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1 Introduction

The estimation of the (inverse) covariance matrix Σ in mean-variance portfolio optimisation is one

of the most important aspects of creating minimum variance portfolios. Mean-variance portfolio

optimisation was originally introduced by Markowitz (1952), who shows that a portfolio of risky

assets with minimum variance can be created by including multiple stocks. In the pursuit of this

mean-variance portfolio the key aspect is the estimation of Σ−1, because it is used to determine the

optimal portfolio weights. By allocating lower weights to riskier stocks (stocks with higher variance)

and larger weights to less risky stocks, the variance of the portfolio returns can be reduced.

In practice the estimation of this precision matrix has proven to be difficult. Demiguel et al.

(2009) show that 14 optimised models in their research do not consistently outperform the naive

equal weighted portfolio, due to large estimation errors. They conclude that the gain of optimising

portfolios is cancelled out by the large estimation errors that exist when estimating the parameters,

such as the precision matrix. More recent research by Hwang et al. (2017) shows that the naive equal

weighted portfolio outperforms the mean-variance portfolio. They also found that increasing the

number of stocks leads to larger estimation errors, because more parameters need to be estimated.

Two factors that lead to the large estimation errors are: high correlations between the stock

returns and the limited amount of observations (T ) compared to the amount of stocks (N). It is well

known that stock returns are highly correlated, which causes multi-collinearity. Multi-collinearity

leads to large estimation errors of the parameters, which are in this case the elements of the (inverse)

covariance matrix. These elements are often estimated by ordinary least squares (OLS) regressions

when N < T , because regression can be used to find the optimal hedging relations between stocks

(Stevens, 1995). Using OLS will lead to large estimation errors when multi-collinearity is present.

Literature suggests that using different techniques, such as shrinkage methods and factor models

applied to precision matrix Σ−1, could lead to improvements of the mean-variance portfolio. Ledoit

and Wolf (2004) show that their shrinkage method, which shrinks the precision matrix towards the

constant correlation matrix by using a weighted average of the covariance matrix and the constant

correlation matrix, can result in higher returns with lower variance compared to using the sample

precision matrix. J. Fan et al. (2008) found that using a factor model for estimating the covariance

matrix is advantageous compared to using the sample covariance matrix.

This research uses the estimator proposed by Goto and Xu (2015), who apply the graphical lasso

(glasso) method by Friedman et al. (2008) to the estimation of the precision matrix. The graphical
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lasso applies lasso regularisation to the log likelihood of the precision matrix. Lasso regularisation,

introduced by Tibshirani (1996), penalises the objective function in such a way that it leads to a

more sparse precision matrix, which means that it promotes parameter estimates equal to zero.

The estimation by Goto and Xu (2015) aims to overcome the problem of multi-collinearity

by estimating a sparse precision matrix and reducing the magnitude of extreme hedging positions

by using the lasso penalty. Their method differs from most regularisation methods, because they

regularise the precision matrix directly, instead of the covariance matrix or weight vector.

Zou and Hastie (2005) show that the lasso regularisation can be generalised to the elastic net for

linear regression problems. This regularisation technique can be implemented in the same way as

lasso regularisation in the method of Goto and Xu (2015). Elastic net is a linear combination of lasso

(l1) regularisation and ridge (l2) regularisation, which are different types of penalisation functions.

Tibshirani (1996) found that empirically l2 regularisation improves predictive performance compared

to l1 regularisation when the data has high correlations between the predictors and T > N . A

downside of l2 regularisation is that it does not promote sparsity, because it does not set elements

that are smaller than the regularisation parameter to zero, which the lasso does. Higher sparsity

should lead to smaller estimation errors, because less parameters need to be estimated. These

findings suggests that the elastic net may outperform l1 and l2 regularisation, because it can use

the benefits of both techniques. This leads to the main research question: ”Can the performance

of the improved mean-variance estimator be improved by using an elastic net penalty?” where the

improved mean-variance estimator is the estimator proposed by Goto and Xu (2015).

Kovács et al. (2021) derived a method to adjust the graphical lasso by Friedman et al. (2008) to

include elastic net penalty. This combines the work of Goto and Xu (2015) with the literature on

the elastic net. To answer the main research question the following question needs to be answered:

”Can the graphical elastic net improve the performance of the improved mean-variance estimator?”.

Due to the limited amount of work on graphical elastic net, there might be intricacies that are

not found yet. For example, Banerjee et al. (2008) show that the graphical lasso produces estimates

that are invertable, but in this research cases where found where the determinant of the precision

matrix was 0, which implies non-invertability. Therefore a node-wise regression approach, similar

to that of Callot et al. (2021) is used. This method is more easily adaptable to include the elastic

net penalty. This leads to the second research question: ”Can node-wise regression with elastic net

penalty improve performance of the improved mean-variance estimator?”.

Bernardini et al. (2021) propose a combination of the graphical elastic net and node-wise re-
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gression and show that it improves the identification of relations between variables. They call this

combination two stage graphical elastic net (2S Gelnet). This leads to the final research question:

”Can 2 stage graphical elastic net improve performance of the improved mean-variance estimator?”.

This research adds to the current literature, because it uses the methodology of Goto and

Xu (2015) in that it directly estimates the precision matrix via a graphical method and node-

wise regression. The graphical method is changed to use a different penalisation function, which

could lead to an increase in portfolio performance. This increase might be relevant to portfolio

managers, because it might create better performing mean-variance portfolios. Academically it is

also interesting to see if the graphical elastic net could be a new solid estimation method.

The remainder of this paper is structured as follows: Section 2 discusses relevant literature on

the topic of precision matrix estimation. Section 3 describes the used data sets. Section 4 explains

the different methods used to estimate precision matrices. Section 5 reports the results found by

using these methods and Section 6 discusses the concluding remarks on the results.

2 Literature

In the context of regularised covariance matrix estimates there are a lot of shrinkage estimators.

Jagannathan and Ma (2003) found that the performance of an estimator which could not include

short positions equals that of factor models and other shrinkage methods. They argue that using

”wrong constraints” like the no short sales constraint, which leads to misspecification bias, is justi-

fied, due to smaller estimation errors. J. Fan et al. (2008) use the Fama-French 3 factor model by

Fama and French (1993) to show that using factor models leads to performance improvements in

portfolio optimisation. Nard et al. (2018) recently applied new methods based on large-dimensional

asymptotic theory. They found that their factor model performed better than the Fama-French 5

factor model, which is known to perform well compared to equal weighted portfolios. Ledoit and

Wolf (2004) use a linear combination of a factor structured estimator and the sample covariance to

achieve shrinkage in the covariance matrix.

The main interest in this research is the estimator by Goto and Xu (2015) who use lasso regu-

larisation to create a more sparse precision matrix. They use a lasso penalty to apply shrinkage and

promote sparsity in the precision matrix. The goal of this paper is to investigate whether changing

the lasso penalty to an elastic net penalty improves portfolio performance. Zou and Hastie (2005)

mention that l1 regularisation lacks the ability to set ”correct” parameter estimates when 2 or more
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variables have very high correlation. Lasso regularisation will choose one of the variables that are

highly correlated and set the other to zero, which should not be the case. They also note that elas-

tic net does not have this problem. Economically adding an elastic net penalty also makes sense,

because it may lead to a more stable portfolio compared to lasso regularised portfolios, due to the

larger penalisation of extreme portfolio weights. Smaller portfolio weights are generally preferred,

because extreme positions are often found by the mean-variance portfolio due to estimation errors

(Michaud, 1989). These estimation errors lead to unstable portfolios, therefore Michaud (1989)

note that there should be constraints that prevent these problems.

Literature has proven that using the elastic net penalty in the context of portfolio optimisation

can be beneficial. Ho et al. (2015) found that using an elastic net penalty on the mean-variance

criterion can increase the Sharpe ratio of a portfolio when the regularisation parameters are opti-

mised right. Their method is different from this research in the way that they penalise the portfolio

weights instead of the elements of the precision matrix. Li (2015) found that an estimator based

on hedging regressions with elastic net regularisation results in the highest Sharpe ratio on foreign

exchange rates and US stocks. Note that using these regressions is different from this research,

because the optimal hedging relations are calculated via N separate regressions. In this research

the entire precision matrix is estimated at once. Even though the implementations of the elastic

net are different in these articles, they suggest that using an elastic net penalty can be beneficial.

3 Data

In order to compare with the results of Goto and Xu (2015) a selection of the same data sets are used.

The 3 data sets are available on French’s Data Library (https://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data library.html). The first data set contains monthly returns of 100 portfolios

formed on size and book-to-market ratio on the U.S. market. The second data set contains monthly

returns of 48 industry portfolios on the U.S. market. The third data set is the combination of the

first two data sets. Table 1 reports the N/T ratio and time period for every data set. Reference

names are the same as in Goto and Xu (2015) to easily compare results when referring to the data

sets. N/T is the number of stocks divided by the number of months in the estimation sample (120

months). Goto and Xu (2015) chose these data sets, because of the high N/T ratio, which causes

more problems due to larger estimation errors. Missing values are replaced by the value-weighted

market return, available on French’s Data Library, following Jagannathan and Ma (2003).
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Table 1: Data Description

Reference Description N/T Period

SZBM100 100 portfolios formed on size and book-to-market ratio 0.833 07/1963-12/2010

IND48 48 industry portfolios 0.400 07/1963-12/2010

SZBM100+IND48 Combination of SZBM100 and IND48 1.233 07/1963-12/2010

The period mentioned in Table 1 is split in 2 parts: a training and an out-of-sample period. The

training period contains the first 240 observations (July 1963 - June 1983). In this training period

the parameters of the estimation methods are optimised, based on 120 estimators (July 1973 -

June 1983). These estimators are calculated based on the past 120 months, therefore there are 120

estimators to train the parameters based on 240 months of data. The performance of the different

portfolios is compared in the out-of-sample period between July 1983 and December 2010.

4 Methodology

In this section the three main methods and the concept of regression hedging are explained. The

three main methods are: graphical lasso, graphical elastic net and node-wise regression. The 2 stage

graphical elastic net estimator is an extension of graphical elastic net and node-wise regression,

because it uses both methods to estimate the precision matrix.

4.1 Regression hedging

Stevens (1995) found that regression can be used to estimate the precision matrix Σ−1. Regressing

stock returns of stock i on the remaining N − 1 stocks leads to optimal hedging relations, which

can be used to estimate the precision matrix. The regression of stock returns follows the notation

of Goto and Xu (2015) and is defined as follows:

ri,t = αi +
N∑

k=1,k 6=i
βi|krk,t + εi,t (1)

where ri,t is the return of stock i in period t, εi,t is the error of stock i in period t which is the

unhedgeable component of stock i in period t and βi|k is the marginal ’effect’ of stock k on stock

i. Since βi|k shows how strong the relation between stock i and k is, Stevens (1995) shows that

it can be used for determining hedging relationships when scaled with the variance of εi,t. Define

6



vi = var(εi,t) as a measure of the unhedgeable risk of stock i, so the relation to the precision matrix

from Stevens (1995) is defined as follows:

Σ−1
ij =


−βi|k

vi
if i 6= j

1
vi

if i = j

(2)

where Σ−1
i,j is element (i, j) of Σ−1. This allows for precision matrix estimation via hedge regressions,

where every row of Σ−1 represents a hedging relation between asset i and the other N − 1 assets.

4.2 Goto and Xu’s Improved Mean Variance Optimizer

In financial data it is well known that stock returns can be highly correlated, which may lead to

multicollinearity when regressing the returns of different stocks on each other. This will lead to

large estimation errors in the hedge regression, which will lead to large estimation errors in the

precision matrix. Multicollinearity is also caused by the fact that the number of observations can

be close to the amount of stocks in practical applications. This form of multicollinearity also leads

to unstable estimations with large estimation errors when using hedge regressions.

To overcome this multicollinearity Goto and Xu (2015) implement l1 regularisation, which is

also known as lasso regularisation, to the hedge regression, which means that βi|k is estimated by

the following equation:

β̂lassoi|k = arg min
β

{
T∑
t=1

ri,t − N∑
k=1,k 6=i

βi|krk,t

2

+ γ
N∑

k=1,k 6=i
|βi|k|

}
(3)

where γ is a soft threshold, which means that when |β̂OLSi|k | < γ, then β̂lassoi|k = 0. Setting these

parameters to zero leads to a more sparse hedging portfolio, because if βi|k is set to zero it means

stock k is not included in the hedging relation of stock i. Using l1 regularisation also leads to smaller

coefficients, because γ is subtracted from all βi|k.

This l1 regression would have a clear relation to the OLS estimates if the regressors are orthonor-

mal, but since the regressors are almost never orthonormal another method is needed to calculate

β̂lassoi|k . This problem is solved by Friedman et al. (2007) who use quasi-maximum likelihood (QML)

to estimate the entire inverse covariance matrix, instead of each element of the inverse covariance

matrix separately. The l1 norm is implemented in QML by subtracting the same part that was
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added to the OLS estimation as in Equation 3. So Σ−1 is calculated such that it maximises:

max
Σ−1=[Σij ]

T

2
ln
(
det
(
Σ−1

))
− T

2
trace

(
ŜΣ−1

)
− ρ

N∑
i=1,i 6=j

N∑
j=1,j 6=i

|Σ−1
ij | (4)

where ρ ≥ 0 is the lasso parameter, which penalises the magnitude of the elements of the precision

matrix |Σ−1
ij |, by subtracting ρ

∑N
i=1,i 6=j

∑N
j=1,j 6=i |Σ

−1
ij | from the objective function. It is also a soft

threshold, such that if Σ−1
ij < ρ then Σ−1

ij is set to zero. Ŝ is the sample covariance matrix and det

and trace are the matrix determinant and the trace respectively. Note that ρ has the same function

as γ in Equation 3. In this research ρ is optimised using the predictive likelihood, following the

method of Goto and Xu (2015). More on the optimisation of the penalty parameter is discussed in

Section 4.7. The details on the maximisation of Equation 4 can be found in Appendix A.1.

4.3 Graphical elastic net

In the context of regularisation not only l1 regularisation is a popular method to shrink the number

of regressors and the magnitude of the parameters. The l2 norm, defined as follows:

ρ
N∑

i=1,i 6=j

N∑
j=1,j 6=i

(Σ−1
ij )2 (5)

penalises large coefficients more heavily than the l1 norm for elements larger than 1, since it subtracts

the square of the coefficients from the objective function instead of the absolute value. Using l2

regularisation introduced for linear regression problems by Hoerl and Kennard (1970), which is

also called ridge regression, has shown empirically to improve prediction performance. Tibshirani

(1996) found that using ridge regression for linear regression problems outperforms the lasso by a

substantial amount when there is a high correlation between the independent variables of a model.

Financial return data is known to have high correlations between the returns of the different stocks,

so using the l2 norm on this data might improve the predictive performance.

The drawback of using l2 regularisation instead of l1 regularisation is that is does not force small

parameters to be zero in matrix estimation or linear models. The precision matrix, and thus the

hedging portfolios, will therefore likely not be sparse. Sparse hedging portfolios are preferred to

minimise estimation errors, by limiting the amount of non-zero elements in the precision matrix.

To overcome the problem of non-sparsity when using the l2 norm, the elastic net by Zou and

Hastie (2005) can be used. They introduced the elastic net penalty for linear regression problems,
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which is a linear combination of lasso and ridge regression. The elastic net is defined as follows:

αρ

N∑
i=1,i 6=j

N∑
j=1,j 6=i

|Σ−1
ij |+ (1− α)ρ

N∑
i=1,i 6=j

N∑
j=1,j 6=i

(Σ−1
ij )2 (6)

where 0 ≤ α ≤ 1 is a parameter that assigns weights to the l1 and l2 norms and ρ determines the

magnitude of the l1 and l2 penalty. It is of interest whether implementing the elastic net penalty

to the mean variance estimator of Goto and Xu (2015) as follows:

max
Σ−1=[Σij ]

T

2
ln
(
det
(
Σ−1

))
− T

2
trace

(
ŜΣ−1

)
− αρ

N∑
i=1,i 6=j

N∑
j=1,j 6=i

|Σ−1
ij | − (1− α)ρ

N∑
i=1,i 6=j

N∑
j=1,j 6=i

(Σ−1
ij )2

(7)

leads to noticeable performance improvements, due to the possible advantages of combining l1 and

l2 regularisation, which changes the graphical lasso to graphical elastic net.

Little research has been done in the field of graphical elastic net, which leaves the question

whether changing the objective function this way is justified. It might lead to difficulties in updating

the parameters of the objective functions, because of changes in the derivations of the parameter

calculations. Kovács et al. (2021) found that the elastic net penalty can be implemented in the

graphical lasso algorithm for sparse precision matrices by Friedman et al. (2008). They show that

changing the penalisation of the target function can be implemented when small changes are made

to updating the parameters. They describe two problems when changing the penalisation function.

The first is finding derivations of the formula’s to update column and rows in the matrices. The

expressions of those updates can be derived similar to the derivation of the updates in Friedman

et al. (2008). The second problem is the application of coordinate descent for the optimisation

problem, which changes due to the elastic net penalisation. Kovács et al. (2021) found the same

update procedure as described by Tibshirani et al. (2010), who derive the coordinate-wise-update

formula for an elastic net problem. With both problems solved, their graphical elastic net (gelnet)

algorithm is implemented to estimate the precision matrix.

4.3.1 Graphical elastic net with the correlation matrix

Kovács et al. (2021) mention that in practice the correlation matrix should be used in order to

deal with variable scaling, because this becomes more important when using the elastic net penalty

instead of the lasso penalty. Even though the return data is of the same scale, it is still interesting

to investigate whether the correlation changes the performance of the gelnet algorithm.
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To estimate the weight vector the estimated precision matrix based on the correlation matrix are

re-scaled, such that the precision matrix is defined as follows:

Σ̂−1 = QĈ−1Q (8)

where Q is a N x N diagonal matrix with Qi,i = 1
Ŝii

, where Ŝii is element (i, i) of Ŝ and Qi element

(i, i) of Q. Ĉ−1 is the estimated precision matrix by the gelnet algorithm with the sample correlation

as input and Σ̂−1 is the estimated precision matrix used to calculate the weights.

4.4 Node-wise Regression

The limited amount of research in the field of the graphical elastic net, and especially the gelnet

estimator by Kovács et al. (2021) leaves questions about the properties of the resulting estimator.

Banerjee et al. (2008) proved for the glasso algorithm that the resulting estimator is positive definite

and invertible, but this might not be true for the gelnet algorithm, due to the change in the penalised

log-likelihood and the corresponding dual problem.

Node-wise regression, which was introduced by Meinshausen and Bühlmann (2006) as neighbour-

hood selection with the lasso, is a method for which adaptation to elastic net is more straightforward.

Therefore this method is also implemented to evaluate if the elastic net penalty improves portfolio

performance. Callot et al. (2021) used this method in the field of portfolio optimisation and showed

how this node-wise regression can be applied to estimate a precision matrix. They found that the

following regression:

r∗t,j = (r∗t,−j)
′γj + ηt,j (9)

where r∗t,j is the demeaned excess return of stock j at time t, r∗t,−j is the vector of demeaned excess

returns of all stocks except stock j at time t, γj is the vector of parameter estimates, and ηt,j is the

estimation error of the regression of stock j at time t. Note that Equation 9 is the same as Equation

1, but without α. Therefore the elements of the precision matrix are calculated using Equation 2.

Using Equation 9 leads to a similar optimisation as in Meinshausen and Bühlmann (2006), which

is changed slightly to include elastic net penalisation as follows:

γ̂j = argmin
γ∈Rp−1

(
‖r∗j − r∗−jγ‖22

T
+ 2λjα‖γ‖1 + (1− α)λj‖γ‖22

)
. (10)
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Note that changing the penalisation function in this method does not change any of the derivations

for estimating the precision matrix, because none of them are based on the objective function. This

is an important advantage over the glasso estimator, for which the subgradients of the objective

function are used to derive estimations. This is not needed for nodewise-regression since the relation

between γ and Σ−1 only depends on the regression of r∗t,j on γ with elastic net penalty.

4.5 2 Stage Graphical Elastic Net

The 2 stage graphical elastic net (2S Gelnet) as used in Bernardini et al. (2021) is a combination

of the graphical elastic net and node-wise regression methods. Node-wise regression is performed

first to find a sparsity pattern for the precision matrix, because node-wise regression is the same as

neighbourhood selection by Meinshausen and Bühlmann (2006), which is known to perform well for

finding relations in graphs, which are the non-zero elements of the precision matrix. Meinshausen

(2008) shows that glasso estimation can be inconsistent in certain situations where node-wise re-

gression is still consistent. This gives reason to estimate the zero-elements of the precision matrix

via node-wise regression before using the gelnet algorithm. Bernardini et al. (2021) show that using

this constraint version of the graphical elastic net can lead to better estimation of the zero elements

of a matrix. The graphical elastic net estimator is calculated with ρ defined as follows:

ρi,j =


∞ if γ̂i,j = 0 or γ̂j,i = 0

ρ otherwise

(11)

where ρi,j is the (i,j) element of the N x N ρ matrix, which now sets some elements of the precision

matrix to 0 before using the gelnet algorithm by penalising that element very heavily. γ̂i,j is the

i’th element of γ̂j , which is the vector of parameter estimates of the regression of the returns of the

j’th asset on the other N − 1 assets. In practice ∞ is set to a large number.

4.6 General Mean Variance Portfolio & Alternative Portfolio’s

In general the optimal mean-variance portfolio is constructed by using the precision matrix to create

optimal portfolio weights using the following expression:

w =
1

1′N Σ̂−11N
Σ̂−11N (12)

where w is a N x 1 vector of portfolio weights, 1N is a N x 1 vector of ones, and Σ̂−1 is the estimator
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of the precision matrix. The portfolio returns are calculated by using the different precision matrix

estimators based on rt−119, rt−118, ..., rt to create portfolio weights for month t+1 and then multiply

those weights with the asset returns in month t+ 1.

In this research every portfolio is constructed as the mean-variance portfolio. The glasso portfolio

is denoted by Ψρ, following notation by Goto and Xu (2015). The gelnet portfolio is denoted by Ξρ,α

and the node-wise regression portfolio is denoted by NR. The gelnet portfolio with the correlation

matrix instead of the covariance matrix is denoted by Ξρ,α (cor). The performance of these portfolio’s

is compared to the equal weighted, sample covariance, Jagannathan-Ma and Ledoit-Wolf portfolio’s.

The Equal Weighted (1/N) portfolio, for which every weight wj = 1/N , where w is the N x 1

weight vector, is easy to calculate, since the weights do not have to be computed via the precision

matrix. Despite it’s simplicity DeMiguel et al. (2009) found that none of the more complicated

portfolio’s in their research consistently outperformed the 1/N portfolio. The Sample Covariance

(Ŝ−1) portfolio is calculated by using the inverse of the sample covariance matrix as precision matrix

estimator. The Jagannathan-Ma (JM) portfolio by Jagannathan and Ma (2003) is similar to the

Ŝ−1 portfolio, because it uses the sample covariance matrix, but for this portfolio the weights are

calculated by optimising the following function: min
w

w′Sw with 2 constraints:
∑N

i=1wi = 1 and

wi ≥ 0, which leads to a portfolio without short positions. Even though it seems very similar to the

sample covariance portfolio, this portfolio has proven to reduce the risk of the portfolio significantly

compared to the sample covariance portfolio. The Ledoit-Wolf (LW) portfolio is calculated by

estimating the precision matrix using the shrinkage method proposed by Ledoit and Wolf (2004).

They use a weighted average of the sample covariance matrix and the constant correlation matrix

to shrink the covariance estimator towards the constant correlation matrix.

4.7 Parameter Optimisation

For the glasso, gelnet and nodewise regression methods there are certain parameters that need to

be optimised in order to create an estimate of the precision matrix. The training period, which

contains the first 240 months of data (July 1963 - June 1983), is used to optimise the parame-

ters. 120 precision matrices for period t between July 1973 and June 1983 are estimated based

on rt−120, rt−119, ..., rt−1. When the optimal parameters based on this training period are found,

they are used for out-of-sample prediction between July 1983 and December 2010. The precision

matrices for period t in the out-of-sample period are also estimated using rt−120, rt−119, ..., rt−1.
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4.7.1 Predictive likelihood

The parameters of the gelnet and glasso estimators are optimised by performing a grid search for

0 ≤ ρ ≤ 10 and 0 ≤ α ≤ 1 with increments of 0.1 to maximise the predictive Gaussian likelihood

function, following Goto and Xu (2015), which is defined as follows:

L(Σ̂−1) =
1

Tf

Tf∑
t=1

lt(Σ̂
−1) (13)

where lt(Σ̂
−1) = ln(det(Σ̂−1

t−1)) − R̃′tΣ̂
−1
t−1R̃t. Tf is the number of observations in the estimation

sample, Σ̂−1
t−1 is the precision matrix estimated at period t−1 and R̃t is the demeaned return vector

R̃t = Rt − 1
Tf

∑Tf
i=1Ri, which is the estimation sample mean subtracted from the return vector.

4.7.2 Generalized Information Criterion

The parameters ρ and α of the Node-wise Regression estimator are optimised by using a different

information criterion instead of the predictive likelihood. Y. Fan and Tang (2013) found that their

Generalized Information Criterion (GIC) finds the true model with probability approaching one if

it is used as information criterion for Nodewise-Regression. This criterion is defined as follows:

GIC(λj) = ln(σ̂2
λj

) +
N∑
i=1

I{γ̂i,j(λj) 6= 0} ln(N)

T
ln(ln(T )) (14)

where σ̂2
λj

= ‖rj − r−j γ̂j‖22, which is the residual variance of the regression of the return of the j’th

asset (rj) on the return of all assets except the j’th (r−j). I{γ̂i,j(λj) 6= 0} is an indicator function,

which is 1 if γ̂i,j(λj) 6= 0 and 0 otherwise, where γ̂i,j(λj) is element i of parameter vector γ̂j , which

is the vector of parameter estimates of the regression of the return of the j’th asset on the other

N − 1 assets. T is the number of periods in the estimation sample and N is the number of assets.

The GIC allows node-wise regression to use a different optimal penalisation for every asset,

because it optimises every regression separately. To allow this difference, ρ and α are optimised

every month for node-wise regression, instead of set to a fixed value optimised in the training period.

This could be advantageous compared to the predictive likelihood if the amount of penalisation is

different over time or different between different assets.
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5 Results

All results are obtained via R programs in R 4.0.5. Next to the basic R functions the follow-

ing packages are used: glasso, GLassoElnetFast, matlib, glmnet, matrixcalc and tseries. For the

Ledoit-Wolf estimator by Ledoit and Wolf (2004) and the circulair bootstrap by Ledoit and Wolf

(2007) the code from Ledoit’s UZH page is used (https://www.econ.uzh.ch/en/people/faculty/wolf/

publications.html). For the optimal block sizes of the bootstrap methods, the code by Patton et al.

(2009) is used, which is available on http://www.math.ucsd.edu/∼politis/SOFT/PPW/ppw.R.

5.1 Optimal parameter choices

The optimal parameters play an important role in order to create portfolios based on the glasso,

gelnet or node-wise regression estimators. Table 2 shows the optimal parameter choices for each data

set. Interestingly, α is on average close to 1 (0.948) for the NR estimator for every data set. This

means that node-wise regression does not really benefit from using the elastic net, because when α

is optimised for 0 ≤ α ≤ 1, α ≈ 1 performs best, which is almost equal to lasso regularisation. Note

that the NR portfolio has low sparsity, which implies that ρ is small for the NR portfolio.

Table 2: Optimal Parameters and Sparsity

Note that for the glasso estimator Ψρ, α = 1 for every data set, because it does not allow for different α.

The reported α and ρ for NR are averages over every regression performed in the out-of-sample period. The

reported sparsity is the percentage of zero-elements in the precision matrices of the out-of-sample period.

Dataset Parameter Ψ̂ρ Ξ̂ρ,α NR Ξ̂ρ,α (cor)

SZBM100 ρ 1 2.5 3.2 0.1

α 1 0.4 0.9 0.1

Sparsity (%) 49.1 49.0 11.6 53.2

IND48 ρ 1.3 2.1 4.4 0.1

α 1 0.6 0.9 0.1

Sparsity (%) 42.7 42.8 14.1 50.5

SZBM100+IND48 ρ 1.3 1.6 4.6 0.1

α 1 0.8 0.9 0.1

Sparsity (%) 46.2 46.2 8.3 52.9

Another interesting result from Table 2 is that ρΞ̂ × αΞ̂ ≈ ρΨ, where αΞ̂ and ρΞ̂ are ρ and α from

Equation 7. This leads to a very similar penalisation function, which leads to similar portfolio
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weights for Ψ̂ρ and Ξ̂ρ,α. An explanation might be that the absolute penalty is always larger

than the quadratic penalty, therefore the algorithm only has to minimise the absolute penalty.

This can be the case if the elements of the precision matrix are smaller than one. The optimal

parameters for the Ξ̂ρ,α (cor) portfolio are all 0.1, which is the smallest amount of regularisation.

For the SZBM100+IND48 data set the predictive likelihood was −∞, which suggests that a smaller

increment should be used, because for the other methods −∞ only occurs when α or ρ is too large.

Some of the values for ρ or α for Ξ̂ρ,α lead to predictive likelihoods that caused problems during

optimisation, because the determinant of the precision matrix is equal to zero. This means that

the predictive likelihood could not be calculated, because it would lead to log(0). Furthermore this

means that the precision matrix is not invertible. Banerjee et al. (2008) proved that if you put an

invertible matrix in the glasso algorithm, that the output would be invertible too, but this does not

seem to hold for graphical elastic net. This problem should be looked in to in future research.

For the Ψ̂ρ portfolio a different optimal ρ is found than reported by Goto and Xu (2015) for

the SZBM100 and the SZBM100+IND48 data set. This difference might be due to a change

in the SZBM100 data set in August 2020. French’s data library (https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data library.html) reports that there have been made adjustments

to book equity, which affects portfolios that are based on book-to-market equity. The SZBM100

and SZBM100+IND48 data sets depend on those adjustments, which explains the differences. This

means only the optimal parameters for the IND48 data set should be the same, which is the case.

Finally it is interesting that calculations for the glasso and gelnet estimators with the correlation

matrix are very fast compared to the same method with the covariance matrix. This might be

beneficial if the optimal parameters are re-estimated multiple times, for every month for example.

This may in turn lead to a lower return variance, due to the better optimised parameters.

5.2 Return Variance

An important aspect of the different inverse covariance estimators is the variance of the returns of

minimum variance portfolios based on the different estimators. The return variance is calculated

by taking the variance of out-of-sample returns of the minimum variance portfolios.

Table 3 contains the return variances and shows that Ξ̂ρ,α has the lowest return variance for

every data set, but it is close to the return variance of Ψ̂ρ. The return variance of Ξ̂ρ,α (cor) is close

to Ψ̂ρ and Ξ̂ρ,α for all data sets, with lower variance for the IND48 data set and higher variance for

the other data sets.
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Table 3: Return Variance of Out-of-Sample Returns

The ranking of best (1), which is lowest out-of-sample return variance or risk, to worst (8), which is highest

return variance or risk, is reported below the return variance of each portfolio. N > T means that this

portfolio could not be constructed, due to the non-invertable sample covariance matrix.

Dataset Ψ̂ρ Ŝ−1 1/N JM LW Ξ̂ρ,α NR Ξ̂ρ,α(cor)

SZBM100 13.779 59.609 25.834 18.407 18.879 13.736 22.296 14.584

(2) (8) (7) (4) (5) (1) (6) (3)

IND48 12.355 17.315 22.796 13.326 13.012 12.351 17.248 12.231

(3) (6) (8) (5) (4) (2) (7) (1)

SZBM100+IND48 10.563 N > T 24.327 12.755 12.023 10.546 21.102 11.953

(2) (7) (5) (4) (1) (6) (3)

The results of all portfolios are close to the findings of Goto and Xu (2015), except for the JM

portfolio, which has a lower variance. This difference might be due to the change in the French

Data Library mentioned in Section 5.1. The NR portfolio does not perform as well. It has return

variance almost always closer to the 1/N portfolio than to the Ψ̂ρ and Ξ̂ρ,α portfolios. This shows

that the NR portfolio is riskier than the Ψ̂ρ and Ξ̂ρ,α portfolios.

Table 4: Stationary Bootstrap of Return Variance compared to Glasso

Table 4 reports the test statistic of the stationary bootstrap by Politis and Romano (1994), with optimal

block sizes from Politis and White (2004). All portfolios are compared to Ψ̂ρ as follows: σX − σΨ̂ρ
, where

σX is the standard deviation of returns of portfolio X. ***, ** and * denote a significant difference at a

significance level of 1%, 5% and 10% respectively. N > T means that this portfolio could not be constructed,

due to the non-invertable sample covariance matrix.

Dataset Ŝ−1 1/N JM LW Ξ̂ρ,α NR Ξ̂ρ,α (cor)

SZBM100 4.000*** 1.358*** 0.580* 0.623* -0.003 1.000** 0.117

IND48 0.645** 1.240*** 0.135 0.094 -0.000 0.620* -0.023

SZBM100+IND48 N > T 1.679*** 0.314 0.225 -0.009 1.336*** 0.194

The difference between the return variances is evaluated by testing the null hypothesis of equal

return variance between the return variance of the glasso estimator and the Ŝ−1, 1/N, JM, LW

and NR estimators. Table 4 shows the results of this test, which is calculated using the stationary
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bootstrap by Politis and Romano (1994) with optimal block sizes from Politis and White (2004).

Note that Table 4 shows that there is no significant difference in return variance between the Ψ̂ρ and

Ξ̂ρ,α estimator on a ≤ 10% significance level. Therefore changing from lasso to elastic net penalty

seems to not improve the optimal mean-variance portfolio based on out-of-sample return variance.

Another interesting result is that the JM estimator performs better than reported by Goto and

Xu (2015). They find significant differences for every data set and Table 4 shows only a significant

difference for the SZBM100 data set. This result shows that simple portfolio strategies, such as the

nonnegative portfolio weights, can still lead to a low risk portfolio.

5.3 Weight Distribution

Because of the small difference in return variance between Ψ̂ρ and Ξ̂ρ,α, the weight distribution of

the portfolios are especially of interest to see if the methods result in different portfolios. Table 2

shows that penalisation is approximately the same for Ψ̂ρ and Ξ̂ρ,α, which raises the question if these

portfolios are any different. The weight distribution of Ξ̂ρ,α should be different, because elastic net

penalisation should result in portfolio weights closer to zero compared to lasso penalisation. Table

5 shows however that the weight distribution of Ξ̂ρ,α is close to that of Ψ̂ρ. The minimum, 1%, 5%,

95% quantiles and maximum weights are closer to zero for the SZBM100 data set as expected, but

only by a small amount. The Herfindahl index, defined as 1
T

∑T
t=1

∑N
i=1wi,t where wi,t is the weight

of asset i in period t, confirms that Ψ̂ρ and Ξ̂ρ,α are close in terms of weights distribution. For the

IND48 data set Ξ̂ρ,α has larger absolute weights. This result might be explained by the magnitude

of the elements of the precision matrix. If they are smaller than one, lasso penalisation is larger,

which results in smaller portfolio weights.

Ξ̂ρ,α (cor) has weights closer to zero compared to Ξ̂ρ,α and Ψ̂ρ. This is in line with the earlier note

that the penalisation might be too large. If penalisation was smaller, larger portfolio weights would

occur. The lower portfolio weights confirm that Ξ̂ρ,α (cor) seems too heavily penalised, because it

has higher variance for two data sets, which could be reduced by allowing larger portfolio weights.

NR has noticeably smaller portfolio weights, except for IND48 min. and max., and is able to

create a portfolio that seems to be better than the equal weighted portfolio, but still has very small

portfolio weights. The Herfindahl index confirms that NR has small weights. It seems that the

optimisation of ρ and α should be adjusted for SZBM100 and SZBM100+IND48 to allow larger

weights. This way risk reduction can be realised by allowing larger weights for low risk assets. The

weight distributions of the JM and LW portfolios are reported in Appendix A.2 Table A1.
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Table 5: Weight Distributions

N > T means that this portfolio could not be constructed, due to the non-invertable sample covariance

matrix. 1%, 5%, 95% and 99% are the quantiles of all weights of the out-of-sample portfolios.

Data set Portfolio Min. 1% 5% 95% 99% Max. Herfindahl

SZBM100 Ψ̂ρ −0.261 −0.151 −0.108 0.149 0.214 0.313 0.615

Ŝ−1 −1.934 −0.748 −0.501 0.533 0.836 1.852 10.124

Ξ̂ρ,α −0.261 −0.150 −0.108 0.148 0.214 0.310 0.607

NR −0.037 −0.009 −0.002 0.029 0.058 0.122 0.025

Ξ̂ρ,α (cor) −0.116 −0.077 −0.055 0.112 0.162 0.290 0.277

IND48 Ψ̂ρ −0.233 −0.151 −0.106 0.161 0.382 0.511 0.414

Ŝ−1 −0.736 −0.377 −0.202 0.251 0.529 0.843 1.088

Ξ̂ρ,α −0.233 −0.153 −0.106 0.161 0.382 0.512 0.416

NR −0.504 −0.043 −0.010 0.086 0.159 0.302 0.082

Ξ̂ρ,α (cor) −0.124 −0.092 −0.061 0.166 0.495 0.789 0.441

SZBM100+IND48 Ψ̂ρ −0.186 −0.108 −0.069 0.093 0.146 0.287 0.380

Ŝ−1 N > T

Ξ̂ρ,α −0.185 −0.108 −0.069 0.093 0.146 0.289 0.381

NR −0.037 −0.004 −0.001 0.021 0.039 0.115 0.017

Ξ̂ρ,α (cor) −0.101 −0.057 −0.037 0.077 0.123 0.328 0.205

5.4 Sharpe Ratio

Table 6 shows the Sharpe ratio of all different estimators. Note that Ψ̂ρ and Ξ̂ρ,α are again the

best for the SZBM100 data set and the SZBM100+IND48 data set. It is also interesting to see

that Ξ̂ρ,α does have a significantly higher Sharpe ratio than Ψ̂ρ for the SZBM100 data set on a 10%

significance level. This suggests that using the elastic net penalty might lead to a more efficient

estimator, because of the higher reward to risk ratio. Ξ̂ρ,α (cor) is outperformed by both Ψ̂ρ and

Ξ̂ρ,α, which is in line with the results for the return variance. Note that Ψ̂ρ and Ξ̂ρ,α are not the

best choice for the IND48 data set, because the NR portfolio has a higher Sharpe ratio.

It is quite surprising that Ψ̂ρ and Ξ̂ρ,α are outperformed by the NR , 1/N and the JM portfolio

for the IND48 data set. The difference between data sets might be explained by the N
T ratio, because

this ratio is higher for the SZBM100 and SZBM100+IND48 data sets. Ψ̂ρ and Ξ̂ρ,α are designed

to create more sparse portfolios to reduce estimation errors for data sets that suffer from high N
T

ratio or high correlations. This might explain why these portfolios perform significantly better for
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Table 6: Out-of-sample Sharpe Ratio

Data set Ψ̂ρ Ŝ−1 1/N JM LW Ξ̂ρ,α NR Ξ̂ρ,α (cor)

SZBM100 0.292 0.171 0.135 0.173 0.241 0.294 0.164 0.238

IND48 0.128 0.075 0.131 0.133 0.121 0.128 0.143 0.132

SZBM100+IND48 0.288 N > T 0.135 0.171 0.285 0.288 0.159 0.237

the SZBM100 and SZBM100+IND48 data sets. On the other hand, when multi-collinearity is not

a big problem, NR performs equally, or might even perform better in terms of Sharpe ratio.

Table 7 shows the statistics of the circular bootstrap by Ledoit and Wolf (2007) with optimal

block sizes. It shows that the differences between Ψ̂ρ and the other portfolios are not significantly

different from each other for the IND48 data set, except for the Ŝ−1 portfolio. This means that for

the IND48 data set all estimation methods perform about the same based on Sharpe ratio. Because

of the significant differences for the other data sets Ξ̂ρ,α seems to be the most efficient in terms of

Sharpe ratio, since it significantly outperforms Ψ̂ρ for the SZBM100 data set.

Table 7: Circulair Bootstrap Test Statistics compared with Glasso

The reported statistic is the results of the circulair bootstrap by Ledoit and Wolf (2007), where every portfolio

is compared to Ψ̂ρ as follows: SharpeΨ̂ρ
− SharpeX , where SharpeX is the Sharpe ratio of portfolio X.

***, ** and * denote a significant difference at a significance level of 1%, 5% and 10% respectively. N > T

means that this portfolio could not be constructed, due to the non-invertable sample covariance matrix.

Data set Ŝ−1 1/N JM LW Ξ̂ρ,α NR Ξ̂ρ,α (cor)

SZBM100 0.122* 0.157*** 0.119*** 0.052 -0.001* 0.129*** 0.054**

IND48 0.053** -0.003 -0.005 0.007 0.001 -0.015 -0.003

SZBM100+IND48 N > T 0.152*** 0.117*** 0.002 0.000 0.128** 0.051*

5.5 Turnover

In this section the stability in terms of weights over time is evaluated. Due to the transaction costs

involved with portfolio changes, a stable low risk portfolio is preferred over one that changes weights

extremely after a period. Table 8 reports the turnover for every portfolio for each data set. Lower

turnover means less transaction costs, so the 1/N portfolio has the best turnover, followed by JM.

Ψ̂ρ and Ξ̂ρ,α have higher turnover than NR, which was expected, due to the larger portfolio weights

in the weight distribution, which results in larger turnover when the optimal weights are changed.
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Table 8: Out-of-sample Portfolio Turnover

Data set Ψ̂ρ Ŝ−1 1/N JM LW Ξ̂ρ,α NR Ξ̂ρ,α(cor)

SZBM100 0.641 7.093 0.024 0.132 0.585 0.632 0.193 0.339

IND48 0.299 0.775 0.033 0.077 0.329 0.300 0.258 0.203

SZBM100+IND48 0.611 N > T 0.027 0.090 0.760 0.619 0.173 0.346

Ψ̂ρ and Ξ̂ρ,α are close in terms of turnover and Ξ̂ρ,α (cor) in between NR and Ψ̂ρ and Ξ̂ρ,α, which

is in line with the small differences in weight distribution.

5.6 Economic Gain

The economic gain of every portfolio is calculated to combine the results found for return variance,

Sharpe Ratio and turnover. The economic gain is evaluated by calculating the transaction cost

adjusted certainty equivalent excess return (TCACER) with γ = 5, following Goto and Xu (2015).

γ is the risk-aversion coefficient. The TCACER by Goto and Xu (2015) is defined as follows:

TCACER = µ̂q −
γ

2
σ̂2
q − T COSTq (15)

where µ̂q and σ̂2
q are the annualised mean return and return variance respectively and T COST is

the annualised transaction cost. The TCACER can be interpreted as the percentage of risk free

return for which an investor is indifferent between the risk free return and a portfolio of risky assets.

Table 9 reports the TCACER of every portfolio. Note that the results are different than reported

by Goto and Xu (2015), especially for the 1/N, JM and LW portfolios. Ψρ and Ξ̂ρ,α are very similar

and the best choices based on the SZBM100 and SZBM10+IND48 data sets. For the IND48 data

set they do perform worse, which was also the case for the Sharpe ratio. Interestingly Ξ̂ρ,α (cor)

and the NR portfolio also perform well, because they have positive TCACER for each data set. On

average Ξ̂ρ,α (cor) outperforms NR and is almost equal to Ψ̂ρ and Ξ̂ρ,α. Ξ̂ρ,α (cor) therefore may

be more robust, since it always has positive economic gain for each of the data sets.

Table 9: Transaction Cost Adjusted Certainty Equivalent Excess Returns (TCACER’s)

Data set Ψ̂ρ Ŝ−1 1 /N JM LW Ξ̂ρ,α NR Ξ̂ρ,α(cor)

SZBM100 5.040 −44.627 0.362 2.616 3.384 5.143 1.419 4.512

IND48 −0.086 −6.093 0.457 1.364 −0.640 −0.111 0.408 0.638

SZBM+IND48 4.386 N > T 0.547 2.955 3.706 4.344 1.418 4.171
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5.7 2 Stage Graphical Elastic Net

The 2S Gelnet estimator is obtained by optimising ρ based on GIC and α based on predictive

likelihood for the NR estimator and then maximising the predictive likelihood of the gelnet algorithm

with certain elements of the precision matrix constraint to be zero. The difference with the normal

NR estimator is made, such that αNR is chosen to fit the combined method (node-wise regression

and gelnet) best, instead of the NR estimator only. Note that therefore αNR is the same for every

regression. Optimising α shows that αNR = 0 is optimal for the 2S Gelnet algorithm. This means

that almost no constraints are set on the estimation of the gelnet precision matrix. Therefore the

results of the 2S Gelnet portfolio are close to the results of Ξ̂ρ,α, which is confirmed by Table 10,

where Column 1 and 3 are very close. Column 2 shows the return variance when α > 0, which shows

that it leads to higher return variance. This was not entirely expected, because NR is known to find

relations between variables well, which should lead to a better portfolio. On the other hand, putting

a constraint usually only restricts the outcome, which is the case here. The other statistics, such as

Sharpe ratio, weight distribution and economic gain are all similar to Ξ̂ρ,α, because 2S Gelnet leads

to almost the same weights as Ξ̂ρ,α.

Table 10: Return Variance 2S Gelnet

Data set 2S Gelnet 2S Gelnet α = 0.1 Ξ̂ρ,α

SZBM100 13.748 14.182 13.736

IND48 12.354 12.398 12.351

SZBM100+IND48 10.581 10.609 10.546

6 Conclusion

To conclude this research, the performance of different precision matrix estimators is compared

with the glasso estimator by Goto and Xu (2015). This is done by first answering the first research

question: ”Can the graphical elastic net improve the performance of the improved mean-variance

estimator?”. The gelnet portfolio has proven to perform a little better than the graphical lasso

portfolio, with a significant improvement of the Sharpe ratio for one of the data sets. The gelnet

correlation estimator performs worse, but has on average equal economic gain. All things considered,

the answer to the first research question is yes, but there is not always a significant improvement.

Node-wise regression with the elastic net penalty performs significantly worse than both the
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glasso and gelnet portfolios based on return variance and Sharpe Ratio when the number of stocks is

close to the number of observations. When this is not the case, node-wise regression has higher return

variance, but equal Sharpe ratio. The optimal α for node-wise regression, which was on average

close to 1, implies that changing from lasso to elastic net penalty does not improve performance

of node-wise regression. The second research question: ”Can node-wise regression with elastic net

penalty improve performance of the improved mean-variance estimator?” can therefore be answered

with no, because the glasso portfolio performs better when multi-collinearity problems arise.

The 2 stage graphical net estimator reduced to the gelnet estimator when the parameters are

optimised, which means that combining node-wise regression with graphical elastic net does not

improve the glasso estimator. So the last research question: ”Can 2 stage graphical elastic net

improve performance of the improved mean-variance estimator?” is answered with no, because the

optimal form reduces to gelnet estimation, which is faster and should be preferred.

The answer to the main research question: ”Can the performance of the improved mean-variance

estimator be improved by using an elastic net penalty?” is yes, by using the gelnet algorithm, but

there is not always a significant difference. The gelnet estimator has shown that it might lead to

significantly better Sharpe ratio and that it at least performs as well as the glasso estimator for

different data sets. Other estimators, such as the node-wise regression estimator seems to perform

well when the number of stocks is sufficiently smaller than the number of observations.

In practice the glasso estimator or the gelnet correlation matrix estimator might still be preferred

over the gelnet estimator, due to the huge computational benefit when estimating matrices for high-

dimensional data. The gelnet correlation matrix estimator especially shows some potential, because

it can be improved by lowering the regularisation parameters and is computationally faster, allowing

for re-optimising the parameters more often. The economic gain of the gelnet correlation matrix

portfolio was about equal to the glasso and gelnet portfolios on average, but it was always positive,

which was not the case for the glasso and gelnet portfolios. This suggests that it may be more

robust to different data.
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A Appendix

A.1 Details on the Graphical Lasso calculations

To maximise Equation 4 Friedman et al. (2008) use a graphical lasso (glasso) algorithm to estimate

the parameters of the QML maximisation. They make use of the dual problem of the equation

found by Banerjee et al. (2008), which is defined following notation of Friedman et al. (2008) as

follows:

min
β

{
1

2
‖W

1
2

11β − b‖
2 + ρ‖β‖1

}
(16)

where b = W
− 1

2
11 ŝ12, β = W−1

11 w12, where Wij , wij and ŝij are partitions of W and Ŝ. W is the

estimate of Σ and Ŝ is the sample covariance estimator. Banerjee et al. (2008) show that if this

algorithm starts with a positive definite matrix, that the end result will be positive definite too.

This is an important feature, since a positive definite covariance matrix is needed in order to invert

it. W and Ŝ are partitioned as follows:

W =

W11 w12

w′12 w22

 , Ŝ =

Ŝ11 ŝ12

ŝ′12 ŝ22

 (17)

where wij and ŝij are the last columns/rows of W and Ŝ respectively. Permuting this last column

and row, allows W to be updated by changing the last column and row and then re-estimating W.

This is done by using the graphical lasso algorithm from Friedman et al. (2008):

1. Start with W = S + ρI.

2. For each j = 1,2,...,p,1,2,...,p,..., solve the lasso problem (Equation 16), which takes the inner

products W11 and Ŝ as input. This will give an estimate β̂ which we use to update w12 = W11β̂.

3. Repeat until the problem has converged

They also show that Σ̂−1 can easily be calculated due to the relation between W and Σ−1, WΣ−1 =

I, from which Σ−1
12 and Σ−1

22 are derived. Here Σ−1
12 and Σ−1

22 form the last column of Σ−1. Because

we find W by permuting the last column, such that every column will be the last column at some

point, we can calculate every column of Σ−1 quite easily.
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A.2 Weight Distribution JM and LW Portfolio’s

Table A1 contains the weighs distributions of the remaining two portfolio’s: the JM and LW port-

folio’s.

Table A1: Weight Distribution JM and LW portfolio’s

1%, 5%, 95% and 99% are the quantiles of all weights of the out-of-sample portfolio’s.

Data set Portfolio Min. 1% 5% 95% 99% Max. Herfindahl

SZBM100 JM 0.000 0.000 0.000 0.077 0.234 0.468 0.185

LW −0.200 −0.132 −0.092 0.143 0.206 0.357 0.545

IND48 JM 0.000 0.000 0.000 0.110 0.527 0.718 0.307

LW −0.244 −0.148 −0.104 0.177 0.492 0.657 0.524

SZBM100+IND48 JM 0.000 0.000 0.000 0.021 0.150 0.696 0.288

LW −0.180 −0.110 −0.077 0.111 0.178 0.401 0.507
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