the null hypothesis is rejected less often

for the same delta. Moreover, under the alternative, the θi’s that are big enough to end up in

the screening set in equation (5) are mainly in θS . The power enhancement on θS by J0 and

Jn is the same. In very few cases, J0 can be slightly larger than Jn when α=1 and β=0 for

δr,N,T , because J0 empowers the whole vector θ and therefore empowers some estimation errors

outside the sparse alternatives when testing the alternative hypothesis. However, this difference

is very small and can be ignored. The second extreme case is when α=0 and β=1. In this

case δr,N,T=log(logT )
√
log(r) and under this δr,N,T , J1+Jn can reject the null hypothesis more

frequently than J1+J0 when testing the alternative hypothesis and hence enhances the power.
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However, this δr,N,T can lead to huge size distortion. In some of the cases when r<<N, δr,N,T

can be much smaller than δN,T and Jn could empower some estimation errors. Therefore, there

exists an optimum α ≥ 0 and β ≥ 0 in equation (14) for Jn. With the optimum α and β, the

proposed power enhancement not only reduces the size distortion under the null hypothesis, but

also provides more power under the alternative hypothesis. In this research, I intuitively choose

α = 0.25 and β = 0.75.

3 Selection of θS

As mentioned in Section 2, in this paper the vector θ is divided into two sub-vectors: θS and

θD. How to select the sub-vector θS for both the factor pricing model and the cross-sectional

independence model is discussed in this section.

For the factor pricing model, θ is a vector of intercepts for all financial assets. Therefore the

elements of θS are the intercepts of the financial assets that might not be equal to zero.

For the cross-sectional model, θS is a vector consisting of the correlations between stocks. Thus

θS consists of some entries of the sparse matrix Σu. There are many different ways to select θS

according to the applications. For example, θS can be selected based on the regularity condition

proposed in Fan, Liao, and Yao (2015). They use mN and DN to characterize the used sparse

matrices Σu in the cross-sectional independence model:

mN =

N∑
j=1

I{(Σu)ij 6= 0}, DN =
∑
i 6=j

I{(Σu)ij 6= 0}, (15)

wheremN represents the maximum number of non-zeros in each row, andDN represents the total

number of nonzero off-diagonal entries. Suppose N1/2(logN)γ ∈ O(T), where γ is a constant

bigger than 2, and suppose min(Σu)ij 6=0|(Σu)ij | >>
√

(logN)/T , then one of the following two

cases holds:

1.DN ∈ O(N1/2) and mN ∈ O
Å

T

N1/2 ∗ log(N)γ

ã
.

2.DN ∈ O(N) and mN ∈ O(1).

In the first case, Σu is required to have no more than O(N1/2) off-diagonal nonzero entries,

but allows a diverging mN , which represents the maximum number of non-zeros in each row.

Moreover, there are only a small portion of firms whose individual shocks are correlated with

many other firms. In this case, the elements of θS consist of the correlations of those small

portion of firms that are correlated with many other firms.

In the second case, Σu can have O(N) off-diagonal nonzero entries, but mN should be bounded.
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This case is typical for firms whose individual shocks are correlated only within industries but

not across industries. Those correlations are the elements for the sub-vector θS , which allows

block-diagonal matrices with finite size of blocks or banded matrices with finite number of

bands. Thus, for example, the off-diagonal entries of the block-diagonal matrices or the non-

zero elements along a band can be chosen as elements for θS in this case.

4 Application of the models

4.1 Factor pricing model

A factor pricing model is a financial model which uses multiple factors to analyze and explain

asset prices:

yit = θi + bi ∗ ft + uit for i = 1, . . . , N t = 1, . . . , T, (16)

where N = dim(θ) is allowed to grow faster than the sample size T, yit denotes the excess return

of the ith asset at time t, θi is the intercept of asset i, ft is the K-dimensional observable factors,

bi is a vector of factor loadings and uit represents the idiosyncratic error. I am interested in

testing whether the factor pricing model is consistent with empirical data through the following

null hypothesis:

H0 : θ = 0, (17)

where θ = (θ1, ..., θn)′ is the vector of intercepts for all N financial assets.

To test this null hypothesis, I use two power enhancement tests. The first test has the form of

J = J1 + J0 as in Fan, Liao, and Yao (2015) and the second test is the one proposed in this

research with the form of J = J1 + Jn with J1 as follows:

J1 =
af,tT θ̂

′
Σ̂−1
u θ̂ −N√

2N
, (18)

where af,t > 0 is a constant and Σu is the N × N estimated covariance matrix of ut =

(u1t, ..., uN,t). Σu is estimated according to the threshold approach of Bickel and Levina (2008).

The estimator of the covariance matrix is defined as:‘(Σu)ij =

 sii, if i = j

hij(sij), if i 6= j
(19)

where sij =
1

T

∑T
t=1 ûit”ujt and hij(sij) = sijI{sij > C

Å
siisjj

logN

T

ã1/2

} for some constant

C > 0.

af,t of equation (18) is defined as follows:

af,t = 1− f̄ ′w, (20)
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where f̄ =
1

T

∑T
t=1 ft, w =

Å
1

T

∑T
t=1 ftft

′
ã
f̄ . The OLS estimator of θ can then be expressed

as:

θ̂j =
1

T ∗ af , t

T∑
t=1

yit(1− ft′w). (21)

When cov(ft) is positive definite and there are no serial correlations, the conditional variance

of θ̂j converges in probability to vj = var(ujt)/T ∗af , with af = 1−Eft′(Eftft′)−1Eft. vj can

be estimated with the residuals of OLS estimator:

v̂j =
1

T

T∑
t=1

û2
jt/T ∗ af,t, (22)

where ûjt = yjt − θ̂j − b̂jft. The power enhancement components J0 and Jn augment the test

J1 and are constructed by a screening procedure as described in Section 2.

4.2 Cross-sectional independence model

Cross-sectional dependence is one of the most important diagnostics that a researcher should

investigate before performing a panel data analysis. Hence, a study is also performed for the

power enhancement components for cross-sectional independence in mixed effect panel data

models:

yit = γi + ζi ∗ xit + µi + uit for i = 1, . . . , n t = 1, . . . , T, (23)

where yit denotes the excess return of the ith asset at time t, xit is the regressor, µi is the

random effect and uit is the idiosyncratic error. xit could be correlated with the random effect

µi but uncorrelated with uit. The cross-sectional independence is tested by the null hypothesis:

H0 : ρij = 0 for all i 6= j, (24)

where ρij denotes the correlation between uit and ujt. This null hypothesis is equivalent to testing

H0 : θ = 0 with θ = (ρ12, ..., ρ1n, ρ23, ..., ρ2n, ..., ρn−1,n), a Nx1 matrix where N=n(n-1)/2. ρij is

estimated using the following: ỹit = yit−
∑T

t=1 yit, x̃it = xit−
∑T

t=1 xit and ũit = uit−
∑T

t=1 uit.

Then ỹit = ζi ∗›xit + ũit, so that ζ̂i can be estimated by OLS regression of ỹit on ›xit, which

leads to the estimated residual ûit = ỹit − ζi ∗›xit. Using ûit, the estimations of ”σij and ρ̂ij are

respectively as follows: ”σij =
1

T

T∑
t=1

ûitûjt, (25)

ρ̂ij =
σ̂ij

σ̂
1/2
ii σ̂

1/2
ij

. (26)

The estimated asymptotic variance of ρ̂ij is given as:

v̂ij =
Ä
1− ρ̂ij2

ä2
/T. (27)
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Therefore, the screening set S0 and J0 are as follows:

S0 = {(i, j) : |ρ̂ij | > v̂
1/2
ij ∗ δN,T , i < j ≤ n}, (28)

J0 =
√
N

∑
(i,j)∈S0

ρ̂2
ij ∗ v̂−1

j . (29)

In the tests for the cross-sectional independence model, Fan, Liao, and Yao (2015) used a different

δN,T = 2.25log(N)(log(log(T )))2. The screening set Sn and the power enhancement component

Jn for the cross-sectional independence model are modified accordingly as follows:

Sn = {(i, j) : |ρ̂ij | > v̂
1/2
ij ∗ δN,T , i < j ≤ n, ρ̂ij ∈ θS}, (30)

Jn =
√
N

∑
(i,j)∈Sn

ρ̂2
ij ∗ v̂−1

ij , (31)

where δr,N,T is chosen according to δN,T for the cross-sectional independence model by replacing

N with a linear combination of N and r as in the factor pricing model:

δr,N,T = 2.25log(logT )2log(αN + βr) with α+β=1, α ≥0, β ≥0 and r=|θS |. Here θS is the

subset of ρ̂ij ’s as described in Section 3. The quadratic statistic used in this research for this

model is from Baltagi, Feng, and Kao (2012):

J1 =

 
1

n(n− 1)

∑
i<j

(Tρij − 1)− n

2(T − 1)
. (32)

5 Simulation

In this research, Monte Carlo simulations are used in order to examine the finite sample

performance of the power enhancement tests. The simulations are replicating the simulations

done in the paper of Fan, Liao, and Yao (2015) and can be obtained via running the code

provided in the GitHub folder (GitHub 2021).

For the factor model in equation (16) {bi}N1 , {ft}N1 and {ut}N1 are simulated independently and

respectively from N3(µb,Σb), N3(µf ,Σf ) and NN (0,Σu). Σu = diag{A1, ..., AN/4} is a block-

diagonal correlation matrix, where each diagonal block Aj is a 4 × 4 positive definite matrix,

whose correlation matrix has off-diagonal entry ρj , generated from U(0, 0.5). The parameters

are calibrated using daily returns of S&P 500’s top 100 constituents for the period from July

1st, 2008 to June 29th, 2012 and can be found in Table 1.
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Table 1: Parameters used to generate bi and ft

µB Σb µf Σf

0.9833 0.0921 -0.0178 0.0436 0.0260 3.2351 0.1783 0.7783

-0.1233 -0.0178 0.0862 -0.0211 0.0211 0.1783 0.5069 0.0102

0.0839 0.0436 -0.0211 0.7624 -0.0043 0.7783 0.0102 0.6586

The powers of the tests are evaluated under two specific alternatives:

Sparse alternative : H1
α : θi =

 0.3, i ≤ N/T

0, i > N/T
(33)

Weak alternative : H2
α : θi =


»

logN
T , i ≤ N0.4

0, i > N0.4
(34)

For the factor model, θS is chosen as the sub-vector containing the first 1.1*N/T elements of θ

= (θ1, ..., θn)′ to include the sparse alternatives. For the weak alternative, θS is chosen as the

sub-vector containing the first N0.5 elements of θ to include the weak alternatives. For both

alternatives, a little bit more θi’s are added to the sub-vector θS to make sure all the θi’s which

are not equal to zero are included under the assumption that sparse alternatives are not exactly

known. Because of the different selections for the two alternatives, Jn will make use of different

sub-vectors θS . Therefore, H1
0 denotes the null hypothesis against the sparse alternative H1

α

and H2
0 denotes the null hypothesis against the weak alternative H2

α.

For the cross-sectional independence model in equation (23), xit = 0.5 is initialized at t =

1 for each i. µi is drawn from N(0, 0.25) for i = 1,...,n. The parameters γ and ζ are set to be

-1 and 2, respectively and {ut}N1 is generated from NN (0,Σu). Under the null hypothesis, Σu is

set to be a diagonal matrix Σu,0 = diag{σ1, ..., σn}. The heteroskedastic errors are as follows:

σ2
i = σ2(1 + kx̄i)

2, (35)

where k=0.5, x̄i is the average of xit across t and σ2 is scaled in order to fix the average of σ2
i

at 1. Under the alternative hypothesis, Σu=Σ
1/2
u,0 Σu,1Σ

1/2
u,0 . I start with Σu,1=diag{Σ1, ...,Σn/4},

where each Σi is defined as I4 initially. Then,
⌊
n0.3

⌋
blocks are randomly chosen among them

and made non-diagonal by setting Σi(m, n) = ρ|m−n| (m, n ≤ 4), with ρ = 0.2.

Under the alternative hypothesis, the matrix Σu of the cross-sectional independence model

satisfies the second regularity condition described in Section 3. θS is selected to include all
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the strictly upper triangular entries of each of the diagonal block matrices Aj from Σu =

diag{A1, ..., An/4}.

6 Numerical studies

6.1 Factor pricing model

Six testing methods are conducted and compared for the factor model: the standardized Wald

test J1, the thresholding test Jthr as in Fan (1996), their power enhancement versions J0 +

J1 and J0 + Jthr, and the power enhancement versions Jn + J1 and Jn + Jthr proposed in

this paper. The relative frequency of the screening sets S0 and Sn being empty for both power

enhancement components, which approximates P (S0 = ∅) and P (Sn = ∅), are also calculated.

The thresholding test Jthr is defined as follows:

Jthr = σ−1
N

(
N∑
n=1

θ̂2
j v̂
−1
j I{|θ̂j |v̂−1

j > tN} − µN

)
, (36)

where σ2
N =

√
2/πa−1t3N (1 + 3t−2

N ), µN =
√

2/πa−1tN (1 + t−2
N ), tN =

√
2log(Na) and a =

(logN)−2.

For each test, the relative frequency of rejection of the null hypothesis under H1
0 , H2

0 , H1
α and

H2
α based on 2000 replications is calculated, with significance level q=0.05 for different pairs of

(N,T). J0 is calculated for δN,T and Jn is calculated for three different δr,N,T ’s: δr,N,T=δN,T ,

δr,N,T=log(logT )
√
log(r) and δr,N,T=log(logT )

√
log(0.25N + 0.75r).

Table 2 presents the empirical size and power of each testing method under the null hypothesis

H1
0 and H2

0 , where H1
0 is the null hypothesis against H1

α and H2
0 is the null hypothesis against

H2
α. Table 3 gives the empirical size and power of each testing method under the two alternative

hypotheses H1
α and H2

α for δr,N,T= δN,T=log(logT )
√
log(N).
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Table 2: Size and power (%) of tests for the factor model under H1
0 and H2

α for δr,N,T =

log(logT )
√
logN

(N,T) J1 J1 + J0 J1 + Jn Jthr Jthr + J0 Jthr + Jn P (S0 = ∅) P (Sn = ∅)

H1
0 (null hypothesis againstHα

1)

(500, 300) 6.2 6.9 6.3 7.7 8.2 7.7 99.3 100.0

(800, 300) 4.7 4.8 4.7 7.1 7.3 7.1 99.9 100.0

(1000, 300) 5.1 5.3 5.1 7.0 7.1 7.0 99.8 100.0

(1200, 300) 5.3 5.6 5.3 7.7 7.9 7.7 99.7 100.0

(500, 500) 6.2 6.3 6.2 6.9 7.0 6.9 99.9 100.0

(800, 500) 6.1 6.3 6.1 8.1 8.2 8.1 99.7 100.0

(1000, 500) 4.5 4.6 4.5 6.0 6.1 6.0 99.9 100.0

(1200, 500) 4.1 4.3 4.1 6.4 6.5 6.4 99.8 100.0

H2
0 (null hypothesis againstHα

2)

(500, 300) 5.6 6.1 5.6 6.1 6.5 6.1 99.5 100.0

(800, 300) 5.2 5.4 5.2 7.0 7.2 7.0 99.8 100.0

(1000, 300) 5.2 5.6 5.2 6.7 6.9 6.7 99.6 100.0

(1200, 300) 5.6 5.7 5.5 5.9 6.1 5.9 99.7 100.0

(500, 500) 4.6 4.7 4.6 5.6 5.8 5.6 99.8 100.0

(800, 500) 5.0 5.1 5.0 6.2 6.3 6.2 99.9 100.0

(1000, 500) 5.1 5.1 5.1 7.3 7.3 7.3 100.0 100.0

(1200, 500) 5.3 5.4 5.3 6.8 6.9 6.8 99.9 100.0

Under H1
0 , the sizes of J1, J1 + J0 and J1 + Jn are close to the significance level, while all of the

three thresholding tests Jthr, Jthr + J0 and Jthr + Jn have significant size distortions. Adding

J0 gives a maximum of 0.7% size increase, while Jn gives a maximum of only 0.1% size increase.

Furthermore, P (S0 = ∅) is close to 1 for J0, indicating that the power enhancement component

screens off most of the estimation errors. For Jn, P (Sn = ∅)=1 for all pairs of (N,T), meaning

that Jn screens off all the estimation errors every time. Similar results hold for H2
0 .
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Table 3: Size and power (%) of tests for the factor model under the alternative hypotheses for

δr,N,T = log(logT )
√
logN

(N,T) J1 J1 + J0 J1 + Jn Jthr Jthr + J0 Jthr + Jn P (S0 = ∅) P (Sn = ∅)

H1
α

(500, 300) 45.1 94.1 94.1 64.0 94.5 94.5 8.6 8.7

(800, 300) 46.8 94.7 94.7 81.7 96.4 96.4 6.9 6.9

(1000, 300) 43.2 95.1 95.1 77.7 95.9 95.9 6.7 6.7

(1200, 300) 45.5 97.0 97.0 90.4 98.1 98.1 4.0 4.0

(500, 500) 45.5 98.45 98.4 52.4 98.4 98.4 2.1 2.2

(800, 500) 62.4 99.9 99.9 86.2 99.9 99.9 0.2 0.3

(1000, 500) 55.7 99.7 99.7 83.1 99.6 99.6 0.5 0.5

(1200, 500) 51.9 99.7 99.7 80.1 99.6 99.6 0.5 0.5

Hα
2

(500, 300) 66.8 71.4 71.3 78.6 80.4 80.3 74.4 75.0

(800, 300) 65.6 70.6 70.55 82.2 83.8 83.8 74.8 74.9

(1000, 300) 68.3 73.3 73.3 87.1 88.4 88.4 74.5 74.8

(1200, 300) 67.1 71.2 71.2 88.0 88.8 88.0 74.3 74.3

(500, 500) 67.1 70.3 70.3 78.0 79.3 79.3 81.8 81.9

(800, 500) 73.0 75.8 75.8 82.9 83.9 82.9 81.8 81.9

(1000, 500) 76.1 78.5 78.5 86.4 86.9 86.9 82.6 82.7

(1200, 500) 77.7 80.3 80.25 88.2 88.8 88.8 83.45 83.5

The main findings of Table 3 are as follows:

1). Under H1
α, the power of the thresholding test is much higher than that of the Wald test,

as the Wald test accumulates too many estimation errors. Moreover, the power is significantly

enhanced after J0 and Jn are added. There is thus no significant difference in power between

J0 and Jn. Under H1
α, P (S0 = ∅) and P (Sn = ∅) are the same for almost all the pairs. The

frequency of S0 and Sn being empty is less than 9% for all pairs of (N,T) and sometimes even

smaller than 1%. The 9% is because the screening procedure manages to capture the big θ’s.

2). Under H2
α, the thresholding test has higher power than J1 + J0 and J1 + Jn, making both

power enhancement components not substantial. The screening set of both statistics has a large

chance of being empty, since the θ’s are weak under this alternative.

Thus as expected, J1+Jn rejects the null hypothesis less than J1+J0 and Jthr+Jn rejects the

null hypothesis less than Jthr+J0. Therefore, Jn lowers the size distortion with very little loss

of power under the alternative hypotheses.

14



Table 4 presents the empirical size and power of each testing method under H1
0 and H2

0 and

Table 5 displays the empirical size and power of each testing method under the two alternative

hypothesis for δr,N,T=log(logT )
√
log(r).

Table 4: Size and power (%) of tests for the factor model under H1
0 and H1

α for δr,N,T =

log(logT )
√
log(r)

(N,T) J1 J1 + J0 J1 + Jn Jthr Jthr + J0 Jthr + Jn P (S0 = ∅) P (Sn = ∅)

H1
0

(500, 300) 5.1 5.5 19.0 6.7 6.9 20.7 99.6 85.1

(800, 300) 5.6 5.9 17.9 5.9 6.2 18.3 99.7 87.1

(1000, 300) 5.9 6.2 23.5 7.4 7.7 24.3 99.7 81.5

(1200, 300) 5.9 6.2 20.0 7.5 7.7 21.0 99.7 85.3

(500, 500) 5.2 5.4 99.3 7.7 7.9 99.5 99.7 0.0

(800, 500) 4.8 5.0 16.7 6.7 6.9 18.2 99.8 87.5

(1000, 500) 5.6 5.8 27.1 7.1 7.2 28.9 99.8 76.7

(1200, 500) 4.4 4.6 27.0 5.7 5.9 28.3 99.8 76.3

H0
2

(500, 300) 6.5 7.0 18.6 6.9 7.4 19.1 99.4 86.6

(800, 300) 5.8 6.0 16.1 7.1 7.3 16.5 99.7 88.9

(1000, 300) 5.7 6.1 16.0 6.8 7.2 16.8 99.6 88.9

(1200, 300) 5.9 6.4 15.9 6.6 7.1 16.3 99.5 89.2

(500, 500) 5.4 5.7 13.1 7.8 8.1 14.8 99.7 91.6

(800, 500) 5.3 5.4 12.1 7.05 7.1 13.8 99.9 92.2

(1000, 500) 4.5 4.6 10.9 7.15 7.2 13.2 99.9 93.1

(1200, 500) 5.2 5.3 11.5 6.6 6.7 12.8 99.9 92.3

Under both H1
0 and H2

0 , the sizes of J1 and J1 + J0 are close to the significance level, while

J1 + Jn has enormous size distortion because of the chosen δr,N,T . Furthermore, all of the three

thresholding tests Jthr, Jthr + J0 and Jthr + Jn have significant size distortions as well. Adding

J0 gives a maximum of 0.7% size increase, while Jn gives a big size increase for each pair (N,T),

even more than 94% in the case of (500, 500). Furthermore, P (S0 = ∅) is close to one for J0,

indicating that the power enhancement component screens off most of the estimation errors. For

Jn, P (S = ∅) is equal to 80∼90% for most pairs of (N,T), except for (500, 500), meaning that

Jn screens off majority of the estimation errors most of the time.
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Table 5: Size and power (%) of tests for the factor model under the alternative hypotheses for

δr,N,T = log(logT )
√
log(r)

(N,T) J1 J1 + J0 J1 + Jn Jthr Jthr + J0 Jthr + Jn P (S0 = ∅) P (Sn = ∅)

H1
α

(500, 300) 44.8 94.0 100.0 63.4 94.7 100.0 8.4 0.0

(800, 300) 47.8 96.9 100.0 81.6 97.9 100.0 4.5 0.0

(1000, 300) 44.9 95.4 100.0 76.5 96.0 100.0 6.4 0.0

(1200, 300) 43.3 96.6 100.0 90.2 97.9 100.0 4.6 0.0

(500, 500) 47.1 98.5 100.0 51.5 98.0 100.0 2.3 0.0

(800, 500) 62.2 99.8 100.0 86.8 99.9 100.0 0.3 0.0

(1000, 500) 55.7 99.5 100.0 83.7 99.5 100.0 0.8 0.0

(1200, 500) 52.1 99.8 100.0 80.0 99.8 100.0 0.3 0.0

Hα
2

(500, 300) 65.6 70.3 99.1 77.7 79.1 99.2 75.4 1.0

(800, 300) 66.0 70.9 99.8 82.1 83.4 99.7 74.2 0.3

(1000, 300) 66.8 70.9 99.7 85.4 86.3 99.7 74.5 0.4

(1200, 300) 69.5 74.8 99.8 87.2 88.5 99.8 73.9 0.3

(500, 500) 67.3 69.9 98.8 78.0 79.0 98.9 83.1 1.6

(800, 500) 71.1 73.9 99.4 82.5 83.2 99.3 83.1 0.9

(1000, 500) 76.6 78.7 99.7 86.5 87.0 99.6 83.7 0.7

(1200, 500) 78.4 80.1 99.4 86.6 87.3 99.3 83.2 1.0

The main findings of Table 5 are as follows:

1). Under H1
α, the power is significantly enhanced after J0 is added. The power is even more

enhanced after Jn is added to both test statistics. J1+Jn and Jthr+Jn even have a power of

100% under H1
α, which means that the null hypothesis always gets rejected under this alternative.

Therefore, P (Sn = ∅)=0.0 for all pairs of (N,T). Under H1
α, P (S0 = ∅) is less then 9% for all

pairs of (N,T) and sometimes even smaller than 1%.

2). Under H2
α, the thresholding test has higher power than J1 + J0, making J0 not substantial.

The emptiness of the screening set S0 is around 80% and therefore has a large chance of being

empty, since the θ’s are weak under this alternative. J1 + Jn almost has a power of 100% again

for both the statistics and therefore the emptiness of its screening set Sn is close to zero.

Thus, under δr,N,T = log(logT )
√
log(r), Jn empowers the Wald statistic and threshold statistic

much better than J0. However, it suffers from huge size distortion.
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Table 6 presents the empirical size and power of each testing method under H1
0 and H2

0 and

Table 7 displays the empirical size and power of each testing method under the two alternative

hypothesis for δr,N,T = log(logT )
√
log(0.25N + 0.75r).

Table 6: Size and power (%) of tests for the factor model under H1
0 and H2

α for δr,N,T =

log(logT )
√
log(0.25N + 0.75r)

.

(N,T) J1 J1 + J0 J1 + Jn Jthr Jthr + J0 Jthr + Jn P (S0 = ∅) P (Sn = ∅)

H1
0

(500, 300) 4.9 5.4 4.9 6.7 7.3 6.7 99.3 100.0

(800, 300) 5.9 6.2 5.9 7.5 7.7 7.5 99.7 100.0

(1000, 300) 4.5 5.0 4.5 6.7 6.9 6.7 99.4 100.0

(1200, 300) 5.0 5.6 5.0 7.1 7.6 7.1 99.4 100.0

(500, 500) 5.3 5.5 5.3 6.0 6.2 6.0 99.7 100.0

(800, 500) 5.3 5.5 5.3 6.8 7.0 6.8 99.8 100.0

(1000, 500) 5.3 5.4 5.3 5.9 6.1 5.9 99.8 100.0

(1200, 500) 6.1 6.2 6.1 6.4 6.5 6.4 99.9 100.0

H0
2

(500, 300) 5.2 5.6 5.3 7.2 7.6 7.4 99.5 99.8

(800, 300) 5.3 5.7 5.4 6.9 7.2 7.0 99.6 99.9

(1000, 300) 6.2 6.5 6.3 7.5 7.7 7.6 99.6 99.9

(1200, 300) 5.5 5.7 5.65 7.6 7.8 7.75 99.75 99.8

(500, 500) 6.1 6.3 6.1 6.7 6.8 6.7 99.8 100.0

(800, 500) 4.5 4.6 4.5 6.0 6.1 6.0 99.9 100.0

(1000, 500) 6.7 6.8 6.75 7.1 7.2 7.15 99.9 99.95

(1200, 500) 4.7 4.8 4.75 5.8 5.9 5.8 99.9 99.95

Under both H1
0 and H2

0 , the sizes of J1, J1 + J0 and J1 + Jn are close to the significance

level, while all of the three thresholding tests Jthr, Jthr + J0 and Jthr + Jn have significant size

distortions. Under H1
0 , adding J0 gives a maximum of 0.6% size increase, while Jn results in

0% size increase. Furthermore, P (S0 = ∅) is close to one for J0, indicating that the power

enhancement component screens off most of the estimation errors. For Jn, P (Sn = ∅)=1 for all

pairs of (N,T), meaning that Jn screens off all the estimation errors all the time. Under H2
0 ,

adding J0 also gives a maximum of 0.6% size increase, while Jn results in a maximum of 0.2%

size increase. For H2
0 , P (S = ∅) is close to one for J0 and Jn, indicating that both the power

enhancement components screen off most of the estimation errors.
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Table 7: Size and power (%) of tests for the factor model under the alternative hypotheses for

δr,N,T = log(logT )
√
log(0.25N + 0.75r)

(N,T) J1 J1 + J0 J1 + Jn Jthr Jthr + J0 Jthr + Jn P (S0 = ∅) P (Sn = ∅)

H1
α

(500, 300) 45.2 94.5 98.2 62.3 94.5 98.1 7.8 2.4

(800, 300) 47.5 95.7 99.3 81.7 96.7 99.3 6.0 1.1

(1000, 300) 43.2 94.4 98.9 76.5 95.2 99.0 7.6 1.4

(1200, 300) 41.6 96.7 99.3 91.2 98.3 99.6 4.6 0.9

(500, 500) 47.0 98.9 99.7 51.0 98.8 99.7 1.4 0.4

(800, 500) 60.8 99.9 100.0 86.3 99.9 100.0 0.2 0.0

(1000, 500) 55.9 99.7 99.9 83.8 99.8 99.95 0.6 0.2

(1200, 500) 50.6 99.8 99.95 79.9 99.7 99.9 0.6 0.2

Hα
2

(500, 300) 65.6 70.2 78.7 77.7 78.8 83.4 74.6 44.5

(800, 300) 67.7 72.3 80.8 82.5 84.3 87.7 74.3 42.9

(1000, 300) 67.0 72.3 80.6 85.5 86.4 88.9 73.7 43.1

(1200, 300) 69.8 74.5 83.2 87.9 89.1 91.8 74.7 41.7

(500, 500) 65.7 68.8 76.1 77.0 78.1 81.2 83.0 54.4

(800, 500) 71.9 74.4 80.4 81.6 82.6 85.0 82.9 54.8

(1000, 500) 78.1 80.3 85.4 87.3 87.7 89.7 82.4 54.6

(1200, 500) 78.3 80.1 85.5 88.3 88.9 90.6 82.8 53.7

The main findings of Table 7 are as follows:

1). Under H1
α, Jn enhances the power even more than J0. The frequency of S0 being empty is

less than 8% and the frequency of Sn being empty is less than 2.5% for all pairs of (N,T).

2). Under H2
α, the thresholding test has higher power than J1 + J0 and J1 + Jn, making both

power enhancement components not substantial. Both screening sets S0 and Sn have a large

chance of being empty, since the θ’s are weak under this alternative. P (Sn = ∅) is considerably

smaller than P (S0 = ∅), meaning Jn enhances the tests more than J0.

Thus, using δr,N,T = log(logT )
√
log(0.25N + 0.75r), J1 + Jn is not only smaller than J1 + J0

under both H1
0 and H2

0 , meaning it has smaller size distortion, but also bigger than J1 +J0 under

H1
α and H2

α, meaning it rejects the null hypothesis more frequently under both alternatives.

Therefore, Jn enhances the power of J1 more compared to J0. The same holds for the threshold

statistic.
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6.2 Cross-sectional independence model

The Monte Carlo simulations for the cross-sectional independence model are conducted for

different pairs of (n,T) with significance level q=0.05 based on 2000 replications. For this

model, J0 is also calculated for δN,T and Jn is calculated for three different δr,N,T ’s: δr,N,T =

2.25log(logT )2log(N), δr,N,T = 2.25log(logT )2log(r) and δr,N,T = 2.25log(logT )2log(0.25N +

0.75r). The quadratic test J1 and the power enhancement test J1+J0 and J1+Jn are performed.

Besides, the frequency of the screening set being empty for both power enhancement test are

also conducted. The results for δr,N,T = δN,T=2.25log(logT )2log(N) can be found in Table 8.

Table 8: Size and power (%) of tests for the cross-sectional independence model for δr,N,T =

2.25log(logT )2log(N)

(N,T) J1 J1 + J0 J1 + Jn P (S0 = ∅) P (Sn = ∅) J1 J1 + J0 J1 + Jn P (S0 = ∅) P (Sn = ∅)

H0 Hα

(200, 100) 6.0 6.0 6.0 100.0 100.0 25.6 93.6 93.55 7.05 7.1

(200, 200) 4.8 4.8 4.8 100.0 100.0 59.4 97.3 97.3 2.9 2.9

(200, 300) 5.5 5.5 5.5 100.0 100.0 78.8 98.6 98.6 1.8 1.8

(200, 500) 5.2 5.2 5.2 100.0 100.0 93.3 99.6 99.6 0.6 0.6

(400, 100) 4.8 4.9 4.8 99.9 100.0 18.6 98.1 98.1 2.1 2.1

(400, 200) 4.6 4.6 4.6 100.0 100.0 41.6 99.5 99.5 0.6 0.6

(400, 300) 5.3 5.3 5.3 100.0 100.0 65.8 99.95 99.95 0.1 0.1

(400, 500) 5.1 5.1 5.1 100.0 100.0 90.8 99.95 99.95 0.05 0.05

(600, 100) 4.6 4.6 4.6 99.95 100.0 12.8 97.4 97.4 2.8 2.8

(600, 200) 4.9 4.9 4.9 100.0 100.0 25.3 98.9 98.9 1.1 1.1

(600, 300) 5.5 5.5 5.5 100.0 100.0 42.5 99.9 99.9 0.2 0.2

(600, 500) 4.9 4.9 4.9 100.0 100.0 72.4 100.0 100.0 0.0 0.0

(800, 100) 5.7 5.7 5.7 100.0 100.0 11.4 98.5 98.5 1.7 1.7

(800, 200) 4.9 4.9 4.9 100.0 100.0 21.0 99.5 99.5 0.6 0.6

(800, 300) 4.6 4.6 4.6 100.0 100.0 35.1 99.9 99.9 0.2 0.2

(800, 500) 5.7 5.7 5.7 100.0 100.0 64.9 100.0 100.0 0.0 0.0

Under H0, the sizes of J1, J1+J0 and J1+Jn are close to 5%. Under both the null and alternative

hypothesis, the results using Jn and J0 are almost identical and have no significant difference.

Table 9 shows the size and power of the bias-corrected quadratic test J1 and those of the power

enhancement tests J1+J0 and J1+Jn for δr,N,T = 2.25log(logT )2log(r).
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Table 9: Size and power (%) of tests for the cross-sectional independence model for δr,N,T =

2.25log(logT )2log(r)

(N,T) J1 J1 + J0 J1 + Jn P (S0 = ∅) P (Sn = ∅) J1 J1 + J0 J1 + Jn P (S0 = ∅) P (Sn = ∅)

H0 Hα

(200, 100) 4.8 5.0 5.0 99.8 99.8 27.3 94.1 97.5 7.1 3.0

(200, 200) 5.15 5.15 5.2 100.0 99.95 56.7 97.0 99.1 3.5 1.0

(200, 300) 5.2 5.2 5.2 100.0 100.0 77.5 98.9 99.9 1.6 2.0

(200, 500) 4.8 4.8 4.8 100.0 100.0 94.0 99.8 100.0 0.3 0.1

(400, 100) 5.3 5.3 5.6 100.0 99.8 19.1 98.4 99.5 1.7 0.6

(400, 200) 5.2 5.2 5.2 100.0 100.0 41.3 99.3 99.9 1.0 0.2

(400, 300) 5.1 5.1 5.1 100.0 100.0 64.5 99.8 100.0 0.4 0.0

(400, 500) 4.8 4.8 4.8 100.0 100.0 89.8 100.0 100.0 0.0 0.0

(600, 100) 5.4 5.4 5.6 100.0 99.9 12.3 97.8 99.4 2.4 0.7

(600, 200) 4.5 4.5 4.5 100.0 100.0 26.0 98.9 99.9 1.3 0.2

(600, 300) 6.0 6.0 6.0 100.0 100.0 40.9 99.7 100.0 0.3 0.0

(600, 500) 5.2 5.2 5.2 100.0 100.0 71.9 99.9 100.0 0.2 0.0

(800, 100) 4.75 4.8 4.9 99.9 99.9 10.7 98.3 99.6 1.9 0.5

(800, 200) 5.4 5.4 5.4 100.0 100.0 21.8 99.8 99.95 0.3 0.1

(800, 300) 5.1 5.1 5.1 100.0 100.0 35.4 99.8 99.9 0.3 0.1

(800, 500) 3.8 3.8 3.8 100.0 100.0 63.7 100.0 100.0 0.0 0.0

Under H0, both the power enhancement tests have little distortion of the original size. However,

the power of Jn is bigger than the power of J0 under the alternative hypothesis and therefore

Jn enhances J1 more than J0.

Table 10 exhibits the size and power of J1 and the power enhanced tests J1+J0 and J1+Jn for

δr,N,T = 2.25log(logT )2log(0.25N + 0.75r).
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Table 10: Size and power (%) of tests for the cross-sectional independence model for δr,N,T =

2.25log(logT )2log(0.25N + 0.75r)

(N,T) J1 J1 + J0 J1 + Jn P (S0 = ∅) P (Sn = ∅) J1 J1 + J0 J1 + Jn P (S0 = ∅) P (Sn = ∅)

H0 Hα

(200, 100) 4.4 4.5 4.4 99.9 100.0 26.0 92.6 93.9 7.8 6.5

(200, 200) 5.7 5.7 5.7 100.0 100.0 57.1 97.4 98.1 3.5 2.7

(200, 300) 4.5 4.5 4.5 100.0 100.0 77.8 99.1 99.5 1.4 0.9

(200, 500) 5.6 5.6 5.6 100.0 100.0 94.9 99.7 99.8 0.5 0.3

(400, 100) 4.4 4.5 4.4 99.9 100.0 19.1 98.2 98.6 2.1 1.6

(400, 200) 5.2 5.2 5.2 100.0 100.0 42.2 99.5 99.6 0.6 0.5

(400, 300) 6.0 6.0 6.0 100.0 100.0 66.1 99.8 99.9 0.2 0.1

(400, 500) 5.3 5.3 5.3 100.0 100.0 90.1 99.95 99.95 0.1 0.1

(600, 100) 5.5 5.6 5.5 99.9 100.0 11.8 97.8 98.4 2.4 1.8

(600, 200) 4.9 4.9 4.9 100.0 100.0 25.1 99.2 99.4 1.0 0.7

(600, 300) 5.0 5.0 5.0 100.0 100.0 43.1 99.8 99.9 0.3 0.2

(600, 500) 4.4 4.4 4.4 100.0 100.0 70.9 99.9 99.9 0.1 0.1

(800, 100) 5.95 6.0 5.95 99.95 100.0 12.2 98.7 99.0 1.5 1.1

(800, 200) 5.0 5.0 5.0 100.0 100.0 23.9 99.55 99.6 0.6 0.5

(800, 300) 4.4 4.4 4.4 100.0 100.0 36.9 99.9 99.9 0.1 0.1

(800, 500) 4.3 4.3 4.3 100.0 100.0 63.1 100.0 100.0 0.0 0.0

Under H0, the sizes of J1, J1+J0 and J1+Jn are close to 5%. Both the power enhancement

tests J1+J0 and J1+Jn have little to zero distortion of the original size. The size distortion of

Jn is even zero for all pairs. Moreover, the power of Jn is bigger than the power of J0 under the

alternative hypothesis. Therefore, Jn with δr,N,T = 2.25log(logT )2log(0.25N + 0.75r) has more

power than J0.

7 Conclusion

In this paper, the vector θ is divided into two sub-vectors: θS and θD, where θS is a sparse

vector. Only θS is empowered, which leads to a new power enhancement component Jn. This

new power enhancement component is formed through a screening technique, which screens

out the elements of θS that are bigger than a critical value that depends on a threshold value

δr,N,T . When δr,N,T=δN,T , Jn does not suffer from size distortion. In fact, it improves the size
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distortion without the loss of much power. Sometimes, J1+Jn and Jthr+Jn lose a little bit

of power compared to J1+J0 and Jthr+J0, because wrongly estimated θi’s could get screened

into J0 and those wrongly estimated θi’s are less likely to get screened into Jn since J1 only

empowers θS . In this research, I propose a new threshold value δr,N,T for power enhancement

component Jn, depending on both N and r. Using the specific δr,N,T with parameters α = 0.25

and β = 0.75, the proposed power enhancement not only has almost no size distortion under the

null hypothesis, but also provides more power under sparse alternatives. To finally answer the

research question, a conclusion is drawn that an empowerment only on the sparse alternatives

leads to an improvement of the power enhancement testing.

The choice of the threshold value is very important for the power enhancement Jn. In this

research, good thresholds are proposed for both the factor pricing model and the cross-sectional

independence model by modifying the corresponding thresholds given by Fan, Liao, and Yao

(2015). However, it still remains an open question: ”What is the optimal threshold for Jn?”

Answering this question in both theory and practice is a challenge for future research.
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