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Abstract

In this thesis, we present a bi-objective green vehicle routing problem (bi-GVRP) to evaluate

the effects of considering CO2 emission during the formulation of the distribution routes

of a logistics service provider. We assign different weights to the objectives and compare

relative changes of total distance and CO2 emission for all randomly generated test instances.

Furthermore, we investigate the impact on the allocation of CO2 emission to customers by

following the approach of Naber et al. (2015). We assess the emission allocations of five

methods – being the Star method, the Shapley value, the Nucleolus, the Lorenz+ Allocation

and the Equal Profit Method+ – and investigate whether their behaviour changes based

on three criteria: stability, consistency and computation time. Our numerical experiments

show that the criteria do not detect significant changes in the behaviour of the allocation

methods. However, it is still worthwhile to consider bi-objective optimization for economic

and environmental factors in the determination of distribution routes as a significant decrease

in CO2 emission can be achieved by a relatively smaller increase in total distance travelled.
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1 Introduction

Global warming is an unavoidable challenge that the world is continuously dealing with. The

correlation between human emissions of greenhouse gases (GHGs) and global temperatures has

always been there and is undisputed (Lacis et al., 2010). Over the last century, global surface

temperatures have, on average, increased by 1.3◦C due to the remarkable surge in the concentra-

tion of GHGs (Ritchie and Roser, 2020). One well-known gas that contributes to anthropogenic

climate change is carbon dioxide, CO2. The impact of its concentration is tremendous and,

even if CO2 emission would come to an end immediately, it is already irreversible for the next

millennium, as the study by Solomon et al. (2009) depicts.

Due to the prominent position of environmental effects in the current world, companies value

their carbon footprint and devote more attention to it. The awareness of the externalities of

their services is of interest for several underlying reasons. One reason for this is the role and

influence of the government. On the one hand, companies might be subsidized or be offered tax

reductions when making use of environmentally friendly processes, where on the other hand,

specific industries are restricted by ‘relative’ or ‘intensity’ emission caps (Quirion, 2005). The

presence of such environmental measures in the logistics sector makes sense, as the International

Energy Agency (2009) quantifies the contribution of transportation activities in the emission of

GHGs to be around 23% of the world’s total. Another reason why businesses evaluate their total

emission is the exhibition of their corporate social responsibility. They set their own emission

targets to provide themselves with a more competitive position in the market. In this way, it is

more likely that consumers who value their positive contribution to the environment will prefer

them because of their lower carbon footprint.

In this thesis, we study a setting where a logistics service provider (LSP) visits its customers

on different distribution routes. It might be the case that these customers ask the LSP to in-

form them about their contribution of the total emitted CO2 on the driven distribution route.

They cannot estimate this part of their carbon footprint themselves as it is dependent on the

LSP supplying them. The driven route is vital in allocating CO2 emission as the total distance

travelled and the weights of the vehicle’s load determine the total emission of transport. Mainly,

a LSP designs its routes from an economic (profit-maximizing) perspective and uses basic trans-

portation models such as the vehicle routing problem (VRP) (Toth and Vigo, 2002). However,

these models neglect factors like emission or environmental impact. Hence, this may cause a

discrepancy between the constructed route and the hypothetical route which would be optimal
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from an environmental perspective.

Therefore, we consider a trade-off between economic and environmental aspects in the op-

timization of distribution routes. Subsequently, we evaluate the impact of this objective on

total CO2 emission and the behaviour of selected allocation methods. Our aim is not only to

determine to what extent emission should be incorporated in optimizing routes, but also to see

what influence this has on the allocated emission to the customers.

To establish a transparent and fair allocation of CO2 emission to a single customer on

a given distribution route, Naber et al. (2015) propose and compare five different methods.

Their approach models the allocation problem with concepts from cooperative game theory,

which results in the so-called emission allocation game. Then, they apply allocation methods

to allocate CO2 emission on a case study in which the routes are constructed following a cost-

minimizing objective. To evaluate the allocation methods, they use several important criteria

from a customer perspective: stability, consistency, robustness and computation time. The five

allocation methods and the emission allocation game will form the basis of this research.

This thesis aims to evaluate the effects of considering CO2 emission during the formulation

of the distribution routes of a LSP. We implement environmental aspects by presenting a bi-

objective green vehicle routing problem (bi-GVRP), based on the approach of Sawik et al. (2016)

and El Bouzekri El Idrissi and Elhilali Alaoui (2014), which finds optimal routes in the context

of total distance travelled and expected emission. To conclude whether including environmental

externalities adds value or generates extra costs for the LSP, we compare relative changes in

CO2 emission and the total distance of multiple instances. In this comparison, different weights

are assigned to both objectives. In addition, we follow the approach of Naber et al. (2015) and

allocate CO2 emission for all instances using both their proportional and game-theoretic models.

We evaluate the influence of the bi-objective optimization on the proposed allocation methods

by comparing the allocated amounts of CO2 emission. Finally, we investigate a possible change

in behaviour of the methods by assessing the criteria stability, consistency and computation

time (Naber et al., 2015).

By means of numerical experiments, we show that it is worthwhile to consider bi-objective

optimization for economic and environmental factors in the formulation of an optimal route

schedule. Even though the criteria do not show significant changes in the behaviour of the

allocation methods when the objective varies, bi-objective optimization provides incentives as

CO2 emission can significantly be decreased by a relatively smaller increase in total distance

travelled.
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The remainder of this thesis is as follows. Section 2 gives an overview of the relevant lit-

erature. In Section 3, a formal problem description and a mathematical formulation for the

bi-GVRP are presented, together with the emission allocation game and the five allocation

methods. Subsequently, Section 4 presents the randomly generated test instances whereafter

Section 5 contains the computational results. Finally, the thesis finishes off with a conclusion

and suggestions for further research in Section 6.

2 Literature review

2.1 Vehicle routing problems

In the field of operations research, the VRP plays a central role and “is one of the most impor-

tant, and studied, combinatorial optimization problems” (Toth and Vigo, 2002, p. xvii). The

problem was introduced by Dantzig and Ramser (1959), who generalized the classic travelling

salesman problem (TSP) of Flood (1956). Their real-world application on handling the supply of

gasoline initiated intensively investigated derivatives and many adaptations. The reason for the

prominent position of the VRP in literature is its widespread applicability. The VRP belongs

to the class of NP-hard problems and is therefore restricted to a size of 50 - 100 customers when

it needs to be solved to optimality within a reasonable timespan (Kumar and Panneerselvam,

2012). The specific maximum size is dependent on the used VRP variant.

Until recently, companies only cared about their economic costs while maximizing the prof-

itability of their business (McKinnon et al., 2015). However, since public and government interest

in sustainability rose at the beginning of the 21st century, logistic processes are now under the

pressure of considering environmental aspects, too. There are claims that environmental benefits

can be achieved by simply reducing the total distance travelled as this consequently means less

fuel consumed (Sbihi and Eglese, 2007). Nevertheless, VRP variants incorporating environmen-

tal externalities like pollution and generated noises are widely developed (Dekker et al., 2012).

The significant presence of literature studies that integrate both logistics and environmental

concerns into one model, as for example Palmer (2007) does, proves that more can be done

besides the minimization of distance only. These models that consider environmental aspects

are categorized as green vehicle routing problems (GVRP).

In most applications, the focus of the GVRP is similar and the differences are to be found

in the formulation of the objective function and solving procedures. For example, Ubeda et al.

(2011) and Elbouzekri et al. (2013) solve for a single objective function that only minimizes
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CO2 emission. The difference in these studies is the solving method: the first-mentioned solves

its objective heuristically in two steps as emission is estimated first, where the latter applies a

hybrid ant colony system. Another study that also implements a single objective is the one of

Bektaş and Laporte (2011). Their paper can be seen as one of the most explicit in the field

of GVRPs as its objective not only incorporates distance travelled and emissions, but also the

corresponding costs of fuel used and the duration of travelling. Instead of solving one single

objective, other studies partition the multiobjective into separate functions. Where Kim et al.

(2009) use one function for the freight transport costs and one for the CO2 emission, Molina

et al. (2014) follow a similar approach with the addition of a third objective to also consider

the emission of the air pollutant NOx. Furthermore, there are studies, like those of Sawik et al.

(2016) and El Bouzekri El Idrissi and Elhilali Alaoui (2014), that combine the intentions of

green logistics and formulate a bi-objective function that is solved with respect to the standard

constraints belonging to a VRP, resulting in a bi-GVRP. In this thesis, we will apply green

logistics following the principles of this variant.

2.2 Cost allocation problems

Besides the optimization of distribution routes, this thesis inspects fair and transparent alloca-

tions of CO2 emission amongst the customers on these routes. The roots of these methods are to

be found in cost allocation problems. Reviewing the literature reveals a distinction between these

problems; some apply basic proportional rules to allocate costs, where others incorporate theo-

retical concepts derived from game theory (Tijs and Driessen, 1986; Guajardo and Rönnqvist,

2016). Often, these two categories appear together in literature for the sake of comparison.

In proportional methods, players are assigned a share of the total costs incurred. The value of

each individual’s share can be quantified by using different factors. If every player gets assigned

an equal cost share, it is referred to as the egalitarian method. It is applied in a broad scope

of research; Dror (1990) uses this method in a TSP setting and Lehoux et al. (2011) implement

this equal allocation in a supply chain of a pulp and paper supplier. The relative share of the

players can also be based on criteria such as the stand-alone costs – resulting costs from a single

delivery to a player – or units demanded. The first-mentioned criteria is used by Sun et al.

(2015) and Özener (2014) in a transportation network with fixed routes. The latter criteria is,

for example, exerted in the case study of Flisberg et al. (2015), who evaluate proportional cost

allocations on forest fuel transportation in Sweden.

When cooperative concepts from game theory are involved in allocating costs, a well-known
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and frequently used method is the Shapley value (Shapley, 2016). See, for instance, the study

of Dror (1990), which implements this method next to its proportional allocations. Zakharov

and Shchegryaev (2015) provide a research where the method is used solely in a dynamic VRP.

However, the Shapley allocations do not need to be in the core of a game by definition (see

Section 3.2 and Equation (3.4) for details), which calls for other cost allocation methods that

do follow this major concept of game theory. The Nucleolus, introduced by Schmeidler (1969),

is such a method that guarantees an allocation in the core when it is non-empty. For example,

Frisk et al. (2010) apply this method, next to other methods such as the Equal Profit Method

(EPM), in their study on collaborative forest transportation. Furthermore, the study by Engevall

et al. (2004) focuses on the Nucleolus and places it into a VRP setting. Due to its complex

computation, various algorithms have been suggested; Puerto and Perea (2013) propose a single

linear program (LP) problem to find the Nucleolus, where others, as Fromen (1997), successively

solve multiple LP problems.

Allocation methods are not only used to allocate costs as Sakawa et al. (2001) show by also

allocating profit within a cooperative game setting. Both proportional and game theoretic meth-

ods can be adjusted to an environmental setting to allocate emission with the same reasoning.

For instance, Rosen (2008) compares different output-based proportional allocation methods for

CO2 emissions. Moreover, Dai et al. (2014) implement a proportional method to allocate trad-

able emissions permits and illustrate their approach in a case study over 30 regions in China.

Naber et al. (2015) set the proportional Star method as a benchmark in the comparison with

four other (game-theoretic) allocation methods, which are all examined in this thesis as well (see

Section 3.3). Other models that rely on concepts from cooperative game theory focus mainly on

cap-and-trade schemes in which trade caps are being allocated on an international level (Endres

and Finus, 2002; Böhringer and Rosendahl, 2009). Research that does allocate emission is car-

ried out by Zhu et al. (2014), who allocate emission within a maritime logistics chain by taking

into account specific characteristics as volume and weight.

3 Methodology

This section introduces and elaborates on the bi-GVRP model, the emission allocation game

and the allocation methods treated in this thesis. First, the general problem description and

notation for the bi-GVRP are given, followed by its mathematical formulation (see Section 3.1).

The bi-objective model aims to construct an optimal number of routes, from both an economic
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and environmental perspective, visiting all customers. Secondly, in Section 3.2, the emission

allocation game is developed by using cooperative game theory. This game forms the base for

solving the allocation problem. Finally, Section 3.3 discusses the five allocation methods. These

are similar to the methods used in Naber et al. (2015): the Star method, the Shapley value, the

Nucleolus, the Lorenz+ Allocation and the Equal Profit Method+.

3.1 Problem description and formulation bi-GVRP

The optimization of the bi-GVRP determines an optimal set of routes that visits all customers

once while satisfying their demands. To attain an optimal solution, the total travelled distance

and the amount of CO2 emission are minimized. As this problem is an extension of the standard

VRP, it displays identical characteristics: (a) homogeneous fleet, (b) known fleet size, (c) single

depot, (d) deterministic demand and (e) oriented network (Ubeda et al., 2011).

3.1.1 General model

To formulate the model, we introduce V = {0, 1, 2, ..., v} a set of v nodes representing the

locations to be visited. The index 0 corresponds to the depot, where the other nodes 1 to n

represent the customers. We denote the set V ′ = V \ {0}, which refers to all nodes except

the depot. The bi-GVRP can now be defined on the complete directed graph G = (V,A),

where A = {(i, j) | i, j ∈ V, i 6= j} is the set of arcs. Also, transport is performed by a fleet of

k homogeneous vehicles represented by set K = {1, 2, ..., k}. All vehicles k have a maximum

holding capacity of W .

The parameters used in the formulation are defined as follows. We define λ ∈ [0, 1] as a

weight for the objectives. Here, λ = 1 corresponds to the situation where only total distance

is minimized and λ = 0 represents minimization of total CO2 emission only. Next, di,j denotes

the Euclidean distance between every pair of nodes i and j. Each such arc has its emission

ratio when utilized, ei,j (g CO2). These amounts are the distance of the arc multiplied by the

emission per driven kilometer when the vehicle is fully loaded. The emission function developed

by Ligterink et al. (2012) determines the emission per kilometer (see Appendix A). We assume

a fully-loaded vehicle as we cannot determine yet how many loading units the vehicle will be

carrying on arc (i,j) as this is dependent on the distribution route. Furthermore, each customer

i ∈ V ′ has a nonzero demand of qi units. Hence, the depot has a demand of 0.
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3.1.2 Mathematical formulation

To formulate the bi-GVRP correctly, we define decision variables, based on El Bouzekri El Idrissi

and Elhilali Alaoui (2014), next to the introduced sets and parameters. The binary decision

variables xk
i,j are equal to 1 if vehicle k visits node j directly after node i, and 0 otherwise. In

addition, binary decision variables yk
i are equal to 1 if vehicle k serves node i, and 0 otherwise.

We also add decision variables uk
i for all customers i ∈ V ′ to use the Miller-Tucker-Zemlin (MTZ)

formulation that eliminates possible subtours (Miller et al., 1960).

We are dealing with a bi-objective model and, therefore, we consider two different objectives

while solving to optimality. The first part, Equation (3.1), represents the economic perspective

and calculates the total travelled distance of all routes driven by vehicles k. The environmental

equation, Equation (3.2), sums the CO2 emission of the retrieved driving schedule.

TD =
∑
i∈V

∑
j∈V

∑
k∈K

di,jx
k
i,j (3.1)

TE =
∑
i∈V

∑
j∈V

∑
k∈K

ei,jx
k
i,j (3.2)

The objectives described by Equation (3.1) and (3.2) are not on the same scale; it is case

dependent which level of importance is assigned to which perspective. As such, we include the

weights λ in the transformation from single objectives to the bi-objective function (Sawik et al.,

2016):

min λ
∑
i∈V

∑
j∈V

∑
k∈K

di,jx
k
i,j + (1− λ)

∑
i∈V

∑
j∈V

∑
k∈K

ei,jx
k
i,j (1)

In the bi-GVRP, the objective function (Equation (1)) is minimized with respect to the con-

straints based on Ubeda et al. (2011):

∑
k∈K

yk
0 = |K|, (2)

∑
k∈K

yk
i = 1 ∀i ∈ V ′, (3)

∑
i∈V

xk
i,j = yk

j ∀j ∈ V , ∀k ∈ K, i 6= j, (4)

∑
i∈V

xk
j,i = yk

j ∀j ∈ V , ∀k ∈ K, i 6= j, (5)

∑
i∈V

qiy
k
i ≤W ∀k ∈ K, (6)
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uk
i − uk

j +Wxk
i,j ≤W − qj ∀i, j ∈ V ′,∀k ∈ K, i 6= j, (7)

qi ≤ uk
i ≤W ∀i ∈ V ′, ∀k ∈ K, (8)

xk
i,j ∈ {0, 1} ∀i, j ∈ V , ∀k ∈ K, (9)

yk
i ∈ {0, 1} ∀i ∈ V , ∀k ∈ K, (10)

uk
i ∈ R ∀i ∈ V , ∀k ∈ K. (11)

Constraint (2) guarantees that all vehicles are assigned a route that begins and ends in the

depot. The following constraints (3) ensure that every customer is visited exactly once, or in

other words, only a single vehicle drives past each customer. Subsequently, constraints (4) and

(5) link all nodes, excluding the depot, to a predecessor and a successor to construct correctly

defined routes. The maximum holding capacity of each vehicle is not exceeded because of

constraints (6). We introduce the MTZ constraints (7) and (8) to avoid subtours. Lastly, we

have constraints (9) - (11) that restrict the domain of all decision variables used.

3.2 The emission allocation game

In allocating emission over customers on a distribution route, we use the so-called emission

allocation game derived from cooperative game theory. This field of game theory deals with

situations in which players – in this case customers of the LSP – can benefit more from col-

laborating with other players than rather acting on their own (Hart, 1997). This subsection

introduces the specific emission allocation game formulation, as earlier done by Naber et al.

(2015). The notation and interpretation for our application are described below.

We deal with a bi-GVRP that formulates multiple distribution routes for the LSP to visit all

its customers. Note, however, that we define the emission allocation game for a single route as

we eventually allocate CO2 emission on a single distribution route. Therefore, we represent the

set of n customers that the LSP serves on a single distribution route by N = {1, 2, . . . , n}. This

set can also be referred to as the grand-coalition, and the route driven to visit all customers is

denoted by σ(N). This notation also specifies in which order the LSP serves these customers.

In our application, the routes σ(N) are known as we solve the problem (1)-(11). We assume

that only the grand-coalition route σ̂(N) is known and that it is not possible to determine a

subroute σ̂(S) for all S ⊂ N in this emission allocation game. Hereafter, we specify route σ̂(S)

by applying the order of σ̂(N); we simply leave out all customers from the original route that

are not in S. This method also prevents the game from being skewed significantly as routes

σ̂(S) cannot outperform σ̂(N). This avoidance is essential as we aim to allocate emission based
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on the original route.

Next to determining the routes driven by the LSP, we also need to calculate the corresponding

total emissions. Let g(σ(N)) be the emission function of route σ(N), calculated by the formula

used by Ligterink et al. (2012) (see Appendix A). In this calculation, the weight of the goods

transported, the distance travelled, and the driving speed are considered. We denote the total

emission of route σ(N) by Equation (3.3) for ease of notation.

e(N) = g(σ(N)) (3.3)

Now that we defined the emission function, we introduce another assumption that
∑

i∈N e({i}) ≥

e(N) to ensure that no customer gets allocated more than its stand-alone emission. In other

words, it is always possible to determine an emission allocation that is individually rational and

efficient. This assumption is coherent as a LSP will rarely emit more CO2 when it visits all its

customers individually.

We have now wholly identified the characteristic function e(N) and can realize emission

allocations based on existing solution concepts from cooperative game theory. Despite that

there are several ways to define a stable allocation among the players, we will use a core-like

approach (Hart, 1997). An allocation of emission, defined as x = (xi)i∈N , is a stable allocation if

it is located in the core of the game (N, e). To define the core of this game, we let x(N) =
∑

i∈N xi

be the total allocated emission of all customers in N . The core is then as follows:

core(e) = {x ∈ Rn : x(N) = e(N);x(S) ≤ e(S), ∀S ⊂ N} (3.4)

Equation (3.4) represents the set of all feasible allocation vectors for which no player or coalition

has an incentive to leave the game as it cannot improve by acting alone (Kannai, 1992). However,

this verification of stability does have some remarks in this context. First of all, it is possible

by definition that a negative allocation occurs. If an additional customer makes the distribution

route more efficient when looking at total emission, such negatives allocations are feasible.

Nevertheless, as we are constructing the routes beforehand from an environmental perspective

and emission likely grows with an extra customer, it is improbable that this will happen in this

research. Another observation that could occur in our setting is the emptiness of the core. See

Naber et al. (2015) for an illustrative example of such an empty core.
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3.3 The allocation methods

This subsection does not only discuss the five allocation methods that are used to allocate

CO2 emission among customers on a distribution route, it also introduces the criteria on which

we evaluate the performance of the methods. We follow Naber et al. (2015) and present one

proportional allocation method, the Star method, and four other methods that originate from

cooperative game theory: the Shapley value, the Nucleolus, the Lorenz+ Allocation and the

Equal Profit Method+.

3.3.1 Star method

The Star method can be compared with standard allocation methods that allocate costs propor-

tionally. The only difference is that the Star method allocates CO2 emission proportional to the

stand-alone emission of the customers on a distribution route (Naber et al., 2015). A graphical

view of all these single trips provides a star-shaped figure initiating the name for this method.

The allocated emission xi for every customer i ∈ N can be calculated by Equation (3.5).

xi = e({i})∑
i∈N e({i})e(N) (3.5)

It is a straightforward computation and depends on just one factor. Therefore, it easily provides

insights for both the LSP and its customers. The stand-alone emission can also be replaced by

other shipment parameters like volume or tonne-kilometers. Nevertheless, the method also has

its downsides. Even when the core is non-empty, it is not necessary that the allocation solution

is a core solution and with that stable. Next to that, the method only depends on total emission

and ignores, for example, the distances between customers and the visited order.

3.3.2 Shapley value

The Shapley value incorporates game-theoretic concepts and considers marginal emissions while

allocating CO2 emission over the customers (Shapley, 2016). When a customer i is added to

subset S, which is a permutation of the distribution route, the marginal emission is denoted

by mi(S) = e(S ∪ {i}) − e(S). Now, a customer’s allocated emission xi is equal to its average

marginal emission over all subsets S and computed by Equation (3.6).

xi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n! mi(S) (3.6)
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Even though a core solution is in general not guaranteed, even when the core is non-empty,

Shapley (1971) noted that allocations following the Shapley value are definitely in the core of

the game when it is convex. In our case, the emission allocation game is not convex as our

computational results show Shapley value allocations that are not a core solution.

3.3.3 Nucleolus

Schmeidler (1969) introduced the Nucleolus and stated that it reveals the attitude of a coalition S

towards its allocated emission and therefore provides the most accepted CO2 emission allocation.

For the allocation x, we define a vector θ(x) containing all excesses for each coalition S in

decreasing order, where the excess is computed as e(S)− x(S). The Nucleolus is defined as the

individual rational and efficient allocation x for which θ(x) is the lexicographic minimum. We

apply the approach by Naber et al. (2015) and iteratively solve different LP problems to find

this ‘optimal’ allocation x. The first step is maximizing the smallest excess – with an empty core

this excess is negative – to find a suitable allocation. If this x is unique, the Nucleolus allocation

is found. However, if this is not the case, a successive LP problem is solved after fixing the

acquired excess for all coalitions with strictly positive dual variables. As the Nucleolus is unique

and lies in the core, if non-empty, this termination is repeated until the LP formulation finds a

unique solution.

To translate this into a LP problem, we introduce decision variable δ indicating the excess

of allocation x. As we iteratively generate δ, we define its optimal value in iteration l as δl. We

also denote the set Fl consisting of all fixed coalitions after iteration l. Obviously, in the first

iteration this set is empty, i.e. F1 = ∅. Now we formulate the following LP problem:

δl = max δ (12)

s.t. x({i}) ≤ e({i}) ∀i ∈ N, (13)

x(S) + δ ≤ e(S) ∀S ⊂ N,S /∈ (∪m<lFm), (14)

x(S) + δm = e(S) ∀m < l, S ∈ Fm, (15)

x(N) = e(N). (16)

Constraints (13) are included to ensure the individual rationality of the allocations for all cus-

tomers i. Constraints (14) - (16) guarantee a core solution when the core is non-empty. Note

that constraints (15) are only included after the first iteration. To construct the set Fl in itera-

tion l, we define the vector µl of optimal dual variables of constraints (14). We fix the excess for
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all coalitions with strictly positive dual variables. Hence, the collection of coalitions that need

their excess fixed in iteration l is defined as Fl = {S ⊂ N |µl(S) > 0}.

3.3.4 Lorenz+ Allocation

The Lorenz+ Allocation, introduced by Naber et al. (2015), is slightly different from the original

variant by Arin Aguirre (2003). The latter is a leximin and allocates emission by minimizing the

smallest difference f between the lowest and highest allocated CO2 emission among all customers

i ∈ N . Additionally, it always requires a core solution as the following LP problem (17)-(20) is

solved:

min f (17)

s.t. xi − xj ≤ f ∀i, j ∈ N, (18)

x(S) ≤ e(S) ∀S ⊂ N, (19)

x(N) = e(N). (20)

Constraints (18) define the differences in allocation between any location i and j. The solution

in the core is ensured by constraints (19) and (20); an empty core does not allow a Lorenz

Allocation. This is also the point where the upgraded Lorenz+ Allocation comes into scope.

When no solution is generated, we apply the Nucleolus instead to maintain continuity. In

general, the solution of the LP problem is non-unique if the core is non-empty, implying that

the Lorenz+ Allocation is not unique, too.

3.3.5 Equal Profit Method+

The Equal Profit Method (EPM) applies an approach similar to the initial Lorenz Allocation

and is introduced by Frisk et al. (2010). Both try to find an emission allocation in the core, but

the EPM does this with a dissimilar minimization. For each customer, we determine the ratio

of its CO2 emission and its stand-alone emission. Subsequently, the largest difference g between

all these ratios is to be minimized. To determine the EPM solution, the following LP problem

(21)-(24) is solved to optimality:
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min g (21)

s.t. xi

e({i}) −
xj

e({j}) ≤ g ∀i, j ∈ N, (22)

x(S) ≤ e(S) ∀S ⊂ N, (23)

x(N) = e(N). (24)

Constraints (22) define the differences of the allocation relative to the stand-alone emission

between any location i and j. Again, constraints (23) and (24) are included to ensure that

no EPM allocation exists when the core is empty. If the core is empty, we use the Nucleolus

and refer to this allocation as the Equal Profit Method+ (EPM+) allocation. Just as with the

Lorenz+ allocation, the optimal EPM+ allocation does not have to be unique if the core is

non-empty.

3.3.6 Performance criteria

All described methods in Section 3.3.1-3.3.5 are assessed on criteria that are important from a

customer’s perspective as they are the ones that eventually get the CO2 emission allocated. In

total, we use three criteria adopted from Naber et al. (2015). The first one is stability. We define

an allocation to be stable when it is in the core of the game. In other words, a stable allocation

does not create an incentive for any (subset of) customer(s) to withdraw their order and leave

the distribution route. Additionally, an emission allocation method needs to be consistent. If

any factor of influence changes for a particular customer, their allocated emission should vary

accordingly. It would not make sense that, for example, one’s allocated emission would decrease

when its order size is enlarged. An ordinary least squares (OLS) regression is used to analyze

the consistencies (see Section 5.2.2 for details). Finally, computation times are compared as the

frequent determination of allocations by the LSP requires relatively fast methods.

4 Data

We have generated different test instances with varying characteristics to perform our approach

and evaluate the proposed methods. Each random instance consists of a depot, n customers

with corresponding demand qi, where i ∈ {1, 2, ..., n} represents the customer, and a fleet of k

homogeneous vehicles with maximum holding capacity W . In total, we consider six different

instances where the total number of customers is set equal to n ∈ {18, 19, 20, 21, 22, 23}. For
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each test instance, all locations are randomly generated in a square with sides of length 100 km.

In other words, each customer is drawn a random x-coordinate and y-coordinate from a range

[0,100]. This method is also followed for the depot in each instance, such that this location is

random, too. Subsequently, the Euclidean distance between each pair of locations is calculated.

Next, each location is assigned a random demand from a uniform distribution [0,200], such that

the average demand of all locations is approximately 100. The depots all have a demand of 0.

While we keep the locations and demands fixed after the random generation, we assign four

different configurations of vehicles k to each test instance. We set the number of vehicles equal

to k ∈ {3, 4, 5, 6}, where each vehicle has a (proportionally) corresponding maximum holding

capacity ofW ∈ {833, 625, 500, 417}. In this way, the total capacity of all vehicles is always equal

to 2500 loading units. We set this capacity after calculating the maximum sum of demands over

all instances (2394 loading units) to ensure the feasibility of the problem. As we now have

the Euclidean distances and the capacity of the vehicles, we can also calculate the maximum

emission ratio between every pair of locations by Equation (A.1).

Hence, we have a total of 24 instances combining the sets of locations and vehicles. We will

refer to each instance by calling the number of customers and vehicles used. For example, the

notation N19-k4 refers to the instance where n = 19 and k = 4.

5 Computational results

This section contains the computational results of applying the bi-GVRP model (Section 3.1)

and the allocation methods (Section 3.3) to all randomly generated test instances. The results

are obtained by using an Intel(R) Core(TM) i7 CPU @ 2.60GHz with 16 GB of RAM.

We constructed the route schedule for all possible instances by solving the bi-GVRP model.

This model is implemented in AIMMS 4.77 by slightly modifying the Capacitated Vehicle Rout-

ing Problem (CVRP) library to fit our context. CPLEX 20.1 is used as a solver for our MIP

model. The five allocation methods and the corresponding emission allocation game are imple-

mented by using Python 3.8.8. Here CPLEX 20.1 is also used to solve the LP formulations of

the Nucleolus, the Lorenz+ Allocation and the EPM+.

5.1 Impact of bi-objective optimizing

To evaluate the impact of taking environmental aspects into account in the determination of

an optimal route schedule, we solved the bi-GVRP model for all different test instances where
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λ was set to varying values. Each of the instances (24 in total) was successively solved five

times for λ ∈ {1; 0.75; 0.5; 0.25; 0}. Logically, λ = 1 equals the situation where only distance

is minimized, and λ = 0 represents the situation in which only the CO2 emission is of interest

in the optimization (see Equation (1)). We choose this particular set of values to show the

route schedule changes gradually with varying importance of the economic and environmental

objectives. In total, we have 5×24 = 120 instances that provide 6×90 = 540 routes. As we now

know the optimal route schedule and loading units on each arc (i,j) precisely, we recalculated

the total emission TE by Equation (3.2), where ei,j is determined by using the emission function

in Appendix A.

(a) λ = 1, optimal distance (b) λ = 0, optimal CO2 emission

Figure 1: Optimal route schedule for different objective weights, instance N21-k4

Before looking at the effects on distance and total CO2 emission of varying values of λ, we

give a visual example of the change in routes when the objective differs. For this illustration,

we use the N21-k4 instance. Figure 1a shows the determined routes for λ = 1, where on the

contrary, Figure 1b shows the route schedule for λ = 0. Observe that the weights of the objectives

establish a different route schedule, where only one route is identical for the same instance. The

effects of the changing route schedule are reflected by the increase in total distance, from 603

km for λ = 1 to 621 km for λ = 0, and by the reduced amount of emission; the total of 27437

grams CO2 for λ = 1 decreases to 27349 grams CO2 for λ = 0.

Table 1 shows the total distance travelled in kilometers and corresponding emission in grams

CO2 for all 120 instances. It is not easy to compare absolute amounts for different values of λ as

distance and emission are not linearly related. Therefore, Table 2 presents the relative changes

of total distance and CO2 emission compared to the situation where λ = 1. We set this value

as a baseline because this represents the ‘standard’ used minimization of distance only.
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Table 1: Total distance and CO2 emission

λ = 1 λ = 0.75 λ = 0.5 λ = 0.25 λ = 0

Instance k TD TE TD TE TD TE TD TE TD TE

(km) (g CO2) (km) (g CO2) (km) (g CO2) (km) (g CO2) (km) (g CO2)

N18 3 470 20277 470 20277 474 20133 480 20075 480 20075

4 527 24835 536 24072 536 24072 538 23904 538 23904

5 604 28502 609 28228 609 28228 611 28110 611 28110

6 638 31028 643 30712 643 30712 645 30353 645 30353

N19 3 443 20360 459 20391 459 20391 459 20391 459 20391

4 504 24142 513 23259 513 23259 513 23259 513 23259

5 558 27172 562 27147 562 27147 562 27147 578 27367

6 615 30465 615 30465 615 30465 615 30465 615 30465

N20 3 576 22527 576 22527 576 22509 576 22509 576 22509

4 681 29462 696 29264 696 29264 691 28536 691 28536

5 687 29583 687 29266 688 29120 695 29030 695 29030

6 872 39836 799 36260 799 36260 799 36260 795 35591

N21 3 569 23748 569 23748 567 22908 567 22908 544 21648

4 603 27437 609 28423 621 27349 621 27349 621 27349

5 687 32318 687 32318 673 30872 677 30851 677 30851

6 730 34428 733 34197 733 34197 733 34197 733 34197

N22 3 493 21322 499 21043 499 21043 499 21043 499 21043

4 543 24828 543 24828 537 24264 537 24264 524 23923

5 568 27249 584 27367 584 27367 576 27088 576 27088

6 614 30727 627 30787 627 30787 635 30480 635 30480

N23 3 482 22401 485 21561 489 21253 489 21253 489 21253

4 565 27395 567 26295 567 26295 567 26295 567 26295

5 610 29014 623 29047 623 29047 623 29047 623 29047

6 688 35754 715 38223 701 30913 701 30913 701 30913

Table 2: Changes of total distance and CO2 emission relative to baseline λ = 1

λ = 0.75 λ = 0.5 λ = 0.25 λ = 0

Instance k TD (%) TE (%) TD (%) TE (%) TD (%) TE (%) TD (%) TE (%)

N18 3 0.0 0.0 0.9 -0.7 2.1 -1.0 2.1 -1.0

4 1.7 -3.1 1.7 -3.1 2.1 -3.7 2.1 -3.7

5 0.8 -1.0 0.8 -1.0 1.2 -1.4 1.2 -1.4

6 0.8 -1.0 0.8 -1.0 1.1 -2.2 1.1 -2.2

N19 3 3.6 0.2 3.6 0.2 3.6 0.2 3.6 0.2

4 1.8 -3.7 1.8 -3.7 1.8 -3.7 1.8 -3.7

5 0.7 -0.1 0.7 -0.1 0.7 -0.1 3.6 0.7

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N20 3 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 -0.1

4 2.2 -0.7 2.2 -0.7 1.5 -3.1 1.5 -3.1

5 0.0 -1.1 0.1 -1.6 1.2 -1.9 1.2 -1.9

6 -8.4 -9.0 -8.4 -9.0 -8.4 -9.0 -8.8 -10.7

N21 3 0.0 0.0 -0.4 -3.5 -0.4 -3.5 -4.4 -8.8

4 1.0 3.6 3.0 -0.3 3.0 -0.3 3.0 -0.3

5 0.0 0.0 -2.0 -4.5 -1.5 -4.5 -1.5 -4.5

6 0.4 -0.7 0.4 -0.7 0.4 -0.7 0.4 -0.7

N22 3 1.2 -1.3 1.2 -1.3 1.2 -1.3 1.2 -1.3

4 0.0 0.0 -1.1 -2.3 -1.1 -2.3 -3.5 -3.6

5 2.8 0.4 2.8 0.4 1.4 -0.6 1.4 -0.6

6 2.1 0.2 2.1 0.2 3.4 -0.8 3.4 -0.8

N23 3 0.6 -3.7 1.5 -5.1 1.5 -5.1 1.5 -5.1

4 0.4 -4.0 0.4 -4.0 0.4 -4.0 0.4 -4.0

5 2.1 0.1 2.1 0.1 2.1 0.1 2.1 0.1

6 3.9 6.9 1.9 -13.5 1.9 -13.5 1.9 -13.5

Average 0.7 -0.7 0.7 -2.3 0.8 -2.6 0.6 -2.9
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Intuitively, when the value of λ decreases, i.e. environmental aspects are more dominant, it is

expected that total distance increases and emission reduces in the optimal solutions. Looking

at the relative changes of distance reveals that, indeed, distance grows when total emission

becomes more leading in the objective. See, for example, instances N19-k4 where total distance

increases with 1.8% for all λ or instance N22-k6 where we have changes of 2.1% and 3.4% for

λ = 0.75 and λ = 0.25, respectively. Even though there are some instances for which distance

does decrease when λ = 0, the changes of -8.8% and -1.5% for instances N20-k6 and N21-k5 are

such examples, we observe that emission drops with an even higher percentage in these cases.

The percentages of emission changes show some more fluctuations. For λ = 0.75 we see, for

example, that emission rises by 3.6% and 6.9% for N21-k4 and N23-k6, respectively. Neverthe-

less, for both cases it can be seen that total emission eventually decreases for lower values of λ.

In the end, there are three instances for which EM increases when comparing λ = 1 to λ = 0.

These changes are minor as they are quantified to be only 0.2%, 0.7% and 0.1%.

The percentage changes of total distance and CO2 emission show that taking emission into

account has its (positive) effects. On average, distance increases around 0.7% when λ = 0.5

and 0.6% when the distribution routes are optimized solely from an environmental perspective,

where total emission decreases by 2.3% and 2.9%, respectively. As the costs for driving extra

kilometers are unknown, it is case-specific for a LSP how beneficial this bi-objective optimization

can be.

5.2 Allocation of CO2 emission

After we have constructed the distribution routes, we applied all five allocation methods to each

route to get insight into the allocated emission to each customer. We want to see if the different

objectives in optimizing the driven routes influence the allocated emission to a customer or the

behaviour of the allocation methods. To do so, we do not only compare the retrieved allocations

per instance, we also evaluate the behaviour of the allocation methods for the different values

of λ and compare this to the conclusions drawn by Naber et al. (2015).

The absolute and relative comparison of the allocated emission to the customers in each

instance does not give much insight into what extent the bi-objective optimization has its in-

fluence. It is difficult to draw any conclusions on this matter as we deal with allocations over a

single distribution route, i.e. allocated CO2 emission is independent of other routes within the

same instance. When λ changes and the routes change accordingly, it might be that customers

are switched over the routes. Their allocated emission is now dependent on other customers’
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demand and location, which makes mutual comparisons invalid. Therefore, the following results

and conclusions are based on comparisons between the different instances with the same value

of λ. This way of evaluating the results also provides a clear view of the allocations based on

an environmental perspective and the allocations based on an economic perspective.

5.2.1 Stability

The first criteria on which we evaluate the emission allocation methods is stability. The allo-

cation is preferably stable as this provides no incentive for any (subset of) customer(s) to leave

the coalition. We define an allocation to be stable when it finds itself in the core of the game

(see Equation (3.4)). For any route in our random test instances, the core turned out to be

non-empty. A reason for this may be the location of the depot. Even though its location was

randomly generated, it appeared to be in the centre of all customers for all instances.

In Table 3, the total percentage of allocations in the core for each method and all values

λ are given. The results are mainly of interest for the Star method and the Shapley value as

the non-empty cores always provide a core allocation for the Nucleolus, the Lorenz+ Allocation

and the EPM+ by definition. The Shapley value outperforms the Star method in all cases and

provides core allocations for 87%-91% of the instances. Nevertheless, the Star method still has

acceptable stability and results in a core solution in 74%-80% of the instances. The percentages

are high given that both methods do not implicitly account for the core criteria when establishing

the allocations.

Table 3: Core allocations per allocation method for all λ

Allocation method λ = 1 λ = 0.75 λ = 0.5 λ = 0.25 λ = 0

(%) (%) (%) (%) (%)

Star method 78.70 74.07 75.93 77.78 79.63

Shapley value 87.04 88.88 90.74 90.74 89.81

Nucleolus 100 100 100 100 100

Lorenz+ Allocation 100 100 100 100 100

EPM+ 100 100 100 100 100

The findings are in line with Naber et al. (2015), where the Shapley value also performs sig-

nificantly better than the Star method. However, it is noteworthy, that their case study shows

a greater difference in the stability of the two methods. Their results present poor stability of

34.9% for the Star method, where, on the contrary, the Shapley value constructs a core solution

18



for almost all instances (98.7%).

It can also be concluded that the performance of the methods, in terms of stability, does not

change much when the economic and environmental objectives are assigned different weights.

The comparison of the situations in which either distance or emission is minimized (λ = 1 and

λ = 0) shows that this leads to an increase in stability of 1% for the Star method and 3% for the

Shapley value. Therefore, we conclude that the overall stability of the methods provides little

incentive to determine the optimal route schedule based on the minimization of CO2 emission.

5.2.2 Consistency

An allocation method should also be consistent; a change in any factor influencing a customer’s

allocated emission should lead to a corresponding proportional change in CO2 emission allocated.

We evaluate consistency by performing an OLS regression for all methods and each value of λ.

We follow the approach of Naber et al. (2015) and set the customer’s allocated emission as

the dependent variable. Next to a constant, we add three explanatory variables that affect

the allocation: the distance from the customer to the depot, its average distance to the other

customers and its demand. In addition, we add two cross-product terms including the demand

and the two other variables. In advance, we expect the first three variables to positively affect

the allocated emission as, intuitively, the CO2 emission of a customer should increase together

with a rise of one of these variables. In Table 4 and Table 5, the regression results for λ = 1

and λ = 0 are presented, respectively. The results for the other three values of λ can be found

in Table 8 - 10 in Appendix B. Each table contains the coefficients and corresponding one-sided

p-values of each explanatory variable. Also, the R2 of each model is given.

Table 4: OLS regression results for all allocation methods, λ = 1

Star method Shapley value Nucleolus Lorenz+ Allocation EPM+

Explanatory variable Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Constant 662.75 0.00 342.19 0.04 538.90 0.00 1028.30 0.00 661.44 0.00

Dist. to depot 21.90 0.00 28.44 0.00 14.63 0.00 5.40 0.01 21.50 0.00

Avg. dist. to other cust. -10.28 0.00 -4.51 0.31 5.23 0.27 0.19 0.85 -4.49 0.00

Demand 0.96 0.34 -0.47 0.76 4.48 0.01 1.07 0.27 0.94 0.36

Dist. to depot × Demand 0.00 0.23 0.00 0.93 -0.03 0.30 0.03 0.12 0.01 0.69

Avg. dist. to other cust. -0.02 0.52 -0.01 0.78 -0.10 0.03 -0.05 0.09 -0.02 0.40

× Demand

R2 0.501 - 0.429 - 0.106 - 0.140 - 0.494 -
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Table 5: OLS regression results for all allocation methods, λ = 0

Star method Shapley value Nucleolus Lorenz+ Allocation EPM+

Explanatory variable Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Constant 686.53 0.00 857.06 0.00 688.47 0.00 1034.47 0.00 687.12 0.00

Dist. to depot 21.00 0.00 13.25 0.00 12.01 0.00 5.50 0.00 20.97 0.00

Avg. dist. to other cust. -10.03 0.00 -4.28 0.49 2.71 0.66 -0.63 0.83 -10.00 0.00

Demand 0.46 0.66 0.94 0.63 4.34 0.03 0.65 0.49 0.44 0.67

Dist. to depot × Demand -0.01 0.57 0.01 0.85 -0.03 0.34 0.01 0.47 -0.01 0.58

Avg. dist. to other cust. 0.01 0.76 -0.02 0.67 -0.09 0.11 -0.02 0.52 0.01 0.76

× Demand

R2 0.441 - 0.101 - 0.052 - 0.107 - 0.440 -

The outcomes of the OLS regressions show different results for all methods. The only thing they

have in common is that the constant term and the variable “distance to depot” differ significantly

from zero at a 5% significance level. Next to that, the coefficient of the variable “average distance

to other customers” is significantly different from zero at the 5% significance level for the Star

method and the EPM+. A thing that is noticeable and hard to explain is the negative effect

of this variable on allocated emission. The random generation of the instances may be a reason

explaining this unexpected effect. Furthermore, we notice insignificant effects for the variable

“demand” for all methods except the Nucleolus. This may seem odd, but the random generation

of demand and the fact that none of the methods literally take the customer’s order size into

account while allocating emission, can explain this insignificance. As demand is insignificant,

both cross-terms are as well for all methods. Here, the Nucleolus is again an exception as the

cross-term “average distance to other customers × demand” significantly affects the dependent

variable for all values of λ (except for λ = 0).

From these results, we cannot conclude that the chosen variables can explain allocated emis-

sion well. This contradicts the findings of Naber et al. (2015), who conclude that the variables

are able to do so. Nevertheless, if we compare the values of the R2, which represent the propor-

tion of the variance of the allocated emission that is explained by the independent variables, we

come to a similar conclusion that the Star method performs best on consistency. This method

has the highest value of R2, ranging from 0.501 to 0.441 for all values of λ. The consistency of

the EPM+ follows closely with a R2 ranging from 0.494 to 0.440.

Based on our test instances, we conclude that optimizing for environmental aspects has

negative effects on the consistency of the methods, as all values of R2 drop when λ = 1 changes

to λ = 0. Even though the decreases in R2 are tiny, the minimization of the total distance to

determine an optimal route schedule provides the best consistency.
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5.2.3 Computation time

The third criteria that compares the allocation methods on performance is computation time.

As the allocations need to be determined frequently, low computation times are preferred. We

computed the average computation time of all instances for each allocation method. These

times in seconds are shown in Table 6. There are no excessive computation times as we are

dealing with relatively small test instances. From the definition, we can deduct that the Star

method performs a polynomial number of elementary calculations. With an average time of

0.005 seconds this is reflected in the lowest computation time of all methods. The Shapley

value follows with a slightly higher time of 0.02 seconds. This difference is coherent with the

exponential number of elementary calculations in N that the Shapley value requires. The other

three methods are approximately similar and share the highest computation times, which are

still more than acceptable (0.33 and 0.34 seconds). Their higher times can be explained by the

exponential number of constraints that need to be solved in the LP formulations. Even though

the difference is slight, our average computation times are less than the ones from Naber et al.

(2015). Their computation times are higher as the distribution routes in their case study visit

more customers. We do have the same conclusion that the Star method is the fastest allocation

method in terms of computation and that the computation times of the other methods are also

acceptable.

Table 6: Average computation time in seconds per allocation method over all instances

Allocation method Average time (sec)

Star method 0.005

Shapley value 0.02

Nucleolus 0.34

Lorenz+ Allocation 0.33

EPM+ 0.33

We also want to evaluate if changing the weights in the bi-objective optimization affects total

solving time. The average computation times of the allocation methods are insufficient to do

so, as CO2 emission is allocated based on a given distribution route. Therefore, we look at the

time in seconds needed to solve the bi-GVRP that determines the optimal route schedule. We

solved each instance for all possible values of k vehicles and computed the average solving time

for each value of λ (see Table 7). None of the instances shows significantly different solving

times when the different values of λ are compared. This leads to the conclusion that changing

21



the weights for the objectives in the determination of distribution routes does not have negative

influences on solving time. However, we should note the exponential growth of the solving time

when the number of customers in the test instance is increased. Our test instances could all be

solved within a reasonable time, but exact solving will probably not be usable when routes for

larger instances (N > 30) should be determined.

Table 7: Average solving time in seconds for the bi-GVRP

Average time (sec)

λ N18 N19 N20 N21 N22 N23

1 19 60 180 430 921 1973

0.75 21 62 209 418 913 1899

0.5 18 58 178 422 897 1978

0.25 20 64 193 403 946 1954

0 18 55 182 412 923 2012

6 Conclusion and discussion

In this thesis, we evaluate the effects of taking CO2 emission into account while determining

the distribution routes of a LSP. We solve a bi-GVRP in which the objective assigns different

weights λ to the total distance travelled and expected emission. Subsequently, we build on the

framework of Naber et al. (2015) and present the emission allocation game where we allocate

CO2 emission to customers on a single distribution route. Five different methods are used to

perform the allocation: one proportional method, the Star method, and four methods, being

the Shapley value, the Nucleolus, the Lorenz+ Allocation and the EPM+, that rely on solution

concepts from cooperative game theory. We compare relative changes in total distance and

emission over the different weights to see the impact of bi-objective optimization for economic and

environmental aspects. Furthermore, we compare the allocated amounts of CO2 emission and

evaluate the behaviour of the five allocation methods based on the criteria stability, consistency

and computation time.

Our computational results show that the bi-objective optimization has its positive effects as

the relative decrease in CO2 emission is higher than the relative increase in total distance. This

conclusion can be drawn for all different weights λ that we evaluated. When it comes to the

criteria all five methods are evaluated on, we conclude that the Star method performs worst on

stability, followed by the Shapley value. The other three methods are stable by definition as
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they use the core criteria while determining the allocations. In addition, the Star method is, as

expected, the fastest in allocating emission. Nevertheless, the other methods have acceptable

computation times as well. All conclusions are similar to the ones from Naber et al. (2015),

also with respect to consistency where the Star method and the EPM+ are the best performing

methods. Furthermore, the behaviour of the methods does not significantly change when the

weights λ differ. The only change can be found in the consistency of the methods. We observe

that, even though the differences are slight, consistency diminishes if CO2 emission gets assigned

more weight in the objective of the bi-GVRP.

In conclusion, the implementation of environmental aspects in the optimization of routes does

not make a significant difference when we look at the behaviour of allocation methods. However,

the (positive) changes in total distance and CO2 emission, together with the public attention

to environmental effects in the current world, show that bi-objective optimization for economic

and environmental factors should be considered. To what extent it should be incorporated is

case-specific for a LSP as it depends on its targets and the costs for driving extra kilometers.

We would like to remark that in the objective function of the bi-GVRP we assign weights to

total distance and CO2 emission on a proportional base. However, the two terms are not of the

same order and, therefore, we are not optimizing on scale. We were still able to draw conclusions

on this matter, but future research should take the implementation and magnitudes of the

weights into consideration. In addition, we optimize the environmental part of the objective by

taking the maximum emission ratio on each arc between any pair of locations. This is because

the CO2 emission cannot be determined exactly before planning the routes as it depends on the

carrying load of the vehicle. We recommend to further investigate a better approximation of

total CO2 emission when travelling between two locations before determining the optimal route

schedule. Moreover, future research could evaluate the proposed models on a case study instead

of using randomly generated test instances. This could improve the reliability of the results

and lead to more generic conclusions, especially when larger instances are considered. Note

that it would be worthwhile to investigate heuristics to solve the bi-GVRP when the number of

customers increases as exact solving will not provide a solution within a reasonable time. Lastly,

as discussed in Section 5.2, it might be the case that the allocated emission of a customer is

dependent on the demand or location of a customer on another distribution route. Therefore,

an interesting extension of this research could be the examination of allocation methods that

allocate CO2 emission over multiple routes in a vehicle routing setting instead of allocating

emission on one distribution route only.
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A Emission function

We compute the emission on a distribution route by following the same approach as Naber et al.

(2015). From the paper of Ligterink et al. (2012), we combine Equation (2) – (3) and the CO2

parameters in Table 1 to formulate our emission function (see Equation (A.1)).

We assume the following: the total mass of each vehicle is 5 ton, a single loading unit has

a weight of 0.01 ton and the maximum capacity is dependent on the instance (see Section 4).

Hence, we estimate the specific power to be KWt = 131.25/(5 + 0.01d), where d is the total

number of units loaded on the vehicle. The total CO2 emission in grams of a vehicle travelling

one kilometer with d loading units is denoted by EM and calculated as follows:

EM = 465.390 + 48.143KWt

V
+ 32.389

+ 0.8931KWt− (0.4771 + 0.02559KWt)V

+ (0.0008889 + 0.0004055KWt)V 2 (A.1)

In Equation (A.1), V denotes the velocity of the vehicle in kilometers per hour. As we do not

have estimates of the actual velocity between two locations, we assume the velocity to be 35

km/h when two locations are within 15 kilometers of each other and 70 km/h if they are further

apart. This limit corresponds to the distinction of Naber et al. (2015), where locations are

defined as close when they are in the same square region with side lengths of 10 km.
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B OLS regression results

Table 8: OLS regression results for all allocation methods, λ = 0.75

Star method Shapley value Nucleolus Lorenz+ Allocation EPM+

Explanatory variable Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Constant 645.48 0.00 778.76 0.00 440.01 0.04 999.48 0.00 642.42 0.00
Dist. to depot 21.42 0.00 17.47 0.00 13.71 0.00 5.68 0.00 20.99 0.00
Avg. dist. to other cust. -9.09 0.00 -5.17 0.36 8.50 0.14 0.80 0.78 -8.20 0.01
Demand 1.27 0.21 0.04 0.98 6.46 0.00 1.49 0.11 1.26 0.22
Dist. to depot × Demand 0.00 0.79 0.00 0.95 -0.04 0.24 0.01 0.46 0.00 0.93
Avg. dist. to other cust. -0.02 0.44 -0.01 0.82 -0.14 0.01 -0.04 0.08 -0.03 0.33
× Demand

R2 0.479 - 0.159 - 0.075 - 0.115 - 0.472 -

Table 9: OLS regression results for all allocation methods, λ = 0.5

Star method Shapley value Nucleolus Lorenz+ Allocation EPM+

Explanatory variable Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Constant 684.57 0.00 835.42 0.00 563.45 0.01 1029.28 0.00 681.29 0.00
Dist. to depot 21.16 0.00 16.94 0.00 12.40 0.00 6.04 0.00 20.84 0.00
Avg. dist. to other cust. -10.12 0.00 -6.35 0.27 5.58 0.34 -0.97 0.74 -9.40 0.00
Demand 0.82 0.41 -0.26 0.89 5.05 0.01 1.02 0.28 0.82 0.41
Dist. to depot × Demand 0.00 0.77 0.00 0.96 -0.03 0.45 0.01 0.52 0.00 0.87
Avg. dist. to other cust. -0.01 0.74 0.00 0.99 -0.11 0.03 -0.03 0.27 -0.01 0.60
× Demand

R2 0.472 - 0.149 - 0.070 - 0.115 - 0.467 -

Table 10: OLS regression results for all allocation methods, λ = 0.25

Star method Shapley value Nucleolus Lorenz+ Allocation EPM+

Explanatory variable Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Constant 697.38 0.00 857.51 0.00 540.35 0.01 1040.20 0.00 693.29 0.00
Dist. to depot 21.07 0.00 13.29 0.00 12.99 0.00 5.52 0.00 20.74 0.00
Avg. dist. to other cust. -10.17 0.00 -3.69 0.53 6.96 0.24 -0.32 0.91 -9.44 0.00
Demand 0.62 0.55 -0.02 0.99 5.23 0.01 0.89 0.34 0.63 0.54
Dist. to depot × Demand -0.01 0.60 0.02 0.56 -0.04 0.26 0.01 0.47 -0.01 0.70
Avg. dist. to other cust. 0.00 0.96 -0.02 0.77 -0.12 0.03 -0.03 0.26 0.00 0.88
× Demand

R2 0.452 - 0.121 - 0.063 - 0.107 - 0.448 -

28


	Introduction
	Literature review
	Vehicle routing problems
	Cost allocation problems

	Methodology
	Problem description and formulation bi-GVRP
	General model
	Mathematical formulation

	The emission allocation game
	The allocation methods
	Star method
	Shapley value
	Nucleolus
	Lorenz+ Allocation
	Equal Profit Method+
	Performance criteria


	Data
	Computational results
	Impact of bi-objective optimizing
	Allocation of CO2 emission
	Stability
	Consistency
	Computation time


	Conclusion and discussion
	References
	Emission function
	OLS regression results

