Erasmus School of Economics

Power Enhancement of Sparse Alternatives

Bachelor Thesis BSc Econometrics and Operational Research

Author: Richard Lu

Student ID number: 511396

Supervisor: Nick Koning
Second assessor: Richard Paap
July 4, 2021

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor,Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

Fan, Liao, and Yao (2015) proposed a technique to boost the power of testing a highdimensional vector $H_{0}: \boldsymbol{\theta}=\mathbf{0}$ against sparse alternatives where the null hypothesis is violated by only a few components. In this paper I improve their technique by dividing the vector $\boldsymbol{\theta}$ into two sub-vectors: $\boldsymbol{\theta}_{\boldsymbol{S}}$ and $\boldsymbol{\theta}_{\boldsymbol{D}}$, where $\boldsymbol{\theta}_{\boldsymbol{S}}$ is a sparse vector containing the sparse alternatives and $\boldsymbol{\theta}_{\boldsymbol{D}}=\boldsymbol{\theta}-\boldsymbol{\theta}_{\boldsymbol{S}}$ is dense. Instead of empowering all the elements of $\boldsymbol{\theta}$ as Fan, Liao, and Yao (2015) did, only $\boldsymbol{\theta}_{\boldsymbol{S}}$ is empowered in this research, which leads to a new power enhancement method. A new power enhancement component is formed through a screening technique, which screens out the elements of $\boldsymbol{\theta}_{\boldsymbol{S}}$ that are bigger than a critical value. The proposed power enhancement is applied to testing the factor pricing models and validating the cross-sectional independence in panel data models. Simulation results show that the proposed power enhancement not only reduces size distortion under the null hypothesis, but also provides more power under sparse alternatives in comparison with the power enhancement method of Fan, Liao, and Yao (2015).

1 Introduction

The effect of dimensionality on power properties of tests has witnessed a lot of growing attention in recent years. Existing tests based on quadratic statistics are known to have low power against subsets of the parameter space in high dimensions(Kock and Preinerstorfer 2017). Fan, Liao, and Yao (2015) introduced a power enhancement principle, which is a technique to boost the power of testing a high-dimensional vector against sparse alternatives where the null hypothesis is violated by only a few components. In their paper they test the following high-dimensional structural parameter:

$$
\begin{equation*}
H_{0}: \boldsymbol{\theta}=\mathbf{0} \tag{1}
\end{equation*}
$$

where $\mathrm{N}=\operatorname{dim}(\boldsymbol{\theta})$ is allowed to grow faster than the sample size T. The power enhancement introduced by Fan, Liao, and Yao (2015) is defined on the whole parameter space. To improve their method I divide the vector $\boldsymbol{\theta}$ into two sub-vectors: $\boldsymbol{\theta}_{\boldsymbol{S}}$ and $\boldsymbol{\theta}_{\boldsymbol{D}} . \boldsymbol{\theta}_{\boldsymbol{S}}$ is a sparse vector and contains the sparse alternatives, whereas $\boldsymbol{\theta}_{\boldsymbol{D}}=\boldsymbol{\theta}-\boldsymbol{\theta}_{\boldsymbol{S}}$ is dense. The method in this paper prevents wrong rejection of the null hypothesis because $\boldsymbol{\theta}_{\boldsymbol{D}}$ is not included in the power enhancement component. Furthermore, it can enhance the power of the test under the alternative hypothesis and decrease the size distortion under the null hypothesis. This research not only is theoretically relevant, but also has great use for traders in practice. Namely, it can show whether a stock is mispriced or not based on testing the null hypothesis so that it potentially improves the discovery of mispriced stocks. For example, if one wants to test the null hypothesis for N stocks, only the θ 's of the stocks that are suspected to be non-zero need to be empowered instead of all the θ 's.

A typical example to test the power enhancement on is the factor pricing models in economics. Factor models play a fundamental role in the arbitrage theory and practice of capital asset pricing (Ross 1976). It uses multiple common factors to capture the systematic risk and explain financial market occurrences such as the co-movements of securities and equilibrium of asset prices. In this paper, the following factor model is used:

$$
\begin{equation*}
y_{i t}=\theta_{i}+\boldsymbol{b}_{\boldsymbol{i}} * \boldsymbol{f}_{\boldsymbol{t}}+u_{i t} \quad \text { for } \quad i=1, \ldots, N \quad t=1, \ldots, T \text {, } \tag{2}
\end{equation*}
$$

where $y_{i t}$ denotes the excess return of the i th asset at time t, θ_{i} is the intercept of asset i, $\boldsymbol{f}_{\boldsymbol{t}}$ is the K-dimensional observable factors, $\boldsymbol{b}_{\boldsymbol{i}}$ is a vector of factor loadings, $u_{i t}$ represents the idiosyncratic error, $\mathrm{N}=\operatorname{dim}(\theta)$ and T is the sample size. I am interested in testing zero θ_{i} 's through the null hypothesis as stated in equation (1).

Testing the validity of pricing models has always been essential to the asset pricing theory and practice. Jensen (1968) suggested a validity test based on standardized t-statistics using
ordinary least squares regression for each asset. Gibbons, Ross, and Shanken (1989) proposed a multivariate F-test under the assumptions that the errors follow a normal distribution. Pesaran and Yamagata (2012) proposed a quadratic-form test statistic based on an adaptive thresholding estimator of the error covariance matrix. Fan, Liao, and Yao (2015) introduced the power enhancement test and applied it to the factor pricing model. The power enhancement test adds a power enhancement component $J_{0} \geq 0$ to an asymptotically pivotal statistic constructed from the Wald test statistic, denoted by J_{1}. The proposed power enhancement statistic J_{0} of Fan, Liao, and Yao (2015) is determined through the pivotal statistic J_{1}, and the power is improved via the contributions of sparse alternatives that survive the screening process. In this paper I propose a new power enhancement component J_{n}, of which the screening process is done only on the sparse vector $\boldsymbol{\theta}_{\boldsymbol{S}}$ instead of on the whole vector $\boldsymbol{\theta}$.

In addition to studying the factor pricing model, another example to study is a cross-sectional independence in mixed effect panel data models:

$$
\begin{equation*}
y_{i t}=\gamma_{i}+\boldsymbol{\zeta}_{i} * \boldsymbol{x}_{\boldsymbol{i t}}+\mu_{i}+u_{i t} \quad \text { for } \quad i=1, \ldots, n \quad t=1, \ldots, T . \tag{3}
\end{equation*}
$$

For this model, the cross-sectional independence is tested by the null hypothesis:

$$
\begin{equation*}
H_{0}: \rho_{i j}=0 \quad \text { for all } \quad i \neq j, \tag{4}
\end{equation*}
$$

where $\rho_{i j}$ denotes the correlation between $u_{i t}$ and $u_{j t}$. Therefore, the $\mathrm{n} \times \mathrm{n}$ covariance matrix Σ_{u} of $u_{i t}$ is diagonal under the null hypothesis. In the literature, most of the testing statistics for the mixed effect panel data models are based on the sum of squared residual correlations (Baltagi, Feng, and Kao 2012).
The purpose of this paper is to answer the following research question: "Does an empowerment only on the sparse alternatives lead to an improvement of the power enhancement testing?"

The remainder of this paper is organized as follows. Section 2 formulates the new power enhancement component. Section 3 explains how to select $\boldsymbol{\theta}_{\boldsymbol{S}}$. Section 4 discusses applications of the power enhancement components. Section 5 describes the simulations using the power enhancement component in the paper of Fan, Liao, and Yao (2015) and the new power enhancement component in this research, respectively. Section 6 discusses the comparisons of the results. Section 7 provides the conclusions inferred by this research together with suggestions for further research.

2 Power enhancement components

The power enhancement technique considers the hypothesis testing problem of $H_{0}: \boldsymbol{\theta}=\mathbf{0}$ against sparse alternatives. Literature has shown that traditional tests, such as the Wald test, have a low power. To enhance the power, Fan, Liao, and Yao (2015) introduced a power enhancement component which is zero under the null hypothesis with high probability and diverges quickly under sparse alternatives. Their power enhancement test has the form of $J=J_{0}+J_{1}$, where J_{1} is a test statistic that has a correct asymptotic size that may suffer from low powers under sparse alternatives. The power enhancement component J_{0} augments the test and has to be chosen such that it satisfies the following power enhancement properties (a)-(c):
(a) J_{0} is non-negative.
(b) No size distortion after adding J_{0} : under $H_{0}, \mathrm{P}\left(J_{0}=0 \mid \mathrm{H}_{0}\right) \rightarrow 1$.
(c) Power enhancement: J_{0} diverges in probability under some specific regions of alternatives H_{α}.
J_{0} is constructed by a screening procedure. The screening set S_{0} screens out most of the estimation noises so that it contains only a few indices of the non-zero entries and is defined as follows:

$$
\begin{equation*}
S_{0}=\left\{j:\left|\hat{\theta}_{j}\right|>\hat{v}_{j}^{1 / 2} * \delta_{N, T}, \quad j=1, \ldots, N\right\} \tag{5}
\end{equation*}
$$

where \hat{v}_{j} is a data-dependent normalizing constant that is taken as the estimated asymptotic variance of $\hat{\theta}_{j}$ and $\delta_{N, T}$ is the critical value that depends on (N,T). $\delta_{N, T}$ is chosen to be slightly larger than the noise level $\max _{j \leq N}\left|\hat{\theta}_{j}-\theta_{j}\right| / \hat{v}_{j}^{1 / 2}$, specifically:

$$
\begin{equation*}
\inf _{\theta \in \Theta} P\left(\max _{j \leq N}\left|\hat{\theta}_{j}-\theta_{j}\right| / \hat{v}_{j}^{1 / 2}<\delta_{N, T}\right) \rightarrow 1 \tag{6}
\end{equation*}
$$

Fan, Liao, and Yao (2015) proposed $\delta_{N, T}$ for the factor model as follows:

$$
\begin{equation*}
\delta_{N, T}=\log (\log T) \sqrt{\log (N)} \tag{7}
\end{equation*}
$$

The screening statistic J_{0} is then defined as:

$$
\begin{equation*}
J_{0}=\sqrt{N} \sum_{j \in S_{0}} \hat{\theta}_{j}^{2} * \hat{v}_{j}^{-1} \tag{8}
\end{equation*}
$$

J_{0} can then be added to another test statistic with an accurate asymptotic size J_{1}, so that the constructed power enhancement test takes the form $J=J_{0}+J_{1}$. Fan, Liao, and Yao (2015) choose J_{1} as the standardized Wald statistic:

$$
\begin{equation*}
J_{1}=\frac{\hat{\theta}^{\prime} \widehat{\operatorname{var}}(\hat{\theta})^{-1} \hat{\theta}-N}{\sqrt{2 N}} \tag{9}
\end{equation*}
$$

Consequently, J is $\mathrm{N}(0,1)$ asymptotically distributed under the null hypothesis. Because of equation (5) and (6), J_{0} satisfies the non-negativeness and no-size-distortion properties. Under $H_{0}: \boldsymbol{\theta}=\mathbf{0}$, it holds that:

$$
\begin{equation*}
P\left(J_{0}=0 \mid H_{0}\right)=P\left(\hat{S}=\emptyset \mid H_{0}\right)=P\left(\max _{j \leq N}\left|\hat{\theta}_{j}\right| / \hat{v}_{j}^{1 / 2}<\delta_{N T} \mid H_{0}\right) \rightarrow 1 . \tag{10}
\end{equation*}
$$

In this paper, the vector $\boldsymbol{\theta}$ is divided into two sub-vectors: $\boldsymbol{\theta}_{\boldsymbol{S}}$ and $\boldsymbol{\theta}_{\boldsymbol{D}} . \boldsymbol{\theta}_{\boldsymbol{S}}$ contains the sparse alternatives and $\boldsymbol{\theta}_{\boldsymbol{D}}$ contains the remaining elements of $\boldsymbol{\theta}$, which is dense. Fan, Liao, and Yao (2015) empower all the elements of $\boldsymbol{\theta}$. I propose to empower only $\boldsymbol{\theta}_{\boldsymbol{S}}$, which leads to a different screening set S_{n} and a different power enhancement component J_{n} :

$$
\begin{gather*}
S_{n}=\left\{j:\left|\hat{\theta}_{j}\right|>\hat{v}_{j}^{1 / 2} * \delta_{r, N, T}, \quad j=1, \ldots, N \quad \hat{\theta}_{j} \in \boldsymbol{\theta}_{S}\right\}, \tag{11}\\
J_{n}=\sqrt{N} \sum_{j \in S_{n}} \hat{\theta}_{j}^{2} * \hat{v}_{j}^{-1}, \tag{12}
\end{gather*}
$$

where r is the number of elements in $\boldsymbol{\theta}_{\boldsymbol{S}} . J_{n}$ also satisfies the non-negativeness property (a) and the no size distortion property (b) since J_{n} is smaller than J_{0} used in Fan, Liao, and Yao (2015). This J_{n} is added to the standardized Wald statistic J_{1} in equation (9) so that the constructed power enhancement test takes the form:

$$
\begin{equation*}
J=J_{1}+J_{n} . \tag{13}
\end{equation*}
$$

For the factor pricing model, the threshold $\delta_{r, N, T}$ is defined by replacing N in $\delta_{N, T}$ in equation (7) with a linear combination of N and R :

$$
\begin{equation*}
\delta_{r, N, T}=\log (\log T) \sqrt{\log (\alpha N+\beta r)} \quad \text { with } \quad \alpha+\beta=1 \quad \text { and } \quad \alpha, \beta \geq 0 . \tag{14}
\end{equation*}
$$

The first extreme case for $\delta_{r, N, T}$ is when $\alpha=1$ and $\beta=0$. In this case $\delta_{r, N, T}=\delta_{N, T}$, the same as Fan, Liao, and Yao (2015) used for the screening procedure for J_{0}. When $\delta_{r, N, T}=\delta_{N, T}, J_{1}+J_{n}$ rejects the null hypothesis less than $J_{1}+J_{0}$, and therefore lowers the size distortion. By enhancing only $\boldsymbol{\theta}_{\boldsymbol{S}}$ instead of the entire $\boldsymbol{\theta}$ vector, it is guaranteed that the null hypothesis is rejected less often for the same delta. Moreover, under the alternative, the θ_{i} 's that are big enough to end up in the screening set in equation (5) are mainly in $\boldsymbol{\theta}_{\boldsymbol{S}}$. The power enhancement on $\boldsymbol{\theta}_{\boldsymbol{S}}$ by J_{0} and J_{n} is the same. In very few cases, J_{0} can be slightly larger than J_{n} when $\alpha=1$ and $\beta=0$ for $\delta_{r, N, T}$, because J_{0} empowers the whole vector $\boldsymbol{\theta}$ and therefore empowers some estimation errors outside the sparse alternatives when testing the alternative hypothesis. However, this difference is very small and can be ignored. The second extreme case is when $\alpha=0$ and $\beta=1$. In this case $\delta_{r, N, T}=\log (\log T) \sqrt{\log (r)}$ and under this $\delta_{r, N, T}, J_{1}+J_{n}$ can reject the null hypothesis more frequently than $J_{1}+J_{0}$ when testing the alternative hypothesis and hence enhances the power.

However, this $\delta_{r, N, T}$ can lead to huge size distortion. In some of the cases when $\mathrm{r} \ll \mathrm{N}, \delta_{r, N, T}$ can be much smaller than $\delta_{N, T}$ and J_{n} could empower some estimation errors. Therefore, there exists an optimum $\alpha \geq 0$ and $\beta \geq 0$ in equation (14) for J_{n}. With the optimum α and β, the proposed power enhancement not only reduces the size distortion under the null hypothesis, but also provides more power under the alternative hypothesis. In this research, I intuitively choose $\alpha=0.25$ and $\beta=0.75$.

3 Selection of θ_{S}

As mentioned in Section 2, in this paper the vector $\boldsymbol{\theta}$ is divided into two sub-vectors: $\boldsymbol{\theta}_{\boldsymbol{S}}$ and $\boldsymbol{\theta}_{\boldsymbol{D}}$. How to select the sub-vector $\boldsymbol{\theta}_{\boldsymbol{S}}$ for both the factor pricing model and the cross-sectional independence model is discussed in this section.

For the factor pricing model, $\boldsymbol{\theta}$ is a vector of intercepts for all financial assets. Therefore the elements of $\boldsymbol{\theta}_{\boldsymbol{S}}$ are the intercepts of the financial assets that might not be equal to zero.

For the cross-sectional model, $\boldsymbol{\theta}_{\boldsymbol{S}}$ is a vector consisting of the correlations between stocks. Thus $\boldsymbol{\theta}_{\boldsymbol{S}}$ consists of some entries of the sparse matrix Σ_{u}. There are many different ways to select $\boldsymbol{\theta}_{\boldsymbol{S}}$ according to the applications. For example, $\boldsymbol{\theta}_{\boldsymbol{S}}$ can be selected based on the regularity condition proposed in Fan, Liao, and Yao (2015). They use m_{N} and D_{N} to characterize the used sparse matrices Σ_{u} in the cross-sectional independence model:

$$
\begin{equation*}
m_{N}=\sum_{j=1}^{N} I\left\{\left(\Sigma_{u}\right)_{i j} \neq 0\right\}, \quad D_{N}=\sum_{i \neq j} I\left\{\left(\Sigma_{u}\right)_{i j} \neq 0\right\}, \tag{15}
\end{equation*}
$$

where m_{N} represents the maximum number of non-zeros in each row, and D_{N} represents the total number of nonzero off-diagonal entries. Suppose $N^{1 / 2}(\log N)^{\gamma} \in \mathrm{O}(\mathrm{T})$, where γ is a constant bigger than 2, and suppose $\min _{\left(\Sigma_{u}\right)_{i j} \neq 0}\left|\left(\Sigma_{u}\right)_{i j}\right| \gg \sqrt{(\log N) / T}$, then one of the following two cases holds:

1. $D_{N} \in O\left(N^{1 / 2}\right)$ and $m_{N} \in O\left(\frac{T}{N^{1 / 2} * \log (N)^{\gamma}}\right)$.
$2 . D_{N} \in O(N)$ and $m_{N} \in O(1)$.
In the first case, Σ_{u} is required to have no more than $O\left(N^{1 / 2}\right)$ off-diagonal nonzero entries, but allows a diverging m_{N}, which represents the maximum number of non-zeros in each row. Moreover, there are only a small portion of firms whose individual shocks are correlated with many other firms. In this case, the elements of $\boldsymbol{\theta}_{\boldsymbol{S}}$ consist of the correlations of those small portion of firms that are correlated with many other firms.

In the second case, Σ_{u} can have $O(N)$ off-diagonal nonzero entries, but m_{N} should be bounded.

This case is typical for firms whose individual shocks are correlated only within industries but not across industries. Those correlations are the elements for the sub-vector $\boldsymbol{\theta}_{\boldsymbol{S}}$, which allows block-diagonal matrices with finite size of blocks or banded matrices with finite number of bands. Thus, for example, the off-diagonal entries of the block-diagonal matrices or the nonzero elements along a band can be chosen as elements for $\boldsymbol{\theta}_{\boldsymbol{S}}$ in this case.

4 Application of the models

4.1 Factor pricing model

A factor pricing model is a financial model which uses multiple factors to analyze and explain asset prices:

$$
\begin{equation*}
y_{i t}=\theta_{i}+\boldsymbol{b}_{\boldsymbol{i}} * \boldsymbol{f}_{\boldsymbol{t}}+u_{i t} \quad \text { for } \quad i=1, \ldots, N \quad t=1, \ldots, T, \tag{16}
\end{equation*}
$$

where $\mathrm{N}=\operatorname{dim}(\theta)$ is allowed to grow faster than the sample size $\mathrm{T}, y_{i t}$ denotes the excess return of the i th asset at time t, θ_{i} is the intercept of asset $i, \boldsymbol{f}_{\boldsymbol{t}}$ is the K-dimensional observable factors, $\boldsymbol{b}_{\boldsymbol{i}}$ is a vector of factor loadings and $u_{i t}$ represents the idiosyncratic error. I am interested in testing whether the factor pricing model is consistent with empirical data through the following null hypothesis:

$$
\begin{equation*}
H_{0}: \boldsymbol{\theta}=\mathbf{0} \tag{17}
\end{equation*}
$$

where $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right)^{\prime}$ is the vector of intercepts for all N financial assets.
To test this null hypothesis, I use two power enhancement tests. The first test has the form of $J=J_{1}+J_{0}$ as in Fan, Liao, and Yao (2015) and the second test is the one proposed in this research with the form of $J=J_{1}+J_{n}$ with J_{1} as follows:

$$
\begin{equation*}
J_{1}=\frac{a_{f, t} T \hat{\theta}^{\prime} \hat{\Sigma}_{u}^{-1} \hat{\theta}-N}{\sqrt{2 N}}, \tag{18}
\end{equation*}
$$

where $a_{f, t}>0$ is a constant and Σ_{u} is the $\mathrm{N} \times \mathrm{N}$ estimated covariance matrix of $u_{t}=$ $\left(u_{1 t}, \ldots, u_{N, t}\right) . \Sigma_{u}$ is estimated according to the threshold approach of Bickel and Levina (2008). The estimator of the covariance matrix is defined as:

$$
{\widehat{\left(\Sigma_{u}\right)}}_{i j}= \begin{cases}s_{i i}, & \text { if } \quad i=j \tag{19}\\ h_{i j}\left(s_{i j}\right), & \text { if } \quad i \neq j\end{cases}
$$

where $s_{i j}=\frac{1}{T} \sum_{t=1}^{T} \widehat{u_{i t}} \widehat{u_{j t}}$ and $h_{i j}\left(s_{i j}\right)=s_{i j} I\left\{s_{i j}>C\left(s_{i i} s_{j j} \frac{\log N}{T}\right)^{1 / 2}\right\}$ for some constant $C>0$.
$a_{f, t}$ of equation (18) is defined as follows:

$$
\begin{equation*}
a_{f, t}=1-\overline{\boldsymbol{f}}^{\prime} \boldsymbol{w} \tag{20}
\end{equation*}
$$

where $\overline{\boldsymbol{f}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{f}_{\boldsymbol{t}}, \boldsymbol{w}=\left(\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{f}_{\boldsymbol{t}} \boldsymbol{f}_{\boldsymbol{t}}^{\prime}\right) \overline{\boldsymbol{f}}$. The OLS estimator of $\boldsymbol{\theta}$ can then be expressed as:

$$
\begin{equation*}
\hat{\theta}_{j}=\frac{1}{T * a_{f}, t} \sum_{t=1}^{T} y_{i t}\left(1-\boldsymbol{f}_{\boldsymbol{t}}^{\prime} \boldsymbol{w}\right) . \tag{21}
\end{equation*}
$$

When $\operatorname{cov}\left(f_{t}\right)$ is positive definite and there are no serial correlations, the conditional variance of $\hat{\theta}_{j}$ converges in probability to $v_{j}=\operatorname{var}\left(u_{j t}\right) / T * a_{f}$, with $a_{f}=1-E \boldsymbol{f}_{t}^{\prime}\left(E \boldsymbol{f}_{t} \boldsymbol{f}_{t}^{\prime}\right)^{-1} E \boldsymbol{f}_{\boldsymbol{t}} . v_{j}$ can be estimated with the residuals of OLS estimator:

$$
\begin{equation*}
\hat{v}_{j}=\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{j t}^{2} / T * a_{f, t}, \tag{22}
\end{equation*}
$$

where $\hat{u}_{j t}=y_{j t}-\hat{\theta}_{j}-\hat{b}_{j} \boldsymbol{f}_{t}$. The power enhancement components J_{0} and J_{n} augment the test J_{1} and are constructed by a screening procedure as described in Section 2.

4.2 Cross-sectional independence model

Cross-sectional dependence is one of the most important diagnostics that a researcher should investigate before performing a panel data analysis. Hence, a study is also performed for the power enhancement components for cross-sectional independence in mixed effect panel data models:

$$
\begin{equation*}
y_{i t}=\gamma_{i}+\zeta_{i} * x_{i t}+\mu_{i}+u_{i t} \quad \text { for } \quad i=1, \ldots, n \quad t=1, \ldots, T, \tag{23}
\end{equation*}
$$

where $y_{i t}$ denotes the excess return of the i th asset at time $t, x_{i t}$ is the regressor, μ_{i} is the random effect and $u_{i t}$ is the idiosyncratic error. $\boldsymbol{x}_{\boldsymbol{i}}$ could be correlated with the random effect μ_{i} but uncorrelated with $u_{i t}$. The cross-sectional independence is tested by the null hypothesis:

$$
\begin{equation*}
H_{0}: \rho_{i j}=0 \quad \text { for all } \quad i \neq j, \tag{24}
\end{equation*}
$$

where $\rho_{i j}$ denotes the correlation between $u_{i t}$ and $u_{j t}$. This null hypothesis is equivalent to testing $H_{0}: \boldsymbol{\theta}=\mathbf{0}$ with $\boldsymbol{\theta}=\left(\rho_{12}, \ldots, \rho_{1 n}, \rho_{23}, \ldots, \rho_{2 n}, \ldots, \rho_{n-1, n}\right)$, a Nx1 matrix where $\mathrm{N}=\mathrm{n}(\mathrm{n}-1) / 2 . \rho_{i j}$ is estimated using the following: $\widetilde{y_{i t}}=y_{i t}-\sum_{t=1}^{T} y_{i t}, \widetilde{x_{i t}}=x_{i t}-\sum_{t=1}^{T} x_{i t}$ and $\widetilde{u_{i t}}=u_{i t}-\sum_{t=1}^{T} u_{i t}$. Then $\widetilde{y_{i t}}=\boldsymbol{\zeta}_{i} * \widetilde{\boldsymbol{x}_{\boldsymbol{i t}}}+\widetilde{u_{i t}}$, so that $\widehat{\boldsymbol{\zeta}}_{i}$ can be estimated by OLS regression of $\widetilde{y_{i t}}$ on $\widetilde{\boldsymbol{x}_{\boldsymbol{i}}}$, which leads to the estimated residual $\widehat{u_{i t}}=\widetilde{y_{i t}}-\zeta_{i} * \widetilde{x_{i t}}$. Using $\widehat{u_{i t}}$, the estimations of $\widehat{\sigma_{i j}}$ and $\widehat{\rho_{i j}}$ are respectively as follows:

$$
\begin{gather*}
\widehat{\sigma_{i j}}=\frac{1}{T} \sum_{t=1}^{T} \hat{u}_{i t} \hat{u}_{j t}, \tag{25}\\
\widehat{\rho_{i j}}=\frac{\hat{\sigma}_{i j}}{\hat{\sigma}_{i i}^{1 / 2} \hat{\sigma}_{i j}^{1 / 2}} . \tag{26}
\end{gather*}
$$

The estimated asymptotic variance of $\widehat{\rho_{i j}}$ is given as:

$$
\begin{equation*}
\widehat{v_{i j}}=\left(1-\widehat{\rho_{i j}}\right)^{2} / T \tag{27}
\end{equation*}
$$

Therefore, the screening set S_{0} and J_{0} are as follows:

$$
\begin{gather*}
S_{0}=\left\{(i, j):\left|\hat{\rho}_{i j}\right|>\hat{v}_{i j}^{1 / 2} * \delta_{N, T}, \quad i<j \leq n\right\} \tag{28}\\
J_{0}=\sqrt{N} \sum_{(i, j) \in S_{0}} \hat{\rho}_{i j}^{2} * \hat{v}_{j}^{-1} \tag{29}
\end{gather*}
$$

In the tests for the cross-sectional independence model, Fan, Liao, and Yao (2015) used a different $\delta_{N, T}=2.25 \log (N)(\log (\log (T)))^{2}$. The screening set S_{n} and the power enhancement component J_{n} for the cross-sectional independence model are modified accordingly as follows:

$$
\begin{gather*}
S_{n}=\left\{(i, j):\left|\hat{\rho}_{i j}\right|>\hat{v}_{i j}^{1 / 2} * \delta_{N, T}, \quad i<j \leq n, \quad \hat{\rho}_{i j} \in \boldsymbol{\theta}_{\boldsymbol{S}}\right\} \tag{30}\\
J_{n}=\sqrt{N} \sum_{(i, j) \in S_{n}} \hat{\rho}_{i j}^{2} * \hat{v}_{i j}^{-1} \tag{31}
\end{gather*}
$$

where $\delta_{r, N, T}$ is chosen according to $\delta_{N, T}$ for the cross-sectional independence model by replacing N with a linear combination of N and r as in the factor pricing model:
$\delta_{r, N, T}=2.25 \log (\log T)^{2} \log (\alpha N+\beta r)$ with $\alpha+\beta=1, \alpha \geq 0, \beta \geq 0$ and $\mathrm{r}=\left|\boldsymbol{\theta}_{\boldsymbol{S}}\right|$. Here $\boldsymbol{\theta}_{\boldsymbol{S}}$ is the subset of $\hat{\rho}_{i j}$'s as described in Section 3. The quadratic statistic used in this research for this model is from Baltagi, Feng, and Kao (2012):

$$
\begin{equation*}
J_{1}=\sqrt{\frac{1}{n(n-1)}} \sum_{i<j}(T \rho i j-1)-\frac{n}{2(T-1)} \tag{32}
\end{equation*}
$$

5 Simulation

In this research, Monte Carlo simulations are used in order to examine the finite sample performance of the power enhancement tests. The simulations are replicating the simulations done in the paper of Fan, Liao, and Yao (2015) and can be obtained via running the code provided in the GitHub folder (GitHub 2021).

For the factor model in equation (16) $\left\{b_{i}\right\}_{1}^{N},\left\{f_{t}\right\}_{1}^{N}$ and $\left\{u_{t}\right\}_{1}^{N}$ are simulated independently and respectively from $N_{3}\left(\mu_{b}, \Sigma_{b}\right), N_{3}\left(\mu_{f}, \Sigma_{f}\right)$ and $N_{N}\left(0, \Sigma_{u}\right) . \Sigma_{u}=\operatorname{diag}\left\{A_{1}, \ldots, A_{N / 4}\right\}$ is a blockdiagonal correlation matrix, where each diagonal block A_{j} is a 4×4 positive definite matrix, whose correlation matrix has off-diagonal entry ρ_{j}, generated from $\mathrm{U}(0,0.5)$. The parameters are calibrated using daily returns of S\&P 500's top 100 constituents for the period from July 1st, 2008 to June 29th, 2012 and can be found in Table 1.

Table 1: Parameters used to generate b_{i} and f_{t}

μ_{B}	Σ_{b}			μ_{f}	Σ_{f}		
0.9833	0.0921	-0.0178	0.0436	0.0260	3.2351	0.1783	0.7783
-0.1233	-0.0178	0.0862	-0.0211	0.0211	0.1783	0.5069	0.0102
0.0839	0.0436	-0.0211	0.7624	-0.0043	0.7783	0.0102	0.6586

The powers of the tests are evaluated under two specific alternatives:

$$
\begin{align*}
& \text { Sparse alternative }: H_{\alpha}^{1}: \theta_{i}= \begin{cases}0.3, & i \leq N / T \\
0, & i>N / T\end{cases} \tag{33}\\
& \text { Weak alternative }: H_{\alpha}^{2}: \theta_{i}= \begin{cases}\sqrt{\frac{\operatorname{logN}}{T}}, & i \leq N^{0.4} \\
0, & i>N^{0.4}\end{cases} \tag{34}
\end{align*}
$$

For the factor model, $\boldsymbol{\theta}_{\boldsymbol{S}}$ is chosen as the sub-vector containing the first $1.1 * \mathrm{~N} / \mathrm{T}$ elements of $\boldsymbol{\theta}$ $=\left(\theta_{1}, \ldots, \theta_{n}\right)^{\prime}$ to include the sparse alternatives. For the weak alternative, $\boldsymbol{\theta}_{\boldsymbol{S}}$ is chosen as the sub-vector containing the first $N^{0.5}$ elements of $\boldsymbol{\theta}$ to include the weak alternatives. For both alternatives, a little bit more θ_{i} 's are added to the sub-vector $\boldsymbol{\theta}_{\boldsymbol{S}}$ to make sure all the θ_{i} 's which are not equal to zero are included under the assumption that sparse alternatives are not exactly known. Because of the different selections for the two alternatives, J_{n} will make use of different sub-vectors $\boldsymbol{\theta}_{\boldsymbol{S}}$. Therefore, H_{0}^{1} denotes the null hypothesis against the sparse alternative H_{α}^{1} and H_{0}^{2} denotes the null hypothesis against the weak alternative H_{α}^{2}.

For the cross-sectional independence model in equation (23), $x_{i t}=0.5$ is initialized at $t=$ 1 for each $i . \mu_{i}$ is drawn from $\mathrm{N}(0,0.25)$ for $\mathrm{i}=1, \ldots, \mathrm{n}$. The parameters γ and ζ are set to be -1 and 2 , respectively and $\left\{u_{t}\right\}_{1}^{N}$ is generated from $N_{N}\left(0, \Sigma_{u}\right)$. Under the null hypothesis, Σ_{u} is set to be a diagonal matrix $\Sigma_{u, 0}=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. The heteroskedastic errors are as follows:

$$
\begin{equation*}
\sigma_{i}^{2}=\sigma^{2}\left(1+k \bar{x}_{i}\right)^{2} \tag{35}
\end{equation*}
$$

where $k=0.5, \overline{x_{i}}$ is the average of $x_{i t}$ across t and σ^{2} is scaled in order to fix the average of σ_{i}^{2} at 1. Under the alternative hypothesis, $\Sigma_{u}=\Sigma_{u, 0}^{1 / 2} \Sigma_{u, 1} \Sigma_{u, 0}^{1 / 2}$. I start with $\Sigma_{u, 1}=\operatorname{diag}\left\{\Sigma_{1}, \ldots, \Sigma_{n / 4}\right\}$, where each Σ_{i} is defined as I_{4} initially. Then, $\left\lfloor n^{0.3}\right\rfloor$ blocks are randomly chosen among them and made non-diagonal by setting $\Sigma_{i}(m, n)=\rho^{|m-n|}(m, n \leq 4)$, with $\rho=0.2$.

Under the alternative hypothesis, the matrix Σ_{u} of the cross-sectional independence model satisfies the second regularity condition described in Section 3. $\boldsymbol{\theta}_{\boldsymbol{S}}$ is selected to include all
the strictly upper triangular entries of each of the diagonal block matrices A_{j} from $\Sigma_{u}=$ $\operatorname{diag}\left\{A_{1}, \ldots, A_{n / 4}\right\}$.

6 Numerical studies

6.1 Factor pricing model

Six testing methods are conducted and compared for the factor model: the standardized Wald test J_{1}, the thresholding test $J_{t h r}$ as in Fan (1996), their power enhancement versions $J_{0}+$ J_{1} and $J_{0}+J_{t h r}$, and the power enhancement versions $J_{n}+J_{1}$ and $J_{n}+J_{t h r}$ proposed in this paper. The relative frequency of the screening sets S_{0} and S_{n} being empty for both power enhancement components, which approximates $P\left(S_{0}=\emptyset\right)$ and $P\left(S_{n}=\emptyset\right)$, are also calculated. The thresholding test $J_{t h r}$ is defined as follows:

$$
\begin{equation*}
J_{t h r}=\sigma_{N}^{-1}\left(\sum_{n=1}^{N} \hat{\theta}_{j}^{2} \hat{v}_{j}^{-1} I\left\{\left|\hat{\theta}_{j}\right| \hat{v}_{j}^{-1}>t_{N}\right\}-\mu_{N}\right), \tag{36}
\end{equation*}
$$

where $\sigma_{N}^{2}=\sqrt{2 / \pi} a^{-1} t_{N}^{3}\left(1+3 t_{N}^{-2}\right), \mu_{N}=\sqrt{2 / \pi} a^{-1} t_{N}\left(1+t_{N}^{-2}\right), t_{N}=\sqrt{2 \log (N a)}$ and $a=$ $(\log N)^{-2}$.
For each test, the relative frequency of rejection of the null hypothesis under $H_{0}^{1}, H_{0}^{2}, H_{\alpha}^{1}$ and H_{α}^{2} based on 2000 replications is calculated, with significance level $\mathrm{q}=0.05$ for different pairs of $(\mathrm{N}, \mathrm{T}) . J_{0}$ is calculated for $\delta_{N, T}$ and J_{n} is calculated for three different $\delta_{r, N, T}$'s: $\delta_{r, N, T}=\delta_{N, T}$, $\delta_{r, N, T}=\log (\log T) \sqrt{\log (r)}$ and $\delta_{r, N, T}=\log (\log T) \sqrt{\log (0.25 N+0.75 r)}$.
Table 2 presents the empirical size and power of each testing method under the null hypothesis H_{0}^{1} and H_{0}^{2}, where H_{0}^{1} is the null hypothesis against H_{α}^{1} and H_{0}^{2} is the null hypothesis against H_{α}^{2}. Table 3 gives the empirical size and power of each testing method under the two alternative hypotheses H_{α}^{1} and H_{α}^{2} for $\delta_{r, N, T}=\delta_{N, T}=\log (\log T) \sqrt{\log (N)}$.

Table 2: Size and power (\%) of tests for the factor model under H_{0}^{1} and H_{α}^{2} for $\delta_{r, N, T}=$ $\log (\log T) \sqrt{\log N}$

(\mathbf{N}, \mathbf{T})	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$J_{t h r}$	$J_{t h r}+J_{0}$	$J_{t h r}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$
H_{0}^{1} (null hypothesis against $\left.H_{\alpha}{ }^{1}\right)$								
$(500,300)$	6.2	6.9	6.3	7.7	8.2	7.7	99.3	100.0
$(800,300)$	4.7	4.8	4.7	7.1	7.3	7.1	99.9	100.0
$(1000,300)$	5.1	5.3	5.1	7.0	7.1	7.0	99.8	100.0
$(1200,300)$	5.3	5.6	5.3	7.7	7.9	7.7	99.7	100.0
$(500,500)$	6.2	6.3	6.2	6.9	7.0	6.9	99.9	100.0
$(800,500)$	6.1	6.3	6.1	8.1	8.2	8.1	99.7	100.0
$(1000,500)$	4.5	4.6	4.5	6.0	6.1	6.0	99.9	100.0
$(1200,500)$	4.1	4.3	4.1	6.4	6.5	6.4	99.8	100.0
$H_{0}^{2}\left(\right.$ null hypothesis against $\left.H_{\alpha}{ }^{2}\right)$								
$(500,300)$	5.6	6.1	5.6	6.1	6.5	6.1	99.5	100.0
$(800,300)$	5.2	5.4	5.2	7.0	7.2	7.0	99.8	100.0
$(1000,300)$	5.2	5.6	5.2	6.7	6.9	6.7	99.6	100.0
$(1200,300)$	5.6	5.7	5.5	5.9	6.1	5.9	99.7	100.0
$(500,500)$	4.6	4.7	4.6	5.6	5.8	5.6	99.8	100.0
$(800,500)$	5.0	5.1	5.0	6.2	6.3	6.2	99.9	100.0
$(1000,500)$	5.1	5.1	5.1	7.3	7.3	7.3	100.0	100.0
$(1200,500)$	5.3	5.4	5.3	6.8	6.9	6.8	99.9	100.0

Under H_{0}^{1}, the sizes of $J_{1}, J_{1}+J_{0}$ and $J_{1}+J_{n}$ are close to the significance level, while all of the three thresholding tests $J_{t h r}, J_{t h r}+J_{0}$ and $J_{t h r}+J_{n}$ have significant size distortions. Adding J_{0} gives a maximum of 0.7% size increase, while J_{n} gives a maximum of only 0.1% size increase. Furthermore, $P\left(S_{0}=\emptyset\right)$ is close to 1 for J_{0}, indicating that the power enhancement component screens off most of the estimation errors. For $J_{n}, P\left(S_{n}=\emptyset\right)=1$ for all pairs of (N,T), meaning that J_{n} screens off all the estimation errors every time. Similar results hold for H_{0}^{2}.

Table 3: Size and power (\%) of tests for the factor model under the alternative hypotheses for $\delta_{r, N, T}=\log (\log T) \sqrt{\log N}$

| (\mathbf{N}, \mathbf{T}) | J_{1} | $J_{1}+J_{0}$ | $J_{1}+J_{n}$ | $J_{t h r}$ | $J_{t h r}+J_{0}$ | $J_{t h r}+J_{n}$ | $P\left(S_{0}=\emptyset\right)$ | $P\left(S_{n}=\emptyset\right)$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| H_{α}^{1} | | | | | | | | |
| $(500,300)$ | 45.1 | 94.1 | 94.1 | 64.0 | 94.5 | 94.5 | 8.6 | 8.7 |
| $(800,300)$ | 46.8 | 94.7 | 94.7 | 81.7 | 96.4 | 96.4 | 6.9 | 6.9 |
| $(1000,300)$ | 43.2 | 95.1 | 95.1 | 77.7 | 95.9 | 95.9 | 6.7 | 6.7 |
| $(1200,300)$ | 45.5 | 97.0 | 97.0 | 90.4 | 98.1 | 98.1 | 4.0 | 4.0 |
| $(500,500)$ | 45.5 | 98.45 | 98.4 | 52.4 | 98.4 | 98.4 | 2.1 | 2.2 |
| $(800,500)$ | 62.4 | 99.9 | 99.9 | 86.2 | 99.9 | 99.9 | 0.2 | 0.3 |
| $(1000,500)$ | 55.7 | 99.7 | 99.7 | 83.1 | 99.6 | 99.6 | 0.5 | 0.5 |
| $(1200,500)$ | 51.9 | 99.7 | 99.7 | 80.1 | 99.6 | 99.6 | 0.5 | 0.5 |
| $H_{\alpha}{ }^{2}$ | | | | | | | | |
| $(500,300)$ | 66.8 | 71.4 | 71.3 | 78.6 | 80.4 | 80.3 | 74.4 | 75.0 |
| $(800,300)$ | 65.6 | 70.6 | 70.55 | 82.2 | 83.8 | 83.8 | 74.8 | 74.9 |
| $(1000,300)$ | 68.3 | 73.3 | 73.3 | 87.1 | 88.4 | 88.4 | 74.5 | 74.8 |
| $(1200,300)$ | 67.1 | 71.2 | 71.2 | 88.0 | 88.8 | 88.0 | 74.3 | 74.3 |
| $(500,500)$ | 67.1 | 70.3 | 70.3 | 78.0 | 79.3 | 79.3 | 81.8 | 81.9 |
| $(800,500)$ | 73.0 | 75.8 | 75.8 | 82.9 | 83.9 | 82.9 | 81.8 | 81.9 |
| $(1000,500)$ | 76.1 | 78.5 | 78.5 | 86.4 | 86.9 | 86.9 | 82.6 | 82.7 |
| $(1200,500)$ | 77.7 | 80.3 | 80.25 | 88.2 | 88.8 | 88.8 | 83.45 | 83.5 |

The main findings of Table 3 are as follows:
1). Under H_{α}^{1}, the power of the thresholding test is much higher than that of the Wald test, as the Wald test accumulates too many estimation errors. Moreover, the power is significantly enhanced after J_{0} and J_{n} are added. There is thus no significant difference in power between J_{0} and J_{n}. Under $H_{\alpha}^{1}, P\left(S_{0}=\emptyset\right)$ and $P\left(S_{n}=\emptyset\right)$ are the same for almost all the pairs. The frequency of S_{0} and S_{n} being empty is less than 9% for all pairs of (N, T) and sometimes even smaller than 1%. The 9% is because the screening procedure manages to capture the big θ 's.
2). Under H_{α}^{2}, the thresholding test has higher power than $J_{1}+J_{0}$ and $J_{1}+J_{n}$, making both power enhancement components not substantial. The screening set of both statistics has a large chance of being empty, since the θ 's are weak under this alternative.
Thus as expected, $J_{1}+J_{n}$ rejects the null hypothesis less than $J_{1}+J_{0}$ and $J_{t h r}+J_{n}$ rejects the null hypothesis less than $J_{t h r}+J_{0}$. Therefore, J_{n} lowers the size distortion with very little loss of power under the alternative hypotheses.

Table 4 presents the empirical size and power of each testing method under H_{0}^{1} and H_{0}^{2} and Table 5 displays the empirical size and power of each testing method under the two alternative hypothesis for $\delta_{r, N, T}=\log (\log T) \sqrt{\log (r)}$.

Table 4: Size and power (\%) of tests for the factor model under H_{0}^{1} and H_{α}^{1} for $\delta_{r, N, T}=$ $\log (\log T) \sqrt{\log (r)}$

(\mathbf{N}, \mathbf{T})	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$J_{t h r}$	$J_{t h r}+J_{0}$	$J_{t h r}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$
H_{0}^{1}								
$(500,300)$	5.1	5.5	19.0	6.7	6.9	20.7	99.6	85.1
$(800,300)$	5.6	5.9	17.9	5.9	6.2	18.3	99.7	87.1
$(1000,300)$	5.9	6.2	23.5	7.4	7.7	24.3	99.7	81.5
$(1200,300)$	5.9	6.2	20.0	7.5	7.7	21.0	99.7	85.3
$(500,500)$	5.2	5.4	99.3	7.7	7.9	99.5	99.7	0.0
$(800,500)$	4.8	5.0	16.7	6.7	6.9	18.2	99.8	87.5
$(1000,500)$	5.6	5.8	27.1	7.1	7.2	28.9	99.8	76.7
$(1200,500)$	4.4	4.6	27.0	5.7	5.9	28.3	99.8	76.3
$H_{0}{ }^{2}$								
$(500,300)$	6.5	7.0	18.6	6.9	7.4	19.1	99.4	86.6
$(800,300)$	5.8	6.0	16.1	7.1	7.3	16.5	99.7	88.9
$(1000,300)$	5.7	6.1	16.0	6.8	7.2	16.8	99.6	88.9
$(1200,300)$	5.9	6.4	15.9	6.6	7.1	16.3	99.5	89.2
$(500,500)$	5.4	5.7	13.1	7.8	8.1	14.8	99.7	91.6
$(800,500)$	5.3	5.4	12.1	7.05	7.1	13.8	99.9	92.2
$(1000,500)$	4.5	4.6	10.9	7.15	7.2	13.2	99.9	93.1
$(1200,500)$	5.2	5.3	11.5	6.6	6.7	12.8	99.9	92.3

Under both H_{0}^{1} and H_{0}^{2}, the sizes of J_{1} and $J_{1}+J_{0}$ are close to the significance level, while $J_{1}+J_{n}$ has enormous size distortion because of the chosen $\delta_{r, N, T}$. Furthermore, all of the three thresholding tests $J_{t h r}, J_{t h r}+J_{0}$ and $J_{t h r}+J_{n}$ have significant size distortions as well. Adding J_{0} gives a maximum of 0.7% size increase, while J_{n} gives a big size increase for each pair (N, T), even more than 94% in the case of $(500,500)$. Furthermore, $P\left(S_{0}=\emptyset\right)$ is close to one for J_{0}, indicating that the power enhancement component screens off most of the estimation errors. For $J_{n}, P(S=\emptyset)$ is equal to $80 \sim 90 \%$ for most pairs of (N, T), except for $(500,500)$, meaning that J_{n} screens off majority of the estimation errors most of the time.

Table 5: Size and power (\%) of tests for the factor model under the alternative hypotheses for $\delta_{r, N, T}=\log (\log T) \sqrt{\log (r)}$

(\mathbf{N}, \mathbf{T})	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$J_{t h r}$	$J_{t h r}+J_{0}$	$J_{t h r}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$
H_{α}^{1}								
$(500,300)$	44.8	94.0	100.0	63.4	94.7	100.0	8.4	0.0
$(800,300)$	47.8	96.9	100.0	81.6	97.9	100.0	4.5	0.0
$(1000,300)$	44.9	95.4	100.0	76.5	96.0	100.0	6.4	0.0
$(1200,300)$	43.3	96.6	100.0	90.2	97.9	100.0	4.6	0.0
$(500,500)$	47.1	98.5	100.0	51.5	98.0	100.0	2.3	0.0
$(800,500)$	62.2	99.8	100.0	86.8	99.9	100.0	0.3	0.0
$(1000,500)$	55.7	99.5	100.0	83.7	99.5	100.0	0.8	0.0
$(1200,500)$	52.1	99.8	100.0	80.0	99.8	100.0	0.3	0.0
$H_{\alpha}{ }^{2}$								
$(500,300)$	65.6	70.3	99.1	77.7	79.1	99.2	75.4	1.0
$(800,300)$	66.0	70.9	99.8	82.1	83.4	99.7	74.2	0.3
$(1000,300)$	66.8	70.9	99.7	85.4	86.3	99.7	74.5	0.4
$(1200,300)$	69.5	74.8	99.8	87.2	88.5	99.8	73.9	0.3
$(500,500)$	67.3	69.9	98.8	78.0	79.0	98.9	83.1	1.6
$(800,500)$	71.1	73.9	99.4	82.5	83.2	99.3	83.1	0.9
$(1000,500)$	76.6	78.7	99.7	86.5	87.0	99.6	83.7	0.7
$(1200,500)$	78.4	80.1	99.4	86.6	87.3	99.3	83.2	1.0

The main findings of Table 5 are as follows:
1). Under H_{α}^{1}, the power is significantly enhanced after J_{0} is added. The power is even more enhanced after J_{n} is added to both test statistics. $J_{1}+J_{n}$ and $J_{t h r}+J_{n}$ even have a power of 100% under H_{α}^{1}, which means that the null hypothesis always gets rejected under this alternative. Therefore, $P\left(S_{n}=\emptyset\right)=0.0$ for all pairs of (N, T). Under $H_{\alpha}^{1}, P\left(S_{0}=\emptyset\right)$ is less then 9% for all pairs of (N, T) and sometimes even smaller than 1%.
2). Under H_{α}^{2}, the thresholding test has higher power than $J_{1}+J_{0}$, making J_{0} not substantial. The emptiness of the screening set S_{0} is around 80% and therefore has a large chance of being empty, since the θ 's are weak under this alternative. $J_{1}+J_{n}$ almost has a power of 100% again for both the statistics and therefore the emptiness of its screening set S_{n} is close to zero.
Thus, under $\delta_{r, N, T}=\log (\log T) \sqrt{\log (r)}, J_{n}$ empowers the Wald statistic and threshold statistic much better than J_{0}. However, it suffers from huge size distortion.

Table 6 presents the empirical size and power of each testing method under H_{0}^{1} and H_{0}^{2} and Table 7 displays the empirical size and power of each testing method under the two alternative hypothesis for $\delta_{r, N, T}=\log (\log T) \sqrt{\log (0.25 N+0.75 r)}$.

Table 6: Size and power (\%) of tests for the factor model under H_{0}^{1} and H_{α}^{2} for $\delta_{r, N, T}=$ $\log (\log T) \sqrt{\log (0.25 N+0.75 r)}$

(\mathbf{N}, \mathbf{T})	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$J_{t h r}$	$J_{t h r}+J_{0}$	$J_{t h r}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$
H_{0}^{1}								
$(500,300)$	4.9	5.4	4.9	6.7	7.3	6.7	99.3	100.0
$(800,300)$	5.9	6.2	5.9	7.5	7.7	7.5	99.7	100.0
$(1000,300)$	4.5	5.0	4.5	6.7	6.9	6.7	99.4	100.0
$(1200,300)$	5.0	5.6	5.0	7.1	7.6	7.1	99.4	100.0
$(500,500)$	5.3	5.5	5.3	6.0	6.2	6.0	99.7	100.0
$(800,500)$	5.3	5.5	5.3	6.8	7.0	6.8	99.8	100.0
$(1000,500)$	5.3	5.4	5.3	5.9	6.1	5.9	99.8	100.0
$(1200,500)$	6.1	6.2	6.1	6.4	6.5	6.4	99.9	100.0
$H_{0}{ }^{2}$								
$(500,300)$	5.2	5.6	5.3	7.2	7.6	7.4	99.5	99.8
$(800,300)$	5.3	5.7	5.4	6.9	7.2	7.0	99.6	99.9
$(1000,300)$	6.2	6.5	6.3	7.5	7.7	7.6	99.6	99.9
$(1200,300)$	5.5	5.7	5.65	7.6	7.8	7.75	99.75	99.8
$(500,500)$	6.1	6.3	6.1	6.7	6.8	6.7	99.8	100.0
$(800,500)$	4.5	4.6	4.5	6.0	6.1	6.0	99.9	100.0
$(1000,500)$	6.7	6.8	6.75	7.1	7.2	7.15	99.9	99.95
$(1200,500)$	4.7	4.8	4.75	5.8	5.9	5.8	99.9	99.95

Under both H_{0}^{1} and H_{0}^{2}, the sizes of $J_{1}, J_{1}+J_{0}$ and $J_{1}+J_{n}$ are close to the significance level, while all of the three thresholding tests $J_{t h r}, J_{t h r}+J_{0}$ and $J_{t h r}+J_{n}$ have significant size distortions. Under H_{0}^{1}, adding J_{0} gives a maximum of 0.6% size increase, while J_{n} results in 0% size increase. Furthermore, $P\left(S_{0}=\emptyset\right)$ is close to one for J_{0}, indicating that the power enhancement component screens off most of the estimation errors. For $J_{n}, P\left(S_{n}=\emptyset\right)=1$ for all pairs of (N, T), meaning that J_{n} screens off all the estimation errors all the time. Under H_{0}^{2}, adding J_{0} also gives a maximum of 0.6% size increase, while J_{n} results in a maximum of 0.2% size increase. For $H_{0}^{2}, P(S=\emptyset)$ is close to one for J_{0} and J_{n}, indicating that both the power enhancement components screen off most of the estimation errors.

Table 7: Size and power (\%) of tests for the factor model under the alternative hypotheses for $\delta_{r, N, T}=\log (\log T) \sqrt{\log (0.25 N+0.75 r)}$

(\mathbf{N}, \mathbf{T})	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$J_{t h r}$	$J_{t h r}+J_{0}$	$J_{t h r}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$
H_{α}^{1}								
$(500,300)$	45.2	94.5	98.2	62.3	94.5	98.1	7.8	2.4
$(800,300)$	47.5	95.7	99.3	81.7	96.7	99.3	6.0	1.1
$(1000,300)$	43.2	94.4	98.9	76.5	95.2	99.0	7.6	1.4
$(1200,300)$	41.6	96.7	99.3	91.2	98.3	99.6	4.6	0.9
$(500,500)$	47.0	98.9	99.7	51.0	98.8	99.7	1.4	0.4
$(800,500)$	60.8	99.9	100.0	86.3	99.9	100.0	0.2	0.0
$(1000,500)$	55.9	99.7	99.9	83.8	99.8	99.95	0.6	0.2
$(1200,500)$	50.6	99.8	99.95	79.9	99.7	99.9	0.6	0.2
$H_{\alpha}{ }^{2}$								
$(500,300)$	65.6	70.2	78.7	77.7	78.8	83.4	74.6	44.5
$(800,300)$	67.7	72.3	80.8	82.5	84.3	87.7	74.3	42.9
$(1000,300)$	67.0	72.3	80.6	85.5	86.4	88.9	73.7	43.1
$(1200,300)$	69.8	74.5	83.2	87.9	89.1	91.8	74.7	41.7
$(500,500)$	65.7	68.8	76.1	77.0	78.1	81.2	83.0	54.4
$(800,500)$	71.9	74.4	80.4	81.6	82.6	85.0	82.9	54.8
$(1000,500)$	78.1	80.3	85.4	87.3	87.7	89.7	82.4	54.6
$(1200,500)$	78.3	80.1	85.5	88.3	88.9	90.6	82.8	53.7

The main findings of Table 7 are as follows:
1). Under H_{α}^{1}, J_{n} enhances the power even more than J_{0}. The frequency of S_{0} being empty is less than 8% and the frequency of S_{n} being empty is less than 2.5% for all pairs of (N,T).
2). Under H_{α}^{2}, the thresholding test has higher power than $J_{1}+J_{0}$ and $J_{1}+J_{n}$, making both power enhancement components not substantial. Both screening sets S_{0} and S_{n} have a large chance of being empty, since the θ 's are weak under this alternative. $P\left(S_{n}=\emptyset\right)$ is considerably smaller than $P\left(S_{0}=\emptyset\right)$, meaning J_{n} enhances the tests more than J_{0}.
Thus, using $\delta_{r, N, T}=\log (\log T) \sqrt{\log (0.25 N+0.75 r)}, J_{1}+J_{n}$ is not only smaller than $J_{1}+J_{0}$ under both H_{0}^{1} and H_{0}^{2}, meaning it has smaller size distortion, but also bigger than $J_{1}+J_{0}$ under H_{α}^{1} and H_{α}^{2}, meaning it rejects the null hypothesis more frequently under both alternatives. Therefore, J_{n} enhances the power of J_{1} more compared to J_{0}. The same holds for the threshold statistic.

6.2 Cross-sectional independence model

The Monte Carlo simulations for the cross-sectional independence model are conducted for different pairs of (n, T) with significance level $\mathrm{q}=0.05$ based on 2000 replications. For this model, J_{0} is also calculated for $\delta_{N, T}$ and J_{n} is calculated for three different $\delta_{r, N, T}$'s: $\delta_{r, N, T}=$ $2.25 \log (\log T)^{2} \log (N), \delta_{r, N, T}=2.25 \log (\log T)^{2} \log (r)$ and $\delta_{r, N, T}=2.25 \log (\log T)^{2} \log (0.25 N+$ $0.75 r$). The quadratic test J_{1} and the power enhancement test $J_{1}+J_{0}$ and $J_{1}+J_{n}$ are performed. Besides, the frequency of the screening set being empty for both power enhancement test are also conducted. The results for $\delta_{r, N, T}=\delta_{N, T}=2.25 \log (\log T)^{2} \log (N)$ can be found in Table 8.

Table 8: Size and power (\%) of tests for the cross-sectional independence model for $\delta_{r, N, T}=$ $2.25 \log (\log T)^{2} \log (N)$

(\mathbf{N}, \mathbf{T})	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$
H_{0}						H_{α}				
$(200,100)$	6.0	6.0	6.0	100.0	100.0	25.6	93.6	93.55	7.05	7.1
$(200,200)$	4.8	4.8	4.8	100.0	100.0	59.4	97.3	97.3	2.9	2.9
$(200,300)$	5.5	5.5	5.5	100.0	100.0	78.8	98.6	98.6	1.8	1.8
$(200,500)$	5.2	5.2	5.2	100.0	100.0	93.3	99.6	99.6	0.6	0.6
$(400,100)$	4.8	4.9	4.8	99.9	100.0	18.6	98.1	98.1	2.1	2.1
$(400,200)$	4.6	4.6	4.6	100.0	100.0	41.6	99.5	99.5	0.6	0.6
$(400,300)$	5.3	5.3	5.3	100.0	100.0	65.8	99.95	99.95	0.1	0.1
$(400,500)$	5.1	5.1	5.1	100.0	100.0	90.8	99.95	99.95	0.05	0.05
$(600,100)$	4.6	4.6	4.6	99.95	100.0	12.8	97.4	97.4	2.8	2.8
$(600,200)$	4.9	4.9	4.9	100.0	100.0	25.3	98.9	98.9	1.1	1.1
$(600,300)$	5.5	5.5	5.5	100.0	100.0	42.5	99.9	99.9	0.2	0.2
$(600,500)$	4.9	4.9	4.9	100.0	100.0	72.4	100.0	100.0	0.0	0.0
$(800,100)$	5.7	5.7	5.7	100.0	100.0	11.4	98.5	98.5	1.7	1.7
$(800,200)$	4.9	4.9	4.9	100.0	100.0	21.0	99.5	99.5	0.6	0.6
$(800,300)$	4.6	4.6	4.6	100.0	100.0	35.1	99.9	99.9	0.2	0.2
$(800,500)$	5.7	5.7	5.7	100.0	100.0	64.9	100.0	100.0	0.0	0.0

Under H_{0}, the sizes of $J_{1}, J_{1}+J_{0}$ and $J_{1}+J_{n}$ are close to 5%. Under both the null and alternative hypothesis, the results using J_{n} and J_{0} are almost identical and have no significant difference.

Table 9 shows the size and power of the bias-corrected quadratic test J_{1} and those of the power enhancement tests $J_{1}+J_{0}$ and $J_{1}+J_{n}$ for $\delta_{r, N, T}=2.25 \log (\log T)^{2} \log (r)$.

Table 9: Size and power (\%) of tests for the cross-sectional independence model for $\delta_{r, N, T}=$ $2.25 \log (\log T)^{2} \log (r)$

| (\mathbf{N}, \mathbf{T}) | J_{1} | $J_{1}+J_{0}$ | $J_{1}+J_{n}$ | $P\left(S_{0}=\emptyset\right)$ | $P\left(S_{n}=\emptyset\right)$ | J_{1} | $J_{1}+J_{0}$ | $J_{1}+J_{n}$ | $P\left(S_{0}=\emptyset\right)$ | $P\left(S_{n}=\emptyset\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| H_{0} | | | | | | H_{α} | | | | |
| $(200,100)$ | 4.8 | 5.0 | 5.0 | 99.8 | 99.8 | 27.3 | 94.1 | 97.5 | 7.1 | 3.0 |
| $(200,200)$ | 5.15 | 5.15 | 5.2 | 100.0 | 99.95 | 56.7 | 97.0 | 99.1 | 3.5 | 1.0 |
| $(200,300)$ | 5.2 | 5.2 | 5.2 | 100.0 | 100.0 | 77.5 | 98.9 | 99.9 | 1.6 | 2.0 |
| $(200,500)$ | 4.8 | 4.8 | 4.8 | 100.0 | 100.0 | 94.0 | 99.8 | 100.0 | 0.3 | 0.1 |
| $(400,100)$ | 5.3 | 5.3 | 5.6 | 100.0 | 99.8 | 19.198 .4 | 99.5 | 1.7 | 0.6 | |
| $(400,200)$ | 5.2 | 5.2 | 5.2 | 100.0 | 100.0 | 41.399 .3 | 99.9 | 1.0 | 0.2 | |
| $(400,300)$ | 5.1 | 5.1 | 5.1 | 100.0 | 100.0 | 64.599 .8 | 100.0 | 0.4 | 0.0 | |
| $(400,500)$ | 4.8 | 4.8 | 4.8 | 100.0 | 100.0 | 89.8 | 100.0 | 100.0 | 0.0 | 0.0 |
| $(600,100)$ | 5.4 | 5.4 | 5.6 | 100.0 | 99.9 | 12.397 .8 | 99.4 | 2.4 | 0.7 | |
| $(600,200)$ | 4.5 | 4.5 | 4.5 | 100.0 | 100.0 | 26.0 | 98.9 | 99.9 | 1.3 | 0.2 |
| $(600,300)$ | 6.0 | 6.0 | 6.0 | 100.0 | 100.0 | 40.9 | 99.7 | 100.0 | 0.3 | 0.0 |
| $(600,500)$ | 5.2 | 5.2 | 5.2 | 100.0 | 100.0 | 71.9 | 99.9 | 100.0 | 0.2 | 0.0 |
| $(800,100)$ | 4.75 | 4.8 | 4.9 | 99.9 | 99.9 | 10.7 | 98.3 | 99.6 | 1.9 | 0.5 |
| $(800,200)$ | 5.4 | 5.4 | 5.4 | 100.0 | 100.0 | 21.8 | 99.8 | 99.95 | 0.3 | 0.1 |
| $(800,300)$ | 5.1 | 5.1 | 5.1 | 100.0 | 100.0 | 35.4 | 99.8 | 99.9 | 0.3 | 0.1 |
| $(800,500)$ | 3.8 | 3.8 | 3.8 | 100.0 | 100.0 | 63.7 | 100.0 | 100.0 | 0.0 | 0.0 |

Under H_{0}, both the power enhancement tests have little distortion of the original size. However, the power of J_{n} is bigger than the power of J_{0} under the alternative hypothesis and therefore J_{n} enhances J_{1} more than J_{0}.

Table 10 exhibits the size and power of J_{1} and the power enhanced tests $J_{1}+J_{0}$ and $J_{1}+J_{n}$ for $\delta_{r, N, T}=2.25 \log (\log T)^{2} \log (0.25 N+0.75 r)$.

Table 10: Size and power (\%) of tests for the cross-sectional independence model for $\delta_{r, N, T}=$ $2.25 \log (\log T)^{2} \log (0.25 N+0.75 r)$

(\mathbf{N}, \mathbf{T})	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$	J_{1}	$J_{1}+J_{0}$	$J_{1}+J_{n}$	$P\left(S_{0}=\emptyset\right)$	$P\left(S_{n}=\emptyset\right)$	
H_{0}							H_{α}				
$(200,100)$	4.4	4.5	4.4	99.9	100.0	26.0	92.6	93.9	7.8	6.5	
$(200,200)$	5.7	5.7	5.7	100.0	100.0	57.1	97.4	98.1	3.5	2.7	
$(200,300)$	4.5	4.5	4.5	100.0	100.0	77.8	99.1	99.5	1.4	0.9	
$(200,500)$	5.6	5.6	5.6	100.0	100.0	94.9	99.7	99.8	0.5	0.3	
$(400,100)$	4.4	4.5	4.4	99.9	100.0	19.1	98.2	98.6	2.1	1.6	
$(400,200)$	5.2	5.2	5.2	100.0	100.0	42.2	99.5	99.6	0.6	0.5	
$(400,300)$	6.0	6.0	6.0	100.0	100.0	66.1	99.8	99.9	0.2	0.1	
$(400,500)$	5.3	5.3	5.3	100.0	100.0	90.1	99.95	99.95	0.1	0.1	
$(600,100)$	5.5	5.6	5.5	99.9	100.0	11.8	97.8	98.4	2.4	1.8	
$(600,200)$	4.9	4.9	4.9	100.0	100.0	25.1	99.2	99.4	1.0	0.7	
$(600,300)$	5.0	5.0	5.0	100.0	100.0	43.1	99.8	99.9	0.3	0.2	
$(600,500)$	4.4	4.4	4.4	100.0	100.0	70.9	99.9	99.9	0.1	0.1	
$(800,100)$	5.95	6.0	5.95	99.95	100.0	12.2	98.7	99.0	1.5	1.1	
$(800,200)$	5.0	5.0	5.0	100.0	100.0	23.9	99.55	99.6	0.6	0.5	
$(800,300)$	4.4	4.4	4.4	100.0	100.0	36.9	99.9	99.9	0.1	0.1	
$(800,500)$	4.3	4.3	4.3	100.0	100.0	63.1	100.0	100.0	0.0	0.0	

Under H_{0}, the sizes of $J_{1}, J_{1}+J_{0}$ and $J_{1}+J_{n}$ are close to 5%. Both the power enhancement tests $J_{1}+J_{0}$ and $J_{1}+J_{n}$ have little to zero distortion of the original size. The size distortion of J_{n} is even zero for all pairs. Moreover, the power of J_{n} is bigger than the power of J_{0} under the alternative hypothesis. Therefore, J_{n} with $\delta_{r, N, T}=2.25 \log (\log T)^{2} \log (0.25 N+0.75 r)$ has more power than J_{0}.

7 Conclusion

In this paper, the vector $\boldsymbol{\theta}$ is divided into two sub-vectors: $\boldsymbol{\theta}_{\boldsymbol{S}}$ and $\boldsymbol{\theta}_{\boldsymbol{D}}$, where $\boldsymbol{\theta}_{\boldsymbol{S}}$ is a sparse vector. Only $\boldsymbol{\theta}_{S}$ is empowered, which leads to a new power enhancement component J_{n}. This new power enhancement component is formed through a screening technique, which screens out the elements of $\boldsymbol{\theta}_{\boldsymbol{S}}$ that are bigger than a critical value that depends on a threshold value $\delta_{r, N, T}$. When $\delta_{r, N, T}=\delta_{N, T}, J_{n}$ does not suffer from size distortion. In fact, it improves the size
distortion without the loss of much power. Sometimes, $J_{1}+J_{n}$ and $J_{t h r}+J_{n}$ lose a little bit of power compared to $J_{1}+J_{0}$ and $J_{t h r}+J_{0}$, because wrongly estimated θ_{i} 's could get screened into J_{0} and those wrongly estimated θ_{i} 's are less likely to get screened into J_{n} since J_{1} only empowers $\boldsymbol{\theta}_{\boldsymbol{S}}$. In this research, I propose a new threshold value $\delta_{r, N, T}$ for power enhancement component J_{n}, depending on both N and r. Using the specific $\delta_{r, N, T}$ with parameters $\alpha=0.25$ and $\beta=0.75$, the proposed power enhancement not only has almost no size distortion under the null hypothesis, but also provides more power under sparse alternatives. To finally answer the research question, a conclusion is drawn that an empowerment only on the sparse alternatives leads to an improvement of the power enhancement testing.

The choice of the threshold value is very important for the power enhancement J_{n}. In this research, good thresholds are proposed for both the factor pricing model and the cross-sectional independence model by modifying the corresponding thresholds given by Fan, Liao, and Yao (2015). However, it still remains an open question: "What is the optimal threshold for J_{n} ?" Answering this question in both theory and practice is a challenge for future research.

References

[1] Badi H. Baltagi, Qu Feng, and Chihwa Kao. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model". In: Journal of Econometrics 170.1 (2012), pp. 164-177.
[2] Peter J. Bickel and Elizaveta Levina. "Covariance Regularization by Thresholding". In: The Annals of Statistics 36.6 (2008), pp. 2577-2604.
[3] Jianqing Fan. "Test of Significance Based on Wavelet Thresholding and Neyman's Truncation". In: Journal of the American Statistical Association 91.434 (1996), pp. 674-688.
[4] Jianqing Fan, Yuan Liao, and Jiawei Yao. "Power Enhancement in High-dimensional Crosssectional Tests". In: Econometrica 83.4 (2015), pp. 1497-1541.
[5] Michael R Gibbons, Stephen Ross, and Jay Shanken. "A Test of the Efficiency of a Given Portfolio". In: Econometrica 57.5 (1989), pp. 1121-52.
[6] GitHub. Code Power Enhancements. https://github.com/Richard015/Code-Thesis. 2021.
[7] Michael C. Jensen. "The Performance of Mutual Funds in The Period 1945-1964". In: The Journal of Finance 23.2 (1968), pp. 389-416.
[8] Anders Bredahl Kock and David Preinerstorfer. Power in High-dimensional Testing Problems. Working Papers Ecares 42. ULB - Universite Libre de Bruxelles, Nov. 2017.
[9] M. Hashem Pesaran and Takashi Yamagata. Testing CAPM with a Large Number of Assets. IZA Discussion Papers 6469. Institute of Labor Economics (IZA), Apr. 2012.
[10] Stephen Ross. "The arbitrage theory of capital asset pricing". In: Journal of Economic Theory 13.3 (1976), pp. 341-360.

