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Abstract

In this paper, we examine the forecasting performance of the tail risk measures Conditional

Value-at-Risk (CVaR) and conditional expected shortfall (CES) for variants of the Autoregres-

sive Moving Average (ARMA) model in combination with Generalised Autoregressive Condi-

tional Heteroskedasticity (GARCH) models. For the two simulation studies, we use five simula-

tions fitted to the GARCH, AR-GARCH, GJR-GARCH, and Exponential GARCH (EGARCH)

model. For the first simulation study, we compare the GARCH and AR-GARCH models by

their bias, Root Mean Squared Error (RMSE), coverage, and interval lengths for three different

simulations. For the second, we determine the best estimation model by estimating the five sim-

ulations by the GARCH specification with corresponding structure and also by the other four

considered estimation models. We assess their accuracy by their RMSE. We find that either

the GJR-GARCH or GARCH model is the best estimation model, depending on the thickness

of the tail. For the application, we consider a full period and zoom in on two shorter periods

characterised by low and high volatility. To conduct the research, we use six different indices,

which all represent the returns in a particular country. We conclude that the AR-GARCH model

is the best for the full period, while for the low- and high-volatility periods, the best perform-

ing model depends on the index. We do, however, find that the more straightforward GARCH

model performs better in the high-volatility period than in the low-volatility period and that the

conditional coverage is not a reliable measure to assess the models in the high-volatility period.
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1 Introduction

In this research, we study confidence intervals of conditional tail risk measures to assess their

accuracy in variations of financial time series models, building upon the research of Hoga (2019).

Tail risk indicates unanticipated high or low returns due to an unexpected event, which a model

fails to capture. The left tail reflects the most extreme downside performance (losses), while

the right tail reflects the extreme upside (gains). Tail risk is often hard to capture in a model,

especially in times of crisis. As most investors are more concerned about their potential losses,

we focus on modelling the conditional left tail in this research.

In order to capture the tail risk, we consider two well-known risk measures, Conditional

Value-at-Risk (CVaR) and conditional expected shortfall (CES). To clarify, CVaR and CES are

the conditional counterparts of the risk measures VaR and ES. VaR is the maximum loss that

could occur over a given holding period with a pre-specified confidence level. ES is known as

tail VaR, which calculates the expected loss in the tail of the distribution beyond the VaR.

Financial returns are often dependent on their previous values, indicating the presence of serial

dependence. This serial dependence is also present when determining VaR and ES. Thus in

order to forecast VaR and ES, we require them to rely on past returns. The CES and CVaR

measures take into account the serial relation of the returns, representing the VaR and ES

measures conditional on the past returns.

Accurately estimating and forecasting CVaR and CES are fundamental for risk and portfolio

managers. It helps them to assess the downside risk of a given stock or portfolio. In practice,

stocks with low CVaRs indicate low tail risk, resulting in lower returns, while high-risk stocks

often have higher returns due to a risk premium compensating for the higher risk. For investors,

especially portfolio managers, this results in a risk-return trade-off when deciding on which

stocks to include in their portfolio.

In risk management, the reduction of exposure to potential risks, risk mitigation, is of im-

portance. Investors may use tail risk hedging to reduce their overall portfolio risk, aiming at

maximizing their long-term returns while accounting for short-term costs. Essentially, they give

up a bit of expected return in exchange for protection against a market crash. Consequently,

they do not have to adjust their risk and return expectations after a market crisis. Nowadays,

banks already calculate CES for their own risk assessment and in order to set capital reserves.

However, estimation remains precarious, tail risk measures are in general not easily captured in

a model (Danielsson et al., 2016).

For the estimation and forecasting of the risk measures, we first apply Autoregressive Moving

Average (ARMA) models to mimic the univariate residuals and filter out the serial dependence

that is present in financial returns. We then combine this with different Generalised Autoregres-

sive Conditional Heteroskedasticity (GARCH) models, resulting in different ARMA-GARCH

specifications to model the log-return data. Next, we use the Weissman (1978) estimator and

extreme value index estimators to estimate the risk measure of the filtered residuals. Afterwards,

we quantify the uncertainty of the estimation by confidence intervals of the CVaR and CES esti-

mators to judge the accuracy of the risk measure estimates. We determine both the theoretical

and practical performance of the models by simulations and applications, respectively.

In order to determine the best forecasting method, we formulate the following research
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question: Does the usage of ARMA-GARCH instead of GARCH models lead to an improvement

in forecasting performance of the CES and CVaR risk measures?. We expect that more complex

models, like the GJR-GARCH, perform better as they are able to capture the asymmetric

reaction to positive and negative shocks. We find that the usage of the AR-GARCH model

often leads to an improvement in forecasting accuracy, while the AR-GJR-GARCH and AR-

EGARCH do not lead to better forecasts. Furthermore, based on the simulations, we obtain

that the GJR-GARCH should, theoretically, be the best model.

After establishing which models work best in general, we broaden the research by distin-

guishing between model performance in low- and high-risk periods. For this, we investigate the

period of the COVID-19 crisis and the period beforehand to determine whether the performance

of models differ per sample. We pick the COVID-19 crisis because the fear, uncertainties and

related confinement measures that have come with it, have caused an unexpected contraction in

economic activities, which led to a fall in stock market indices and an increase in their volatility

(Omari et al., 2020). In addition, there is little published research on the COVID-19 crisis in

combination with tail risk measures. This paper can thus provide some new insights into risk

forecasting. We, therefore, state the following second research question: Does the forecasting

performance of the risk measures differ in periods of low and high volatility? We expect to find

a distinct difference between the forecasting performance in low and high periods of volatility,

whereby different models perform the best. The expectations result from the idea that low- and

high-volatility influence returns differently. In periods of low volatility, we expect a low number

of tail events, resulting in thinner tails on both sides. Therefore, we expect that in low-volatility

periods, models that are less persistent in capturing the tail risk might provide forecasts that

are just as good as models that focus more on capturing the distribution’s tails. Due to the low

amount of tail events in the low-volatility period, it easier to capture and forecast them.

On the other hand, in periods of high volatility, we expect more shocks, both positive and

negative, because of the uncertainty of the market during these periods. Ghysels et al. (2005)

argue that positive shocks have a more considerable overall impact on the conditional mean of

returns, take longer to be incorporated into the conditional variance, and are significantly more

persistent than negative shocks. The latter accounts for the persistent nature of the conditional

variance process. Surprisingly, negative shocks have a larger initial effect on the variance of

the returns, though it be transitory. We thus expect that in periods of high volatility, more

shocks can potentially cause tail events. This consequently results in fatter tails, for both the

left as well as the right tail. This expectation is already partly justified by Agarwalla et al.

(2021), which examines the impact of COVID-19 on the behaviour of the tail risk. Additionally,

we expect that high volatility results in higher return, compensating for the higher volatility.

The forecasting of the tail risk becomes more important because more of the observations are

situated in the tails. Therefore, a model that is more focused on the tail is likely to perform

better in this period. Additionally, we expect that in the high-volatility period, the sign of the

shocks becomes more critical, a positive shock would possibly influence the volatility less than

a negative shock. As the COVID-19 period consists of large negative shocks, we expect the

models that account for this difference in reaction to certain shocks to outperform.

We find, however, that the results are not in line with our hypothesis. We learn that the
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best models for low- and high-volatility periods do not differ much for each index and that the

high-volatility period is overall more difficult to capture by all the considered models.

The remainder of this paper is as follows; firstly, we present a literature review in Section

2, followed by Section 3 with a visualization of the data. Subsequently, the methods used are

described in Section 4. In order to gain an understanding of the capability of the models under

realistic - and controllable - circumstances, a simulation study is performed, which can be found

in Section 5. Afterwards, we judge the usefulness of the through applications discussed in Section

6. Finally, Section 7 presents the conclusion and discussion.

2 Literature

This research builds on Hoga (2019). The paper examines the forecasting accuracy of the risk

measures CVaR and CES by establishing their confidence intervals. The advantage of CES is

that it gives a completer picture of tail risk compared to CVaR, namely it rewards diversification,

hereby not encouraging excessive risk-taking (Hoga, 2019). Additionally, according to Taylor

(2019), many regulatory frameworks focused on the future put more emphasis on CES than

CVaR.

Firstly, in Hoga (2019), the ARMA-GARCH model is used to filter out the serial dependence

in the financial returns, after which the paper uses Extreme Value Theory (EVT) on the filtered

residuals to estimate CVaR and CES. For the GARCH innovation terms, only the heavy-tailed

characteristic is considered without making specific parametric distribution assumptions, fol-

lowing Chan et al. (2007). The advantages of this approach are that it is applicable regardless

of the actual distribution of the GARCH innovations and enables one to provide VaR and CES

intervals. To take into account the heavy-tailed characteristic, we consider two possible estima-

tion methods; the Laplace and Gaussian Quasi-Maximum Likelihood estimation (QMLE). The

first one is used when no fourth moment can be detected in the innovations, suggesting that

the innovation terms have thicker tails and follow a skewed-t distribution. It therefore models

the fat-tailed feature of a lot of financial market data (Xuan et al., 2017). One performs the

Gaussian QMLE when at least four moments are present, indicating asymptotic normality of

the innovation terms.

In addition, the Weissman (1978) estimator and an extreme value index for a subsample of

the largest residuals are required to provide estimates of the error terms. The two extreme value

estimators used in this research are the Hill (1975) estimator and the Moments Ratio (MR)

estimator of Danielsson et al. (1996). In order to estimate them, Hoga (2019) determines the

beginning of the tail indicated by the top k observations of the data, following the suggestion in

Danielsson et al. (2016). Finally, the confidence intervals are constructed in two different ways;

one based on a normal approximation and one on self-normalised convergence, as proposed in

Shao (2010). Some advantages of the latter are that it is easy to implement as it does not

require user-chosen parameters and has good finite-sample properties, in contrast to the various

bootstrapping methods like the residual subsample bootstrap proposed in Spierdijk (2016). This

approach imposes minimal conditions and allows for heavy-tailed and skewed error distributions,

with and without a fourth moment, hereby having the advantage of not having to check the

distribution of the error terms. Additionally, this method produces confidence intervals with
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accurate coverage, even when other methods fail. However, we have decided not to dig into

this method and leave it for further research given its complexity and inefficiency, as noted in

Spierdijk (2016).

Hoga (2019) performs a simulation and an application to an empirical data set. From the

simulation, Hoga (2019) concludes that the data-driven choice of k leads to good estimates for

CVaR and CES in terms of coverage, the spread of their confidence intervals and Root Mean

Squared Error (RMSE). Additionally, the confidence intervals based on self-normalisation seem

to fit the simulated data better. The application is used to determine the better choice of

GARCH model, the AR(1)-GARCH(1,1) or the GARCH(1,1). For this, Hoga (2019) measures

the absolute performance of the forecasting models by examining the distribution of CVaR

violations and by performing two backtests. Their relative performance is assessed using scoring

functions, the quantile score of Giacomini & Komunjer (2005) and the asymmetric Laplace (AL)

score function of Taylor (2019). A benefit of the AL score function is that it jointly evaluates

CVaR and CES. The paper concludes that the AR(1)-GARCH(1,1) leads to better forecasting

performance for both CVaR and CES.

As Hoga (2019) shows that the ARMA-GARCH model performs better than the GARCH

model, we build upon this result by introducing alternative ARMA-GARCH models. Possible

options for the GARCH component are stated in Horvath & Šopov (2016). Horvath & Šopov

(2016) examine how different GARCH models capture tail risk by using EVT to estimate the tail

index, which is a characteristic of the tail behaviour for a given distribution. Horvath & Šopov

(2016) inspect different GARCH models with a normal distribution and Student’s t-distribution

for the residuals. The GARCH models evaluated are the simple GARCH, Exponential GARCH

(EGARCH) model of Nelson (1991) and GJR-GARCH model of Glosten et al. (1993). The

EGARCH model describes different effects for positive and negative innovations on volatility,

while the GJR-GARCH model is a simplification of the EGARCH model, which still allows the

estimation of the asymmetry effect. Contrary to Hoga (2019), the tail index, which characterises

the shape of the tail, is estimated by the modified Hill method introduced by Huisman et al.

(2001). The modified Hill uses weighted least squares regression with weight 1√
k

on all the Hill

estimates, resulting in assigning a higher weight to an order statistic higher in the tail. This

weighting makes the calculation robust to threshold selection and less dependent on the choice

of k (beginning of the tail).

By comparing the simulated distribution of the tail index and the originally estimated ones,

Horvath & Šopov (2016) argue that for the normal distribution of the innovations, the fatness

of the tails of the actual stock return distribution is underestimated, making the application

for practical purposes difficult. In contrast, innovations with the Student’s t-distribution better

capture the tail shape. The paper concludes that models with a Student’s t-distribution for the

error term are preferable in modelling tail risk, especially for the EGARCH model. Because

of these findings, we are considering the same GARCH specifications. For the estimation of

the tail indexes, we are not implementing the modified Hill method because, as already stated,

Hoga (2019) introduced a method to find the optimal choice of k, which makes the modified Hill

method unnecessary.

Paulauskas & Vaičiulis (2017) explain the generalisation of the Hill and MR estimator.
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Paulauskas & Vaičiulis (2017) show that the new estimators have a better asymptotic perfor-

mance than the classical ones, whereby especially the generalised MR estimator gives improved

estimation results. Nevertheless, in this paper we use the original MR estimator instead of the

generalised version.

3 Data

The paper of Hoga (2019) uses the log-returns of six global indices, DJIA and NASDAQ for

North America, Nikkei 225 and Hang Seng Index (HSI) for Asia, and CAC 40 and DAX 30 for

Europe, for the time period of 01/01/1997 to 31/12/2016 (≈ 5000 observations, varying from

index to index). The raw closing prices are obtained from the supplemental material in Hoga

(2019), which uses the same indices and time period. The sample period contains several events

causing high volatility, namely the burst of the internet bubble (2000-2002), 9/11 (2001) and

the financial crisis of 2007-2008. The empty observations are removed and the remaining data

are transformed into log-returns.

The second research question demands a closer look at the difference in forecasting perfor-

mance of the risk measures between low- and high-volatility periods of the different models. To

maintain comparability, we use the same indices as for the first research question, except for

DJIA, as this index can not be extracted from Yahoo Finance. The closing prices of the re-

maining indices are obtained via Yahoo Finance, and we perform the same data transformations

as for the first research question. For the high-volatility period (COVID-19 period), we take

the still ongoing COVID-19 crisis from 01/03/2020 to 30/04/2021 (≈ 300 observations), while

for the low-volatility period (pre-COVID-19 period), we take the period beforehand of a similar

length, from 01/01/2019 to 28/02/2020. In order to assess the forecasting performance of both

periods, we apply a rolling window with an estimation window of 1000 observations. Conse-

quently, the entire sample period consists of the period 01/01/2011 till 30/04/2021 (≈ 2000

observations). The descriptive statistics for the considered low- and high-volatility period are

given in the following two tables, where the low-volatility period is shown in Table 1 and the

high-volatility period in Table 2.

Table 1: Descriptive statistics of the log-returns ×102 of stock indices for period January 1, 2019 -
February 28, 2020

Stock index Obs Mean St.Dev. Max Min Skewness Kurtosis JB

NASDAQ 292 0.088 1.048 4.172 -4.723 -0.883 6.247 166.22

Nikkei 278 0.020 0.956 2.578 -3.738 -0.393 4.584 36.209

HSI 286 0.004 1.039 3.835 -2.941 -0.207 4.087 16.111

CAC 40 297 0.039 0.914 2.688 -4.025 -1.119 6.381 203.450

DAX 30 293 0.041 0.970 3.314 -4.089 -0.840 5.8377 132.798

Note. All Jarque-Bera statistics are significant on a 1% significance level.
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Table 2: Descriptive statistics of the log-returns ×102 of stock indices for period March 1, 2020 - April
30, 2021

Stock index Obs Mean St.Dev. Max Min Skewness Kurtosis JB

NASDAQ 294 0.169 2.156 8.935 -13.149 -0.972 10.722 776.78

Nikkei 286 0.108 1.554 7.731 -6.273 0.147 7.414 233.212

HSI 287 0.040 1.467 4.925 -5.720 -0.457 4.794 48.497

CAC 40 297 0.058 1.897 8.056 -13.098 -1.288 13.626 1479.408

DAX 30 294 0.083 1.925 10.414 -13.055 -0.970 13.915 1505.635

Note. All Jarque-Bera statistics are significant on a 1% significance level.

First of all, we find that the returns in the COVID-19 period, shown in Table 2, are higher

than those during the pre-COVID-19 period in Table 1. This can be explained by the higher

volatility in the COVID-19 period, as higher volatility results in higher risk and consequently in

higher return on average. The observed higher volatility is also characterised by the obtained

higher standard deviation. Secondly, we observe a wider spread between the minimum and

maximum return during the COVID-19 period. Again, this confirms our hypothesis of higher

volatility during this specific period. Thirdly, all the returns have negative skewness for both

time periods, except for Nikkei in the COVID-19 period. Both skewness and kurtosis are far

away from their normal values of 0 and 3, respectively. The negative skewness indicates that

market declines occur more often than market increases, while the positive skewness suggests

more large positive returns in comparison to negative returns. Note that the skewness is, on

average, a bit more negative for the COVID-19 period than for the pre-COVID-19 period. We

thus observe that for most indices the COVID-19 crisis causes more occurrences of negative

return than the period beforehand. Lastly, from the kurtosis and JB statistic, we observe that

the daily returns in both periods do not follow a normal distribution. The kurtosis and JB

values in Table 2 are higher than in Table 1, giving an indication of fatter tails, which is in line

with Agarwalla et al. (2021). We therefore replace the normal distribution of the residuals of

the GARCH model with the fat-tailed Student’s t-distribution.

4 Methodology

The following section describes the econometric techniques which are part of this research.

Firstly, Sections 4.1 and 4.2 describe the considered ARMA-GARCH models. Secondly, Section

4.3 specify the theoretical estimation of the CVaR and CES. Followed by the estimation in prac-

tice and the construction of confidence intervals in Sections 4.4 and 4.5. Finally, the simulation

study and application are described in Sections 4.6 and 4.7.

4.1 ARMA-GARCH model

In order to forecast CVaR and CES, we use an ARMA(p, q) model {Xi}i∈Z, where Xi is the

log-return data for a specific index, with GARCH(p, q) errors {εi}i∈Z. As we investigate the

left-tail in this research, we use the right-tail formulation for Xneg
i := −Xi, which is still an

ARMA-GARCH process driven by innovations Unegi := −Ui. For the remainder of this section,

Xneg
i and Unegi are denoted by Xi and Ui to make formulation easier.
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Following Hoga (2019), the model for {Xi} is:

Xi =

p̄∑
j=1

φ◦iXi−j + εi −
q̄∑
j=1

ϑ◦jεi−j , with (1)

εi = σiUi and σ2
i = ω◦ +

p∑
j=1

ψ◦j ε
2
i−j +

q∑
j=1

β◦j σ
2
i−j , (2)

where ω◦ ≥ 0, ψ◦j ≥ 0 (j = 1, ..., p), β◦j ≥ 0 (j = 1, ..., q) and Ui are independent, identically

distributed (i.i.d.), with E[U1] = 0 and Var(U1) = 1. The unknown true parameters are captured

in the vector:

θ◦ := (φ◦1, ..., φ
◦
p, ϑ
◦
1, ..., ϑ

◦
q , ω
◦, ψ◦1, ..., ψ

◦
p, β
◦
1 , ..., β

◦
q )>.

We make standard assumptions, explained in detail in Hoga (2019), to ensure stationarity and

invertibility of the model, and an unique stationary, causal solution to Equation (2). In order

to make sure that the estimators of the GARCH model are consistent, we use Laplace QMLE,

explained in Berkes et al. (2004) or standard Gaussian QMLE of Francq et al. (2004), dependent

on the number of moments for the innovation terms. We use the latter if the innovations have

a finite fourth moment.

For given parameters θ, the feasible estimators for εi and σ2
i that follow from these assump-

tions are as follows:

ε̂i(θ) = X̃i −
p̄∑
j=1

φiX̃i−j +

q̄∑
j=1

ϑj ε̂i−j(σ)

σ̂i
2(θ) = ω +

p∑
j=1

ψj ε̂
2
i−j(θ) +

q∑
j=1

βj σ̂
2
i−j(θ), (3)

where X̃i = Xi for i = 1, ..., n and 0 = X̃0 = X̃−1... and 0 = ε̂0(θ) = ε̂−1(θ) = ... and

0 = σ̂2
0 = σ̂2

−1 = ... as the estimation is based on sample X1, ..., Xn. The parameter θ gives

the generic parameter vector for the ARMA-GARCH model, with the estimated parameters θ̂.

We can filter out the residuals Ûi := Ûi(θ̂) := ε̂i(θ̂)/σ̂i(θ̂), where θ̂ is the estimated parameter

vector.

4.2 Alternative GARCH models

We extend the presented ARMA-GARCH model with different GARCH specifications. The

different GARCH models considered are mentioned in Horvath & Šopov (2016). The structure

of the ARMA-part stays the same as specified in Equation (1), while we alter the structure of

Equation (2) for each model. In order to obtain its estimates, we follow the same reasoning as

for Equation (3), where the second equation is the estimator of Equation (1).

One of the GARCH models we consider in this extension is the EGARCH model of Nelson

(1991), defined as:

ln(σ2
i ) = ω◦ +

q∑
j=1

β◦j ln(σ2
i−j) +

p∑
j=1

ψ◦j

[
|εi−j |
σi−j

− E

{
|εi−j |
σi−j

}]
+

p∑
j=1

γ◦j

(
εi−j
σi−j

)
, (4)
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where ω◦ is the true constant parameter, ψ◦j represents a symmetric effect, β◦j measures the

persistence in conditional volatility and γ◦j allows for asymmetries, also known as the leverage

effect. Additionally γ◦ < 0 indicates that negative innovation creates more volatility than

positive and the other way around. Due to the logarithmic form of the variance, the coefficients

ω◦, α◦j , β
◦
j or γ◦j can attain negative values while σ2

i stays positive.

We consider another extension of the GARCH model, namely the GJR-GARCH, which is

a simplification of the EGARCH model but still allows the estimation of the asymmetry effect

(Glosten et al., 1993). The conditional variance is modelled as follows:

σ2
i = ω◦ +

p∑
j=1

ψ◦j ε
2
i−j +

q∑
j=1

β◦j σ
2
i−j +

p∑
j=1

γ◦i ε
2
i−jIi−j , (5)

with indicator function:

Ii−j =

{
1 εi−j > 0

0 εi−j < 0,
(6)

where the coefficients α◦j , β
◦
j and εi have the same interpretation as in the GARCH model and γ◦j

denotes the asymmetry effect. A leverage effect is present when γ◦j is positive, while γ◦i equals

zero indicates a symmetric reaction of a change in volatility to returns. The model switches

between two different parameters for the error term, ψ◦j and ψ◦j + γ◦j , depending on the sign

of the past shock, represented by Equation (6). There are some additional constraints on the

parameters, namely:

ω◦ ≥ 0,

p∑
j=1

ψ◦j ≥ 0,

q∑
j=1

β◦j ≥ 0 and

p∑
j=1

ψ◦j +

p∑
j=1

γ◦i ≥ 0 (7)

4.3 CVaR and CES estimation

To estimate both CVaR and CES of observation n, we first need to estimate µn+1, the mean

of observation n+ 1, which is obtained by the invertibility of Equation (2) under the standard

assumptions stated in Hoga (2019). The estimate is calculated using the following equation:

µ̂n+1(θ) =
r∑
j=1

φ̃jX̃n+1−j +
r∑
j=1

φ̃j

∞∑
k=1

r∑
j1=1

...
r∑

jk=1

ϑj1 ...ϑjkX̃n+1−j−j1−...−jk , (8)

where r := max{p, q} and φ̃j := φj − ϑj , ϑj1 , ..., ϑjk are the parameters estimated in Equation

(1) for the observations from 1 till r.

For the ARMA-GARCH model, the estimators of the right-tail CVaR and CES are given

by:

x̂a,n = µ̂n+1 + σ̂n+1x̂
U
α and

Ŝa,n = µ̂n+1 + σ̂n+1Ŝ
U
α (9)

where µ̂n+1 is defined in Equation (8) and σ̂n+1 specified in Equation (3), both for {Xn, ..., X1}.
Furthermore, x̂Uα denotes the estimator of the (1 − α)-quantile of U1 and ŜUα is the estimator of

E[U |U > xα]. Both estimators are based on EVT.
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4.4 Estimating using EVT

In order to obtain the estimates x̂Uα and ŜUα , and to calculate the confidence intervals, we require

Ui to satisfy some additional underlying assumptions formulated in Hoga (2019). To illustrate

the assumptions for Ui, let {Ui} be a sequence of i.i.d. random variables with distribution

function F . Define the (1 − 1/x)-quantile U(x) := F←(1 − 1/x), where F← denotes the left-

continuous inverse of F . Similar to Hoga (2019), we assume U(·) to be varying with extreme

value index γ > 0, namely

lim
x→∞

U(xy)

U(x)
= yγ ∀y > 0. (10)

As Equation (10) is an asymptotic tail property, we require an integer sequence for the estima-

tion, formulated as follows:

k = kn →∞ with 1 ≤ k < n and k/n→ 0 as n→∞ (11)

where k specifies where the tail of the distribution begins and the equation is assumed to hold

throughout.

With the tail property and value of k, we can determine x̂Uα . For given sample {U1, ..., Un}
with order statistics U1:n ≤ ... ≤ Un:n, we use the Weissman (1978) estimator to obtain x̂Uα .

Note that U(1/α) is the (1− α)-quantile of U1 we want to estimate. Then define

x̂Uα := Un−k:n

(nα
k

)γ̂
, (12)

where Un−k:n denotes the order statistic for the sample of random variable {Ui}ni=k and n gives

the size of the estimation sample. The estimator of the extreme value index γ, γ̂, is based on

the (k + 1) largest order statistics of {U1, ..., Un}. Under the condition of a small α and γ < 1,

ES is a constant multiple of VaR, suggesting the estimator:

ŜUα :=
x̂Uα

1− γ̂
. (13)

where γ̂ is the estimator of the extreme value index and x̂Uα is described in Equation (12).

As an estimator of γ, we use the Hill (1975) estimator constructed as

γ̂H :=
1

k

k∑
i=0

log
(Un−i:n
Un−k:n

)
. (14)

Another estimator is the MR estimator of Danielsson et al. (1996),

γ̂MR :=
1

2

1
k

∑k
i=0{log(Un−i:n)− log(Un−k:n)}2

γ̂H
. (15)

For both estimators of γ, a choice of k is required. We follow Danielsson et al. (1996), by

minimizing the largest distance between a fitted Pareto-type tail and the empirical quantile. We
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want to choose k such that the tail approximation, defined as follows:

U
(n
j

)
≈ Un−k,n

(j
l

)−γ̂
=: q(j, k), (16)

is good for any value of j. This means that the deviation of q(j, k) from the observed quantile

Un−j,n is small for any j and results in the following optimal choice of k:

k∗ = arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

|Un−j,n − q(j, k)|
]
, (17)

where kmin and kmax are chosen beforehand, and are in this research set to 50 and 200 such

that k is small compared to n and nα is small relative to k, which is a requirement according

to Theorem 1 in Hoga (2019).

4.5 Confidence intervals

In order to obtain the confidence intervals for the CVaR and CES estimates, we follow Chan et

al. (2007) by basing the estimation of γ only on the last residuals, since the first few are affected

by the initialization effects of variance Equation (3). We use the subsample {Ûmn , ..., Ûn}, with

chosen starting value mn → ∞, such that mn < n and mn = o(
√
k), as n → ∞. Throughout

this research, we use a value of mn = 10.

By this mentioned trimming of the residuals, we are required to formulate a slightly adjusted

version of the Hill (1975) and MR estimator of Equations (14) and (15). We use the estimators

for the sample {Ûmn , ..., Ûbntc} with a sample size of nt − mn, with the assumption that the

asymptotic tail property in Equation (10) holds for k and where t is a fraction indicating where

the considered sample ends.

We then estimate the (1 − α)-quantile and corresponding VaR and ES based on the same

subsample {Ûmn , ..., Ûbntc} by the following adjusted version of Equations (12) and (13):

x̂Uα (t) := Ûk(t)
(nα
k

)γ̂(t)
and ŜUα (t) :=

x̂Uα (t)

1− γ̂(t)
, (18)

where Ûk(t) are the (bktc + 1) largest values of the subsample and k is the optimal level as

defined in Equation (17) that gives the optimal value of the beginning of the tail distribution.

The tail index estimator, γ̂(t), is calculated by applying Equation (14) or (15) to the subsample

and replacing k by kt. Then, we determine the estimates of the CVaR and CES, following the

motivation of Equation (9):

x̂α,n(t) = µ̂n+1 + σ̂n+1x̂
U
α (t) and

Ŝα,n(t) = µ̂n+1 + σ̂n+1Ŝ
U
α (t), (19)

where the variables have the same definition as in Equation (9), but now for a specific input

value of t.

To construct the confidence intervals for the CVaR and CES estimates, we require Theorem

1, stated in Hoga (2019), to hold. It states that the ARMA-GARCH model and the innovations

10



need to satisfy four underlying assumptions to obtain asymptotic relations necessary for the

confidence intervals. For σ̂2
γ̂,γ = γ̂2

H(1) (σ̂2
γ̂,γ = γ̂2

MR(1)) if γ̂ = γ̂H (γ̂ = γ̂MR), the following

holds:
1

σγ̂,γ

√
k

log(k/(nα))
log
( ẑα,n(1)

zα,n

)
D−−−−−→

(n→∞)
N (0, 1) and (20)

log2
(
ẑα,n(1)
zα,n

)
∫ 1
t0
t2 log2

(
ẑα,n(t)
ẑα,n(1)

)
dt

D−−−−−→
(n→∞)

W 2(1)∫ 1
t0

[W (t)− tW (1)]2dt
=: Vt0 , (21)

where W (·) is a standard Brownian motion, k is where the tail of the distribution begins,

specified in Equation (17), n indicates the length of the estimation sample and α = αn ∈ (0, 1)

indicates the (1−α)-quantile, all for z ∈ {x, S}. The estimator of z is thus either the estimator

for x or S. Additionally, t0 is a fraction that indicates from which observation within the sample

to start the calculation. Equation (20) depicts a normal approximation, while Equation (21)

shows self-normalised convergence.

Under Theorem 1, the following asymptotic (1− τ)-confidence intervals for zα,n are derived:

I1−τ
na :=

[
ẑα,n(1) exp

{
− Φ

(
1− τ

2

)
σ̂γ̂,γ

log(k/(nα))√
k

}
, ẑα,n(1) exp

{
Φ
(

1− τ

2

)
σ̂γ̂,γ

log(k/(nα))√
k

}]
,

I1−τ
sn :=

[
ẑα,n(1) exp

{
−

√
Vt0,1−τ

∫ 1

t0

t2 log2
( ẑα,n(t)

ẑα,n(1)

)
dt

}
, ẑα,n(1) exp

√
Vt0,1−τ

∫ 1

t0

t2 log2
( ẑα,n(t)

ẑα,n(1)

)
dt

}]
,

where z
α,n∈{x,S}, Vt0,1−τ denotes the (1− τ)-quantile of Vt0 , which is calculated using Equation

(21) and Φ(·) is the cumulative distribution function of standard normal distribution. The first

interval is based on Equation (20), while the second is based on Equation (21). Additionally,

t0 is a fraction that represents the observation from which we start the calculation within the

sample.

The choice of t0 is based on a trade-off, whereby choosing t0 too large can lead to poor

approximations as the integral in I1−τ
sn runs over too few log-differences, namely from t0 up to 1.

On the other hand a larger t0 gives a larger part of the sample being used to calculate ẑα,n(t0).

This would make the estimate more reliable. Thus, the larger the sample size n, the smaller t0

can be chosen. We take t0 such that ẑα,n(t0) is based on at least 200 observations, following Hill

(2015).

4.6 Simulation study

We use a simulation study to compare the finite-sample coverage of the 95%-confidence intervals

for the left-tail α-CVaR xα,n and α-CES Sα,n. The two different intervals, I0.95
na and I0.95

sn are

based on a constructed time series with length n = 1000. For I0.95
sn , we use t0 = 0.2 such that

we have a minimal sample size of 200 for CVaR and CES estimation. For completeness, we

study the robustness of the choice of t0 by calculating the value of Vt0,τ for t0 = 0.1, 0.2 and

0.3, for τ in range of 0.50 and 0.995. According to Hoga (2019), a problem in the estimation

of CES can arise when t0 is very small, as then γ̂(t) depends on only a few observations for t

close to t0. Consequently, it is possible to obtain an estimate γ̂ ≥ 1, making the estimate of
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ŜUα (t) invalid. To counter this, we use x̂Uα (t)/(1 − min{γ̂(t), 0.9}) in the simulations. We use

10,000 replications throughout and values α = 2.5%, 1%, 0.5%, where the last is used to assess if

our approach is capable of providing accurate estimates further away in the tails. Furthermore,

we examine the sensitivity of the coverage of I0.95
na and I0.95

sn to the choice of k. We use the

choice of k from Equation (17), resulting in an optimal k between 5% and 20%. Lastly, the bias

and RMSE, calculated as in Gopinathan (1988), of the different estimators for the CVaR and

CES are defined to determine whether the Hill (1975) estimator or MR estimator is a better

choice and to determine its sensitivity to k. The models we use in the simulations are given in

Appendix A.1.

To determine the ’best’ performing model of the ones specified in Sections 4.1 and 4.2, we

perform a second simulation study. We use six different simulations which are fitted to the

GARCH with Laplace estimation, GARCH with Gaussian estimation, ARMA-GARCH, GJR-

GARCH and EGARCH models. We expect that the simulations, which are fitted according to

the specific models, result in a good performance for that model. Thus, in order to assess a

certain model’s quality, one has to focus on its estimating performance in the other simulations.

We therefore use all the simulations stated in Appendix A.1 and A.2. We hereby consider

simulations that take into account asymmetric responses to positive and negative shocks (GJR-

GARCH and EGARCH) and those that do not (GARCH and ARMA-GARCH). By doing so,

we get a full indication of a model’s theoretical performance in different circumstances and with

different responses to shocks.

4.7 Applications

For the full period application, we use the historical data, described in Section 3, to investigate

whether the ARMA-GARCH models, with a data-dependent choice of k outperform those from

simpler GARCH models with a fixed k = b1.5(log n)2c, recommended in Chan et al. (2007).

Secondly, we use the data to determine whether the usage of the MR estimator is beneficial.

First of all, we set a rolling window of n=1000 to capture possible non-stationarities in the long

series of returns. We calculate the left tail α-VaR and α-CES estimates, for days j ∈ {n, ..., N−1}
and α = 0.5%, by fitting an AR(1)-GARCH(1,1) model to the last n observations, after which

we extract the residuals for mn = 10 and calculate the optimal k by Equation (17). We then

determine the VaR and ES of the residuals by the Hill and MR estimator. For the GARCH(1,1)

model, k is fixed and only the Hill estimator is considered. In total, this results in three different

models to estimate and forecast for both the CVaR and CES.

Afterwards, we evaluate the absolute and relative performance of the forecasts. We examine

the absolute performance of the CVaR by testing the assumption that the sequence of CVaR

violations, measured by the indicator I{j+1≤x̂j+1
α,n (1)}, is i.i.d. Bernoulli with success probability α,

following Hoga (2019). We do this by performing two backtests. Firstly, the test of Kupiec (1995)

(UC), which assesses the correct unconditional coverage and is calculated by E[I{j+1≤x̂j+1
α,n (1)}] =

α. The inclusion of this test enables us to determine if the number of CVaR violations is close to

the desired level, ignoring possible clustering in the violations. Secondly, we apply the Ljung-Box

conditional coverage test of Berkowitz et al. (2011) (CC), which tests for correct unconditional

coverage and violations being i.i.d..
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The p-values obtained from the backtests are not suitable to compare if models are acceptable

or not. Hence, we use scoring functions for both CVaR and CES forecasts, described in Fissler

et al. (2016), to determine relative performance. To evaluate CVaR forecasts of different models,

we consider the quantile score, defined as:

SV aR(x̂α,n, Xn+1) = (Xn+1 − x̂α,n)(α− I{Xn+1≤x̂α,n}) (22)

where xα̂,n is the CVaR estimate and Xn+1 is the loss return value. To evaluate CVaR and CES

together, we use the asymmetric Laplace (AL) log score of Taylor (2019), given by

SES(x̂α,n, Ŝα,n, Xn+1) = − log

(
α− 1

Ŝα,n

)
−

(Xn+1 − x̂α,n)(α− I{Xn+1≤x̂α,n})

αŜα,n
(23)

where Ŝα,n gives the CES estimate and Xn+1 the loss return value. Comparing two different

forecasts from the different models is then done by comparing the realised scores, where we

take the sum for the scoring functions over all the observations in the forecasting sample. The

forecast sequence with the lower score is preferred. By taking the sum, we can compare the

performance of the CVaR and CES for the three different models for a certain index. Note that

the scores for different indices can not be compared. We can assess the significance between

the different scores of the GARCH(1,1) and AR(1)-GARCH(1,1) model with the Hill estimator

for each index by performing the Diebold Mariano (DM) test of Diebold (2015) for the score

functions as described in Equations (22) and (23).

For the second research question, we repeat the application above, however, due to the

limited amount of observations and short periods of high and low volatility, we use an in-sample

estimation for the ARMA-GARCH parameters. Afterwards, we use a rolling window approach

to forecast the CVaR and CES and determine their quality. With the purpose of making a

comparison between the two periods, we assess the performance measures for the pre-COVID-

19 period and COVID-19 period separately.

5 Simulation

5.1 GARCH versus AR-GARCH

Table 3 shows the quantiles which are required for the calculation of the confidence interval

I0.95
sn . The calculation of Vt0,τ is according to Equation (21), where τ indicates the considered

quantile equal to (1− α). The results are obtained using a modified version of the R code from

Hoga (2019). Appendix C gives the explanation and adaptations of the code.

Table 3: Quantiles Vt0,τ of Vt0

τ t0 0.50 0.60 0.70 0.80 0.90 0.95 0.975 0.99 0.995

Vt0,τ 0.3 4.462 7.495 12.153 20.831 40.769 66.019 95.801 146.903 186.331

0.2 3.849 6.462 10.544 17.811 34.278 56.254 86.902 137.038 170.692

0.1 3.496 5.769 9.436 15.749 30.458 48.785 70.499 104.800 135.290
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When we compare the obtained results in Table 3 with Hoga (2019), we observe some minor

deviations. Especially the values for the larger quantiles, such as for τ = 0.995 with an obtained

value of 186.311 and a value in Hoga (2019) of 207.0, differ substantially. The density of the

Brownian motion can explain this difference. As we simulate by considering a less dense Brow-

nian motion than the one used in Hoga (2019), we obtain higher quantile values. For a larger

value of t0, the simulations show higher quantile values because a larger value of t0 results in a

larger minimum sample size for the CVaR and CES estimation, giving more estimation values

and thus a higher chance for larger outliers. Both observations are in line with Hoga (2019).

We find that for the different choices of t0, the quantile values are still quite close to each other,

showing that the results are robust to different choices of t0.

The simulation results for models (A.1), (A.2) and (A.3) are depicted in Table 4.

Table 4: Average of k, bias, RMSE, coverage probabilities in % (nominal coverage: 95%) and average
interval lengths for Hill and MR estimator for the simulation models (A.1), A.2 and (A.3).

Coverage Int. length

Model Estimator k∗ z α Bias RMSE I0.95
na I0.95

sn I0.95
na I0.95

sn

(A.1) Hill 68 CVaR 2.5% -0.034 0.560 49.270 74.180 0.235 0.483

1.0% -0.091 0.556 69.150 80.270 0.526 0.793

0.5% -0.173 3.621 77.270 84.490 0.822 1.180

CES 2.5% -0.074 0.702 39.950 82.710 0.274 0.905

1.0% -0.095 0.696 59.580 87.110 0.613 1.431

0.5% -0.119 4.241 68.330 88.890 0.958 1.988

MR 98 CVaR 2.5% 0.059 0.534 60.590 75.350 0.373 0.624

1.0% 0.002 0.534 81.370 81.730 0.737 0.972

0.5% -0.078 3.327 86.350 83.160 1.109 1.369

CES 2.5% 0.019 0.680 53.420 81.230 0.437 1.089

1.0% -0.005 0.697 69.150 83.090 0.863 1.636

0.5% -0.030 3.895 73.890 82.830 1.300 2.202

(A.2) Hill 59 CVaR 2.5% 0.360 2.449 61.090 86.110 2.913 6.460

1.0% -0.003 3.425 85.540 90.240 8.456 12.338

0.5% -1.192 4.953 91.980 93.610 15.040 20.525

CES 2.5% -1.285 4.905 45.320 93.320 4.440 17.534

1.0% -3.831 8.164 64.300 94.160 12.896 34.044

0.5% -7.308 12.731 68.370 93.350 23.000 52.598

MR 64 CVaR 2.5% 1.408 2.722 56.410 79.000 3.689 6.940

1.0% 2.029 3.772 82.330 79.330 10.257 11.814

0.5% 1.948 4.837 91.890 83.150 17.830 18.146

CES 2.5% 1.348 4.600 51.880 84.010 5.451 15.305

1.0% 0.614 6.644 77.920 87.370 15.139 27.625

0.5% -0.844 9.609 86.900 89.000 26.368 40.765

(A.3) Hill 58 CVaR 2.5% 0.225 1.094 56.510 82.560 1.284 2.814

1.0% 0.108 1.524 84.300 88.880 3.444 4.830

0.5% -0.382 2.151 91.220 92.490 5.852 7.777

CES 2.5% -0.409 1.786 46.890 91.650 1.755 6.321

1.0% -1.282 3.043 66.460 93.310 4.713 11.206

0.5% -2.464 4.578 70.250 92.660 8.003 16.844

MR 66 CVaR 2.5% 0.764 1.307 51.160 73.190 1.688 3.015

1.0% 1.031 1.795 79.020 75.360 4.238 4.647

0.5% 0.946 2.155 90.380 80.530 7.011 6.899

CES 2.5% 0.701 1.756 51.910 81.560 2.255 5.702

1.0% 0.429 2.589 80.250 86.210 5.663 9.179

0.5% -0.115 3.404 88.930 89.140 9.359 13.379

Note. For models (A.2) and (A.3), the values of bias, RMSE and interval lengths are multiplied by 103.

From Table 4, we notice an increasing bias for the Hill estimator for CES when α decreases,
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while for the MR estimator the bias does not show a clear pattern. Furthermore, the RMSE

increases as well for higher α. For each level of α, we observe lower RMSE values for CVaR than

CES. All results mentioned above are in line with Hoga (2019), however, the obtained values

differ in absolute terms from those in Hoga (2019). Note that the RMSE values of model (A.1),

for α = 0.5% are quite large compared to alternative values of α and that the RMSE differs

significantly from the RMSE value stated in Hoga (2019). Section 7.2 discusses an possible

explanation.

Moreover, the comparable RMSE values for both Hill and MR estimators might be surprising,

as according to Theorem 1 of Hoga (2019), the theoretical asymptotic variances of CVaR and

CES based on Hill estimator are smaller by a factor two in comparison with the MR estimator.

However, the obtained results are consistent with Wagner & Marsh (2004). An exception to the

comparable values for the estimators is for model (A.2), for CES and an α of 0.5% as the RMSE

for the Hill and MR estimator are 12.731 and 9.609, respectively.

Regarding the coverage, we obtain coverage that is, on average, relatively low for Ina, except

for the CVaR in combination with the MR estimator. We observe an improvement when using

the self-normalised confidence intervals Isn, especially for α = 2.5%. Additionally, we find,

consistent with Hoga (2019), higher coverage improvement for CES than CVaR. This can be

explained by Equation (20), where σ is unchanged and consequently the variance is the same for

both CVaR and CES. For the self-normalised data, we use calculations specific for a particular

risk measure, thereby being able to more adequately capture the larger variability in the CES

estimates. Consequently leading to more accurate coverage. Overall, the coverage obtained

using the self-normalised confidence intervals, I0.95
sn , appear to be sufficient according to Chan

et al. (2007). We observe that higher coverage leads to a longer interval length. Furthermore,

the confidence interval lengths between CVaR and CES do not differ much when based on the

normal approximation I0.95
na , while they do differ much more for I0.95

sn based on a self-normalised

approximation. A possible explanation for this finding is the larger improvement of CES in

comparison with CVaR.

The quality of the confidence intervals depends on the quality of the approximations of

Equations (20) and (21). To demonstrate, Figure 1 shows the probability-probability (PP) plots

of the random variables on the left and right sides of Equations (20) and (21). The PP plot is

of simulation model (A.2) and left-tail α-CES with α = 1%.
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Figure 1: PP plots for random variables of Equation (20) in top subfigures and (21) in bottom subfigures
for left-tail 1%-CES of simulation model (A.2)

Similar to Hoga (2019), we find that the self-normalised approximation gives a better fit

than the normal approximation for both the Hill and MR estimator.

In order to determine the sensitivity of the results in Table 4 to the choice of k, we consider

additional figures which show the coverage probability, interval length, bias and RMSE in rela-

tion with k ∈ [50, 200]. We consider the left-tail 1% CES for both I0.95
na and I0.95

sn . The results

using the Hill estimator are depicted left, while those using the MR estimator are shown right

in Figures 2 and A1. Figure 2 shows the results of simulation model (A.2).
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Figure 2: Characteristics as a function of k for left-tail 1% CES for I0.95na (solid) and I0,95sn (dotted) for
model (A.2). Interval lengths, bias and RMSE multiplied by 103. The horizontal line in the top plots
indicates nominal coverage of 95%.

The obtained subfigures of Figure 2 follow the same pattern as the ones in Hoga (2019).

We observe that especially the coverage, interval length, bias and RMSE for the Hill estimator

are sensitive to the choice of k, whereas for the MR estimator, the choice of k has less effect

on the considered variables. Additionally, we find that the average choice of k∗, presented in

Table 4, gives the highest coverage probabilities (closest to the nominal level of 95%), relatively

short interval lengths and low bias and RMSE values. All results are in accordance with the

simulation study results in Hoga (2019). For model (A.1), we can construct Appendix Figure

A1 with the same structure as Figure 2. We observe results close to the ones for model (A.2)

and those reported in Hoga (2019).

5.2 GARCH versus GJR-GARCH and EGARCH

In order to assess the performance of GARCH, GJR-GARCH and EGARCH specifications and

determine which one performs best, we perform the second simulation study described in Section

4.6. The performance of the models is quantified by their RMSE, whereby the best model attains

the lowest RMSE value. For the GARCH specification, we use two GARCH(1,1) models, one

with a Laplace QMLE, denoted by GARCH-t and a Gaussian QMLE, denoted by GARCH.
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As we have found comparable values for the Hill and MR estimator in the previous simulation

study, we only consider the results of the Hill estimator to maintain readability and keep this

research concise.

The outcomes of this study are shown in Table 5 for α = 1.0%. The top bar of the table

shows the estimation model and the simulation model that is being evaluated is depicted on the

left hand side. The simulations have a specific structure related to a particular model, specified

in Appendices A.1 and A.2. To sum up, model (A.1) is simulated using the structure of the

GARCH model, model (A.2) the structure of the GARCH-t, model (A.3) of the AR-GARCH

model, model (A.4) is fitted according to the GJR-GARCH structure and model (A.5) uses the

EGARCH model as basis of the simulation. In bold are the values that indicate the best model

(with the lowest RMSE) for that specific simulation and the underlined values the second best.

Moreover, the results for α = 0.5% and 2.5% are stated in Appendix A.4. Note that we take

α = 0.5% mainly to determine how far in the tails the models are capable of providing good

forecasts. Thus to determine which model performs best and apply in real-life applications, we

take these results less into account and focus more on the performance for the other two values

of α.

Table 5: Performance matrix for different simulations and models for α = 1.0% and Hill estimator

GARCH-t GARCH AR-GARCH GJR-GARCH EGARCH

(A.1) CVaR 0.556 1.037 1.010 0.518 8.531

CES 0.696 2.467 1.311 0.649 5.053

(A.2) CVaR 2.919 3.425 3.273 3.227 11.754

CES 7.951 8.164 7.670 7.786 15.345

(A.3) CVaR 2.878 2.957 1.524 1.515 10.474

CES 4.269 4.428 3.043 2.914 13.571

(A.4) CVaR 0.176 0.180 0.179 0.134 0.616

CES 0.346 0.345 0.350 0.230 0.837

(A.5) CVaR 0.164 0.659 0.490 0.166 0.145

CES 0.253 1.145 0.880 0.255 0.230

Note. For models (A.2) and (A.3), the values are multiplied by 103.

Overall, the results in Table 5 show that the best estimates for α = 1.0% are obtained by the

GJR-GARCH model. For all simulations and for both CVaR and CES, this model performs the

best or second best, except for model (A.5) and CVaR estimation for model (A.2). This gives

an indication to use the GJR-GARCH model specification when there is uncertainty about the

structure of the data.

Interestingly, we observe that the best performing estimation and forecasting model is not

always the one that is initially fitted to construct the simulation and is not necessarily the same

for both risk measures. For example, for model A.2 α = 1.0%, we find that the GARCH-t

model is the best for CVaR, while for CES the AR-GARCH gives the most accurate estimates.

Additionally, for models A.1 and A.3 observe that the GJR-GARCH and EGARCH model give

the best estimates for both estimators and not the GARCH-t and AR-GARCH, as initially

expected.

In Appendix A.4, the results for α = 0.5% are depicted in Table A1. Again, these suggest that
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the GJR-GARCH model performs best. Similarly, as for α = 1.0%, both the AR-GARCH and

GJR-GARCH perform well. Note that for simulation model A.2, the GARCH-t, the GARCH

specification with Laplace QMLE instead of Gaussian QMLE performs best, which is somewhat

surprising because it is not the originally fitted model.

Table A2 shows the results of the Hill estimator for α = 2.5%. We observe that in this

case the GJR-GARCH performs worse than for the lower α values, while the simpler GARCH-t

specification performs the best by attaining the lowest RMSE for four of the five models. The

second-best model is the AR-GARCH model, which attains the lowest RMSE for its correspond-

ing simulation and is the second-best option in two of the four remaining simulations.

Some further remarks, we observe higher RMSE values for CES than CVaR and a decrease in

RMSE for an increase in α. This aligns with what we have seen in the previous simulation study

and Hoga (2019). Besides, we observe that the EGARCH estimation model does not perform

well for all simulation models and values of α, except for model A.5, which is the one based on

the EGARCH model its structure. A possible explanation for this is that the GJR-GARCH is

a simplification of the EGARCH model which still accounts for an asymmetric effect to positive

and negative shocks, but may produce less noise in the estimation due to being a simpler model.

Moreover, it is worth mentioning that where the GARCH-t model, with QMLE based on Laplace

residuals performs well, the GARCH model using estimation based on the Gaussian residuals is

never the best or second best model. This observation indicates that the Laplace distribution

describes the error terms more accurately than the Gaussian one. A potential explanation is

given in Xuan et al. (2017), stating that the Laplace distribution can accurately describe the

fat-tail feature of financial market data. Additionally, Xuan et al. (2017) explain the good

performance of the GARCH-t model for α = 2.5% by stating that the larger value of α we

use, the fatter tail we take for CVaR and CES estimation. The Laplace distribution focuses on

capturing fat tails, thus taking a large value for α leads to better performance of the GARCH-t

model.

6 Application

The results of the first application, described in Section 4.7 for the given indices for the period

01/01/1997 to 31/12/2016, are displayed below. For further reference, we call this application

the full period application. The method G-k-H represents the GARCH(1,1) model with the

Hill estimator, the method AG-k∗-H indicates the AR(1)-GARCH(1,1) model with the Hill

estimator and AG-k∗-MR the AR(1)-GARCH(1,1) model with MR estimator. Additionally,

the methods AGJR-k∗-H and AGJR-k∗-MR model the AR(1)-GJR-GARCH(1,1) model with

Hill and MR estimator, while AEG-k∗-H and AEG-k∗-MR indicate the AR(1)-EGARCH(1,1)

model for the same estimators. The k∗ illustrates that the optimal choice of k is determined

by Equation 17. For the unconditional coverage (UC), the test of Kupiec (1995) is performed

while for the conditional coverage (CC), we use the test of Berkowitz et al. (2011). The quantile

score indicates the performance of the CVaR forecasts, while the AL log score quantifies the

forecasting accuracy of the CES. The results of the model evaluation are displayed in Table 6

for α = 0.5%.
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Table 6: p-values of backtests (UC and CC) and quantile scores and AL log scores for different stock
indices

Index Method UC CC Quantile score AL log score

DJIA G-k-H 0.352 0.108 0.788 -9141.403

AG-k∗-H 0.971 0.129 0.770† -9269.830†

AG-k∗-MR 0.004∗∗∗ 0.002∗∗∗ 0.767 -9259.075

AGJR-k∗-H 0.002∗∗∗ 0.001∗∗∗ 1.156 -7750.613

AGJR-k∗-MR 0.013∗∗ 0.001∗∗∗ 1.079 -7823.585

AEG-k∗-H 0.041∗∗ 1.000 0.844 -8943.505

AEG-k∗-MR 0.041∗∗ 1.000 0.844 -8943.505

NASDAQ G-k-H 0.110 0.091∗ 0.953 -8489.051

AG-k∗-H 0.480 0.114 0.937† -8605.109†

AG-k∗-MR 0.193 0.001∗∗∗ 0.943 -8515.700

AGJR-k∗-H 0.795 0.000∗∗∗ 1.092 -7851.398

AGJR-k∗-MR 0.280 0.000∗∗∗ 1.092 -7688.839

AEG-k∗-H 0.008∗∗ 0.000∗∗∗ 1.028 -7793.307

AEG-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 1.034 -7605.064

Nikkei G-k-H 0.567 0.104 1.134 -7365.226

AG-k∗-H 0.730 0.109 1.128 -7402.499

AG-k∗-MR 0.214 0.000∗∗∗ 1.138 -7313.831

AGJR-k∗-H 0.913 0.000∗∗∗ 1.301 -6787.419

AGJR-k∗-MR 0.009∗∗ 0.000∗∗∗ 1.322 -6627.037

AEG-k∗-H 0.913 0.000∗∗∗ 1.205 -6895.978

AEG-k∗-MR 0.054∗ 0.000∗∗∗ 1.213 -6867.086

HSI G-k-H 0.132 0.084∗ 0.980 -8049.843

AG-k∗-H 0.408 0.101 0.966 -8167.439†

AG-k∗-MR 0.152 0.000∗∗∗ 0.968 -8140.278

AGJR-k∗-H 0.201 0.090∗ 1.048 -7774.578

AGJR-k∗-MR 0.059∗ 0.000∗∗∗ 1.054 -7749.629

AEG-k∗-H 0.227 0.000∗∗∗ 1.115 -7220.375

AEG-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 1.197 -6760.409

CAC 40 G-k-H 0.225 1.000 1.024 8324.582

AG-k∗-H 0.917 0.134 1.016 -8376.782

AG-k∗-MR 0.315 0.010∗∗∗ 1.017 -8304.801

AGJR-k∗-H 0.180 0.000∗∗∗ 0.596 -2638.854

AGJR-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 0.620 -2340.806

AEG-k∗-H 0.002∗∗∗ 0.000∗∗∗ 0.484 -2708.829

AEG-k*-MR 0.000∗∗∗ 0.000∗∗∗ 0.511 -2454.803

DAX 30 G-k-H 0.159 0.099∗ 1.010 -8253.591

AG-k∗-H 0.603 0.122 0.984† -8383.700†

AG-k∗-MR 0.018∗∗ 0.017∗∗∗ 0.982 -8327.681

AGJR-k∗-H 0.940 0.000∗∗∗ 1.238 -7213.556

AGJR-k∗-MR 0.416 0.000∗∗∗ 1.230 -7139.880

AGJR-k∗-H 0.940 0.000∗∗ 1.238 -7213.556

AGJR-k∗-MR 0.416 0.000∗∗ 1.230 -7139.880

AEG-k∗-H 0.032∗∗ 0.016∗∗ 1.097 -7697.795

AEG-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 1.134 -7476.433

Notes. Significance of 10%, 5%, 1% marked with ∗, ∗∗, ∗∗∗, The lowest quantile and AL log score are printed in

bold and the dagger marks significant difference by DM statistic for 5%.

We find that AG-k∗-H is never rejected at the 10% level, making it the best model in

general, in line with the results discussed in Hoga (2019). The performance of AG-k∗-H is

satisfactory, while the AG-k∗-MR and AGJR-k∗-MR methods are not because of their poor

conditional coverage. Additionally, both AR-EGARCH models are also almost always rejected

at 1% level, suggesting poor performance as well. For the AGJR-k∗-H model, we find significant

unconditional coverage, while the conditional coverage is rarely rejected at the 10% level. In
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contrast to the simulation study, where the MR estimator performed best in terms of RMSE,

we observe that the Hill estimator performs better in this application. A possible explanation is

given by the additional simulations performed in Hoga (2019). By evaluating these, Hoga (2019)

concludes that, if the tail of innovations follows the true Pareto distribution more accurately,

then the Hill estimator performs better relatively. The innovations of the indices thus seem to

closely follow the shape of the Pareto distribution in this full period application. Regarding

the score functions, we obtain that AG-k∗-H gives the best CVaR and CES forecasts overall.

Moreover, note that the score functions for the AR-GJR-GARCH and AR-EGARCH models are

never the best and often one of the worst, especially for CAC 40. This is in contrast with findings

in Nugroho et al. (2019), which concludes that the GJR-GARCH(1,1) model outperforms the

GARCH(1,1) model. A potential reason for this inconsistency is the usage of the AR lag which

makes our model too complex, consequently adding noise and no additional explanatory power.

Another possible explanation is that the volatility of the returns of the application does not

follow have an asymmetric reaction to shocks, making the models that do take into account

such reactions, like the GJR-GARCH and EGARCH, perform worse.

6.1 Low- versus high-volatility period

For the second application, the low/high period application, we compare the difference in model

performance in a low- and high-volatility period. We do so by performing an in-sample estima-

tion of the parameter estimates for the same models as the full period application. Both the

low- and high-volatility period and the total estimation period are summarised in Section 3.

The in-sample estimates for the entire estimation period can be found in Appendix B1. First

of all, note that no AR(1) lag is significant, except for the AR-GARCH model for the DAX 30.

The insignificance indicates that the AR(1) lag adds little to no explanatory power and only

causes noise, similar to what we have found for the full period application. Additionally, from the

parameter estimates we can identify the presence of a leverage effect for the AR-GJR-GARCH

model, as the γ estimate is positive and significant for all indices, suggesting that negative

shocks more heavily influence the volatility than positive shocks. The definition of γ and ψ is

switched in comparison with our discussed specification in Section 4 since the R code considers

a different specification of the EGARCH model. A more detailed description of the R code is

given in Appendix C. For the AR-EGARCH model, we find a positive γ for all indices, indicating

the presence of a significantly positive symmetry effect and a negative value for ψ, which again

shows that negative shocks create more volatility than positive ones for all indices.

The period before the COVID-19 crisis is used as the low-volatility period. For the high-

volatility period, we take the COVID-19 period. Tables 7a 7b show the outcomes of these two

periods respectively for α = 0.5%. Significance for coverage is indicated by ∗, ∗∗ and ∗∗∗ for

10%, 5% and 1%. The lowest value for the quantile score and AL log score, referring to the best

model is made bold. The dagger represents a significant difference between the two lowest Hill

estimator quantile scores and AL log scores by the DM statistic for 5%.
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Table 7: p-values of backtests (UC and CC) and quantile scores and AL log scores for different stock
indices in a low- and high-volatility period

Index Method UC CC Quantile score AL log score

NASDAQ G-k-H 0.226 1.000 0.060 -619.755

AG-k∗-H 0.226 1.000 0.059 -632.604

AG-k∗-MR 0.201 0.997 0.063 -631.198

AGJR-k∗-H 0.201 0.000∗∗∗ 0.080 -544.489

AGJR-k∗-MR 0.035∗∗ 0.000∗∗∗ 0.089 -503.634

AEG-k∗-H 0.654 1.000 0.063 -611.900

AEG-k∗-MR 0.003∗∗∗ 0.000∗∗∗ 0.069 -567.325

Nikkei G-k-H 0.237 1.000 0.060 -567.225

AG-k∗-H 0.237 1.000 0.057 -593.121

AG-k∗-MR 0.604 1.000 0.051 -635.044

AGJR-k∗-H 0.237 1.000 0.064 -556.252

AGJR-k∗-MR 0.604 0.000∗∗∗ 0.056 -607.516

AEG-k∗-H 0.237 1.000 0.056 -608.806

AEG-k∗-MR 0.237 1.000 0.051 -625.604

HSI G-k-H 0.231 1.000 0.054 -630.085

AG-k∗-H 0.231 1.000 0.052 -645.295

AG-k∗-MR 0.188 0.996 0.051 -658.870

AGJR-k∗-H 0.231 1.000 0.055 -626.083

AGJR-k∗-MR 0.231 1.000 0.049 -664.372

AEG-k∗-H 0.718 1.000 0.050 -667.945

AEG-k∗-MR 0.633 1.000 0.051 -657.990

CAC 40 G-k-H 0.210 0.998 0.067 -618.730

AG-k∗-H 0.004∗∗∗ 0.947 0.077 -555.435

AG-k∗-MR 0.004∗∗∗ 0.947 0.084 -498.978

AGJR-k∗-H 0.038∗∗∗ 0.000∗∗∗ 0.078 -556.875

AGJR-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 0.092 -453.894

AEG-k∗-H 0.004∗∗∗ 0.947 0.072 -577.595

AEG-k*-MR 0.000∗∗∗ 0.873 0.083 -509.734

DAX 30 G-k-H 0.003∗∗∗ 0.940 0.064 -623.605

AG-k∗-H 0.003∗∗∗ 0.940 0.067 -601.145

AG-k∗-MR 0.000∗∗∗ 0.860 0.073 -552.672

AGJR-k∗-H 0.003∗∗∗ 0.940 0.082 -528.028

AGJR-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 0.093 -435.041

AEG-k∗-H 0.003∗∗∗ 0.940 0.067 -579.677

AEG-k∗-MR 0.003∗∗∗ 0.940 0.071 -552.072

(a) Pre-COVID-19 period: January 1, 2019 - February 28, 2020

Index Method UC CC Quantile score AL log score

NASDAQ G-k-H 0.661 1.000 0.128 -421.713

AG-k∗-H 0.661 1.000 0.126 -418.917

AG-k∗-MR 0.206 0.996 0.125 -394.996

AGJR-k∗-H 0.224 1.000 0.108† -471.504†

AGJR-k∗-MR 0.206 0.996 0.106 -485.357

AEG-k∗-H 0.004∗∗∗ 0.935 0.200 730.231

AEG-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 0.260 919.371

Nikkei G-k-H 0.231 1.000 0.082 -520.588

AG-k∗-H 0.231 1.000 0.076 -552.030

AG-k∗-MR 0.718 1.000 0.068 -595.988

AGJRk∗-H 0.633 0.000∗∗∗ 0.095 -477.240

AGJR-k∗-MR 0.633 0.000∗∗∗∗ 0.096 -497.950

AEG-k∗-H 0.031∗∗ 0.000∗∗∗ 0.092 -379.278

AEG-k∗-MR 0.003∗∗∗ 0.000∗∗∗ 0.099 -330.965

HSI G-k-H 0.716 1.000 0.077 -545.060

AG-k∗-H 0.636 1.000 0.076 -559.741

AG-k∗-MR 0.636 1.000 0.079 -551.201

AGJR-k∗-H 0.032∗∗∗ 0.000∗∗∗ 0.085 -512.977

AGJR-k∗-MR 0.003∗∗∗ 0.000∗∗∗ 0.106 -423.754

AEG-k∗-H 0.000∗∗∗ 0.000∗∗∗ 0.090 -470.579

AEG-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 0.114 -354.566

CAC 40 G-k-H 0.675 1.000 0.095 -528.351

AG-k∗-H 0.215 0.000∗∗∗ 0.115 -523.109

AG-k∗-MR 0.039∗∗∗ 0.000∗∗∗ 0.127 -503.670

AGJR-k∗-H 0.004∗∗∗ 0.000∗∗∗ 0.270 38.829

AGJR-k∗-MR 0.004∗∗∗ 0.000∗∗∗ 0.284 208.695

AEG-k∗-H 0.000∗∗∗ 0.000∗∗∗ 0.146 -317.449

AEG-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 0.170 -228.960

DAX 30 G-k-H 0.206 0.000∗∗∗ 0.150 -421.091

AG-k∗-H 0.036 0.000∗∗∗ 0.153 -413.311

AG-k∗-MR 0.004 0.000∗∗∗ 0.165 -375.880

AGJR-k∗-H 0.036∗∗∗ 0.000∗∗∗ 0.279 210.931

AGJR-k∗-MR 0.004∗∗∗ 0.000∗∗∗ 0.284 322.689

AEG-k∗-H 0.000∗∗∗ 0.000∗∗∗ 0.194 -83.738

AEG-k∗-MR 0.000∗∗∗ 0.000∗∗∗ 0.210 -21.010

(b) COVID-19 period: March 1, 2020 - April 30, 2021

When we zoom in on the performance of the models in the pre-COVID-19 period in Table

7a, we find that the GARCH model with both Hill and MR estimator are never rejected at the

10% level for the conditional coverage, while only rejecting the unconditional coverage for the

DAX 30, making it the best model overall. This is different from what we have observed in the

full period application, where the AG-k∗-H model performs the strongest, while in this case it

is the second best model. From the score functions, we derive that there is no clear best model

for both the CVaR and CES estimator. The best model differs for each index; nevertheless, we

find that the AG-k∗-MR and AG-k∗-H models are often the best or second best. Consequently,

this suggests that the models that account for an asymmetric response to positive and negative

shocks do not significantly improve the forecasting performance.

Additionally, we observe that for the NASDAQ, HSI and DAX 30 the coverage values for

G-k-H and AG-k∗-H are pretty close. This can be attributed to similar estimation model

coefficients (Appendix Table B1). We find that the AR(1) coefficient is very small, indicating

that the AR(1)-GARCH model captures the data almost the same as way as the GARCH

model, therefore giving similar outcomes. Following this reasoning, we can explain the better

performance of the G-k-H in comparison to AG-k∗-H for the DAX 30. Because from the

parameter estimates, we can deduct that the AR(1) coefficient is very low, implying that the

addition of the AR-lag does not add much explanatory power to the model. Instead, it only

adds noise when forecasting, resulting in an inferior performance of the AG-k∗-H compared

22



to the standard GARCH specification. Furthermore, note that AR-GJR-GARCH and AR-

EGARCH models almost always behave poorer than the ’simpler’ AR-GARCH and GARCH

models, pointing out that modelling an asymmetric reaction to positive and negative shocks

does not lead to forecasting improvements. The poor performance of the asymmetric models is

in line with what we have found in the full period application.

Recall that for the full period application, we find that the Hill estimator performs better

than the MR estimator. However, for the low-volatility period we do not have a clear winner.

Regarding conditional and unconditional coverage, the Hill estimator gives better estimates.

However, judging by the quantile and AL log score, we obtain that its dependent on the index

whether the Hill and MR estimator give the lowest scores. Overall, the Hill estimator seems to

perform slightly better, as it more often attains the highest coverage and lowest score function

value. This result is consistent with those of the full period application, shown in Table 4.

Another striking observation is that for the two European indices the GARCH model performs

the best, suggesting a difference in return structure compared to the NASDAQ and Nikkei, for

which the AR-GARCH specifications perform better. The HSI index requires an asymmetric

reaction to shocks to be captured as the AR-GJR-GARCH and AR-EGARCH are the most

accurate.

Table 7b provides the results for the COVID-19 period. In summary, we find that the

GARCH and AR-GARCH models perform better than the AR-GJR-GARCH and AR-EGARCH,

indicating that modelling for an asymmetric response does not improve forecasting ability. A

simpler model thus seems to work best in high-volatility periods, as is the case in low-volatility

periods. Compared to the low-volatility period, the high-volatility period makes it more chal-

lenging for models to produce accurate forecasts, illustrated by a lower conditional coverage and

higher score values on average.

For CAC 40 and DAX 30, the two European indices, the conditional and unconditional

coverage are almost always rejected at 1% level, making all of the models inappropriate to

implement as a forecasting model. The significance of the unconditional coverage suggests

that there are too few VaR violations, indicating an overly conservative VaR (Campbell, 2005).

Additionally, note that for the NASDAQ, the AR-EGARCH shows high positive score values,

indicating very inaccurate CES forecasts. While for the CAC 40 and DAX 30 we observe similar

behaviour, however now for the AR-GJRGARCH model. Again, this can possibly be explained

by the fact that the models are more complex, potentially producing noisier forecasts than a

relatively easy model such as the GARCH model.

6.2 High-volatility period

Now, we zoom in on the COVID-19 situation in Europe to clarify the poor model performance,

especially the significant conditional coverage, for the European indices CAC 40 (France) and

DAX 30 (Germany), and compare it with the North American and Asian market. First of all,

conditional coverage is a combination of unconditional coverage and the independence property.

The independence property places strong restrictions on ways in which violations of the VaR

may occur. An important one, which might not hold in our case, is the independence of a current

violation with the previous ones. If previous violations influence a future VaR violation, which is
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the case for a clustering of violations, then the reported VaR does not accurately reflect the loss

that can be expected. As a consequence, market risk capital requirements can be underfunded

for an extended period in times of increased volatility, such as the COVID-19 crisis. Moreover,

as we evaluate for α = 0.5% and a sample of approximately 300 observations, we expect to find

0 to 3 violations. The low number of violations causes difficulty in determining the conditional

coverage and makes the outcomes unreliable. This potentially explains the rather surprising

values for the conditional coverage for the low-volatility period in general.

To determine if this is actually the case, we plot the log-returns in combination with the

estimates of the CVaR and the loss function in Equation (22), which evaluates the difference

between the CVaR forecasts and the actual values. Figure 3 shows the resulting figures for the

four different models for the Hill estimator for the CAC 40. We only consider the performance

of the Hill estimator because by the simulation study and first application, we obtain that the

Hill estimator often performs the best, making its poor performance in the COVID-19 period

more surprising and more essential to understand. Figure 3a shows the results of the G-k-H

model, Figure 3b the outcomes of the AG-k∗-H model, Figure 3c the ones of model AGJR-k∗-H

and Figure 3d displays the results of model AEG-k∗-H, all for α = 0.5%.

(a) GARCH model with Hill estimator (b) AR-GARCH model with Hill estimator

(c) AR-GJRGARCH model with Hill estimator (d) AR-EGARCH model with Hill estimator

Figure 3: Log-returns, CVaR estimates and loss function for CAC 40 for COVID-19 period March 1,
2020 - April 30, 2021
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Using Figures 3, 4, 5, and Appendix Figures B1 and B2, we find evidence that indeed the

AR-GJR-GARCH and AR-EGARCH model often perform inaccurately, with the loss function

as an indicator for inaccurate CVaR forecasts. A potential cause for this are the clusters of

high and low log-returns. Moreover, we find evidence that the conditional coverage does not

perform well due to violations on consecutive days, which suggests clustering that complicate the

determination of the conditional coverage. Especially, the beginning of the COVID-19 period

is not correctly captured in the CVaR estimates because of the series of unexpected news items

about the severeness of COVID-19.

To begin with, note that from Figure 3, we can identify the start of the COVID-19 period

in February 2020 with the occurrence of spikes indicating high and low log-returns. Addition-

ally, we observe a second spike of high CVaR log-returns in October 2020, which characterises

the moment that most European countries went into lockdown. The lockdown was again an

unexpected shock that caused the volatility to rise, however all models capture this shock accu-

rately in their forecasts this time. For the GARCH model, we find only one violation, namely

around the beginning of February 2020. We can attribute this to the rise of the COVID-19 virus

outside of China and the restrictions on travellers leaving China (Smith & Goldberg, 2020),

which is received as an unexpected shock in the CAC 40 index and is consequently difficult to

capture. Because there is only one violation, we can not test independence. We hence obtain

the conditional coverage value of 1.000. The conditional coverage is thus transformed into an

unconditional coverage which gives a value of 1.000 when there is only one violation.

When performing the same analysis for the AR-GARCH model, we observe two violations.

One again at the beginning of February 2020 and represents the same event as the one for the

GARCH model. The other one is a few days later and is caused by the news of the first COVID-

19 death in France and Europe, stated in the Financial Times (Mallet & Peel, 2020). This news

caused an unanticipated shock for France and possibly whole of Europe. Both violations are

very close to each other, verifying the clustering of the violations and making it impossible for

them to be independent, resulting in a conditional coverage of 0.000. The conditional coverage

can in this situation again be interpreted as more of an unconditional coverage measure.

For the AR-GJR-GARCH model, Figure 3c shows many consecutive violations and a high

peak in the loss function for almost the whole month of February. This suggests that the model

performs poorly, corresponding with the quantile score that we obtain in Table 7. Again, we

observe violations at similar moments as for the GARCH and AR-GARCH models and thus

have the same news items as reason for the violations. We can identify an additional significant

violation for the AR-GJR-GARCH model, which is near the end of February. This one can be

attributed to the second death in France, stated in the Financial Times news section (Smith &

Goldberg, 2020).

Lastly, for the AR-EGARCH model, we again find two violations, similar to the AR-GARCH

model, caused by the same events. Furthermore, the violation in May 2020 can also be identified

for the American and Asian indices. We discuss the cause of this violation when evaluating the

Asian market, as especially the volatility spike for these indices is large.

From Figure B1, we find similar results for DAX 30 as for CAC 40. We observe the same

consecutive series of violations, indicating that the same shocks have caused them. Hence the
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news items surrounding COVID-19 are unexpected and challenging to capture in any model in

both France and Germany, and by continuing this reasoning probably in the whole of Europe

or the world. The series of violations cause the conditional coverage to attain a value of 0.000,

similarly to the CAC 40, suggesting that the conditional coverage does not seem to be a reliable

measure to base conclusions on when evaluating the performance of the models.

In comparison with the results for the North American index (NASDAQ), stated in Figure 4,

we do not identify consecutive violations like we have found for both European indices. However,

we observe a higher number of violations, causing the conditional coverage to act accordingly

and give more reliable results.

(a) GARCH model with Hill estimator (b) AR-GARCH model with Hill estimator

(c) AR-GJRGARCH model with Hill estimator (d) AR-EGARCH model with Hill estimator

Figure 4: Log-returns, CVaR estimates and loss function for NASDAQ for COVID-19 period March 1,
2020 - April 30, 2021

The results suggest that the effect of the news article of AJMC Staff (2021) in February

has a less extreme but still noticeable effect in comparison with the European indices. On the

other hand, an event in August 2020 is especially important to the technology industry in the

US because we only locate the violation for the NASDAQ. This event is described in Bloomberg

as ’more upside panic’, causing a rise in demand for call options for tech stocks, which feeds

into gains in the stocks and consequently also in the NASDAQ Peterseil, Yakob and Greifeld,

Katherine and Barnet, Jan-Patrick (2020). Moreover, we observe quite some violations for the

AR-EGARCH model which is confirmed by the high spikes in the loss function, and explains
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the model its poor performance.

Lastly, we examine the Asian market in a high-volatility period by the Nikkei (Japan) and

HSI (Hong Kong) index, shown in Figures 5 and B2.

(a) GARCH model with Hill estimator (b) AR-GARCH model with Hill estimator

(c) AR-GJRGARCH model with Hill estimator (d) AR-EGARCH model with Hill estimator

Figure 5: Log-returns, CVaR estimates and loss function for the Nikkei for COVID-19 period March 1,
2020 - April 30, 2021

For the Nikkei, we can not identify any violations for the GARCH model, while we identify

only one for the AR-GARCH model. This observation explains the conditional coverage of

1.000 for both, since 0 or 1 violation is always independent. For the AR-GJR-GARCH and AR-

EGARCH model, the violations are again consecutive, giving a conditional coverage of 0.000.

The violations of the AR-GJR-GARCH model in February 2020 can again be attributed to

the beginning of the COVID-19 crisis. Those of the AR-EGARCH are in May 2020. Note the

presence of an additional violation in February 2021 for the AR-EGARCH model. This violation

seems to be specific for the Asian markets, as also the HSI shows violations around this time. A

potential cause for the unexpected returns is the military coup in Myanmar (Smith et al., 2021).

For the HSI, we find a similar violation pattern as for the Nikkei for the AR-GJR-GARCH

and AR-EGARCH model. Note that the violations in May 2020 cause an extremely low log-

return for the HSI and an violation for all models, indicating that the event that caused it was

of great importance to Hong Kong. We thus expect that the violations in May 2020 for the HSI,

Nikkei and NASDAQ were caused by protests in Hong Kong (Reuters staff, 2020). These were
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particularly important for the HSI and the Nikkei, however also influence the NASDAQ, as the

US and especially its technology industry is strongly connected to Asia and with that also the

protests and its outcome.

7 Conclusion and discussion

7.1 Conclusion

For the first research question: Does the usage of ARMA-GARCH instead of GARCH models lead

to an improvement in forecasting performance of the CES and CVaR risk measures?, we conclude

that the use of the ARMA-GARCH specification gives better forecasts in practice, especially

when using a data-dependent choice of k. Mind that we should still consider the GJR-GARCH

and GARCH specifications as, according to the simulations, they both still provide accurate

estimates and forecasts.

The conclusion is based on the results of the simulation studies and the full period application.

The first simulation study compares the performance of three different simulation models for

CVaR and CES estimates for both the Hill and MR estimator. By this study, we conclude that

CVaR estimates are more accurately estimated than those of CES because the RMSE values

are lower for CVaR than CES for all models. Additionally, we find that the confidence intervals

based on the self-normalised approximation are more accurate than those based on the normal

approximation due to their higher coverage.

Moreover, from the second simulation study, we derive that the best model is almost always

the same for the CVaR and CES forecasts. We thus do not have to take the choice of risk

measure into account when deciding on the model. Additionally, for α = 0.5% and 1.0%, we

conclude that the GJR-GARCH model performs best, while for α = 2.5%, the simpler GARCH-t

model outperforms the other models. This shows that the best model depends on the size of

the tails. When forecasting for a fatter tail, we are better of with a simpler model, while for

a thinner tail, a more complex model which incorporates an asymmetric response to volatility

shocks is the better option.

The results of the first application show that both GARCH and AR-GARCH can produce

extreme CVaR forecasts for the log-returns of the six indices with correct conditional and uncon-

ditional coverage. Furthermore, we conclude that the AR-GARCH model with a data-dependent

choice of k in comparison with the simpler GARCH model with a fixed choice of k, improves

the forecasts of CVaR and in particular of CES.

The second research question, Does the forecasting performance of the risk measures differ

in periods of low and high volatility? is answered by the second application in Section 6. We

conclude that the best forecasting model stays the same for three of the five cases, giving no clear

indication that a different model would give a better forecasting performance. This goes against

our hypothesis of better performance by more complex and asymmetrical models. Additionally,

we can conclude that for the European indices, the GARCH model gives the most accurate

forecasts. Furthermore, we notice that in a high-volatility period, the conditional coverage

behaves more like an unconditional coverage, giving an indication for 0 or 1 close violations

when the conditional coverage is 1.000 and suggesting a clustered series of violations when the
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unconditional coverage is 0.000.

7.2 Discussion

In this subsection, we discuss the causes of some striking simulation and application results and

outcomes which deviate from previous literature.

7.2.1 Simulation

Some of the differences in Table 4 compared to Hoga (2019), can be attributed to Hoga (2019)

using different simulations in the supplementary R code than described in the paper. In this

research, we follow the approach of the paper and not of the code. As the research does not

specify whether the results are based on the code or the specification in the paper, this can be

a potential explanation of the difference in simulation results. Another aspect that causes the

difference between Table 4 and Hoga (2019) is the random simulation of the data. For this, we

use a random t-distribution to model the innovation terms, which are consequently different for

each simulation and for each observation. The simulated innovation terms ultimately determine

the model parameters and thus give slightly different results in absolute terms for each separate

simulation.

For the second simulation, our results are somewhat different from what we expected. In

contrast to what we predicted, we find that the model that corresponds to a certain simulation

is not always the best one. For example, for α = 1.0%, the GJR-GARCH works best instead

of the GARCH-t. Furthermore, it is striking that the GJR-GARCH model performs so well,

while the EGARCH estimation model is rarely the best. We expected them to have a similar

performance, because the GJR-GARCH model is a simplified version of the EGARCH model

since both models capture the asymmetric response to shocks. A possible clarification for what

we obtain is that the EGARCH is a more complex model than the GJR-GARCH and might be

too complex, giving the additional parameters no explanatory power. To investigate the overall

strong performance of the GJR-GARCH model in simulations, we would need to perform some

additional simulations to get a completer understanding of the model. This is left for further

research.

7.2.2 Application

For the full period application, we find results in line with Hoga (2019). We now find that

the ’simpler’ GARCH and AR-GARCH still perform the best and not the AR-GJR-GARCH or

EGARCH. A potential reason for this has already been discussed in the results, namely that the

AR-lag does not have any explanatory power but only adds noise. An additional potential reason

for the poor performance of the EGARCH model, which possesses some theoretical advantages

over the simpler GARCH models, is that in practice the likelihood maximiser is highly dependent

on the choice of starting values (Hartz et al., 2006).

When considering the low/high period application, we find results that are not in line with

our initial hypothesis of ’easier’ models performing better in low-volatility periods and more

extensive models are needed to capture the different shocks in high volatility periods. We can
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partly explain the unexpected results in Table 7 by the backtesting procedure that we apply

for the CVaR and CES, which is in accordance with Hoga (2019). This procedure assumes no

structural breaks in the data, yet financial markets are continually evolving with new technolo-

gies, assets, markets and institutions that affect the statistical properties of market prices and

consequently the properties of returns as well (Danielsson, 2011). As we are investigating such

structural breaks in this case, this can potentially influence the return property and consequently

the accuracy of the estimates of the GARCH models. For further research, we could model this

structural break. Another improvement to our research can be made by diving deeper into the

conditional coverage in the high-volatility period. To solve the unreliable conditional coverage,

we should take a longer sample, use a higher α or uncluster the violations. All of these options

could be more thoroughly investigated in further research.

Lastly, note that for the applications we have used indices that are focused on particular

countries, however, the economical situation in these countries can also be influenced by political

decisions and reforms, hereby changing what the index represents, making the application results

for the low/high period not completely representative for the corresponding continent. Take for

example the HSI, due to the unrest in Hong Kong and its political changes in the last year, it

might be that the index does not capture the same changes in volatility and return as the Asian

continent anymore. For the CAC 40 and DAX 30, we only look at the economic situation in

France and Germany. One could argue whether these two countries are depicting a complete

picture of Europe. Moreover, the NASDAQ mostly consists of technology companies, which is

only a small part of the North American economy and could potentially give a distorted view

of the US’ economy and its reaction to certain shocks. To tackle this, we could conduct further

research with other indices that are more representative for a whole continent. For example, by

taking the S&P500 to examine the North American market and STOXX Europe 600 for Europe.
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A Appendix

A.1 Simulation models GARCH

We use the following three models for our simulations, which we run in R version 4.0.5.

Xi = εi where εi = σiUi, Ui ∼ st3(5),

σ2
i = 0.95 · 202

252
+ 0.15 · ε2

i−1 + 0.8 · σ2
i−1, (A.1)

Xi = εi where εi = σiUi, Ui ∼ st4.2(0),

σ2
i = 3.2 · 10−6 + 0.0349 · ε2

i−1 + 0.9373 · σ2
i−1 (A.2)

Xi = 0.2714Xi−1 + εi, where εi = σiUi,

σ2
i = 3.4 · 10−6 + 0.1407 · ε2

i−1 + 0.7914 · σ2
i−1,

Ui ∼ st5.3(0.8531), (A.3)

where stν(ξ) is the skewed Student’s t distribution with ν degrees of freedom and ξ is the skewness

parameter (Azzalini & Capitanio, 2003). If ξ = 0, it reduces to the standard t distribution.

Furthermore, Equations (A.1) and (A.2) both show an GARCH(1,1) model, while Equation

(A.3) represents an AR(1)-GARCH(1,1) model. We standardise the skewed-t values by dividing

them by their standard deviation to obtain the required Var(U) = 1.

A.2 Simulation models GJR-GARCH and EGARCH

In order to assess the quality of the GJR-GARCH and EGARCH, we add the following models

to simulation models already given in Section A.1.

Xi = εi where εi = σiUi, Ui ∼ st4(0),

σ2
i = 0.06 + 0.38ε2

i−j + 0.4σ2
i−j − 0.31ε2

i−jIi−j , (A.4)

Xi = εi where εi = σiUi, Ui ∼ st3.5(2),

ln(σ2
i ) = −0.03 + 0.9 ln(σ2

i−j) + 0.5

[
|εi−j |
σi−j

− E

{
|εi−j |
σi−j

}]
− 0.1

(
εi−j
σi−j

)
(A.5)

where stν(ξ) is the skewed Student’s t distribution with ν degrees of freedom, ξ is the skewness

parameter (Azzalini & Capitanio, 2003) and Ii−j is the indicator function as defined in Equation

(6). Equation (A.4) is a GJR-GARCH(1,1) model and is performed following Nugroho et al.

(2019) while Equation (A.5) uses the simulation values proposed in Hafner & Linton (2017),

making it a simulation of an EGARCH(1,1) model. Again, we standardise the skewed-t values

similarly as in the simulation in Appendix A.1.

A.3 Additional simulation figure GARCH versus AR-GARCH

The figure shows the coverage probability, interval length, bias and RMSE in relation with

k ∈ {50, 200}. We consider the left-tail 1% CES for both I0.95
na and I0.95

sn . The results using

the Hill estimator are depicted left, while those using the MR estimator are shown right in the

34



figure. Figure 2 shows the results for simulation model (A.2).

Figure A1: Characteristics as a function of k for left-tail 1% CES for I0.95na (solid) and I0,95sn (dotted) for
model (A.1). The horizontal line in the top plots indicates nominal coverage of 95%.

A.4 Additional tables GARCH versus GJR-GARCH and EGARCH

In this section, we give the additional performance matrices corresponding to the second sim-

ulation study discussed in Section 5.2 in which we assess the forecasting performance of the

GARCH, AR-GARCH, GJR-GARCH and EGARCH model by their RMSE. The top bar of the

tables state the estimation models, while the left column depicts the simulation model evaluated.

In bold are the values that attain the lowest RMSE, indicating the best forecasting model, and

the underlined values point out the second best forecasting model for the specific simulation.
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Table A1: Performance matrix for different simulations and models for α = 0.5% and Hill estimator

GARCH-t GARCH ARGARCH GJRGARCH EGARCH

(A.1) CVaR 3.621 1.185 1.319 0.671 10.549

CES 4.241 2.241 1.864 0.830 9.687

(A.2) CVaR 4.489 4.953 5.249 5.074 12.927

CES 12.283 12.731 12.681 12.786 17.452

(A.3) CVaR 3.611 3.277 2.151 2.097 11.758

CES 5.883 5.464 4.578 4.533 14.702

(A.4) CVaR 0.239 0.241 0.243 0.246 0.599

CES 0.523 0.522 0.526 0.521 0.779

(A.5) CVaR 0.211 0.749 0.665 0.200 0.194

CES 0.343 1.418 1.244 0.324 0.320

Table A2: Performance matrix for different simulations and models for α = 2.5% and Hill estimator

GARCH-t GARCH ARGARCH GJRGARCH EGARCH

A.1 CVaR 0.560 0.699 0.860 0.635 .320

CES 0.702 0.910 1.122 0.775 7.647

A.2 CVaR 1.717 2.449 2.094 2.137 8.625

CES 3.888 4.905 4.225 4.400 11.685

A.3 CVaR 2.451 2.510 1.094 1.117 8.267

CES 3.086 3.165 1.786 1.797 10.213

A.4 CVaR 0.126 0.131 0.129 0.134 0.483

CES 0.216 0.226 0.219 0.230 0.603

A.5 CVaR 0.128 0.374 0.289 0.555 0.115

CES 0.180 0.684 0.549 0.690 0.184
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B Appendix

B.1 Additional tables application

Table B1: Parameter estimates of in-sample fit for the full period

φ ω ψ β γ

NASDAQ

GARCH -
0.000∗∗∗

(0.000)

0.148∗∗∗

(0.022)

0.807∗∗∗

(0.026)
-

AR-GARCH
-0.027

(0.022)

0.000∗∗∗

(0.000)

0.147∗∗∗

(0.022)

0.808∗∗∗

(0.026)
-

AR-GJRGARCH
-0.013

(0.020)

0.000∗∗∗

(0.000)

0.000

(0.005)

0.834∗∗∗

(0.012)

0.276∗∗∗

(0.031)

AR-EGARCH
-0.012

(0.021)

-0.423∗∗∗

(0.018)

-0.201∗∗∗

(0.018)

0.953∗∗∗

(0.002)

0.165∗∗∗

(0.021)

Nikkei 225

GARCH -
0.000∗∗∗

(0.000)

0.139∗∗∗

(0.025)

0.820∗∗∗

(0.032)
-

AR-GARCH
-0.013

(0.023)

0.000∗∗∗

(0.000)

0.139∗∗∗

(0.026)

0.820∗∗∗

(0.033)
-

AR-GJRGARCH
0.002

(0.021)

0.000∗∗∗

(0.000)

0.027∗∗∗

(0.006)

0.809∗∗∗

(0.014)

0.246∗∗∗

(0.035)

AR-EGARCH
0.001

(0.020)

-0.545∗∗∗

(0.048)

-0.163∗∗∗

(0.019)

0.938∗∗∗

(0.938)

0.222∗∗∗

(0.025)

HSI

GARCH -
0.000∗∗

(0.000)

0.051∗∗∗

(0.010)

0.932∗∗∗

(0.014)
-

AR-GARCH
0.025

(0.020)

0.000∗∗

(0.000)

0.052∗∗∗

(0.010)

0.931∗∗∗

(0.015)
-

AR-GJRGARCH
0.008

(0.019)

0.000

(0.000)

0.004

(0.009)

0.937∗∗∗

(0.011)

0.080∗∗∗

(0.020)

AR-EGARCH
0.008

(0.019)

-0.209∗∗∗

(0.001)

-0.076∗∗∗

(0.011)

0.977∗∗∗

(0.000)

0.097∗∗∗

(0.0067)

CAC 40

GARCH -
0.000∗∗∗

(0.000)

0.125∗∗∗

(0.029)

0.854∗∗∗

(0.032)
-

AR-GARCH
-0.011

(0.022)

0.000∗∗∗

(0.000)

0.124∗∗∗

(0.029)

0.854∗∗∗

(0.032)
-

AR-GJRGARCH
-0.005

(0.019)

0.000

(0.000)

0.000

(0.015)

0.875∗∗∗

(0.033)

0.233∗∗∗

(0.067)

AR-EGARCH
0.004

(0.018)

-0.214∗∗∗

(0.002)

-0.178∗∗∗

(0.012)

0.976∗∗∗

(0.000)

0.119∗∗∗

(0.010)

DAX 30

GARCH -
0.000∗∗∗

(0.000)

0.091∗∗∗

(0.019)

0.890∗∗∗

(0.021)
-

AR-GARCH
0.006∗∗∗

(0.021)

0.000∗∗∗

(0.000)

0.092∗∗∗

(0.019)

0.889∗∗∗

(0.021)
-

AR-GJRGARCH
0.010

(0.019)

0.000

(0.000)

0.000

(0.058)

0.895∗∗∗

(0.040)

0.188

(0.142)

AR-EGARCH
0.013

(0.017)

-0.239

(0.013)

-0.159∗∗∗

(0.016)

0.973∗∗∗

(0.001)

0.136∗∗∗

(0.011)

Notes. t-statistics are in parentheses; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure B1a shows the results of the G-k-H model, Figure B1b the outcomes of the AG-k∗-H

model, Figure B1c the ones of model AGJR-k∗-H and Figure B1d displays the results of model

AEG-k∗-H, all for the DAX 30.

(a) GARCH model with Hill estimator (b) AR-GARCH model with Hill estimator

(c) AR-GJRGARCH model with Hill estimator (d) AR-EGARCH model with Hill estimator

Figure B1: Log-returns, CVaR estimates and loss function for DAX 30 for COVID-19 period March 1,
2020 - April 30, 2021
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Figure B2a shows the results of the G-k-H model, Figure B2b the outcomes of the AG-k∗-H

model, Figure B2c the ones of model AGJR-k∗-H and Figure B2d displays the results of model

AEG-k∗-H all for the HSI.

(a) GARCH model with Hill estimator (b) AR-GARCH model with Hill estimator

(c) AR-GJRGARCH model with Hill estimator (d) AR-EGARCH model with Hill estimator

Figure B2: Log-returns, CVaR estimates and loss function for the HSI for COVID-19 period March 1,
2020 - April 30, 2021
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C Appendix

C.1 Code explanation

For the coding, we use as basis the R code which is given as supplementary material in Hoga

(2019). We have made some small adaptations to the codes. For ’Simulation Replication’, we

have altered some values in the already existing simulations and have removed some of the

variables we are not using, like the CV1 variable. For the ’Results Replication’, we have not

adjusted any of the code and used the exact same as Hoga (2019). For the two extensions, we

have created new files, namely ’Simulation Extension’ and ’Results Extension’. For both, we

used again a large part of the already existing code, however we have now added two models

to both of them, namely the GJR-GARCH and EGARCH model. Note that for the EGARCH

model, the interpretation of the γ and ψ are switched in comparison with our Methodology

in Section 4. Furthermore, for the ’Simulation Extension’ we also incorporated two additional

simulation models. Lastly, we wrote the ’Plots Additional Extension’ which gives the code to

reproduce the plots which are used in to further analyse the COVID-19 period in Section 4.7,

in which we use some of the functions of our earlier ’Extension results’ file.
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