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Abstract
Assortment planning and shelf-space allocation are two of the most

important decisions to make for retailers. The attractiveness levels of
different sorts of shelves play a critical role in these decisions. In this
paper, a mixed-integer programming (MIP) model, called APSA, is used
to simultaneously choose what product categories to select in the assort-
ment and where to allocate them in a retail store. APSA is used in an
optimization-based heuristic and the computational performance of the
heuristic is presented and assessed. Furthermore, the effects of varying
shelf attractiveness coefficients on the model are investigated in the form
of a sensitivity analysis. The selected assortment, the allocation of the
products and the tractability of the model are discussed. In addition, a
theoretical framework of how to combine the heuristic with short-term
retailing decisions such as endcap allocation and sales promotions in a
multi-period model is presented. For the study on computational effects a
simulated dataset is used and for the sensitivity analysis a realistic dataset
is used to obtain results that come close to reality.
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1 Introduction

Walmart, the biggest retailer in the world, is on top of the Fortune 500 list
in 2021, the list with America’s biggest companies ranked on yearly revenue.
Clearly, supermarkets and other retailers are powerful entities who are im-
mensely important for the world economy and have the ability to greatly in-
fluence customer behaviour. Retailers have some important decisions to make
in order to maximize customer footprint (number of customers in the store), con-
version from visiting to purchasing and profit. According to Cachon and Kök
(2007), the customer footprint is closely related to the assortment offered by the
retailer. The in-store conversion rate, which is the percentage of customers that
buys a particular product when visiting the store, is strongly dependent on the
store layout and different kinds of promotions (i.e., special displays, price dis-
counts and promotional signage) (Lam et al., 2001). The store layout combined
with the different promotion strategies increases purchase likelihood, which in-
creases the in-store conversion rate (Bogomolova et al., 2017). Evident from the
above, assortment planning, shelf-space allocation and promotions are mutual
dependent and important aspects of decision making for retailers in order to
reach commercial success.

A widely-used in-store promotion technique is making use of high attrac-
tiveness displays such as endcaps. Endcaps are the displays at the end of the
aisles and can be seen as the most prominent shelf-spaces in the store. Endcap
allocation is a short-term promotion technique as the products that are dis-
played on the endcaps change every time period t. Approximately 2% of the
total assortment in a supermarket is allocated to endcaps or other displays, this
small percentage of products is responsible for around 30% of the total super-
market sales (Sorensen, 2009). On top of that, Tan et al. (2018) states that the
sales of products that are displayed on a rear endcap and front endcap increase
with 416% and 346%, respectively. The reason for endcap effectiveness is the
fact that these locations in the supermarket have higher customer traffic and
therefore higher visual attention (Larson et al., 2005). It is clear that endcaps
and other high attractiveness shelves are a powerful promotion tools which can
be used by retailers to maximize in-store conversion and boost sales.

Another effective and important promotion technique employed by retailers
is sales or price promotions. Similar to endcap allocation, sales promotions is
a short-term promotion techniques as the products that are put on sale often
change every time period t. Recent study shows that packaged goods manu-
facturers spend more money on sales promotions than on television and radio
advertising combined (McColl et al., 2020). Sales promotions such as coupons
and “two-for-one” have a strong impact on short-term consumption behaviour
and increase the likelihood of impulse purchases (Laroche et al., 2003). Addi-
tionally, sales promotions have a positive effect on the number of shopping trips
to the store (Van den Poel et al., 2003).

In Flamand et al. (2018), an optimization-based approach for integrated
assortment planning and store-wide shelf-space allocation is proposed. The
goal is to maximize the overall store profit which is not only dependent on the
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assortment selection, but also on the shelf space attractiveness, product cate-
gory profitability, impulse purchase potential and expected demand volumes.
Flamand et al. (2018) propose a mixed-integer programming model as a stan-
dalone approach which is embedded in an optimization-based heuristic. Much
has been written on the importance of different kinds of shelves and shelf at-
tractiveness, so I want to investigate the effects of shelf attractiveness on the
outcome and the tractability of the heuristic. In this paper, I will first replicate
the results in Flamand et al. (2018). Next, I will use the proposed heuristic to
perform a shelf attractiveness sensitivity analysis with a realistic dataset and
analyse these results. In addition, I will present a theoretical approach of how
to combine short-term retailing decisions (endcaps and sales promotions) with
long-term retailing decisions (assortment planning and shelf-space allocation)
in one multi-period model.

The remainder of this paper will be structured as follows: Section 2 will dis-
cuss the relevant academic literature related to this research. Section 3 discusses
the different datasets used in this paper. Consecutively, Section 4 discusses the
relevant notation, the used heuristic, the methodology of the sensitivity analysis
and the theoretical framework of the multi-period model. Next, the results of
the replication and the sensitivity analysis are discussed in Section 5. Last, Sec-
tion 6 summarizes the results and discusses the suggestions for future research.

2 Related Literature

Assortment planning, shelf-space allocation, display promotions and sales pro-
motions have mostly been investigated separately, instead as one integrated
problem. Most literature in the field solely focuses on one of the above men-
tioned aspects of retail decision making, without combining these aspects in
one analysis. First, I will present the relevant literature on assortment planning
and shelf-space allocation. Next, I will discuss some studies that investigate the
effects of short-term promotion techniques such as displays, high attractiveness
shelves and sales promotions. Last, I will present some relevant literature on
integrated approaches.

2.1 Assortment Planning

Assortment planning is a decision that has to be made by retailers to determine
the optimal mix of products that is offered in a store in order to maximize
certain objectives, such as profit. Efficient assortment planning is one of the
most crucial decisions a retailer has to make (Mantrala et al., 2009). A lot of
research in the assortment planning field investigates the trade-offs related to
demand substitution across the assortment (A. Hübner et al., 2016; A. Hübner
and Schaal, 2017; A. H. Hübner and Kuhn, 2012). The model proposed in A.
Hübner et al. (2016) considers out-of-assortment (OOA) and out-of-stock (OOS)
demand substitution effects when there is only limited shelf-space available, and
is solved via a heuristic procedure. In Chong et al. (2001) a local improvement
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heuristic is proposed that generates an alternative category assortment based on
the lost sales implication of the alternatives. Apart from Chong et al. (2001), not
a lot of research has been done related to which product categories to offer in a
store, most assortment planning studies consider individual products. Flamand
et al. (2018) is one of the first researches that considers trade-offs related to
balancing slow-moving, high-profit-margin, impulsive product categories and
fast-moving, low-profit-margin, product categories.

2.2 Shelf-space Allocation

Another decision that has to be made by retailers is allocating the products
to shelf-spaces. Shelf-space allocation is one of the most important resources
to attract more consumers to the store, and therefore a critical decision for
retailers (Yang and Chen, 1999). Additionally, well shelf-space management
can strengthen vendor relationships and increase customer satisfaction (Erol et
al., 2015). A widely-used approach in experimental studies where shelf-space
allocation is optimized is space elasticity - the ratio of percentage change in unit
sales to the percentage change in shelf-space - (Amrouche and Zaccour, 2007;
Curhan, 1973; Desmet and Renaudin, 1998; Eisend, 2014; Schaal and Hübner,
2018). Schaal and Hübner (2018) investigates the phenomenon of cross-space
elasticity, but the authors show that cross-space effects have minor impact on
solution structures and profits. Zufryden (1986) proposes an approach where the
objective function accounts for space elasticity, cost of sales and other marketing
variables.

2.3 Display and Sales Promotions

Allocating a product to a display shelf or other high attractiveness shelves (such
as endcaps) and applying sales promotions are powerful techniques for retailers
as well. Past studies on the effect of retail techniques on individual product
performance show that both promotion techniques have a positive effect on the
total sales. Caruso et al. (2018) shows that products placed on endcaps experi-
ence a boost in sales, especially when placed on front endcaps. Also, recently a
lot of research has been done on the use of endcaps to improve targeted healthy
purchases (Payne and Niculescu, 2018). Evidently, the use of high attractive-
ness shelves, such as endcaps, is a relevant promotional tool to promote the
contemporary growing awareness of healthy diets. Studies show that the combi-
nation of promotional techniques (such as on-display and price promotions) have
a greater impact on unit sales of the promoted product than when the promo-
tional techniques are used individually (Bennett and Wilkinson, 1974; Hawkins,
1957; Wilkinson et al., 1982; Woodside and Waddle, 1975). Most studies on the
effects of displays investigate the relation between brand substitution effects and
brand shelf-space, as in Anderson (1979). There are only a few studies that in-
vestigate the effects of endcap allocation, but none of these studies proposes an
integrated approach where assortment planning or sales promotions are included
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as well. In this work, the effects of having different levels of shelf attractiveness
in the integrated framework of Flamand et al. (2018) will be investigated.

2.4 Integrated Approaches

A. Hübner and Schaal (2017) is the first to propose a model that integrates
assortment planning decisions with shelf-space allocation decisions. Recently,
a lot of research is done on the integration of these two important retailing
decisions. Some studies that consider integrated shelf-space allocation and as-
sortment planning are Anderson and Amato (1974), Bayındır and Gülsaç (2006),
Borin et al. (1994), Hariga et al. (2007), and Urban (1998). The difference with
the model discussed in this paper is the fact that these papers focus on construct-
ing planograms and allocating a single product category to a single shelf. In
this work, multiple product categories are considered which can be allocated to
store-wide shelf-spaces. Other studies propose integrated models that combine
other promotional variables together with assortment planning and/or shelf-
space allocation. Murray et al. (2010) proposes a model that jointly optimizes
the decisions for product prices, display facing area, display orientations and
shelf-space locations, using a branch-and-bound based MINLP algorithm. Un-
like in Flamand et al. (2018), the assortment is pre-determined and considered
as given in Murray et al. (2010). Additionally, this research considers the width
and the height of the display shelves, unlike a lot of other studies in the field
where only the width of the display shelves is considered. The model of Murray
et al. (2010) is unique because it also takes into account pricing decisions, which
can be used to interpret sales promotions. Hariga et al. (2007) also proposes an
integrated model that jointly optimizes the retailer’s profit by determining opti-
mal product assortment, inventory replenishment, display area and shelf-space
allocation. However, this proposed model does not take into account sales pro-
motions decisions and high attractiveness displays, such as endcaps, specifically.
Most of the proposed integrated approaches use mathematical (mixed-integer)
programming in a deterministic setting to reach an optimal solution (Flamand
et al., 2018; Ghoniem and Maddah, 2015; Ghoniem et al., 2014; A. Hübner and
Schaal, 2017).

3 Data

In this Section, I will first discuss how the data used for the replication of the
tables in Flamand et al. (2018) is generated. Consecutively, I will discuss the
realistic dataset used for the sensitivity analysis.

3.1 Computational Study

For testing the heuristic and replicating the tables in Flamand et al. (2018) I use
simulated data. The data is generated in a similar way as in the computational
study in Flamand et al. (2018). All shelves have the same total capacity Ci

5



= 18. Every shelf consists of 3 segments, where each segment has maximum
capacity cmax = 6. The minimum space requirement, lj , and the maximum
space requirement, uj , of product category j are randomly generated using a
uniform distribution over the ranges [1, Ci

6 ] and [lj ,
Ci

3 ], respectively. The largest
possible profit of product category j, Φj , is randomly drawn from a uniform
distribution over the range [1, 25]. The minimum allocated space for product
category j, φj , is set to 0.1 for all product categories. The attractiveness of
shelf segment k, fk, is generated in such a way that there are 5 different levels,
t, of shelf attractiveness. Every 20% of the shelves shares the same level of
attractiveness. The attractiveness levels are as follows: t = 5%, 25%, 45%, 65%
and 85%. Furthermore, the middle shelf segments have lower attractiveness than
the end-of-aisle shelf segments. The attractiveness of the middle shelf segments
and attractiveness of the end-of-aisle shelf segments is generated using a uniform
distribution over the ranges [t, t+ 0.05] and [t+ 0.06, t+ 0.1], respectively.

3.2 Sensitivity Analysis

To perform a case study I need product data that reflects the real world. A con-
venient choice is to use the same 100 product categories and 31 product groups,
as presented in Table 1 and their demand volumes, vj , as used in Flamand et
al. (2018). This dataset is readily available and it is difficult to find alternative
datasets. Moreover, most of these product categories are present in a research
on impulse purchase potential of Kollat and Willett (1967), which is convenient
as the data on impulse purchase potential is not provided in Flamand et al.
(2018). The probability of purchase of certain product categories in Kollat and
Willett (1967) can be used to approximate the impulse purchase potential of
the product categories in the dataset used for the case study. In this study,
the impulse purchase potential is divided into 3 levels: low [0 , 0.1), medium
[0.1, 0.4) and high [0.4, 0.5]. The 20 fast-movers in the dataset are assigned an
impulse purchase potential equal to 1. Furthermore, the gross profit margin of
product category j, ρj , is necessary to calculate the largest possible profit of
product category j, Φj . Unfortunately, this data is not provided in Flamand
et al. (2018) and grocery retailers are not willing to share this information for
this research. I am forced to approximate these parameters myself. Similar to
the impulse purchase potential, the gross profit margin is divided into 3 levels:
low [0 , 0.2), medium [0.2, 0.3) and high [0.3, 0.55]. The gross profit margin
of product category is based on the indicated gross profit margins per industry
and product groups in this web article 1

20 out of the 100 product categories are considered to be fast-movers. Fast-
movers are high-sales product categories that often have a low profit margin
(e.g. milk, bread, coffee). The 20 fast-movers in our realistic dataset are re-
sponsible for approximately 80% of the total sales. Logically, fast-movers have
high demand volumes, vi, and their impulse purchase potential is set equal to 1,
(γj = 1), which results in a relatively high maximum possible profit of product

1https://www.naveocommerce.com/on-demand-grocery-what-to-consider-chapter-2/.
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category j, Φj . The fast-movers in our dataset are: Bread (9), Canned Vegeta-
bles (17), Cigarettes (23), Juice (26), Soda (27), Cheese (32), Milk (34), Packed
Cheese (35), Specialty Cheese (36), Unpacked Meat (44), Coffee (45), Vegeta-
bles (63), Water (64), Ice (70), Dinners (71), Pizza (72), Household Cleaner
(82), Salad Dressings (90), Pasta sauce (92) and Canned Fruit (95).

On the other hand, we have high-impulse product categories. High-impulse
product categories have a strong impulse purchase potential and are often un-
planned purchases. Examples of high-impulse product categories in our realistic
dataset are: Chewing gum (13), Lollipop (14), Marshmallows (15), Candy (16),
Chocolate (22), Sliced Deli (38), Chips (47), Nuts (48), Popcorn (49), Ice Cream
(69), Snacks (91), Rice Cakes (94).

Table 1: Product categories and groups from Flamand et al. (2018)
# Group Category
1 Alcohol Liquor (1), Champagne (3), Vodka (5), Whiskey (6). Wine (7)
2 Light Alcohol Beer (2), Energy Drinks (4)

3 Bread
Croissant (8), Bread (9), Sandwich (10), Bagel (11), Toast (12),
Bread Crumbs (73)

4 Candy
Chewing Gum (13), Lollipop (14), Marshmallow (15), Candy (16),
Chocolate (21), Chocolate Chips (22)

5 RM Food Ready Made Food (18), Frozen Sea Food (62), Dinners (71), Pizza (72)

6 Breakfast
Hot Cereals (19), Cold Cereals (20), Peanut Butter & Jelly (74),
Honey & Sirups (97).

7 Cigarettes Cigarettes (23), Cigars (24)
8 Cold Beverages Iced Tea (25), Juice (26), Soda (27), Water (64)
9 Dairy 1 Butter (31), Eggs (33), Milk (34), Cookie Dough (65)
10 Dairy 2 Sour Cream (66), Yoghurt (67)
11 Cheese Cheese (32), Packed Cheese (35), Specialty Cheese (36)
12 Canned Food Canned Meat (37), Canned Sea Food (61)

13 Desserts
Boxed Desserts (39), Cakes (40), Ready Made Desserts (41),
Spreaded Desserts (42), Pies & Toppings (68)

14 Meat Sliced Deli (38), Packed Meat (43), Unpacked Meat (44)

15
Hot beverages
& Cookies

Cookies (28), Gourmet Cookies (29), Biscuits (30), Coffee (45),
Tea (46), Herbal Tea (93)

16 Nuts & Chips Chips (47), Nuts (48), Popcorn (49), Snacks (91), Rice Cakes (94)
17 Pasta Pasta (50), Pasta Sauce (92)
18 Powders Grain (51), Rice (52), Soup (53), Spice (54), Sugar-Salt (55), Flour (56)
19 Sauces & Syrups Creams (57), Dips (58), Oil (59), Sweet Sauce (60)
20 Vegetables Canned Vegetables (17), Vegetables (63)
21 Frozen Ice Cream (69), Ice (70)
22 Bath Tissue Bath Tissue (77)
23 Paper Towels Paper Towels (79)
24 Bath Needs Facial Tissue (76), Bath Needs (80)
25 Plastic needs Cups & Plates (75), Wraps & Bags (78)
26 Cleaning Supplies Fabric Softeners (81), Laundry Detergents (85)
27 Household Household Cleaner (82), Bleach (83), Wipes (84), Dish Detergents (86)
28 Condiments Vinegar (87), Ketchup (88), Pickles & Olives (89), Salad Dressings (90)
29 Canned Fruit Canned Fruit (95)
30 Cake Supplies Cake Decorations (86), Cake Mixes (98)
31 Baby needs Baby Food (99), Diapers (100)

Moreover, product category pairs (j, j′) can have four different affinity re-
lations. The affinity relations will be used extensively in the rest of the paper
and are defined as follows:

• Allocation disaffinity L: Two product categories that have allocation dis-
affinity should not be allocated to the same shelf. However, please note
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that the product categories can be chosen in the assortment simultane-
ously (e.g. cigarettes and baby food).

• Symmetric assortment affinity H1: Two product categories that have sym-
metric assortment affinity must be selected together in the assortment or
neither of them should be selected (e.g. coffee and coffee filter).

• Assymmetric assortment affinity H2: If product category pair (j, j′) have
assymmetric assortment affinity, then if product category j is selected,
product category j′ must be selected in the assortment as well (e.g. pasta
sauce and pasta).

• Allocation affinity H3: Two product categories that have allocation affin-
ity should be allocated to the same shelf when both selected in the as-
sortment. Please note that both product categories can be selected in the
assortment individually (e.g. milk and yoghurt).

4 Methodology

First, I will introduce some notation in Subsection 4.1 that will be used through-
out the paper. Second, In Subsection 4.2 I will describe the Mixed-Integer Pro-
grammming problem called APSA. In Subsection 4.3 I will describe the heuristic
proposed by Flamand et al. (2018). Consecutively, in Subsection 4.4 I will de-
scribe the methodology of the sensitivity analysis based on changes in shelf
attractiveness. Last, in Subsection 4.5 I will present the theoretical framework
of how to combine short-term promotion techniques such as endcap allocation
and sales promotion with the proposed heuristic of Flamand et al. (2018) in a
multi-period model.

4.1 Notation

In this Subsection, I will introduce the mathematical notation that is necessary
to explain the methods used in this work. Most of the notation is similar to the
notation in Flamand et al. (2018). The sets and variables used in the model are
as follows:

• N ≡ {1, ..., n}: The set of product categories, indexed by j.

• F ⊂ N : Set of fast-movers.

• I ≡ N \ F : Set of slow-movers.

• L: Set of product category pairs (j, j′) where jεN , which are related by
allocation disaffinity.

• H1: Set of product category pairs (j, j′) where jεN , which are related by
symmetric assortment affinity.
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• H2: Set of product category pairs (j, j′) where jεN , which are related by
asymmetric assortment affinity.

• H3: Set of product category pairs (j, j′) where jεN , which are related by
allocation affinity.

• B ≡ {1, ...,m}: Set of shelves, indexed by i.

• Ki: Set of consecutive shelf segments along shelf i, indexed by k. If shelf
iεE, then |Ki| = 1.

• K ≡ ∪iεBKi: Set of all the shelf segments in the store.

The following parameters are used in the model:

• ρj : The profit margin for product category j, jεN .

• vj : The expected demand volume of product category j, jεN .

• γjε(0, 1]: Parameter that reflects the impulse purchase potential.

• fk: The traffic density of segment k. This can be seen as a parameter that
reflects the attractiveness of segment k.

• Φj = γj × ρj × vj : The largest possible profit of product category j.

• lj/uj : Lower/upper bound on the space requirement for product category
j.

• φj : The minimum space to be allocated to product category j.

• αi/βi: Smallest/largest index index of a segment that belongs to shelf i.

• ck: The capacity of segment k.

• cmax: The maximum capacity of segment k.

• Ci ≡
∑
kεKi

ck: The capacity of shelf i.

The decision variables of the model are defined as follows:

• xijε{0, 1}: xij = 1 if and only if product category j is allocated to shelf i,
∀iεB, jεN .

• ykjε{0, 1}: ykj = 1 if and only if product category j is allocated to shelf
segment k, ∀kεK, jεN .

• skj : amount of shelf space allocated to product category j along shelf
segment k, ∀kεK, jεN .

• zjj′ε{0, 1}: zjj′ = 1 if and only if product categories j and j′ are selected
in the assortment simultaneously, ∀j, j′εN

• qkjε{0, 1}: qkj = 1 if and only if product category j is allocated to both
shelf segments k and k + 1, ∀kεK \ {βi : iεB}, jεN .
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4.2 APSA

The full APSA model can optimize a pre-chosen set of shelves and product
categories at the same time. The objective function and the constraints are
defined as follows:

Maximize
∑
kεK

∑
jεN

Φj
fkskj
ck

(1a)

subject to
∑
iεB

xij ≤ 1, ∀jεN (1b)

∑
jεN

skj ≤ ck, ∀kεK (1c)

lj
∑
iεB

xij ≤
∑
kεK

skj ≤ uj
∑
iεB

xij , ∀jεN (1d)

φjykj ≤ skj ≤ min(ck, uj)ykj , ∀jεN, kεK (1e)

ykj ≤ xij ∀iεB, jεN, kεKi (1f)

xij ≤
∑
kεKi

ykj , ∀iεB, jεN, kεKi \ {βi} (1g)

qkj ≥ ykj + yk+1,j − 1, ∀iεB, jεN, kεKi \ {βi} (1h)

∑
jεN

qkj ≤ 1, ∀iεB, kεKi \ {βi} (1i)

xij + xij′ ≤ 1, ∀(j, j′)εL, iεB (1j)

xij − xij′ = 0, ∀(j, j′)εH1, iεB (1k)

xij ≤ xij′ , ∀(j, j′)εH2, iεB (1l)

xij − xij′ ≤ 1− zjj′ , ∀(j, j′)εH3, iεB (1m)
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xij − xij′ ≥ −1 + zjj′ , ∀(j, j′)εH3, iεB (1n)

zjj′ ≤
∑
iεB

xij , ∀(j, j′)εH3 (1o)

zjj′ ≤
∑
iεB

xij′ , ∀(j, j′)εH3 (1p)

zjj′ ≥
∑
iεB

xij +
∑
iεB

xij′ − 1, ∀(j, j′)εH3 (1q)

yk1j + yk2j ≤ 1, ∀(k1, k2, j)εR (1r)

x, y, z binary, s, q ≥ 0 (1s)

I will shortly explain the constraints of the full APSA model. For more detail
and elaborate explanations please refer to Flamand et al. (2018). The objective
function (1a) maximizes the overall store profit, using maximum possible profit
of product category j, Φj , the attractiveness of shelf segment k, fk, the capacity
of shelf segment k, ck, and the decision variable skj . Constraint (1b) makes sure
that every product category is allocated to at most one shelf. Constraint (1c)
guarantees that the total space assigned to product categories in segment k is at
most the capacity of segment k. Constraint (1d) makes sure that the total space
allocated to a product category lies between its minimum and maximum space
requirements. Constraint (1e) ensures that the space allocated to a product
category lies between the minimum space requirement for any product cate-
gory and the maximum space requirement for that particular product category,
which either is its maximum space requirement or the capacity of the segment.
Constraint (1f) ensures that a product category can only be allocated to a shelf
segment of shelf i, if the product category is placed on shelf i. Constraint (1g)
ensures that if a product category is assigned to a shelf i, it is also placed in
a shelf segment on that particular shelf i. Constraint (1h) and Constraint (1i)
make sure that one product category can run over two adjacent shelf segments.
Constraint (1j) ensures that two product categories which have allocation dis-
affinity cannot be allocated to the same shelf. Constraint (1k) guarantees that
product categories which have symmetric assortment affinity are assigned to
the same shelf if both selected. If not, both product categories should not be
in the assortment. Constraint (1l) addresses the situation when product cate-
gories (j, j′) have assymmetric assortment affinity. The constraint ensures that
when product category j is selected, product category j′ should be selected as
well and allocated to the same shelf as product category j. Constraint (1m) and
Constraint (1n) ensure that product categories which have allocation affinity are
allocated to the same shelf when both selected in the assortment. Constraint
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(1o), Constraint (1p) and Constraint (1q) are linearization constraints. Together
with the assumptions that the segment capacity equals 6 for all segments and
the maximum space requirement for all product categories is at most 6, Con-
straint (1r) ensures that a product category is allocated to at most 2 adjacent
shelf segments. Constraint (1s) forces binary and non-negativity restrictions on
the decision variables.

Constraint 1f in Flamand et al. (2018) is defined as follows:

sk2,j ≥ ck2(yk1,j + yk3,j − 1), ∀jεN, iεB, k1, k2, k3εK|k1 < k2 < k3 (2)

Constraint 2 ensures that any product category that is allocated to shelf seg-
ments k1 and k3 along the same shelf also entirely fills the the shelf segment
k2 in between. In both the computational study and the sensitivity analysis it
is not necessary to include this constraint. The fact that the maximum space
requirement of product category j, uj , is maximally 6, the segment capacity,
cmax = 6 and the inclusion of constraint 1r ensure that constraint 2 is not neces-
sary. Constraint 1r ensures that a product category is allocated to at most two
adjacent shelves. Therefore, the situation where a product category is allocated
to shelf segments k1 and k3 never occurs. Also, when allocated to multiple shelf
segments on the same shelf, product categories need to allocated to adjacent
segments. These product categories can never be allocated over 3 adjacent seg-
ments as the maximum space requirement, uj , is maximally 6 which is equal to
the maximum segment capacity, cmax = 6. For the above reasons, constraint 2
is redundant and is removed from the model in the benefit of time.

4.3 Heuristic

The IBM program CPLEX can be used to solve optimization problems such as
the integrated assortment planning and shelf-space allocation problem presented
in Flamand et al. (2018). As CPLEX is a time consuming program, Flamand
et al. (2018) propose a heuristic that can solve the problem much faster than
CPLEX. Throughout this paper the heuristic will be used for large parts of the
replication and the sensitivity analysis. Standalone CPLEX will only be used for
the replication of the regular model APSA runs. The proposed heuristic consists
of two parts: the initialization procedure (Algorithm 1) and the MIP-based re-
optimization procedure (Algorithm 2). I will briefly explain both algorithms in
this Subsection. For more detail and the pseudocodes of both algorithms please
refer to Flamand et al. (2018).

4.3.1 Intitialization Procedure (Algorithm 1)

SSP, the single-shelf variant of model APSA, is used in the initialization proce-
dure. The objective and the constraints of SSP can be found in Appendix A.1.
There is no need to individually explain the constraints of SSP as they are very
similar to the constraints of APSA.

The initialization procedure works as follows: first all the shelves are sorted
in decreasing order based on their relative attractiveness, in this order the
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shelves will be optimized. The set of selected product categories S = ∅, is
initialized before the initialization procedure starts. For the shelf with the high-
est relative attractiveness an initial solution is found by using model SSP, the
single-shelf variant of model APSA. SSP restricts APSA to the chosen shelf and
not yet selected product categories. The selected product categories on this first
shelf are then added to set S, in order to prevent that these product categories
are allocated to other shelves in later iterations. After the initialization by SSP,
there is a check if any of the selected product categories j has an allocation affin-
ity relation with any other product category j′. If yes, the product category j′

which has an allocation affinity relation with the selected product category j is
also added to the set S, to prevent that product category j′ is allocated to other
shelves in later iterations. Next, the same procedure starts for the shelf with the
second-highest attractiveness. Again, SSP is used to choose an initial allocation
out of the still available product categories. This procedure continues until all
the shelves are initialized or until all the product categories are allocated to a
shelf.

4.3.2 MIP-based re-optimization Procedure (Algorithm 2)

In order to calculate an optimality gap, we need an upper bound. This upper
bound is obtained by solving the continuous relaxation of APSA. The continuous
relaxation of APSA is the exact same MIP-problem as described in Subsection
4.2, but the binary constraints of the decision variables are relaxed. Then, the
initial solution is obtained by running Algorithm 1. Now that all the shelves are
initialized by Algorithm 1, the shelves are again sorted in decreasing order based
on their objective value contribution. Then, every iteration τ (initially equal to
4) shelves are selected to be re-optimized. The sorted shelves are divided in τ
levels, where the first level contains the shelves with the highest objective con-
tributions and the last level the shelves with the lowest objective contributions.
From every level a shelf is randomly chosen and those shelves are removed from
the set of available shelves thereafter. The τ selected shelves are re-optimized
by solving model APSA with the set of available product categories. Next, τ
of the remaining shelves are randomly selected by choosing one shelf from ev-
ery level again. These shelves are again re-optimized by solving model APSA.
This procedure continues until the set of available shelves for re-optimization is
smaller than τ . When this point in the algorithm is reached, the below defined
stopping conditions are checked. If one of the stopping conditions is met, the
algorithm terminates. If not, all shelves are made available for re-optimization
again and the procedure starts over.

The stopping conditions are defined as follows:

• Stop when the relative gap between the continuous relaxation upper bound
and the objective of the incumbent solution is less than or equal to ε%.

• Stop when the algorithm traverses all shelves (makes all shelves available
for re-optimization again) a specified amount of times.
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• Stop when the algorithm reaches a specified time limit.

4.4 Sensitivity Analysis Attractiveness

I perform a sensitivity analysis based on changes in the attractiveness of the shelf
segments to see the computational effects of different varieties of shelf segment
attractiveness on the heuristic. Every one of the fifteen considered shelves has
an attractiveness coefficient vector [fk1, fk2, fk3], where fk1 is the attractiveness
coefficient of the shelf segment near to the checkouts, fk2 the attractiveness
coefficient of the middle segment and fk3 the attractiveness coefficient of the
segment furthest away from the checkouts. I consider 4 different situations:

• Situation 1: Every shelf has an attractiveness coefficient vector of [0.5,
0.5, 0.5].

• Situation 2: Every shelf has an attractiveness coefficient vector of [0.55,
0.45, 0.50]. This vector represents the fact that segments on the out-
side of the shelf in general have a higher attractiveness than the middle
segment(s) (Flamand et al., 2018), and the fact that segments near the
checkouts in general have a higher attractiveness than the other segment
(Sigurdsson et al., 2014).

• Situation 3: I use 3 different levels of attractiveness and include the same
assumptions as in Situation 2. Level 1: [0.25, 0.15, 0.20] Level 2: [0.55,
0.45, 0.50] Level 3: [0.85, 0.75, 0.80]

• Situation 4: I use 5 different levels of attractiveness and include the same
assumptions as in Situation 2 and Situation 3. Level 1: [0.15, 0.05, 0.10]
Level 2: [0.35, 0.25, 0.30] Level 3: [0.55, 0.45, 0.50] Level 4: [0.75, 0.65,
0.70] Level 5: [0.95, 0.85, 0.90]

Please note that the average shelf segment attractiveness equals 0.50 in all
the four situations.

I run the heuristic as described Subsection 4.3 and use the realistic data
as described in Section 3 as an input. In Section 5 the effects of the different
situations on the output and the tractability of the model will be presented and
thoroughly discussed.

4.5 Theoretical Framework Multi-period Model

In this Subsection, I will present the theoretical framework of how to combine
endcap allocation and sales promotions in a multi-period model.

4.5.1 Additional Notation

Some additions to Subsection 4.1 are needed to explain the multi-period model.

• E ⊂ B: The set of endcap displays.
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• Y ⊂ E ⊂ B: The set of rear endcap displays.

• Z ≡ E \ Y : The set of front endcap displays.

• R ≡ B \ E: The set of regular shelf-spaces.

• P ⊂ N : The set of product categories that are reduced in price because
of sales promotions.

• L ≡ N \P : The set of product categories that do not have a sales promo-
tions.

4.5.2 Endcap Allocation

In Figure 1 the endcap displays at the front and the rear of the shelves are
visualized by light-grey squares and dark-grey squares, respectively. For every
time period t, a set of product categories E will be displayed on the endcaps.
Note that the product categories which are selected to be displayed on the
endcaps are placed on the regular shelves as well. The front and rear endcaps are
added to the model as individual shelves with only one segment. The endcaps
have higher attractiveness than the regular shelf-spaces. Moreover, the rear
endcaps will have higher attractivenesse than the front endcaps (Tan et al.,
2018).

The new endcap segments that are added to the model will have a higher seg-
ment attractiveness fk than the regular shelf-spaces. Let’s say we have segment
p on shelf e where eεE and segment q on shelf r where rεR, then:

• fp > fq

In words, segment p which is on an endcap will have a higher attractiveness
than segment q which is on a regular shelf.

Moreover, the rear endcaps will have higher segment attractiveness than the
front endcaps. Let’s say we have segment g on shelf y where yεY and segment
h on shelf z where zεZ, then:

• fg > fh

The set E of product categories which are displayed on the endcaps changes
every time period t as endcap allocation is a short-term promotion technique.
Furthermore, the product categories that are displayed on endcaps in earlier
periods cannot be included in set E again for a specified period of time.

4.5.3 Sales Promotions

Some parameters in the model can be altered/fixed to investigate the effects of
sales promotions on total profit. Parameters such as the profit margin, ρj , the
expected demand, vj , and the impulse purchase potential, γj , for jεP can be
altered and fixed in such a way that a sales promotion in the form of a price
reduction is mimiced. The profit margin, ρj , and expected demand, vj , can be
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Figure 1: Planogram of a retail store with regular shelves and endcaps.

increased/decreased with different percentages to analyse the effects of offering
particular product categories on sale. Set P contains the product categories
which are put on sales, for these product categories the above mentioned vari-
ables will be altered to mimic a price promotion. As the product categories
which are put on sales often change every time period t in a retail store, the
set P will also change every time period t. Similar to the set of endcaps, the
product categories that are put on sale in earlier periods cannot be included in
set P again for a specified period of time. One can analyse both the scenarios
that product categories are offered on sale when placed on endcaps and when
not placed on endcaps. Comparing these two scenarios can retrieve information
on whether these promotional techniques strengthen each other when combined.

4.5.4 Multi-period Model

Promotion techniques such as endcaps and sales promotions are short-term deci-
sions that change every time period t. The product categories that are displayed
on the endcaps and the product categories that are on sale change every time
period t (often weekly). On the other hand, assortment planning and (regular)
shelf-space allocation are long-term decisions that do not change and are con-
sidered as given after the initial optimization. A multi-period model is proposed
to link short-term with long-term retail decisions.

For every time period t, a store with a layout as in Figure 1 will be optimized.
More specifically, several “different” stores are created and optimized, where
every store represents the store layout of a particular time period t. For the
first period (t = 1), the assortment planning, shelf-space allocation, endcaps
and sales promotions decisions will be jointly optimized by the optimization
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heuristic proposed by Flamand et al. (2018). The selected assortment and the
shelf-space allocation of the regular shelves (excluding endcaps) are frozen and
will not change in the remainder of the model as they are long-term retailing
decisions. For every time period thereafter (t > 1), the short-term retailing
decisions (endcaps and sales promotions) will be jointly optimized, given the
selected assortment and the regular shelf-space allocation from time period t =
1. The short-term decisions are optimized under the constraint that the product
categories displayed on endcaps and the product categories on sale in earlier
periods cannot be displayed on endcaps and put on sale again in later periods.
Again, note that the product categories which are displayed on the endcaps will
always be placed on regular shelves as well, meaning that the regular shelf-space
allocation never changes in this model after time period t = 1.

Unfortunately, due to time constraint it was not achievable to implement
the multi-period with the heuristic. However, the proposed multi-period model
is a good approach to include short-term promotion techniques such as endcap
allocations and sales promotions in the heuristic proposed by Flamand et al.
(2018) and is recommended for further research.

5 Results

In this Section, the results of the replication of the computational study in
Flamand et al. (2018) are presented and shortly discussed. Consecutively, the
results of the sensitivity analysis are presented and discussed.

Model APSA and the heuristic are coded in the JAVA eclipse environment
and solved using the IBM program CPLEX 20.1 The computational runs and
the runs for the sensitivity analysis were all made on a Dell Inspirion 7370 having
a Intel Core i7 8th Gen processor and 8GB of RAM.

I use normal elapsed time in seconds (abbreviated as Time in the tables)
instead of CPU(s) in all the replication and extension tables as it is complicated
to measure CPU(s) in Java.

5.1 Replication Computational Study

In this Subsection, I will present the replication results and compare them with
the results in Table 3, Table 4, Table 5 and Table 6 in Flamand et al. (2018).
The input data used for the replication part is described in Subsection 3.1.

Please note that there can be some irregularities in the trends of elapsed
time in the below presented tables. The irregularities are simply caused by the
fact that the data is generated randomly and the heuristic handles one dataset
better than the other.

Due to time constraints I decided to only run 3 instances instead of 10 and
to only run the first 4 sets. Including Set 5 and 10 instances per set for all the
tables would simply take too much time. The amount of considered shelves and
the amount of considered product categories for Set 1, Set 2, Set 3 and Set 4
are (30, 240), (40, 320), (50, 400) and (60, 480), respectively.
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The computational impact of using different neighborhood sizes (τ = 2, τ =
3 & τ = 4) are presented in Table 2. The elapsed times in seconds and the
optimality gaps for 3 instances per set are reported. The optimality gap is
defined as the gap between the objective of the continuous relaxation and the
objective of the final solution. For τ = 3 and τ = 4 the heuristic terminated
within 305 seconds for all instances. This is faster than the heuristic in Flamand
et al. (2018), where all the instances terminated within 592 seconds. This is due
to the fact that constraint 2 is not included in the models used in this paper.
As discussed in Subsection 4.2, constraint 2 is redundant and time consuming
and therefore removed from the heuristic.

For τ = 2, the heuristic terminates within 1000 seconds for almost all the
cases, except 2 out of the 3 instances of Set 4. In Flamand et al. (2018), almost
all instances are terminated because of a time limit of 1000 seconds. In both
results the elapsed time increases when the neighborhood size decreases, this
makes sense as fewer shelves are re-optimized per iteration.

Just like in Flamand et al. (2018), CPLEX (Model APSA) failed to solve
the problem within the preset time limit of 3600 seconds. The optimality gaps
reached after 3600 seconds are more or less similar to the optimality gaps in
Flamand et al. (2018). Logically, the optimality gaps increase as the number of
shelves and the number of product categories increase.

Table 2: Effect of neighborhood size on performance of the heuristic.
Set Inst Model APSA Heuristic Heuristic Heuristic

τ = 2 ε = 1
2
% τ = 3 ε = 1

2
% τ = 4 ε = 1

2
%

Time Gap(%) Time Gap(%) Time Gap(%) Time Gap(%)
Set1 1 3600 0.23 59 0.45 52 0.50 38 0.46

2 3600 0.09 77 0.30 55 0.07 57 0.48
3 3600 0.43 49 0.45 37 0.47 128 0.31

Set2 1 3600 0.56 46 0.47 123 0.50 112 0.44
2 3600 0.73 72 0.48 77 0.47 59 0.47
3 3600 0.49 115 0.44 119 0.38 332 0.45

Set3 1 3600 1.40 234 0.47 212 0.46 218 0.43
2 3600 1.27 188 0.37 218 0.47 223 0.44
3 3600 1.33 221 0.49 153 0.49 194 0.43

Set4 1 3600 1.99 754 0.38 299 0.47 221 0.46
2 3600 2.37 1000 0.54 219 0.50 305 0.46
3 3600 1.84 1000 0.63 194 0.46 268 0.49

In Table 3 the computational impact of different optimality gaps is presented
(ε = 1.5%, ε = 1.0%, ε = 0.5%). The elapsed time of most instances is slightly
lower than the elapsed time of the instances in Flamand et al. (2018). Again,
this is due to the fact that Constraint 2 is not included in the models used in
this paper. Naturally, elapsed time increases as the optimality gap gets tighter,
this is visible in both results. The results for model APSA are exactly the same
as reported in Table 2.

No affinity relations were used in Table 2 and Table 3. However, in Table 4
and Table 5 the different affinity relations are employed and the computational
impact of adding these affinity relations are presented. For every affinity relation
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Table 3: Effect of optimality gap on performance of the heuristic.
Set Inst. Model APSA Heuristic Heuristic Heuristic

τ = 4 ε = 3
2
% τ = 4 ε = 1% τ = 4 ε = 1

2
%

Time Gap(%) Time Gap(%) Time Gap(%) Time Gap(%)
Set1 1 3600 0.23 26 0.82 51 0.82 38 0.46

2 3600 0.09 30 0.66 27 0.94 57 0.48
3 3600 0.43 42 0.76 58 0.49 128 0.31

Set2 1 3600 0.56 39 1.04 57 0.94 112 0.44
2 3600 0.73 58 0.73 50 0.85 59 0.47
3 3600 0.49 57 1.06 78 0.88 332 0.45

Set3 1 3600 1.40 111 0.52 135 0.72 218 0.43
2 3600 1.27 151 0.89 150 0.59 223 0.44
3 3600 1.33 113 0.85 117 0.82 194 0.43

Set4 1 3600 1.99 167 0.83 148 0.94 221 0.46
2 3600 2.37 143 0.70 230 0.64 305 0.46
3 3600 1.84 169 0.80 149 0.89 268 0.49

type, 5 product pairs (j, j′) are randomly selected. For the same reason as
before, the elapsed times in the tables in this paper are slightly less than the
elapsed times in Table 6 in Flamand et al. (2018). Especially for the situation
where all affinity relations are included the elapsed times in this paper are
significantly shorter. There was no need to set a time limit as all instances
terminated within 773 seconds.

Table 4: Effect of affinity relations on performance of the heuristic.

Set Inst. No Affinity L H1

Time Gap(%) Time Gap(%) Time Gap(%)

Set 1 1 38 0.46 34 0.46 54 0.35
2 57 0.48 32 0.44 54 0.40
3 128 0.31 40 0.38 38 0.42

Set 2 1 112 0.44 111 0.49 113 0.47
2 59 0.47 108 0.44 131 0.38
3 332 0.45 99 0.30 101 0.44

Set 3 1 218 0.43 144 0.42 241 0.37
2 223 0.44 145 0.41 210 0.30
3 194 0.43 175 0.45 193 0.44

Set 4 1 221 0.46 266 0.50 419 0.46
2 305 0.46 373 0.35 368 0.46
3 268 0.49 325 0.39 177 0.38

5.1.1 Analysis of Assumptions

There are some assumptions in Flamand et al. (2018) that are rather ques-
tionable and important to note before discussing the results of the sensitivity
analysis. First, the objective function is the sum of weighted largest possible
profit, Φj , so the results cannot be interpreted as real profits. The model is

19



Table 5: Effect of affinity relations on performance of the heuristic.

Set Inst. H2 H3 (L,H1, H2, H3)

Time Gap(%) Time Gap(%) Time Gap(%)

Set 1 1 75 0.38 44 0.41 85 0.41
2 34 0.32 46 0.23 68 0.35
3 183 0.47 50 0.41 98 0.41

Set 2 1 176 0.36 145 0.44 254 0.31
2 87 0.46 124 0.48 227 0.46
3 104 0.45 190 0.47 270 0.46

Set 3 1 194 0.44 174 0.37 117 0.47
2 191 0.40 188 0.47 528 0.29
3 266 0.49 237 0.42 372 0.48

Set 4 1 439 0.20 248 0.42 773 0.19
2 529 0.25 411 0.43 836 0.36
3 422 0.31 283 0.35 331 0.47

developed specifically for the purpose to maximize this weighted sum and not
necessarily to maximize the “real” overall store profit. In the sensitivity analysis
I will not comment on the objective as overall store profit as it has no economic
value.

Second, the largest possible profit of product category j, Φj , is determined as
follows: Φj = γj×ρj×vj . In the paper it is mentioned that real data is used for
γj and ρj , but unfortunately this data is not given in the paper. Moreover, it is
not mentioned in the paper whether the profit margin of product category j, ρj ,
is gross or net profit margin. Also, the demand volumes, vj , are given in units
instead of in a currency amount. The high demand volumes, vj , of fast-movers
which are not fully compensated by smaller profit margins, ρj , cause excessively
high largest possible profits, Φj , for fast-movers. Therefore, the model depicts
fast-movers as more profitable product categories than is the case in reality. In
addition, the high demand volumes (in units) cause the objective to rise when
the attractiveness of the shelves is increased. The before mentioned reasons
make it impossible to interpret the objective function as “real” store profit
when realistic data is used. Also, Flamand et al. (2018) state that they use the
real profit margin of product category j, ρj , in their case study and that they
approximate the impulse purchase rate of product category j, γj . Unfortunately,
they do not present this data in their paper as well, so it is difficult for me to
analyse their assumptions for these parameters.

5.2 Senstivity Analysis Segment Attractiveness

In this Subsection I will discuss and interpret the results of the heuristic in the
four situations as described in Subsection 4.4. The selected product categories
and the allocated shelves of these product categories can be found in Table 6 for
Situation 1 and 2, and Table 7 for Situation 3 and 4. The outcome of Situation
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3 is visualized in a planogram and can be found in Figure 2. The objective,
elapsed time, optimality gap and the amount of selected product categories are
presented in Table 8.

The following affinity relations are used in all four situations:

• Allocation disaffinity L: Croissants (8) & Bleach (83), Popcorn (49) &
Vegetables (63), Cigarettes (23) & Baby Food (99), Cigars (24) & Diapers
(100).

• Assymmetric assortment affinity H2: if Cake decorations (96) also Cake
mixes (98), if Cake decorations (96) also Cakes (40), if Pasta sauce (92)
also Pasta (50), if Salad dressings (90) also Vegetables (50).

• Allocation affinity H3: Milk (34) & Yoghurt (67).

5.2.1 Situation 1

In Situation 1, every shelf has a shelf attractiveness coefficient vector equal
to [0.50, 0.50, 0.50]. When I ran Situation 1 without a time constraint, the
heuristic did not even terminate within 24 hours, it got stuck at one of the first
iterations. The heuristic probably got stuck due to some symmetry imposed by
equal attractiveness coefficients of the shelf segments fk. I set a time limit of
100 seconds per iteration, because we see convergence for all iterations after 100
seconds. The selected assortment and the shelf-space allocation can be found
in Table 6.

Almost all, 19 out of the 20 fast-movers are included in the assortment.
This is due to the fact that these product categories all have a relatively high
largest possible profit, Φj , because they all have high demand volumes, vi. For
a retailer it is important to include fast-movers in the assortment, as high-sales
products are said to increase customer loyalty (Flamand et al., 2018). As all
the shelf segments have the same attractiveness, there is no pattern in which
product categories are assigned where. The product categories that are selected
by the heuristic are just the 60 product categories with the highest largest
possible profit, Φj . So when all the shelf segments have equal attractiveness,
the heuristic just randomly assigns the 60 most profitable product categories to
the shelves.

5.2.2 Situation 2

In Situation 2, every shelf has a shelf attractiveness coefficient vector equal to
[0.55, 0.45, 0.50]. 19 out of the 20 fast-movers are selected in the assortment
in Situation 2. In addition, we see that most of the fast-movers and especially
the fast-movers with the highest demand volumes (e.g. bread, soda, coffee) are
allocated to the segments near the checkouts, as these segments have the highest
attractiveness in Situation 2. Allocating fast-movers to segments with a high
attractiveness is beneficial in this model as attractiveness and largest possible
profit, Φj , are linearly related in the objective function. As explained earlier,
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the largest possible profit, Φj , is often excessively larger for fast-movers than for
the other product categories, because the demand volumes, vi, of fast-movers
are so much larger. This is not very intuitive as fast-movers often have small
profit margins, but in our dataset the smaller profit margins do not compensate
for the much larger demand volumes.

The high-impulse product categories are often placed on the medium at-
tractive shelf segments as the most attractive spots are already taken by the
fast-movers. It does make sense for a retailer to allocate fast-movers to the
same shelf as high-impulse product categories. The fast-movers will attract the
customer to a particular shelf, coming across the high-impulse product cate-
gories, which might boost the sales of these product categories.

Table 6: Sensitivity Analysis: Allocated product categories per shelf Situation
1 & 2

Shelves Situation 1 Situation 2

Products Products

1 4, 66, 75, 91 34, 67, 72, 85
2 33, 59, 68, 81 4, 30, 58, 89
3 8, 24, 54, 93 36, 44, 74, 81
4 11, 23, 47, 82 8, 11, 54, 93
5 48, 77, 79, 83 65, 78, 83, 94
6 10, 28, 45, 88 41, 66, 71, 77
7 14, 17, 38, 85 16, 45, 48, 69
8 22, 36, 64, 65 9, 22, 68, 95
9 26, 30, 69, 72 13, 14, 35, 75
10 13, 21, 71, 94 17, 21, 28, 91
11 34, 67, 76, 89 26, 70, 79, 88
12 9, 78, 86, 95 27, 33, 47, 82
13 35, 41, 63, 90 10, 38, 63, 76
14 32, 58, 70, 92 24, 32, 50, 90, 92
15 16, 27, 44, 74 23, 59, 64, 86

5.2.3 Situation 3

In Situation 3 there are 3 different levels of shelf attractiveness as described in
Subsection 4.4. In Figure 2 the selected product categories and their allocated
shelf-spaces are visualized in a planogram. The green coloured shelves have
the highest attractiveness coefficient vector, the orange shelves the medium
attractiveness coefficient vector and the yellow shelves the lowest attractiveness
coefficient vector. The product categories in a circle are fast-movers, product
categories in a triangle are high-impulse categories and product categories in
a rectangle are regular product categories. Please note that I designed this
particular retail shop, but the shelves can be placed in any other preferred
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composition as well. Which product categories are allocated to which shelves is
also presented in Table 7

Figure 2: Planogram of Situation 3

Again, 19 out of the 20 fast-movers are selected in the assortment. 14 out
of the 17 selected fast-movers are allocated to shelf 11 - shelf 15, the 5 most
attractive shelves in this situation. Remarkable is the fact that the remaining
spots on the high attractiveness shelves are not filled up by high-impulse product
categories but rather by high-volume product categories that just did not make
it to the fast-movers group (e.g. Yoghurt (67) & Peanut Butter Jelly (74)). It
would be better for the retailer to divide the fast-movers over all the shelves and
surround them by high-impulse product categories. Fast-movers can attract the
customers to certain shelves where they hopefully buy high-impulse products
after encountering them.

Another interesting observation is the fact that no fast-movers or high-
impulse product categories are allocated to the low attractiveness shelves. This
is due to the fact that fast-movers and high-impulse product categories all have
a high largest possible profit, Φj . Fast-movers because of the high demand
volumes, vi, and high-impulse product categories because of the high impulse
purchase potential, γj .
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Noteworthy is the fact that Pasta sauce (92), a fast-mover, is not placed
on a high attractiveness shelf, this is possibly explained by the fact that Pasta
sauce (92) has an assymmetric assortment affinity relation with Pasta (50).

5.2.4 Situation 4

In Situation 4 there are 5 different levels of shelf attractiveness as described in
Subsection 4.4. In Table 7 we see that again 19 out of the 20 fast-movers are
selected in the assortment. 9 of these fast-movers are allocated to the 3 most
attractive shelves. In contrast to Situation 3, a high-impulse product category
(Chewing Gum (13)) is allocated to one of the most attractive shelves together
with fast-movers. Remarkable is the fact that 11 of the fast-movers are allocated
to the 3 medium-high attractiveness shelves, more than allocated to the 3 high
attractiveness shelves. This could be explained by the fact that that Milk (34),
a fast-mover with very high demand volume, has a allocation affinity relation
with Yoghurt (67), which takes the place of other fast-movers.

Table 7: Sensitivity Analysis: Allocated product categories per shelf Situation
3 & 4

Shelf Situation 3 Situation 4
Products Attractiveness Products Attractiveness

1 4, 8, 24, 59 Low 4, 8, 24, 68 Low
2 14, 16, 30, 78, 89 Low 30, 54, 89, 93 Low
3 31, 41, 58, 93 Low 11, 59, 73, 78, 81 Low
4 11, 28, 33, 83 Low 14, 16, 86, 91 Low-Medium
5 65, 68, 81, 94 Low 46, 65, 74, 79 Low-Medium
6 22, 50, 54, 77, 92 Medium 4, 10, 83, 85 Low-Medium
7 21, 47, 48, 70 Medium 21, 47, 48, 88 Medium
8 13, 72, 88, 91 Medium 38, 41, 66, 69 Medium
9 38, 66, 69, 85 Medium 28, 70, 75, 76 Medium
10 10, 75, 76, 82 Medium 22, 71, 72, 95 Medium-High
11 26, 27, 74, 95 High 35, 50, 82, 92, 94 Medium-High
12 9, 36, 63, 90 High 36, 63, 64, 90 Medium-High
13 17, 23, 64, 86 High 17, 34, 44, 67 High
14 34, 44, 67, 71 High 26, 32, 45, 77 High
15 32, 35, 45, 79 High 9, 13, 23, 27 High

5.2.5 Model Tractability

In Table 8 some parameters on the performance of the model are presented.
Some model parameters change significantly as the variety in the attractiveness
of shelves increases. The objective increases quite sharply when the variety in
attractiveness increases. In this model, it seems like more variety in the attrac-
tiveness of shelves is beneficial for the objective of the problem. As explained
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earlier in Subsection 5.1.1, this does not imply that more variety in shelf attrac-
tiveness is beneficial for total store profit in reality.

Secondly, the elapsed time is decreasing sharply as the variety in attrac-
tiveness of shelves increases. Situation 1 ran for more than 24 hours but did
not terminate, the algorithm got stuck at the first iteration of 4-shelf APSA. I
decided to set a time limit of 100 seconds per iteration, as this is approximately
the point we see convergence of the objective. With the time limit the heuris-
tic terminated in 530 seconds, so it seems like the first iteration of APSA was
the bottleneck. The heuristic (especially the first iteration of 4-shelf APSA)
has trouble solving situations where the attractiveness of the shelves are very
similar, like in Situation 1 and Situation 2. The heuristic terminated after ap-
proximately 3.2 hours in Situation 2. Please note that no time limit for the
iterations of Algorithm 2 was set in Situations 2, 3, & 4. Just like in Situation 1
the heuristic was stuck quite long at the first iteration in Situation 2, but man-
aged to get out within reasonable time. Situation 3 terminated withing an hour
and Situation 4 even terminated within 6 minutes. Having larger differences
in shelf attractiveness, like in Situation 3 and Situation 4, seems to benefit the
speed of the heuristic.

Lastly, the optimality gap shows a positive relation with the variety in shelf
attractiveness. The optimality gaps of the 4 situations in the sensitivity analysis
are significantly larger than the presented optimality gaps in the replication part.
This is due to the algorithm traversion stopping condition. The runs in all the
4 situations were done with the criteria to stop the heuristic after all shelves
are traversed 25 times. A remarkable observation is the fact that the optimality
gap is better in Situation 1 where a time limit of 100 seconds for every iteration
is set. It seems beneficial for the final outcome that a time limit is set and that
the heuristic does not get stuck at the first iteration for too long.

Table 8: Heuristic performance in all 4 situations.

Situation 1 Situation 2 Situation 3 Situation 4

Objective 7356.6 7769.77 10697.00 11259.12
Gap (%) 0.49 2.40 2.85 3.00
Time(s) 530 11686 3427 351
#Products 60 61 62 62

5.2.6 Vertical Interpretation of Model

The model can be interpreted vertically as well. In our model we have shelf
attractiveness coefficient vector [fk1, fk2, fk3], where fk1 is the attractiveness
coefficient of the shelf segment near to the checkouts, fk2 the attractiveness
coefficient of the middle segment and fk3 the attractiveness coefficient of the
segment furthest away from the checkouts. The shelf attractiveness coefficient
vector [fk1, fk2, fk3] could also be interpreted vertically, where fk1 would be the
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highest segment on the shelf, fk2 would be the middle segment of the shelf and
fk3 would be the lowest segment of the shelf. It is generally agreed on that
shelves on eye level are best visible and generate the best sales (Adam et al.,
2017). A retailer could set fk2 higher than fk1 and fk3 to model this assumption.
The model is quite versatile as the model works exactly the same in this case,
but is interpreted differently. This is convenient for retailers as they will be able
to customize the model according to their own store layout, without having to
adjust the mathematics behind the model.

Another option is to incorporate both vertical and horizontal segments for
every shelf. One would need to replace the 3x1 shelf attractiveness coefficient
vector by a 3x3 shelf attractiveness coefficient matrix. Additionally, some of the
constraints of APSA and SSP need to be adjusted accordingly. Unfortunately,
this was not possible in this paper due to time constraints, so I recommend it
for further research.

6 Conclusion

Retail shops and supermarkets are daily part of life for billions of people in this
world and immensely important for the world economy. Assortment planning
and shelf-space allocation are critical decisions for all these retailers to maximize
profit and reach other goals. Therefore it is of high importance that integrated
models such as the heuristic proposed in Flamand et al. (2018) keep being
developed and are tested thoroughly.

For the replication part, one main common tendency can be derived from
the obtained elapsed times of the instances. The elapsed times in this paper
are slightly lower than the elapsed times in Flamand et al. (2018). The reason
behind the slight difference is the exclusion of redundant constraint 2. I tested
the heuristic including constraint 2 and this indeed increases the elapsed time.

From the shelf segment attractiveness sensitivity analysis it is evident that
more variety in shelf segment attractiveness significantly increases the objective
of the model. Please note that this cannot be interpreted as an increase in over-
all store profit, as explained in Subsection 5.1.1. Moreover, I conclude that in
this model fast-movers are often allocated to shelves with a high attractiveness
coefficient. Sometimes a high-impulse product category is added to high attrac-
tiveness shelves, but not very often. In a real world situation, it would probably
be better to spread the fast-movers more evenly throughout the store and sur-
round them by high-impulse product categories to obtain maximum customer
footprint.

Some conclusions about the computational impact of varying the shelf at-
tractiveness can be drawn as well. The more variety in the shelf attractiveness
the easier it is for the computer to solve the model. The heuristic has trouble
when there is too much symmetry imposed in the attractiveness coefficient vec-
tors. The size of optimality gap is affected by the variety in shelf attractiveness
as well: The more variety, the larger the optimality gap.

For further research I recommend testing a even more realistic data set with
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more realistic affinity relations. For example, in Situation 3 Bleach (83) and
Eggs (33) are allocated to the same shelf, this is not a good reflection of a real
world supermarket. If not constrained by time, it would be good to analyse our
realistic dataset with more, realistic affinity relations. In addition to the affinity
relations, it would be good to implement the theoretical framework as described
in Subsection 4.5 in the heuristic proposed by Flamand et al. (2018). A multi-
period model is a good approach to combine short-term retailing decisions as
sales promotions and endcap allocations with long-term retailing decisions as
assortment planning and shelf-space allocation. I believe that this multi-period
model comes close to reality.

27



References

Adam, A., Jensen, J. D., Sommer, I., & Hansen, G. L. (2017). Does shelf space
management intervention have an effect on calorie turnover at super-
markets? Journal of Retailing and Consumer Services, 34, 311–318.

Amrouche, N., & Zaccour, G. (2007). Shelf-space allocation of national and
private brands. European Journal of Operational Research, 180 (2), 648–
663.

Anderson, E. E. (1979). An analysis of retail display space: Theory and methods.
Journal of Business, 103–118.

Anderson, E. E., & Amato, H. N. (1974). A mathematical model for simul-
taneously determining the optimal brand-collection and display-area
allocation. Operations Research, 22 (1), 13–21.
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A Appendix

A.1 SSP Model

For the initialization procedure (Algorithm 1) the single-shelf variant of model
APSA, called SSP is needed. The objective function and the constraints are
defined as follows:

Maximize
∑
kεKi

∑
jεN\S

Φj
fkskj
ck

(3a)

subjectto
∑
jεN\S

skj ≤ ck, ∀kεKi (3b)

ljwj ≤
∑
jεN\S

skj ≤ ujwj , ∀jεN \ S (3c)

φjykj ≤ skj ≤ min(ck, uj)ykj , ∀jεN \ S, kεKi (3d)

ykj ≤ wj , ∀jεN \ S, kεKi (3e)

wj ≤
∑
kεKi

ykj ∀jεN \ S, kεKi (3f)

qkj ≥ ykj + yk+1,j − 1, ∀jεN \ S, kεKi \ {βi} (3g)

∑
jεN\S

qkj ≤ 1, ∀kεKi \ {βi} (3h)

wj + wj′ ≤ 1, ∀(j, j′)εL (3i)

wj − wj′ = 0, ∀(j, j′)εH1 (3j)

wj ≤ wj′ , ∀(j, j′)εH2 (3k)

yk1j + yk2j ≤ 1, ∀(k1, k2, j)εR|k1, k2εKi (3l)

w, y, q binary, s ≥ 0. (3m)
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A.2 Guide to Code

In this Section of the Appendix I will briefly explain the different classes and
functions used in my Java code. Please note that there are additional comments
present in the code files.

Class Main: In the main class you can run the heuristic. In the main func-
tion of the main class there are some functions called from other classes which
can set the data for the computational study or the sensitivity analysis. If you
want to run the heuristic the functions under the comment ”Use this meth-
ods to generate the variables of the computational study” should be run to
generate the data. Next, you should run the 2 functions of the algorithms Al-
gorithm1new.initializationProcedure and Algorithm2.reoptimizationProcedure if
you want to run the heuristic. The computer will automatically print the ob-
jective, optimality gap and the decision vairables. Furthermore, there are some
methods that help printing the output in .txt files.

Class General: In this class we have a lot of class variables that are used
as input for the heuristic. When the function to set the input data are called,
these functions update the class variables in this class. The algorithms again
call this class variables.

Class DecisionVar: This is an object class that stores the values of the deci-
sion variables. After every iteration the variables in this class are updated. In
this way we can always access the decision variables and the objectives.

Class APSAnew: In this class the APSA model for 4 shelves is coded with
IBM CPLEX. At the beginning of the class the right input variables needed to
optimize the 4 shelves are extracted from the total input data. The objective,
constraints and functions to update the DecisionVar object can be found in this
class.

Class SSPcopy: In this class you find the code of the single-shelf variant
of APSA, SSP. This is very similar to the APSA class but this model works for
one shelf only.

Class APSAregular: In this class the full model APSA is coded. It is similar
to APSA and SSP class but for all shelves.

Class APSAcontinuousNew: In this class the continuous relaxtion of the
APSA model is coded. This is used in algorithm 2 to calculate the optimality
gap.

Class Algorithm1new: Algorithm 1 of the proposed heuristic by Flamand et
al. (2018) is coded in this class. Function Algorithm1new.initializationProcedure
runs Algorithm 1.
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Class Algorithm2: Algorithm 2 of the proposed heuristic by Flamand et al.
(2018) is coded in this class. Function Algorithm2.reoptimizationProcedure runs
Algorithm 2.

Class HelpMethods: In this class there are some functions that are needed
to perform some of the steps in the algorithms. For example, there is a function
that removes zeroes from vectors, a function that sorts vectors in decreasing
order and a function that reverses the order of a vector. These methods are
called in Algorithm 1 and Algorithm 2.

Class RealLifeData: This class sets the variables in the General class to
the data needed to run the sensitivity analysis.
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