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Abstract

This paper extends the work by Medeiros et al. (2021) by comparing the performance of Random Forest

(RF) and Long Short-Term Memory (LSTM), two non-linear Machine Learning (ML) models, in forecasting

CPI inflation. Their performances are also compared to those of two univariate benchmarks, the

Autoregressive (AR) and Random Walk (RW) models. It uses a US and a Canadian high-dimensional

macroeconomic dataset. Forecasts are computed for different horizons (1 to 12-months) using a rolling

window framework. This paper finds that both ML models outperform the RW model consistently for both

datasets. And, even though the ML models consistently outperform the AR model for the US dataset, they

fail to outperform the AR model consistently for the Canadian dataset.
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1 Introduction

Inflation forecasting is of great importance in many sectors. Long-term nominal commitments such

as mortgages and labor contracts are influenced by the inflation forecasts. Inflation forecasting thus

has some effect on almost everyone (e.g. households, businesses, policymakers).

Although inflation forecasting is a long-studied subject, it was only in recent years that researchers

found models that perform better than simple univariate models. The most prominent univariate

models in inflation forecasting are: the Random Walk (RW), Autoregressive (AR) and Unobserved

Components with Stochastic Volatility (UCSV) models. Stock & Watson (2007) point out that

inflation in the US has recently become both easier and harder to predict. On the one hand, since

the mid-80s the volatility of inflation has decreased, making it easier to predict. On the other hand,

outperforming the naive univariate RW model became harder since then. Stock & Watson (2007)

and other researches argue that this may have to do with the changing behaviour of inflation over

time. This observation leads to an increase in popularity of non-linear forecasting models.

This paper extends the work of Medeiros et al. (2021). In Medeiros et al. (2021), different models

for forecasting US inflation in a data-rich environment are compared for different horizons (1 to 12-

months). These models are of varying origins, from the univariate Autoregressive (AR) model, to

Machine Learning (ML) models like Random Forest (RF) as well as shrinkage models like LASSO.

For all models, a rolling window framework is used. They found that, for the US data, RF consis-

tently gives better forecasts than all other models. They argue that the RF performs well, mostly

because of its ability to capture non-linearities in the data. Our paper extends the aforementioned

research by adding a relatively novel non-linear ML model to the comparison: Long Short-Term

Memory (LSTM). We choose to use LSTM because it is a type of Neural Network (NN) which is

specialized in capturing long-term (non-linear) dependencies in high-dimensional time series data.

Therefore, it may perform well in forecasting inflation. We compare LSTM against the RW and AR

models (benchmark models) to check if it can consistently outperform these univariate models. We

also compare LSTM against RF to find out how the accuracy of LSTM relates to that of the best

model found by Medeiros et al. (2021). We compare these models for two different datasets, a US

dataset, as used by Medeiros et al. (2021), and a Canadian dataset. We use the latter dataset to

check if the results found by Medeiros et al. (2021), as well as our own results, can be generalised

to forecasting inflation in different countries, using different datasets.

For obtaining forecasting results using LSTM, we first need to set the hyperparameter values. We use
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Bayesian Hyperparameter Optimisation to find the optimal number of neurons in the hidden layers.

The other hyperparameter values are set manually because the computation time would increase

too much if all hyperparameter values are optimised. We compare the results for RF and LSTM to

those obtained by the benchmark models using the Harvey-Leybourne-Newbold (HLN) test. The

HLN test checks whether two models have equal accuracy for the entire sample. For comparing

the results for LSTM to those obtained by RF, we us the Fluctuation Test. The Fluctuation Test

checks whether the models produce forecasts of equal accuracy over the entire sample, or whether

one model temporarily performs better than the other model.

We find that, for both datasets, LSTM and RF have similar accuracy. Also, both ML models

outperform the RW model consistently for (almost) all horizons for both datasets. For the US

dataset, both LSTM and RF also outperform the AR model consistently. However, for the Canadian

dataset, both LSTM and RF fail to outperform the AR model consistently. This implies that

the results found for comparing the ML models to the AR model for the US dataset can not be

generalised to different datasets.

The structure of the remainder of this paper is as follows. Section 2 serves as a literature overview,

and Section 3 describes the data. Next, Section 4 presents the methodology, followed by the results

in Section 5. Section 6 contains the conclusion.

2 Theory

Inflation forecasting has been around for a long time. Traditional literature on inflation forecast-

ing usually uses Phillips curve-based models. The Phillips curve relates unemployment or some

other measure of aggregate economic activity to inflation. Using this relation, Phillips curve-based

models set the forecasting function to be a function of an aggregate economic activity variable and

autoregressive terms. Although well-established, the Phillips curve-based models have varying per-

formances over time. Moreover, they can be outperformed by univariate models, like the unobserved

components stochastic volatility (UCSV) model (Stock & Watson, 2007), the random walk model

(Atkeson et al., 2001), or autoregressive models. Other benchmarks used for inflation forecasting

are BVARs (Giannone et al., 2015) and dynamic factor models (Stock & Watson, 2002; Ludvigson

& Ng, 2007). Dynamic factor models especially performed well in forecasting for short horizons.

In the recent decades, we have seen many advances in computational power and the availability of

large datasets. For those reasons, machine learning (ML) techniques have become more popular
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in the forecasting environment. This is because ML models are generally better at handling high-

dimensional data. There are multiple researches claiming that there exist no models, including

ML models, that can consistently outperform the aforementioned univariate benchmark models

(Stock & Watson, 1999; Atkeson et al., 2001; Stock & Watson, 2007). In the early days of using

ML models, predominantly linear ML models were used, these models were often outperformed by

the univatiate benchmark models (Teräsvirta et al., 2005). However, there are multiple researches

that prove to consistently obtain better results by using non-linear ML models like Random Forests

(RFs) (Medeiros et al., 2021), Support Vector Regressions (SVRs) (Sermpinis et al., 2014; Sermpinis

et al., 2014), or Neural Networks (NNs) (Nakamura, 2005; Choudhary & Haider, 2012).

Our paper adds to current literature firstly by checking if the results obtained by Medeiros et al.

(2021), namely that RF consistently outperforms the AR and RW models in forecasting inflation,

can be generalised to other high-dimensional datasets. Secondly, we use Long Short-Term Memory

(LSTM) (Hochreiter & Schmidhuber, 1997) and compare the forecasting results of LSTM to those

of RF and the AR and RW models for both of the high-dimensional datasets. LSTM is a type of

NN with increasing popularity in the recent years for forecasting inflation (Almosova & Andresen,

2019; Masini et al., 2020; Paranhos, 2021), but it is still unclear whether it performs consistently

better or worse than competing ML models or whether the difference is insignificant. Although

there has been a substantial number of researches addressing how well NNs perform in the inflation

forecasting context, most of them use the more basic NNs, like Feed Forward NNs (Nakamura,

2005; Chakraborty & Joseph, 2017). The main distinction between LSTM and the basic NNs is

that LSTM models the input explicitly as a sequence of observations, whereas basic NNs are not

able to handle the time-series aspect of the data. Moreover, LSTM assumes that there exists a

dependence across time steps. Because of these aspects, we choose to investigate the performance

of LSTM in forecasting inflation rather than that of other NNs.

3 Data

This paper aims to extend Medeiros et al. (2021), therefore the process of collecting and transforming

the data is similar. Following Medeiros et al. (2021), we use the FRED-MD database1 by McCracken

& Ng (2016) to compare the performance of LSTM to RF and the benchmark AR and RW models in

forecasting inflation using high-dimensional data. The FRED-MD database is a high-dimensional

1Available at https://research.stlouisfed.org/econ/mccracken/fred-databases/, date accessed: May 14,

2021.
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monthly macroeconomic dataset containing US macroeconomic variables. Moreover, we use the

LCDMA database2 by Fortin-Gagnon et al. (2018) to check if results of the model comparisons

can be generalised to other datasets. The LCDMA database is, similar to FRED-MD, a high-

dimensional monthly macroeconomic dataset containing Canadian macroeconomic variables. For

performing LSTM, all variables (including CPI) in both datasets are standardized.

3.1 FRED-MD

As described above, the FRED-MD database contains US macroeconomic data. The FRED-MD

database is updated in real time. We have chosen not to use the more recent data since January

2016 because this research is an extension of Medeiros et al. (2021), and it is more practical to

use the exact same dataset as is used by them. This means that we use the vintage as of January

2016, with the sample extending from January 1960 to December 2015 (672 observations). Following

Figure 1: The monthly US inflation during the sample period.

Medeiros et al. (2021), we only use variables for which there are no missing values within the sample

period (122 variables). On top of that, we use the four principal component factors computed from

this set of variables as potential predictors. All variables are transformed such that stationarity is

guaranteed. The transformations for all variables can be found in McCracken & Ng (2016). Inflation

is calculated as the price difference in consecutive months: πt = log(Pt) − log(Pt−1), where Pt is

the price index at period t. In this research, we use the CPI as the price index indicator. Figure 1

shows the movement of the inflation within the sample period. We compare the performances

across models in two different subsample periods, namely, January 1990 to December 2000 (132

2Available at http://www.stevanovic.uqam.ca/DS LCMD.html, date accessed: May 14, 2021.
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observations) and January 2001 to December 2015 (180 observations). The first subsample has

substantially lower inflation volatiliy (σ = 0.17%) than the second subsample (σ = 0.32%). For the

first subsample, we use a rolling window of 360 observations for training, for the second subsample

the rolling window is of size 492. Also, for training the RF model, a dummy variable is added such

that the outlier in November 2008 does affect the training process.

3.2 LCDMA

The LCDMA database is the Canadian equivalent of the FRED-MD database. Even though it

does not contain the exact same variables, it does contain many Canadian macroeconomic variables

which are transformed to guarantee stationarity as well. The transformations for all variables can

be found in Fortin-Gagnon et al. (2018). They have collected data starting from 1914, but only

the observations starting from January 1981 are usable. This is because most variables only have

observations starting from January 1981 and the data transformations are not applied on the data

before 1981. We use the vintage as of June 2021. The sample we use extends from January 1981 to

December 2015 (420 observations) because we aim to make forecasts on the same period as for the

second subsample of the US data, that is, from January 2001 to December 2015 (180 observations).

We use a rolling window of 240 observations for training the models. Similar to the US data, we

use the CPI as a price index indicator for inflation. We do not use principal components for the

Canadian data because there are more explanatory variables than observations. Figure 2 shows the

inflation over the sample period. There is a high peak in January 1991, which coincides with the

Figure 2: The monthly Canadian inflation during the sample period.

introduction of the federal Goods and Service Tax (GST), which led to an increase in prices of almost
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all products. Similar to the US CPI, the Canadian CPI shows a negative spike corresponding to

November 2008. However, the spike for Canadian CPI has an almost twice as small magnitude. The

volatility of the CPI from January 1984 to January 2001 is equal to 0.31% (0.27% when excluding

January 1991), from January 2001 to December 2015, the volatility is equal to 0.39%. Similar to

the US, there is a higher volatility in the period from January 2001 onward, the difference becomes

more significant when excluding January 1991 from the sample.

4 Methodology

The models we discuss are: the Random Walk (RW) and Autoregressive (AR) models, Random

Forest (RF), and Long Short-Term Memory (LSTM). The first two methods are traditional, uni-

variate models that we use as a benchmark for the latter two. RF and LSTM both are machine

learning (ML) methods. Both methods have the ability to capture nonlinear dependencies between

the variables. RF can be used in a wide range of applications, whereas LSTM is predominantly used

in forecasting time series. LSTM is a type of Neural Networks (NN) and Recurrent Neural Networks

(RNN). Therefore, before discussing the LSTM method, we will cover what NNs and RNNs are.

4.1 Benchmark Methods

The two benchmark methods are, Random Walk (RW) and the Autoregressive (AR) model.

RW is a simple univariate forecasting model and is therefore often used as a benchmark model. For

any horizon h, the predicted inflation is equal to the last known inflation value, that is: π̂t+h|t = πt.

For the h-period ahead accumulated forecast, the prediction consists of adding up the h last known

inflation values, that is: π̂(t+1:t+h)|t =
∑h−1

i=0 πt−i.

The AR model is, similar to the RW model, a univariate forecasting method which only makes use

of autoregressive terms. As discussed in Section 2, even though the AR model is relatively simple,

it has been one of the better performing methods for a long time in forecasting inflation. An AR(p)

model makes h-period ahead forecasts as follows:

π̂t+h|t = β̂0,h +

p−1∑
i=0

β̂i+1,h, πt−i (1)

where the β’s are parameters which are estimated using Ordinary Least Squares (OLS). Hyper-

parameter p determines how many lags are used in the forecast, p is determined by the Bayesian

Information Criterion (BIC) which prevents the model from overfitting by penalising higher model
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complexity. The accumulated h-period ahead forecast is calculated by aggregating the individual

forecasts for each horizon, that is: π̂(t+1:t+h)|t =
∑h

i=1 π̂t+i|t. The accumulated forecasts for RF and

LSTM are calculated in the same manner.

4.2 Random Forest

The Random Forest (RF) model was first introduced by Breiman (2001), with the aim to reduce

variance from regression trees. It uses bootstrap aggregation (bagging) of regression trees to achieve

a lower variance (Breiman, 1996).

A detailed explanation on how RFs works, can be found in Appendix A. We will not go into much

detail here because the method was discussed in Medeiros et al. (2021).

In short, a RF constructs B regression trees. Each regression tree is trained using a random subset

of covariates. Moreover, assuming we have T training observations, the training data for each

regression tree consists of T observations which are sampled with replacement from the original

training observations. The forecasts of a RF are produced by averaging the forecasts of all B

regression trees.

Appendix D explains which hyperparameter values need to be chosen and how this choice is made.

4.3 Neural Networks

Neural Networks (NNs) are one of the most traditional non-linear models. A NN consists of an input

layer, one or multiple hidden layers, and an output layer. Each layer consists of one or multiple

neurons. The input of neurons (except for the input layer) is a linear combination of the output

of all the neurons in the previous layer plus a bias. The input of the neurons in the input layer

are the values of the covariates of the model (X). The most common NN is a Feed Forward NN.

Appendix B describes the inner workings of a Feed Forward NN.

4.4 Recurrent Neural Network

A Recurrent Neural Networks (RNN) is a type of NN which is able to process data sequentially

rather than simultaneously as done for Feed Forward NNs. This is especially useful when you are

dealing with data for which the order is important. Therefore, RNNs are often used in e.g. linguistic

and economic time series research. To understand RNNs better, we first discuss its architecture.

Then we discuss the math behind RNNs. Finally, we discuss some of the shortcomings of ‘normal’

RNNs.
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An RNN treats the training data as a sequence and tries to find patterns by memorising past ob-

servations. To go in more detail on how RNNs store past information, we use the example of an

RNN with one hidden layer. Figure 3 shows the architecture of a 1-layer RNN. On the left, it shows

an architecture which is similar to a Feed Forward NN architecture. x denotes the values of the

input layer, s those of the hidden layer, and o denotes the output. Moreover, matrices U , V and W

are used to form linear combinations of neuron outputs to pass to the next layer. The architecture

differs from a Feed Forward NN because it contains an arrow with matrix W which is a feedback

loop within the hidden layer s. Matrices U , V and W are referred to as weight matrices. On the

right, Figure 3 shows how this feedback loop unfolds, namely, the output of hidden layer s at step

t is used as input for s at step t+ 1, together with the original input xt+1.

Figure 3: 1-layer Recurrent Neural Network architecture.3

The values of the weight matrices are estimated by using Backpropagation Through Time (BPTT).

Before explaining in more detail what BPTT does, we will first introduce some notation. The value

we try to forecast at time t, or the ground truth, is denoted as yt, such that:

st = Ss(Wst−1 + Uxt + bs)

ot = So(V st + bo)

Losst = L(ot − yt)

Loss =
T∑
t=1

Losst

(2)

where T is the number of observations. In the above equation, function L(·) determines how

3From https://journals.plos.org/plosone/article/figures?id=10.1371/journal.pone.0180944, date ac-

cessed: June 30, 2021
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the Loss depends on the error in the output. Oftentimes, L(·) is the least squares loss function:

L(error) = 1
2error

2. Ss(·) and So(·) are the activation functions, which are discussed in more detail

in Appendix B. Moreover, bo and bs are the biases.

BPTT aims to minimise the Loss. It does so by calculating the gradient of the Loss with respect to

the weight matrices. Based on the gradient, the weight matrices are adjusted towards a minimisation

of the Loss. Appendix C explains the problem of vanishing and exploding gradients which may

occur for ‘normal’ RNN structures.

Figure 4: 2-layer Recurrent Neural Network architecture.4

Until now, we have only discussed the case of a single hidden layer RNN. RNNs with multiple layers

are a straightforward extension of this. Figure 4 shows a RNN with two hidden layers. As we

can see, the only difference is that there are more weight matrices to calculate and the input goes

through more activation functions (need not be the same). Similar to Feed Forward NNs, RNNs

with more layers give opportunity for more different non-linear dependencies to be captured, but

they are also computationally more costly with a bigger chance of overfitting. The exploding and

vanishing gradients problem also holds for a ‘normal’ RNN with multiple layers. Therefore, long-

term dependencies can not be captured consistently. To capture long-term dependencies, specific

RNN structures are introduced. The two most prominent RNNs that are specialised in capturing

long-term dependencies are: Gated Recurrent Unit (GRU) (Chung et al., 2014) and Long Short-

Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997).

4From https://www.oreilly.com/library/view/r-deep-learning/9781787121089/19380309-271e-49b4-9ef4

-4c6ee331edcf.xhtml, date accessed: June 30, 2021
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4.5 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of RNN which is able to consistently capture long-term

dependencies, without having the problem of exploding or vanishing gradients. Figure 5 shows the

architecture of a typical LSTM layer. A NN can consist of multiple LSTM layers, possibly combined

with non-LSTM (e.g. Feed Forward) layers. In the figure, σ represents a logistic activation function

and tanh represents a hyperbolic tangent activation function (see Equation (7)). The “×”” and

“+” denote element-wise multiplication and sum operations respectively. An LSTM layer consists

Figure 5: Architecture of a Long Short-Term Memory (LSTM) layer.5

of a cell state, forget gate, input gate and an output gate. The ‘input’ of an LSTM layer at period

t consists of both the covariate values at time t (xt) and the output of the layer at period t − 1

(ht−1). The cell state (upper horizontal line) is able to memorise the past information, and is thus

the ‘memory’ of the layer. The cell state (memory) is also transferred from t to t− 1, but that does

not fall under the ‘input’. Since not all past information stays relevant, there is a forget gate which

helps distinguish what information is relevant. As we can see, the forget gate consists of a logistic

activation function, which maps the inputs between 0 and 1. Then, it performs an element-wise

multiplication with the cell state. For elements in the forget gate close to zero, the corresponding

information in the cell state is ‘forgotten’. On the other hand, for elements in the forget gate which

are close to 1, the corresponding information in the cell state is transferred through the layer and

stays in the memory.

Besides forgetting irrelevant information, the cell state also needs to be updated for every new

input, this happens through the input gate. The first step in the input gate is putting the input

5From https://www.researchgate.net/figure/The-structure-of-the-LSTM-unit fig2 331421650, date ac-

cessed, July 1, 2021
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data into two different activation functions, the logistic and tanh functions. Then, the outputs

of both activation functions are combined using an element-wise multiplication. Since the logistic

activation function maps inputs between 0 and 1, and tanh maps inputs between -1 and 1, the

element-wise multiplication will result in values between -1 and 1. The input gate is then element-

wise added to the cell state (memory).

The values of the cell state after this addition are used for two purposes. They are passed to the

next time step, and, after going through the tanh function, they are element-wise multiplied with

the output gate to construct an output. The output gate consists of putting the input data into

a logistic activation function. Similar to the input gate, this element-wise multiplication will lead

to values between -1 and 1. The values of the output gate are used both as the current output of

the layer, and as the input of the layer 1-period ahead. Note that, similar to the ‘normal’ RNN,

weight matrices are used to form linear combinations of inputs. Algorithm 1 describes analytically

Algorithm 1: Inner workings of a 1-layer LSTM model

Initiate with h0 = 0 and c(0) = 0;

Given the input xt, for t ∈ {1, ..., T} do

ft = σ(Wfxt + Ufht−1 + bf );

it = σ(Wixt + Uiht−1 + bi);

c̃t = tanh(Wcxt + Ucht−1 + bc);

ot = σ(Woxt + Uoht−1 + bo);

c(t) = [ft � c(t− 1)] + [it � c̃t];

ht = ot � tanh[c(t)];

ŷt = Wyht + by;

end

Where Wf ,Wi,Wc,Wo,Wy, Uf , Ui, Uc, Uo, bf , bi, bc, bo and by are parameters to be estimated.

how a 1-layer LSTM layer model works. The difference between LSTM and a ‘normal’ RNN is the

cell state (memory) which makes LSTM able to have a long memory, note that removing the upper

half of Figure 5 results in a ‘normal’ RNN architecture.

There are multiple variations for input and output data structures when using LSTM. We use a

structure for which the input data consists of 12 lags, that is, Xt−1 = (xt−1, xt−2, ..., xt−12). Using

Xt−1, the model predicts 1 to 12-months ahead inflation, that is, ŷt|t−1 = (ŷt|t−1, ŷt+1|t−1, ..., ŷt+11|t−1).

Appendix D explains which hyperparameter values need to be chosen and how this choice is made.
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4.6 Model Comparison

After obtaining forecasting results, it is useful to know if the quality of the results differ significantly.

One of the first widely accepted methods to perform forecast comparison is that of Diebold &

Mariano (1995). The so-called Diebold-Mariano (DM) test tests the null hypothesis of no difference

in accuracy of two competing forecasting models against either a one or two-sided alternative.

Although McCracken (2020) has shown that the DM test statistic may diverge in some cases,

Giacomini & White (2006) have shown that the test is valid if the model parameters are estimated

using a rolling window scheme. Since our research uses a rolling window for parameter estimation,

the DM test statistic will not diverge.

Another criticism on the DM test is that for the DM test, the distribution of the test statistic under

the null hypothesis is determined asymptotically. This asymptotic distribution may not always

generalise well under finite samples. Therefore, Harvey et al. (1997) propose a variation of the

DM test for which a correction for small samples is used, the Harvey-Leybourne-Newbold (HLN)

test. We use the HLN test for checking whether the Machine Learning models (RF and LSTM)

consistently perform better than the benchmark models (RW and AR). Moreover, we test whether

the AR model performs better than the RW model.

The disadvantage of the DM/HLN test statistic is that it does not tell us anything about how the

models perform over time, it gives a single value for the entire forecasting period. It may be interest-

ing to see how the relative model performances behave within the forecasting sample. Therefore, we

consider another method for model comparison, namely the Fluctuation Test (Giacomini & Rossi,

2010; Rossi, 2013). The Fluctuation Test analyses whether the ranking of two forecasts is stable

over time. The test is very similar to the DM test procedure, except that it is performed over the

forecasts within a rolling window of fixed size m. This test is especially relevant for the forecasting

results of the US inflation, because there seems to be a structural break in the variance of the

inflation around 2001. Therefore, there may also be a structural break in the predictive accuracy

of the models. The HLN test could capture this structural break if it happens from one month to

another. But it seems like the increase in variance happens more gradually, making the Fluctuation

test more suitable in this case. We use the Fluctuation test on models with similar performance,

to check if one model may temporarily perform better than the other, and if these fluctuations can

be explained.
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5 Results

This section presents the results of the research by first describing the results for the US data.

Next, we discuss the results for the Canadian data. Finally, we compare the results for the US

and Canadian data and attempt to give possible explanations for similarities and differences in the

outcomes. All ML forecasts are obtained in R. For estimating the RFs, we use the RandomForest

package. For estimating the LSTMs, we use the Keras package, together with Tensorflow6.

5.1 US Data (FRED-MD)

For the US data, we use the same data and benchmark models as Medeiros et al. (2021). Therefore,

our results for RW, AR and RF are the same as theirs. However, we present new results for the

LSTM model using US data. After applying Bayesian Hyperparameter Optimisation (Appendix D)

on the US dataset, we find the optimal number of neurons in the first and second hidden layer

to be 119 and 7 respectively. Panel A of Table 1 presents the results for the four models for the

entire forecasting sample. Appendix E shows results for two subsamples because there appears to

be a structural break near 2001, which means that the results may differ significantly. We can see

that LSTM performs relatively badly for a small horizon (1 or 2-months ahead). For the other

horizons, both RF and LSTM consistently outperform RW in all samples. In the first subsample,

the ML models (RF and LSTM) seem to also outperform the AR model consistently, but these

differences are rarely significant following a 5% significance level for the HLN test. Both for the

second subsample and the complete sample, the differences between the AR model and the ML

models are consistently significant. These differences between the results for the first sample and

the second sample could potentially have (a combination of) two explanations. Either the ML

models perform better on the second sample, or the benchmark models (RW, AR) perform worse

on the second sample. The latter explanation seems to be the more plausible. This has to do

with the variance of the CPI for each period. As discussed in Section 3, the variance of the CPI

increases from the first to the second sample. Since the benchmark models are relatively simple

models that only use autoregressive terms, the expected squared error of the models (especially for

RW) is positively related to the variance of the dependent variable. ML models use a big set of

explanatory variables, these variables could be able to deal with the higher variance better, which

explains why the ML models perform relatively better.

6The packages are available at https://cran.r-project.org/web/packages/.
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The figures in Appendix F show the 1, 3, 6 and 12-month ahead forecasts for the different models

together with the actual CPI. The RW model is excluded because it has the same form as the actual

inflation, shifted to the right. Including forecasts of the RW model reduces the clarity of the figure

substantially, without adding much information. For most of the sample, the forecasts of the three

models behave somewhat similar. The ML models are in some cases able to capture immediate

shocks (e.g. near the end of 2006), whereas the AR model seems to almost never capture those

kinds of shocks.

Figure 6: Fluctuation test for RF and LSTM with a 30-month window size for different horizons

using US data, confidence bounds are of 5%.

For comparing the RF forecasts to the LSTM forecasts, we use the Fluctuation Test for 1, 3, 6

and 12-month ahead forecasts. Figure 6 shows the results of this test using squared errors. Values

of the DM test statistic of 0 imply equal accuracy. For values above the upper confidence bound,

LSTM produces significantly more accurate forecasts in the past 30 months. For values below the

lower confidence bound, RF produces significantly more accurate forecasts in the past 30 months.

From Figure 6, we can see that in the first sample (1990-2000), for all forecast horizons LSTM

and RF perform almost equally well. After 2005, bigger differences between forecast horizons begin

to emerge. For the shorter horizons (1 and 3-months), RF seems to be more accurate, performing

significantly better for a few periods near the end of 2008. On the other hand, for the longer horizons

(6 and 12-months), LSTM seems to be the more accurate model, but for none of the periods LSTM

performs significantly better than RF.
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5.2 Canadian Data (LCDMA)

Applying Bayesian Hyperparameter Optimisation to the Canadian data results in an optimal num-

ber of neurons of 31 and 128 for the first and second hidden layer respectively. Panel B of Table 1

presents the results of the four models for the entire forecasting sample. We can see that, for all

forecasting horizons, the RW model gets consistently significantly outperformed by the AR, RF

and LSTM models. This could have to do with the fact that the variance of the Canadian CPI is

even higher than the variance of the second subsample of the US CPI. As mentioned before, the

squared errors of the benchmark models (especially the RW model) are positively related to the

variance of the dependent variable. It is remarkable that the AR model performs so well under these

circumstances. The performance of the AR model is similar to that of both ML models. Although

the AR model does not achieve the lowest RMSE for any of the horizons, its RMSE is lower than

that of LSTM for some horizons. Also, both RF and LSTM fail to significantly perform better than

the AR model consistently, with LSTM performing significantly better only once.

The figures in Appendix G show the 1, 3, 6 and 12-month ahead forecasts for the different models

together with the actual CPI. Again, the RW model is excluded because it has the exact same

form as the actual CPI. From these figures, it seems like the forecasts of the LSTM model are

less conservative than those of the AR and RF models. Where the AR and RF models both form

predictions with relatively low magnitude, the predictions of the LSTM model seem to have spikes

with magnitudes comparable to the actual inflation. Indeed, the volatility (σ) of the 12-month

ahead forecasts using the LSTM model is more than 1.5 times larger than the σ for the AR model

forecasts and more than 2 times larger than the σ for the RF model forecasts.

For comparing the RF forecasts to the LSTM forecasts, we use the Fluctuation Test for 1, 3, 6 and

12-month ahead forecasts. We also compare both models to the AR model because the results of

the ML models and the AR model were relatively similar. Figure 7 shows the results of this test

for RF and LSTM using squared errors. The figures in Appendix H show the results of this test

for the ML models and the AR model using squared errors. For the RF and LSTM models, for all

horizons, the differences are insignificant. Even though the differences are insignificant, it seems

like there is an upward trend for all horizons. This means that the LSTM model produces better

forecasts towards the end of the sample relative to the forecasts of the RF model. Between 2009

and 2012, the forecast horizon seems to have a bigger influence on the relative model accuracy.

LSTM favors shorter horizons, whereas RF favors longer horizons. This could have to do with the

relatively high variance in the LSTM forecasts. LSTM produces forecasts with magnitudes closer
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to the real behaviour of the CPI, while RF forecasts are consistently close to the mean of the CPI

without deviating much. These ‘more risky’ LSTM forecasts often have a greater probability of

succeeding for shorter horizons because it is easier to predict fluctuations in the near future. For

longer horizons, these fluctuations are harder to predict. However, predicting the long-term mean

is of approximately equal difficulty for all horizons. That could be the reason why RF predictions

are relatively more accurate for longer horizons.

Figure 7: Fluctuation test for RF and LSTM with a 35-month window size for different horizons

using Canadese data, confidence bounds are of 5%.

From the figures in Appendix H we can see that the relation between LSTM and AR forecasts

is somewhat similar to the relation between LSTM and RF forecasts. This further strengthens

the aforementioned possible explanation of the behaviour observed in the Fluctuation Test results

for RF and LSTM forecasts. The AR model produces forecasts which behave similar to those of

RF, they seem to represent the long-term mean of the real CPI without deviating much from it.

Therefore, getting similar results for the Fluctuation Test decreases the probability that the results

are solely based on randomness.

The relation between RF and AR forecasts seems more stable. Although there are no significant

differences, the RF model produces more accurate outcomes consistently for most horizons.

5.3 Comparison of the Results

We will now discuss the similarities and differences of the results for the different datasets.

The first similarity is that for both the US data and the Canadian data, the ML models consistently

perform significantly better than the RW model. Secondly, for both datasets, the performances

of both ML models are relatively similar. Moreover, the Fluctuation Test returns (almost) no
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significant values, implying that the performances are similar over the entire sample for the different

horizons.

The first difference is that for the US data, the ML models consistently performed significantly

better than the AR model, whereas the ML models were unable to obtain these results for the

Canadian data. This could have (a combination of) multiple reasons. Firstly, ML models usually

need relatively much training data to perform well out of sample. For the Canadian data, there

is less training data available which could be the reason that ML fails to consistently perform

better than the AR model. Secondly, it could be that the Canadian data contains too many

covariates. Although both ML models generally perform well with many covariates, a combination

of an insufficient number of observations and too many covariates can lead the models to overfit

and perform worse out of sample. It could also be that the results obtained by Medeiros et al.

(2021) and our results for LSTM using the US dataset do not generalise well to other datasets,

without the number of observations/covariates being of importance. The second difference is that

for the US data, LSTM seems to perform relatively better for larger horizons, whereas for Canadian

data, LSTM seems to perform relatively better for smaller horizons. This could have to do with

the variance of the forecasts. For the Canadian data, the forecasts seem to fluctuate more than

for the US data. These fluctuations are relatively more accurate for shorter horizons, whereas the

performance of more steady forecasts is less dependent on the horizon, which makes steady forecasts

perform relatively better for longer horizons.

19



T
ab

le
1
:

R
es

u
lt

s
fo

r
fo

re
ca

st
in

g
C

P
I

u
si

n
g

d
iff

er
en

t
m

o
d

el
s,

h
or

iz
on

s
an

d
d

at
as

et
s.

P
a
n
e
l
A
:
U
S

C
P
I
1
9
9
0
-2
0
1
5
R
M

S
E

ra
ti
o

F
o
re

ca
st

h
o
ri

zo
n

(m
o
n
th

s)

M
o
d

el
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

3
m

6
m

1
2
m

R
W

1.
00

1.
00

1.
00

1.
00

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0•

A
R

0.
90

*
0.

81
*

0.
79

*
0.

81
*

0
.7

9
*

0
.7

9
*

0
.7

8
*

0
.7

6
*

0
.7

8
*

0
.8

2
*

0
.8

4
*

0
.7

5
*

0
.8

6
*

0
.9

7
1
.2

2

R
F

0
.8
5

*•
0
.7
3

*
•

0
.7
1

*•
0.

74
*•

0
.7

1
*
•

0
.7

1
*•

0
.7

2
*
•

0
.7

1
*

0
.7

2
*•

0
.7

6
*
•

0
.7

8
*
•

0
.6

8
*•

0
.7
1

*•
0
.7
1

*•
0
.7
7

*•

L
S

T
M

0.
93

0.
74

*
•

0.
71

*
•

0
.7
3

*•
0
.6
9

*•
0
.7
0

*•
0
.7
1

*•
0
.6
9

*
0
.7
1

*
0
.7
4

*
0
.7
7

*•
0
.6
7

*•
0
.7

8
*
•

0
.7

6•
0
.7

8
•

P
a
n
e
l
B
:
C
a
n
a
d
ia
n

C
P
I
2
0
0
1
-2
0
1
5
R
M

S
E

ra
ti
o

F
o
re

ca
st

h
o
ri

zo
n

(m
o
n
th

s)

M
o
d

el
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

3
m

6
m

1
2
m

R
W

1.
00

1.
00

1.
00

1.
00

1.
0
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0

A
R

0.
82

*
0.

72
*

0.
70

*
0.

67
*

0
.6

6
*

0
.6

8
*

0
.6

4
*

0
.6

5
*

0
.6

6
*

0
.7

2
*

0
.7

8
*

0
.8

2
*

0
.6

9
*

0
.5

9
*

0
.7

6
*

R
F

0
.7
8

*•
0
.6
9

*
•

0
.6
7

*•
0
.6
6

*
0
.6
5

*
0
.6
8

*
0
.6

3
*

0
.6
3

*
•

0
.6
6

*
0
.7
1

*
•

0
.7

6
*
•

0
.8
1

*
•

0
.6
4

*•
0
.5
6

*
0
.6
9

*

L
S

T
M

0.
81

*
0.

70
*

0.
68

*
0.

68
*

0.
6
5
*

0
.6

9
*

0
.6
2

*
0
.6

4
*

0
.6

7
*

0
.7

5
*

0
.7
6

*•
0
.8

3
*

0
.6

7
*

0
.6

4
*

0
.8

3
*

[1
]

3m
,

6m
an

d
12

m
d

en
o
te

th
e

a
cc

u
m

u
la

te
d

fo
re

ca
st

s
fo

r
3
,

6
,

a
n

d
1
2
-m

o
n
th

s
a
h

ea
d

re
sp

ec
ti

ve
ly

.

[2
]

*:
B

et
te

r
p

er
fo

rm
an

ce
th

an
R

W
m

o
d

el
o
n

a
5
%

si
g
n

ifi
ca

n
ce

le
ve

l
u

si
n

g
th

e
o
n

e-
si

d
ed

H
L

N
te

st
w

it
h

sq
u

a
re

d
er

ro
rs

.

[3
]
• :

B
et

te
r

p
er

fo
rm

an
ce

th
an

th
e

A
R

m
o
d

el
o
n

a
5
%

si
g
n

ifi
ca

n
ce

le
v
el

u
si

n
g

th
e

o
n

e-
si

d
ed

H
L

N
te

st
w

it
h

sq
u

a
re

d
er

ro
rs

.

20



6 Conclusion

This paper investigates the performance of Random Forest (RF) and Long Short-Term Memory

(LSTM) models in forecasting inflation. It compares the models to Random Walk (RW) and Au-

toregressive (AR) models and it compares the models to each other.

We analyze these questions using the following methods. First, we use Bayesian Hyperparameter

Optimisation to find the optimal number of neurons for the LSTM model. Then, using a rolling

window, we make 1 to 12-month ahead forecasts of the inflation. The forecasts are compared

using the Root Mean Squared Error (RMSE). We determine significance of differences in forecast

accuracy using the Harvey-Leybourne-Newbold (HLN) test, a variation of the Diebold-Mariano

(DM) test with corrections for small samples. Finally, we investigate whether the differences in

forecast accuracy change over time using the Fluctuation Test, a moving-window variation of the

DM test.

The methodology as described above is applied on two high-dimensional datasets: the FRED-

MD dataset containing US macroeconomic data, and the LCDMA dataset containing Canadian

macroeconomic data. Both of these datasets also contain the inflation as measured by the Consumer

Price Index (CPI).

For the US dataset, we find results indicating that both ML models consistently perform signifi-

cantly better than both benchmark models (RW and AR model). The LSTM model has a worse

performance for short horizons (1 and 2-months), but performs well for the other horizons, espe-

cially for longer horizons (12-months). The RF model performs well for all horizons. Apart from

the short horizons, the performances of RF and LSTM are relatively similar.

For the Canadian dataset, we find results indicating that both of the ML models and the AR model

consistently perform significantly better than the RW model. The results differ from the results for

the US dataset in multiple ways. Firstly, both ML models fail to consistently perform significantly

better than the AR model. This could have to do with the lack of training data or an overload of

covariates. Secondly, LSTM forecasts seem to perform better for short horizons, whereas, for the

US data, this was the other way around. The reason for this could be that forecasts using LSTM

fluctuate more for the Canadian data. Generally, fluctuations can be predicted more accurately

for short horizons. The performance of forecasts with relatively little fluctuations are generally less

dependent on the horizon.

All in all, the ML models seem to perform better than the RW model almost always. It seems like
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this observation can be generalised to other datasets as well, because the performance of the RW

model has not been able to compete with the ML models for almost all horizons in both of the

datasets. The relative performance of the ML models and the AR model is more complicated. It

seems that we can not make a conclusion that can be generalised about whether the ML models

perform better than the AR model. It highly depends on the dataset whether the ML models are

able to consistently perform better than the AR model. Lastly, the performances of RF and LSTM

are relatively similar.

There are several interesting avenues for extensions to this research in the future. Firstly, if there

are less time constraints, more of the hyperparameter values could be optimized for both LSTM and

RF. Secondly, for the LSTM model, (multiple) non-LSTM hidden layers (e.g. Feed Forward) could

be added to the model. This may increase the accuracy because more complicated non-linearities

in the data can be captured when adding additional layers. Instead of using the Dropout method

for training the LSTM model, the MC Dropout method (Gal & Ghahramani, 2016) could be used.

Some researches have shown that for using Dropout, there is still a chance of overfitting the model.

Therefore, MC Dropout was introduced as an improvement on the original Dropout.
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Appendix A Description of Random Forests

To understand the RF method better, it is important to first understand how regression trees work.

A regression tree splits the explanatory variables (x) in intervals and creates a prediction for the

dependent variable (y) for each interval. Each interval is represented by a node in the regression

tree. The nodes at which no more splits are performed are called terminal nodes.

Given a number of terminal nodes K and a forecast horizon h, the splits are determined by mini-

mizing the sum of squared errors of the following regression model:

yt+h =

K∑
k=1

ckIk(xt;θk), (3)

where Ik denotes an indicator function such that:

Ik(xt;θk) =


1, if xt ∈ Rk(θk),

0, otherwise

(4)

where θk is the set of parameters that define the k-th region Rk. The parameter ck determines

what the forecast for yt+h is if xt falls in region k.

To prevent overfitting, different heuristics are introduced that stop the tree from splitting any

further. This is necessary because variance increases sharply if trees grow too big while the bias

decreases very slowly, which means that the SSE of test data would increase (even though the SSE

of training data still decreases). An example of such an heuristic is that each node/interval should

contain a minimum number of observations in the training data.

We will use a 2-dimensional example to give a visual representation of regression trees. In this ex-

ample, y is the dependent variable and x the explanatory variable. Suppose the real data generating

process (DGP) of y is a sigmoid function with normally distributed errors (see Figure 8). Figure 9a

shows in which way the data is split using a regression tree and, at the bottom, which y-value be-

longs to each interval for x. Figure 9b shows for each x-value what the regression tree predicts the

y-value to be. This figure shows that regression trees can capture non-linear relationships between

x and y, although in a simplistic manner. Note that Figures 9a and 9b can be linked to each other,

each horizontal line/interval in Figure 9b corresponds to one of the leaf nodes in Figure 9a.

The disadvantage of regression trees is that they can only capture a very simplified version of

functions without having to deal with a sharp increase of the variance. Random Forest (RF) was

introduced to overcome this problem. As discussed, RF is a bagging method. It uses bootstrapping
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Figure 8: The data points used in the example, the red line denotes the sigmoid function.

(a) Splitting points in the tree. (b) Predicted y for all x-values using the regression

tree.

Figure 9: Regression tree example.

to create B regression trees, and aggregates predictions of these regression trees to form a prediction.

Each regression tree is trained using a random subset of covariates. Moreover, assuming we have

T training observations, the training data for each regression tree consists of T observations which

are sampled with replacement from the original training observations. The forecasts of a RF are

produced by averaging the forecasts of all B regression trees, that is:

ŷt+h =
1

B

B∑
b=1

{
Kb∑
k=1

ckIk(xt;θk)

}
, (5)

where Kb is the number of terminal nodes of the regression tree constructed in the b-th bootstrap

step.

For the previous example (Figure 8), Figure 10 shows for each x-value what the predicted y-value
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would be for a RF (B = 500). We can see that the RF is better able to capture the original DGP

than the regression tree, which shows the power of using bagging on multiple regression trees (RF)

rather than only using one regression tree.

Figure 10: Predicted y for all x-values using the random forest.
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Appendix B Description of Feed Forward Neural Network

For a Feed Forward NN, the values that are passed to the first hidden layer, are a linear combination

of the covariates: γ0,j +γ ′jXt, j = 1, ...,m1. Where m1 is the amount of neurons in the hidden layer

and γ0,j denotes the bias. Inside the neurons of the hidden layer, the linear combinations are put in

an activation function S(·). For a single hidden layer Feed Forward NN (Figure 11a), the neuron(s)

in the output layer then receive a linear combination of the output from the neurons in the hidden

layer plus a bias as input. This leads to the following approximation function for the k-th neuron

in the output layer:

gDk
(X) := gDk

(X,θk) = β0,k +

m1∑
j=1

βj,kS(γ0,j + γ ′jX). k = 1, ...,m2 (6)

Where m2 is the amount of neurons in the output layer and

θk = (β0,k, ..., βm1,k,γ
′
1, ...,γ

′
m1
, γ0,1, ..., γ0,m1) denotes the set of parameters. The parameter values,

θ̂k, are estimated by minimizing the squared error. Since θk is unrestricted and can become very

high-dimensional (especially for multiple hidden layers), this minimization problem may cause over-

fitting to take place. To prevent this, Srivastava et al. (2014) introduced a method named Dropout.

Dropout randomly drops neurons (including their connections) from the network in the parameter

estimation process. There are 2m1 different ways to do this. Dropout first samples from these 2m1

available ‘thinned’ NNs. After that, it trains the sampled thinned NNs. Finally, combining the

trained thinned NNs, it trains an unthinned NN. The unthinned NN will function as the forecasting

model.

Often, squashing functions are used as activation functions. Squashing functions are non-decreasing

functions that will not pass some finite upper and lower bound, regardless of the input. The two

historically most popular choices are the logistic and hyperbolic tangent functions, such that:

Logistic: S(x) = σ(x) =
1

1 + exp(−x)

Hyperbolic Tangent: S(x) = tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)

(7)

Other activation functions that gained popularity in recent years are the Radial-Basis Function

(RBF) (Broomhead & Lowe, 1988) and the Rectified Linear Units (ReLU) (Yarotsky, 2017).

For a NN with multiple hidden layers, the process of passing linear combinations of neuron values

(plus biases) and putting them in an activation function is repeated multiple times. The Dropout

method can also be applied to a NN with multiple hidden layers. Figure 11b shows the architecture
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of a NN with 2 hidden layers, each consisting of 5 neurons, note that the amount of neurons across

hidden layers does not need to be the same.

(a) Feed Forward NN with one hidden

layer.

(b) Feed Forward NN with two hidden layers.

Figure 11: Feed Forward Neural Network architecture. From Masini et al. (2020).
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Appendix C Vanishing/Exploding Gradients for Backpropagation

Through Time

A problem with the gradient in the ‘normal’ RNN structure appears for the gradient of Loss with

respect to W (and U). This is because these gradients have a recursive structure:

∂st
∂W

=
∂st

∂(Wst−1 + Uxt + bs)

∂(Wst−1 + Uxt + bs)

∂W

= S′s(Wst−1 + Uxt + bs) (st−1 +W
∂st−1
∂W

).

(8)

This leads to the following expression for the gradient of Loss with respect to W :

∂Losst
∂W

=
∂Losst
∂ot

∂ot
∂st

∂st
∂W

= L′(ot − yt) S′o(V st + bo) V S′s(Wst−1 + Uxt + bs) (st−1 +W
∂st−1
∂W

).

(9)

The problem that may occur because of this recursion is that of exploding or vanishing gradients.

The gradient has a recursive structure, and the recursive part is multiplied by W in every recursion

step. Therefore, the gradient of Losst with respect to W will eventually, among others, depend on

W t. This leads to the gradient eventually depending on some λt, which is related to W . How the

λ is calculated and how it is related to W is outside the scope of this paper. What is important is

that for |λ| > 1, the gradient will explode, and for |λ| < 1, the gradient will vanish. An exploding

gradient causes the BPTT to fail because the gradient can take on values that are too large for

a computer to handle. Also, the estimation process becomes unstable. A vanishing gradient also

causes BPTT to fail. This is because BPTT changes values in the weight matrices according to the

gradient. Therefore, vanishing gradients will cause the algorithm to stop learning.
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Appendix D Hyperparameter Value Selection

For both RF and LSTM, some hyperparameter values need to be set before starting the training

process. We will briefly discuss how the hyperparameter values are chosen for RF, after that, we

will discuss how we chose the hyperparameter values for LSTM.

For RFs, we use the same hyperparameter values as Medeiros et al. (2021), because we are extending

their work. Therefore, each tree in the RF only performs a split if the resulting leafs contain at least

five observations in the training data. The proportion of variables selected in each bootstrapping

step is 1
3 and the number of bootstrap steps, B, is set to 500. They investigated using different

hyperparameter values and came to the conclusion that the results are reasonably stable.

LSTM has, like most NNs, relatively many hyperparameters that need to be set before training the

model. These hyperparameters are: batch size, nepochs, lr nlayers, units. The batch size determines

how the training data is supplied to the LSTM algorithm. LSTM can not handle all observations

at once, so the observations are supplied in batches of size batch size. A higher batch size is com-

putationally faster, but leads to suboptimal outcomes and vice versa. The hyperparameter nepochs

determines how often the training data is passed through the LSTM algorithm. It is necessary to

pass the data through LSTM multiple times because LSTM does not yet obtain its most optimal pa-

rameter values after passing the data through it only once. A higher nepochs leads to more optimal

outcomes, but is computationally slower and vice versa. Then, lr (learning rate) is a hyperparameter

that controls how much to change the weight matrices in response to the estimated error and gradi-

ents each time the model updates its weights. Setting lr too high may lead to an unstable training

process because the algorithm takes too big steps for each iteration, it may also lead to a sub-optimal

set of weights. On the other hand, setting lr too low may result in a very slow training process that

could get stuck on a sub-optimal set of weights. nlayers determines the number of hidden layers

in the network, setting this lower gives opportunity to less non-linear functions to be captured, but

also a lower chance of overfitting, and vice versa. Finally, units is a vector of hyperparameters that

determines, for each hidden layer, how many neurons to use. The number of neurons in a layer

determines the dimensions of the weight matrices in that layer. Thus, setting this higher, results

in more parameters to be estimated. Setting units too high may lead to overfitting of the model.

On the other hand, setting units too low may result in the model not being able to train sufficiently.

For none of these hyperparameters there exists a method to determine the optimal value. For units
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we use Bayesian Optimisation to find the optimal values. This optimization algorithm is computa-

tionally very costly, therefore, with the limited amount of time we have, we decided to only use this

for units and set the other hyperparameters manually. We use a batch size of 1, because increasing

it leads to disproportionately worse results, even though it decreases the computation time. For

nepochs, it is computationally not feasible to use a value higher than 50, given the batch size which

is equal to 1. We set nepochs equal to 20 after tweaking it between 1 and 50 for the training sets of

both datasets. For the lr (learning rate), we use the standard value of 0.001. Then, we set nlayers

to 2 because we want to capture non-linearities in the inflation without overfitting the model. Using

2 hidden layers enables the model to capture sufficient non-linearities. For both hidden layers, the

Dropout (Appendix B) method is used to prevent overfitting. Finally, for the units hyperparameter,

which is a vector of 2 values because we set nlayers equal to 2, we use Bayesian Optimisation.

Bayesian Optimisation is an adaptive hyper-parametric search method that predicts the combination

of values for the hyperparameters that is likely to give the most benefit based on the combination

of hyperparameter values that have currently been tested Snoek et al. (2012). It assumes that

the function of hyperparameter optimization f(x) follows a Gaussian process, where x denotes the

hyperparameter values. This means that p(f(x)|x) follows a Normal distribution. Following the

notation of Hongwei et al. (2020), The Bayesian Optimisation process is modelled as a Gaussian

process, which is based on the results of N existing experiments. Each of the inputs for these

experiments (xn) led to a deviation between output and ground truth. Since the Bayesian Optimi-

sation algorithm uses a maximisation function, we use the negative of the Root Mean Squared Error

(RMSE) as f(x). Then the experiments and their outcomes are grouped: H = {xn, yn}Nn=1. Based

on H, the posterior distribution of f(x) is calculated: p (f(x)|x,H). After the posterior distribu-

tion of the objective function is obtained, an acquisition function a(x,H) needs to be defined to

determine the next sample point. The next sample point is then defined as x′ = argmaxx a(x,H).

For our research, we use an acquisition function as follows: a(x,H) = E [f(x)|x,H] + σ [f(x)|x,H].

Thus, x′ is chosen at points with either a high uncertainty or a high expected accuracy (f(x′)), or

a combination of both.

Before the process starts, we produce forecasts for 15 random points on the grid as initialisation.

These points (x∗), together with the negative of their respective RMSE (y∗), are used as initialisation

(H∗). Then we use M = 35 Bayesian Optimisation steps to find the optimal value for units.

Algorithm 2 shows the Bayesian Optimisation process.
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Algorithm 2: Bayesian Hyperparameter Optimisation

input : f(x), M, a(x,H), H∗;

H = H∗;

Model Gaussian process according to H, calculate p (f(x)|x,H);

for m ∈ {1, ...,M} do

x′ = argmaxx a(x,H);

evaluate y′ = f(x′);

H = H ∪ (x′, y′);

Remodeling Gaussian process according to H, calculate p (f(x)|x,H);

end

Output H

We apply the Bayesian Optimisation algorithm on the units hyperparameter. Both for US data

and Canadian data, we use the training sample (part of the sample for which no forecasts will be

calculated) to calculate the RMSE of the models. RNNs, including LSTM, are only able to predict

1 period ahead because of its recurrent structure. Therefore, the training and predicting structure

in Figure 12 is used. We separately predict the last 5 periods in the training sample using all the

observations up until the point of the predictions. For each prediction, a new model is estimated

because the training data is slightly different. Since LSTM returns 12 values for each prediction

(Section 4.5), we have a set of 60 predictions. For these predictions, the RMSE is calculated and

the negative of this is returned as f(x)-value in each step of the Bayesian Optimisation process.

Figure 12: The training and testing process in Bayesian Optimisation, the blue dots are used for

training, the red dot is predicted.7

7From https://rstudio-pubs-static.s3.amazonaws.com/351073 677a795d25d9418a843640940a2dacf5.html0,

date accessed, July 1, 2021
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Appendix E Forecasting Results US CPI Split in Two Samples

Because of the size of the table, it is presented on the next page.
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Appendix F CPI Forecasts for US data

(a) 1-month ahead forecasts.

(b) 3-months ahead forecasts.

(c) 6-months ahead forecasts.

(d) 12-months ahead forecasts.

Figure 13: US CPI forecasts over the sample period for the different models.
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Appendix G CPI Forecasts for Canadian data

(a) 1-month ahead forecasts.

(b) 3-months ahead forecasts.

(c) 6-months ahead forecasts.

(d) 12-months ahead forecasts.

Figure 14: Canadian CPI forecasts over the sample period for the different models.
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Appendix H Fluctuation Tests ML Models with AR Model

(a) RF against AR.

(b) LSTM against AR.

Figure 15: Fluctuation test for RF and LSTM against AR with window size 35 for different horizons

using Canadese data, confidence bounds are of 5%.
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Appendix I Replication

I decided to replicate Table 5 of the original paper because it has all the information which is present

in Table 1. The tests and mean/median methods can not be replicated since I did not include all

models because of the long running time. The RF results differ slightly because the authors did

not give a seed for the second sample. Also, the results for the shrinkage models differ, the cause

of this is unknown.
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