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Abstract

In order to use algorithms in high-stake decision making, they must be interpretable and fair. In

this paper, we investigate Boolean rule sets as a classification tool using a fair column generating

approach inspired by Lawless and Günlük (2021). The following fairness metrics are separately imple-

mented as constraints for the algorithm: Equality of opportunity, Equalized odds and Demographic

parity. Experiments with four datasets, including the additional German credit dataset, indicate the

highest accuracy of the model is obtained by tuning for Equality of opportunity. However, using the

Equalized odds metric produces competitive accuracy with a stricter fairness definition. Demographic

parity proves to be a surprisingly challenging metric as benchmark algorithms CART and Logistic

regression achieve better performance than the Fair Column Generating algorithm. In addition, a set

of recommendations is proposed to elevate the quality of fair and interpretable classification methods.
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1 Introduction

Many decision-making processes are increasingly taken care of by machines. Algorithms are becoming

more competitive against humans due to rapid technological advancements. Machines have the potential

to be quicker, cheaper and more precise than humans. Nevertheless, as fast as the machine learning field

is developing, so are the concerns (Lemm, Blankertz, Dickhaus, & Müller, 2011; Cabitza, Rasoini, &

Gensini, 2017; Makridakis, Spiliotis, & Assimakopoulos, 2018). Humans can usually be questioned about

the reasoning behind their decisions. In contrast, a large body of algorithmic functions is defined as black

boxes, that cannot be understood by humans. Machine learning algorithms can hold so much predictive

power partly because they can detect hidden structures (Elman & Zipser, 1988). Nonetheless, there

is a demand for transparency. The European Union for instance, already obligates decisions made by

algorithms to hold explanatory power about the reasoning behind that decision (Goodman & Flaxman,

2017).

A second issue with algorithms concerns that the outcomes of several algorithms were found to be

biased against groups with protected features such as gender, race or age. Next to the apparent unde-

sirableness of discrimination, algorithmic bias might threaten the societal trust in algorithmic decision-

making. Consequently, a large body of research on fairness for machine learning has emerged during

the past few years, exemplified by the twenty-one different fairness definitions considered by Verma and

Rubin (2018). However, the combination of fair and interpretable models is still limited and only started

to appear more frequently in the literature during the past two years (Berrendorf, Faerman, Vermue,

& Tresp, 2020; Geden & Andrews, 2021). This could be partly due to the complexity of the fairness-

accuracy trade-off (Menon & Williamson, 2018). To investigate this trade-off further, the results of the

Fair Column Generation (CG) algorithm (Lawless & Günlük, 2021) are replicated and extended by apply-

ing the algorithm to a new dataset. This algorithm applies the fairness metric Equality of opportunity to

Boolean rules in disjunctive normal form (DNF, “OR-of-ANDs”) (Lawless & Günlük, 2021). In addition,

two extra fairness constraints are implemented to the model, namely Equalized odds and Demographic

parity. Furthermore, we investigate whether inherent control for one fairness metric simultaneously pro-

duces promising results for the other fairness metrics. As success is measured by an algorithm that is

accurate and fair, the research question is:

What is the effect of different fairness metrics on the accuracy of an interpretable machine learning

model?

One distinction between fairness metrics is made by distinguishing individual versus group fairness,

also called statistical parity (Kearns, Neel, Roth, & Wu, 2018). Individual fairness aims for similar

classification for similar individuals, whereas group fairness aims for similar classification across different

groups. It prevents different classification between groups based on a protected attribute. This research

focuses on three measures of group fairness. The first, Equality of opportunity, entails similar false

negative rates across groups. Secondly, Equalized odds considers similar false negative rates as well as

false positive rates between groups (Corbett-Davies & Goel, 2018). Lastly, we implement the additional
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metric of Demographic parity, which measures the rate of positive predictions among groups. Due to the

constraints, the differences between groups cannot be larger than a certain threshold. In order to answer

the research question, two sub-questions are considered:

• Does the Fair CG algorithm perform similarly when it is applied to different datasets?

• Which fairness metric leads to the highest accuracy in prediction?

This further develops the limited research on fair and interpretable machine learning models by

extending empirical research on fairness metrics for Boolean decision rule sets. The added value of this

research lies in:

• Extending the research to the German credit dataset

• Extending the fairness metric set to include Demographic parity

• Assessing the effects of different fairness metrics on accuracy when the model is tuned for another

fairness metric

This is relevant in real-world applications as fairness is a growing pre-requisitive for the use of algo-

rithms, while the model needs to be accurate enough to be useful in practice, which highlights the societal

relevance. Moreover, the use of the additional Demographic parity fairness measure in a Boolean rule set

context and comparing fairness metrics when the algorithm is tuned for another metric form the scien-

tific relevance. The rest of the paper is structured as follows: Section 2 assesses the existing literature

concerning interpretability and fairness. In Section 3 the methodology of Lawless and Günlük (2021)

is summarized and extended to include Demographic parity. Section 4 contains data, implementation

details and the results of experiments and Section 5 and 6 consist of the discussion and conclusion of the

paper.

2 Literature review

The use of algorithms to classify the recidivism risk of criminals is hardly surprising as human judges were

found to widely classify crimes differently among each other (Austin & Williams III, 1977). However,

using software in such situations only improves social issues such as discrimination if the model itself is not

prone to biases. For instance, a commonly used criminal risk assessment tool provided not only unreliable,

but also racially biased predictions (Angwin, Larson, Mattu, & Kirchner, 2016). The developers, however,

showed their predictions were fair when considering a different fairness metric. The compas dataset they

used is also used for the analysis in this paper. Criminal risk assessment is only one of the possible

applications, and similar situations may occur in settings such as providing loans, school admissions and

default risk scores.

Interpretability is suggested to be a prerequisite for trusting algorithms (Ribeiro, Singh, & Guestrin,

2016a). Moreover, the potential of interpretable models is justified by the Rashomon set argument:

Assume the data can be explained by a large set of reasonably accurate predictive models. Since this set
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is large, there should be at least one interpretable model. Then that model is interpretable and accurate

(Rudin, 2019). To put this this theory into practice, Boolean rule sets in DNF form are investigated. They

are unordered (Lawless & Günlük, 2021) and are relatively easy to comprehend for humans (Freitas, 2014).

An alternative to Boolean rule sets is the use of decision trees, which can be rewritten to a decision rule

list (Quinlan, 1987). However, this may be harder to understand due to the more complex interpretation

of ordered rules (Lawless & Günlük, 2021).

The Boolean rule sets are researched in a fairness setting. An example of a commonly used fairness

metric is fairness under unawareness (Chen, Kallus, Mao, Svacha, & Udell, 2019), where protected at-

tributes such as race or gender are simply excluded from the model. However, biases can still prevail

after excluding attributes due to hidden correlations (Dwork, Hardt, Pitassi, Reingold, & Zemel, 2012).

Caution is in any case required while using fairness metrics as they could lead to inaccurate predictions

(Dwork et al., 2012). Other metrics used are the aforementioned individual fairness or counterfactual

fairness (Kusner, Loftus, Russell, & Silva, 2017). Nevertheless, in this paper the focus will be on the

group fairness metrics of Equality of opportunity, Equalized odds and Demographic parity. The first two

are replicated based on Lawless and Günlük (2021) and Demographic parity (also referred to as Statistical

parity) (Yao & Huang, 2017) is an additional metric based on similar positive rates among groups.

Research into fair algorithms or interpretable algorithms separately is not uncommon (Lawless &

Günlük, 2021). However, the combination of fair and interpretable models is still limited and only started

to appear more frequently in the literature during the past two years (Berrendorf et al., 2020; Geden

& Andrews, 2021; Kehrenberg, Bartlett, Thomas, & Quadrianto, 2020). Since both notions naturally

restrict accuracy, the combination of the two is expected to decrease the accuracy even more. Algorithmic

use in social situations usually demands interpretability as well as fairness (Wang, Han, Patel, Mohideen,

& Rudin, 2020). In their paper, these authors acknowledge the location dependency of algorithmic

success and the need for timely updates. Current explorations of fair and interpretable machine learning

models include decision trees (Kamiran, Calders, & Pechenizkiy, 2010; Aghaei, Azizi, & Vayanos, 2019),

regression (Berk et al., 2017), rule-based and association rule-based classifiers (Pedreshi, Ruggieri, &

Turini, 2008) and the recently added boolean rule sets (Lawless & Günlük, 2021). Boolean rule sets are

used to find associations with binary data (Mannila & Toivonen, 1996). The main methodology (Lawless

& Günlük, 2021) is based on Dash, Günlük, and Wei (2018) and makes the trade-off between simplicity

of the rule sets and accuracy. More complex rule sets can increase accuracy, but decrease interpretability.

Mita, Papotti, Filippone, and Michiardi (2020) propose a boolean rule set generator that is flexible with

imbalanced datasets.

Equality of opportunity is stated to be oblivious as it otherwise requires subjective interpretation or

assumptions (Hardt, Price, & Srebro, 2016). This means two individuals with similar talent and ambition

are entitled to similar success prospects in competition (Arneson, 1999). Furthermore, Hardt et al. (2016)

found the weaker notion of Equality of opportunity to provide more utility than Equalized odds. Equality

of opportunity is one of two elements of Equalized odds, together with similar false positive rates. The

false positive rate has a different meaning depending on the dataset. For assignment problems with

limited capacities, such as graduate admissions, excessive false positives for one group directly take the
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place of those from other groups. For non-competing classification problems such as recidivism, this does

not have to be the case, although differences between groups are likely to be undesirable. The following

research into Equalized odds is known by us: Pleiss, Raghavan, Wu, Kleinberg, and Weinberger (2017) use

relaxed Equalized odds with calibration to find it to be equivalent to randomizing a subset of predictions.

Romano, Bates, and Candès (2020) make use of resampling sensitive attributes to obtain Equalized odds.

Lastly, Zhang and Bareinboim (2018) investigate Equalized odds and Equality of opportunity in a causal

setting.

The last fairness metric, Demographic parity, is widely apparent in the literature (Hardt et al.,

2016). For instance, Zemel, Wu, Swersky, Pitassi, and Dwork (2013) aim to achieve it by learning a

representation of the data independent of the protected attribute while losing as little information about

the other features as possible. However, Dwork et al. (2012) show conceptual limitations to demographic

parity, which is later verified by Hardt et al. (2016). The different fairness metrics have their pros and

cons in terms of strictness and practical use. Rajkomar, Hardt, Howell, Corrado, and Chin (2018) argue

either of these methods may be most relevant depending on the setting.

3 Methodology based on Lawless and Günlük (2021)

3.1 Fairness metrics

A supervised binary classification problem is defined by a set of training samples with labels yi ∈ {0, 1} and

features Xi ∈ {0, 1}p for i ∈ I = {1, . . . , n} to generate the most accurate decision rule d : {0, 1}p → {0, 1}

(Lawless & Günlük, 2021). In the context where fairness is considered, each data point is part of a group

denoted by the sensitive variable, also known as protected feature. In this research we consider three

different fairness metrics. The first metric is Equality of opportunity, which requires the false negative

rate to be equal between groups (Lawless & Günlük, 2021). It is portrayed by the expression

P(d(X) = 0 | Y = 1, G = g) = P (d(X) = 0 | Y = 1, G = g′) ∀g, g′ ∈ G (1)

with d(X) as the prediction, Y as the actual outcome (label) and gi ∈ G shows the protected feature of

which the data point is a part of. As the probability of false negatives and true positives given a positive

label sum to one, consequently the true positive rate will also be similar among groups. If we add a

similar constraint to Equation 1, while interchanging the 0’s and 1’s, we obtain the second and stricter

Equalized odds condition,

P(d(X) = 1 | Y = 0, G = g) = P (d(X) = 1 | Y = 0, G = g′) ∀g, g′ ∈ G (2)

which ensures equal false positive rates and therefore also equal true negative rates. In addition to these

fairness metrics, which take the labels of the data into account, the third fairness metric Demographic

parity is independent of data labels and requires equal acceptance rates among groups. The formulation

is given by

P(d(X) = 1 | G = g) = P (d(X) = 1 | G = g′) ∀g, g′ ∈ G (3)
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Demographic parity leads to similar proportions of positive classifications among groups. Given P(d(X) =

1) + P(d(X) = 0) = 1 for any group G, Equation 3 holds for both d(X) equal to 0 as well.

Furthermore, any perfect fairness metric could lead to a very limited set of possible classification

models. Therefore, maximum disparity among groups is used in practice as a proxy for unfairness and

will be denoted by d. The notation of maximum disparity for Equality of opportunity,

∆(d) = max
g,g′∈G

|P(d(X) = 0 | Y = 1, G = g)− P (d(X) = 0 | Y = 1, G = g′)| (4)

has a similar form as for the other fairness metrics. It represents the maximal distance between the

probabilities for different groups. The absolute difference for a fairness metric among groups is bounded

by a chosen ε. Therefore, ∆(d) < ε is added as a constraint to inherently control for unfairness.

3.2 Boolean decision rule sets

The goal is to construct an optimal DNF rule-set, which classifies a data point as 1 if it adheres to a

complete rule and 0 otherwise, while taking into account fairness constraints. For p binary features,

only (2p − 2) decision rules can possibly be made (Lawless & Günlük, 2021). By enumerating all rules,

solving the Integer Programming (IP) problem should lead to an optimal subset of rules which minimizes

classification error. In practice, this is intractable, and a Linear Programming (LP) relaxation is solved

using a Column Generation framework. The objective of the LP is to minimize Hamming loss (Dash et

al., 2018), which represents classification error as it is calculated by counting the number of rules that

should be changed for correct classification.

3.3 Integer program formulation

Similar to Lawless and Günlük (2021) we define K as the set of possible rules. Then, Ki ⊂ K is rule set

met by data point i ∈ I. Moreover, ck corresponds to the complexity of rule k ∈ K. This is calculated

by a fixed cost of one and increases by one for every condition in the rule. In the supervised learning

context we assume the data are split into two partitions based on their labels P = {i ∈ I : yi = 1}, and

Z = {i ∈ I : yi = 0} . For every group g ∈ G, data points are denoted to have the sensitive attribute

g with Gg = {i ∈ I : gi = g}. Let Pg = P ∩ Gg and Zg = Z ∩ Gg. For now two groups G = {1, 2} are

assumed, but the number of groups can be easily extended upon. In addition, let wk ∈ {0, 1} define

whether rule k ∈ K is selected. Let ζi ∈ {0, 1} define whether data point i ∈ P is misclassified and

lastly, let C indicate the highest complexity allowed. Based on this notation, finding the optimal rule set

considering the fairness constraint of Equality of opportunity is defined by the following problem:

zmip = min
∑
i∈P

ζi +
∑
i∈Z

∑
k∈Ki

wk (5)

s.t. ζi +
∑
k∈Ki

wk ≥ 1, i ∈ P (6)

Cζi +
∑
k∈Ki

2wk ≤ C, i ∈ P (7)
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∑
k∈K

ckwk ≤ C (8)

w ∈ {0, 1}|K|, ζ ∈ {0, 1}|P| (9)

1

|P1|
∑
i∈P1

ζi −
1

|P2|
∑
i∈P2

ζi ≤ ε1 (10)

1

|P2|
∑
i∈P2

ζi −
1

|P1|
∑
i∈P1

ζi ≤ ε1 (11)

The first Constraint (6) captures false negatives if no rule is selected. Then ζi takes on value 1 if no

rules satisfied by i ∈ P are selected. The second Constraint (7) ensures ζi takes on value 0 if any rule is

selected. The point is then correctly classified. It is taken into account that ck ≥ 2 as any rule contains

at least one condition. The possible amount of rules are bound by complexity C. The third Constraint

(8) extends this bound on complexity to the final rule set. The final two Constraints (10-11) safeguard

the level of tolerated unfairness, depending on ε1. Two constraints are necessary to prevent either of the

groups to have a higher false negative rate.

For Equalized odds, two constraints concerning the false positives are added to the above framework

1

|Z1|
∑
i∈Z1

∑
k∈Ki

wk −
1

|Z2|
∑
i∈Z2

∑
k∈Ki

wk ≤ ε2 (12)

1

|Z2|
∑
i∈Z2

∑
k∈Ki

wk −
1

|Z1|
∑
i∈Z1

∑
k∈Ki

wk ≤ ε2 (13)

also here does ε2 represent the maximum distance allowed between groups. Since wk represents whether

a rule set is selected, parity between selected rule sets for data labeled as a 0 outcome is a good indicator

for false positives. If for one data point labeled as 0 still multiple rule sets are selected, then the prediction

is further from the truth than when only one rule set was selected. These situations are penalized harder

in this formulation.

Thirdly, for Demographic parity a new variable τi ∈ {0, 1} is added, indicating whether data point

i ∈ Z is misclassified. Two constraints to ensure equal positive classifications among groups are added,

1

|P1|+ |Z1|
(
∑
i∈P1

(1− ζi) +
∑
i∈Z1

τi)−
1

|P2|+ |Z2|
(
∑
i∈P2

(1− ζi) +
∑
i∈Z2

τi) ≤ ε3 (14)

1

|P2|+ |Z2|
(
∑
i∈P2

(1− ζi) +
∑
i∈Z2

τi)−
1

|P1|+ |Z1|
(
∑
i∈P1

(1− ζi) +
∑
i∈Z1

τi) ≤ ε3 (15)

in this way, the fractions of correctly classified data points i ∈ P and misclassified points i ∈ Z combined

are the fractions of data points with a positive prediction. The positive classifications are divided by all

data points in groups P and Z, because no data label assumptions are made. Here ε3 works similarly to

ε1 and ε2. Since the indicator τi is not linear by itself, the following constraints are added

(1− τi) +
∑
k∈Ki

wk ≥ 1, i ∈ Z (16)

C(1− τi) +
∑
k∈Ki

2wk ≤ C, i ∈ Z (17)

τi ∈ {0, 1}|Z| (18)
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similar, but in the opposite direction to constraints (6-7), Constraint (16) ensures τi takes value 0 if no

rule is selected for a data point with label 0. Constraint (17) ensures τi takes on value 1 if at least one

rule set is selected.

3.4 Column Generation framework

Again, we follow the methodology by lawlessfair. A column generation framework (Conforti, Cornuéjols,

Zambelli, et al., 2014) is used to solve the LP relaxation of the Master Integer Program (MIP) above.

First, a subset of possible rules is taken, and the LP is solved for only these rules. Then, its optimal dual

solution is used to find missing variables with negative reduced cost (Bazaraa, Jarvis, & Sherali, 2008).

This is done by solving a separate integer program, also referred to as the Pricing problem. A variable

with negative reduced cost is added to the subset of the LP relaxation. This problem is repeatedly

solved until no variables with negative reduced cost can be found anymore. We solve the restricted LP

problem for a restricted subset of rules K̂ ⊂ K. Let
(
µ, α, λ, γ1, γ2

)
be an optimal dual solution. The γ’s

correspond to the fairness constraints whereas µ, α, λ, are associated with constraints (6)-(8) respectively.

The integer program attempts to find a k ∈ K with the minimum reduced cost ρ̂k. It includes variable

zj ∈ {0, 1} for j ∈ J to denote if a data point i has all features selected by the rule. Let variable

δi ∈ {0, 1} for i ∈ I define whether a rule misclassifies data point i. With these variables we compute the

complexity rule to put into the objective function:
(

1 +
∑

j∈J zj

)
. The full pricing problem for Equality

of opportunity becomes:

zcg = min
∑
i∈Z

δi +
∑
i∈P

(2αi − µi) δi + λ

1 +
∑
j∈J

zj

 (19)

s.t. Dδi +
∑
j∈Si

zj ≤ D i ∈ I− (20)

δi +
∑
j∈Si

zj ≥ 1 i ∈ I+ (21)

∑
j∈J

zj ≤ D (22)

z ∈ {0, 1}|J|, δ ∈ {0, 1}|P|+|Z| (23)

Set I− ⊆ I consists of the indices of variables which have a negative coefficient for δi in the objective

function, and I+ = I\I− works similarly for positive coefficients. The objective function does not include

γ1 or γ2 since variable wk is not part of the fairness constraints in the MIP problem. The complexity

bound D is independent of C in the MIP problem.

The fairness constraints contain wk for Equalized odds. Therefore, γ3 and γ4 need to be included in

the objective of the pricing problem. The following elements are added,∑
i∈Z1

γ3
|Z1|

1{k∈Ki} −
∑
i∈Z1

γ4
|Z1|

1{k∈Ki} −
∑
i∈Z2

γ3
|Z2|

1{k∈Ki} +
∑
i∈Z2

γ4
|Z2|

1{k∈Ki} (24)

which leads to the following pricing problem:
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zcg = min

(
1 +

γ3 − γ4
|Z1|

) ∑
i∈Z1

δi +

(
1 +

γ4 − γ3
|Z2|

) ∑
i∈Z2

δi +
∑
i∈P

(2αi − µi) δi + λ

1 +
∑
j∈J

zj

 (25)

Just as for Equalized odds, the objective of the pricing problem needs to be adapted for Demographic

parity. Similar to Lawless and Günlük (2021), let
(
µ, α, λ, ψ, θ, γ1, γ2

)
be an optimal dual solution to

the Restricted Master Linear Program, where ψ and θ are associated with Constraints (16) and (17),

respectively. Then the coefficient for the term
∑

i∈Z δi in Constraint (19) takes a similar form as the part

of the objective function for i ∈ P . The new objective function for the pricing problem becomes:

zcg = min
∑
i∈Z

(2θi − ψi + 1)δi +
∑
i∈P

(2αi − µi) δi + λ

1 +
∑
j∈J

zj

 (26)

Hence, the three different fairness metrics share the same Constraints (20)-(23) for the pricing problem,

yet they have different objective functions.

4 Results

4.1 Data

The main requirement for classification with fairness constraints is that the dataset contains a sensitive

attribute, which is a variable indicating different groups, which could be gender, race or income level, for

example. The sensitive variable (also known as protected attribute) is suspected to be an indicator of

unfairness. The algorithm creating the boolean rule sets using column generation, abbreviated by Fair

CG, is tested on three machine learning datasets by Lawless and Günlük (2021):

• default (Dua & Graff, 2017) is a 2005 dataset of Taiwanese credit card customers, with the objective

of predicting default payments. The sensitive variable is gender.

• adult (Dua & Graff, 2017) is a 1994 US Census Income dataset, with the objective to predict if a

person makes over $50.000. The sensitive variable is gender.

• compas (Angwin et al., 2016) is a dataset with the aim of classifying the risk of recidivism for

convicted defendants. The sensitive variable is race.

The analysis is extended to the following dataset:

• German credit (Dua & Graff, 2017) is a 1975 German dataset used to classify customers as good or

bad risks. This dataset is in the same domain as the default set, with the addition that both gender

and being foreign can be used as the sensitive variable here. It has 20 features and a relatively low

size (1000 rows versus 30.000 for the default dataset). As credit can be easily confused by default,

we refer to the German credit dataset as German in the tables and figures.

The compas dataset can be retrieved from Kaggle (Ofer, 2017). The other three datasets can be

retrieved from the UCI machine learning repository (Dua & Graff, 2017). Similar to Lawless and Günlük
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(2021) for the adult dataset the training data is used, for default the entire dataset. The COMPAS

dataset is cleaned to be restricted to only consider African American and Caucasian respondents. A

binary column race indicates whether a respondent was African American. Similar to Dash et al. (2018),

the data is made binary through one-hot encoding. Both the encoding and its negation are considered.

Numerical values are compared against sample deciles, which are all the tenth percentiles. The negations

of those comparisons are also included.

4.2 Implementation details

The implementation is based on Lawless and Günlük (2021). The Gurobi Python interface (Gurobi Op-

timization, 2021) is used to solve the programs.

The Master Linear Program (MLP) is solved using a barrier interior point method with the default

crossover parameter. Here, the integer program is converted to a series of unconstrained programs, where

a high cost is added to infeasibility or approaching the boundary from the interior (Ravikumar, 2017).

For the Master Integer Program (MIP) the rule set with the highest accuracy for the training set is

used. Due to the intensity of computations, standard time limits are implemented. In addition, when

the MLP is (nearly) optimal, at most 1000 rules with the lowest reduced cost are used to solve the MIP,

and it returns all feasible solutions found within the time limit. The Column Generation framework is

approximated for large datasets using a sub-sample selected uniformly at random of the original dataset.

Such a sub-sample consists of less than or equal to 2000 rows due to the problem size. A greedy heuristic

is first employed four times before switching to the IP formulation, as this was found to produce the best

results (Lawless & Günlük, 2021).

Due to time limitations, we use 5-fold cross-validation. The rule set is built using a two-step process.

First, the Column Generation algorithm runs on a training dataset with hyper-parameters. Then the

generated candidate rules are used to solve the master integer program for more potential unfairness

bounds (epsilons) and complexity limits. These complexity limits are generated from finding the best

accuracy when no fairness constraints are included and testing neighboring values. Solving the MLP and

MIP is done with a 5-minute time limit, and each pricing problem iteration has a 45 second time limit

(Lawless & Günlük, 2021).

4.3 Experimental set-up

The code is written in Python 3.7 and all results are found using a 2,3 GHz Dual-Core Intel Core i5 CPU.

The python environment was configured with Anaconda and included the following package dependencies:
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Table 1: Overview of package dependencies

Package Version

Python 3.7.9

Gurobi 9.1.2

Numpy 1.20.1

Pandas 1.2.4

For Equality of opportunity, Equalized odds and Demographic parity, the ε used in the first phase of

rule generation (0.2, 1) and in the second phase of rule generation (0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.5, 1) are

equal among the different datasets. For Equalized odds we set ε1 = ε2. Rule complexity parameter C

is set similarly to Lawless and Günlük (2021). Values for C ranged in the experiments from 5 to 110

(Lawless & Günlük, 2021) such that the number of rules and conditions remain interpretable. For the

German credit dataset we use complexities (10, 17, 30) for the first phase and (10, 15, 20) for the second

phase as suggested by Lawless and Günlük (2021).

4.4 Measuring unfairness

First, let us define the fairness definition used. The constraints measure the degree of unfairness. More

fairness means low differences between groups, and thus, lower differences are better. For instance, the

degree of unfairness being 0 is the best fairness to be found.

The analysis structure is as follows: For the three fairness metrics used we provide the accuracy and

unfairness metrics per dataset when optimizing for accuracy or fairness. In addition, graphs are shown

about the relations between fairness, complexity and accuracy. For the extension dataset German credit

we provide comparisons to other interpretable benchmarks with decision trees (CART) and Logistic

Regression methods. Similar to Lawless and Günlük (2021), both are implemented using scikit-learn

in python. As Demographic parity is newly implemented, benchmarks will be provided for all datasets

involved with this fairness metric. Furthermore, in Section 5.7 we show results for the other fairness

metrics than for which the model was originally tuned for.

4.5 Equality of opportunity

We start with the results for the Equality of opportunity measure. The goal is to replicate the results

of the Fair CG algorithm by Lawless and Günlük (2021). All tables show accuracies and disparities

of the fairness metrics in percentages, as well as standard deviations in brackets. Table 2 shows the

optimal accuracy and unfairness results per dataset. Standard deviations are shown in parentheses. The

mean accuracy and unfairness for the models tuned for accuracy and unfairness are similar to Lawless and

Günlük (2021). We comment on the tunings separately. For the adult set, the optimal accuracy is only 0.1

lower than found in Lawless and Günlük (2021), most probably due to the use of 5-fold cross-validation.

The corresponding unfairness is two points lower, exemplifying the possibility of sacrificing little accuracy

for more fairness. The results for compas are similar, yet here a slightly lower fairness disparity is found
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for similar optimal accuracy. For default the optimal accuracy is just higher and accompanied unfairness

is just lower.

Table 2: Mean Accuracy and Fairness Results for Equality of Opportunity

Adult Compas Default German

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

Tuned for Acc 82.8(0.4) 7.0(5.2) 68.2(1.8) 22.2(5.5) 82.1(0.4) 0.2(1.5) 73.2(3.5) 2.4(6.4)

Tuned for Fair 82.3(0.4) 1.3(0.8) 53.0(1.6) 0(0) 77.9(0.4) 0(0.3) 70.0(2.9) 0(0)

Next, we tune for fairness. For the adult set the optimal unfairness found is 1.3 higher than Lawless

and Günlük (2021) found, which was 0.3. However, here the accuracy of 82.3 outperforms theirs (78.4).

This is a situation where we might consider sacrificing some fairness for more accuracy. For the compas

set, when tuned for fairness, the accuracy is equal to the percentage of positive labeled data. This means

the majority class was automatically predicted and no effective rules were used.

In addition, the algorithm is also run on the german dataset with gender as the sensitive attribute.

As Table 2 shows, Equality of opportunity gaps are found, but yet the accuracy is at most 73.2%. Given

70% of the dataset is labeled as negative, the boolean rule sets do not seem to handle this imbalance

effectively.

In Figure 1 three graphs for the compas dataset are used as examples. The other datasets are displayed

in Appendix A.1 Figures 5 and 6. It shows that the difference in false negative rates increases if the fairness

constraint is relaxed. Figures 1a and 1b show similar trends to what was found before. For the compas

dataset the increase in the Equality of opportunity gap affects one group (G1) in a more negative way

than the other (G2). Figure 1b shows that increasing complexity leads to lower false negative rates,

exemplifying the interpretability-fairness trade-off. Moreover, figure 1c shows that decreasing fairness

leads to more accuracy. The results are further interpreted in the Discussion in Section 6.
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Figure 1: Impact of the fairness constraint (a), complexity constraint (b) on the false negative rate of

the compas dataset. Impact of the fairness constraint on the accuracy (c).

For the German credit dataset, the Fair CG algorithm is compared to benchmark algorithms of decision

trees (CART) and Logistic Regression (LR). Here, also 5-fold cross-validation is used in combination with

a variety of hyperparameters. Table 3 shows the results.
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Table 3: Benchmark Accuracy and Fairness Results for Equality of opportunity

German

Accuracy Fairness

Fair CG Tuned for Acc 73.2(3.5) 2.4(6.4)

Tuned for Fair 70.0(2.9) 0.0(0.0)

CART Tuned for Acc 71.3(2.5) 13.3(6.8)

Tuned for Fair 70.0(3.0) 0.0(0.0)

LR Tuned for Acc 74.4(2.4) 15.1(11.4)

Tuned for Fair 71.8(2.7) 9.3(7.7)

LR obtains the highest accuracy when tuned for it, although it has a cost of a 15.1 gap in unfairness.

When tuned for fairness, Fair CG and CART resort to predicting the majority class, and in doing so

they find no unfairness. Unfortunately, this result is not very useful in practice as this would mean that

the algorithm would classify any person as low risk. It may be costly for the bank to also provide loans

to a great share of high risks, of which there were 30% in this sample. However, the optimal accuracy

(when tuned for accuracy) is not much higher, and this indicates none of these interpretable methods

can classify risks with high accuracy.

Figure 2 shows the effect of the Equality of opportunity gap target (unfairness target) on the false

negative rate, Equality of opportunity gap and accuracy. Notably, tested accuracy does not keep up with

trained accuracy, highlighting the potential benefit of a larger dataset.
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Figure 2: Impact of the fairness target on false negative rate (a) and fairness measure (b) and accuracy

(c) for the German credit dataset.

Moreover, Figure 3 shows the relation between the complexity target and the accuracy and false

negative rates. Whereas a higher complexity target leads to lower false negative rates, it does not lead to

higher test accuracy. The effect of complexity seems ambiguous. It may lead to more rules which increases

the probability of a positive classification. However, longer rules might make positive classifications less

likely.
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Figure 3: Impact of the complexity target on accuracy and false negative rate

4.6 Equalized odds

The second fairness measure considered is Equalized odds. Next to similar false negative rates, groups

now also need to have similar false positive rates for their predictions. Similar to Lawless and Günlük

(2021) the results for the Equalized odds measure are split between the (+) term, the loss from data

points with a positive label and the (-) term for loss from data points with a negative label. These are also

the false negative and false positive rates respectively. As Equalized odds is a stricter fairness measure,

it leads to slightly lower optimal accuracy than Equality of opportunity. Table 4 shows the results for

the Equalized odds (-) term. Apart from the optimal accuracy for the adult dataset (80.7 here vs 83.1

there), most results are very similar to Lawless and Günlük (2021).

Table 4: Mean Accuracy and Fairness Results for Equalized odds, fairness defined by the gap in Hamming

loss (-) between groups

Adult Compas Default German

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

Tuned for Acc 80.7(1.2) 12.5(5.4) 67.1 (1.6) 12.2(5.4) 82.0(0.2) 1.2(1.0) 72.4(3.0) 9.5(0.7)

Tuned for Fair 75.9(0.7) 0(1.3) 53.0(1.0) 0.0(5.0) 82.0(0.2) 0.0(1.0) 70(2.8) 0.0(0.7)

Next, we consider the results for the positive gap in Equalized odds in Table 5. This is defined by

positively labeled data points which did not select any rule and are thus classified as negative. Hence,

the values tuned for accuracy are naturally equal to those for negative hamming loss. The results for

the default dataset display similar accuracies, yet different degrees of unfairness due to rounding. Tuned

for fairness, all datasets can be classified with a gap of 0 in unfairness. Interestingly, for adult, default

and the German credit datasets, optimal fairness can be obtained with a decrease of not more than 5%

points inaccuracy in comparison to when they are tuned for accuracy. Only for the compas dataset does

optimal fairness lead to only 53% accuracy, which is equivalent to always predicting the majority class.
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Table 5: Mean Accuracy and Fairness Results for Equalized odds, fairness defined by the gap in Hamming

loss (+) between groups

Adult Compas Default German

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

Tuned for Acc 80.7(1.2) 2.1(5.0) 67.1 (1.6) 21.1 (8.9) 82.0(0.2) 0(0.2) 72.4(3.0) 5.9(2.2)

Tuned for Fair 75.9(0.7) 0(5.0) 53.0(1.0) 0(8.9) 82.0(0.2) 0(0.2) 70(2.8) 0(2.2)

We continue with benchmark results for the German credit dataset. Here, the benchmarks show

the challenge of classifying the German credit dataset with Equalized odds. The sum of unfairness for

HEO(+) and HEO(-) exceeds ten if tuned for optimal fairness. In terms of optimal accuracy CART and

LR both find a higher accuracy than Fair CG.

Table 6: Mean Accuracy and Fairness Results for the German credit dataset with Equalized odds

German Accuracy HEO(-) HEO(+)

Fair CG Tuned for Acc 72.4(3.0) 9.5(0.7) 5.9(2.2)

Tuned for Fair 70(2.8) 0(0.7) 0(2.2)

CART Tuned for Acc 71.3(2.5) 2.2(1.5) 13.3(6.8)

Tuned for Fair 70.0(3.0) 0.0(0.0) 0.0(0.0)

LR Tuned for Acc 74.4(2.4) 7.1(5.6) 15.1(11.4)

Tuned for Fair 71.8(2.7) 1.7(1.4) 9.3(7.7)

Lastly, we observe the figures for Equalized odds in the Appendix A.2 Figures 7-10 and see similar

patterns to Equality of opportunity. Accuracy is on average 0.05 lower for test sets in comparison to

training sets. Naturally, a higher complexity target leads to higher HEO(-) observed and lower HEO(+)

observed. This shows for the credit dataset that higher complexity leads to more fairness between groups

considering they are positively labeled. The German credit dataset was also evaluated for both Equality of

opportunity and Equalized odds using foreign as the sensitive attribute, although only 3% of the dataset

has this feature. The Fair CG as well as CART and LR were able to find accuracy, but no fairness, most

probably due to the large imbalance. Resampling techniques could be considered as a remedy in the

future.

4.7 Demographic parity

Lastly, we consider inherent control for Demographic parity, where the positive classification rates ought

to be equal among groups. This seems to be a more straightforward fairness metric than the others, as

it does not take labels into account. Nonetheless, implementation proves to be much harder. For all

datasets, accuracy results are similar regardless of fairness target. For the adult dataset especially only

24.1% accuracy was acquired, which is more than twice as bad as random predictions. The results are

16



published for reference in Table 7 here:

Table 7: Mean Accuracy and Fairness Results for Demographic parity

Adult Compas Default German

Accuracy Fairness Accuracy Fairness Accuracy Fairness Accuracy Fairness

Fair CG Tuned for Acc 24.1(0.8) 19.6(0.6) 47.0 (1.2) 13.3 (2.0) 78.0(0.7) 0(0.0) 70.0(2.4) 0(0.0)

Tuned for Fair 24.1(0.7) 19.6(0.6) 47.0(1.0) 13.2(3.1) 78.0(0.7) 0.0(0.0) 70.0(2.4) 0.0(0.0)

CART Tuned for Acc 85.4(0.5) 18.0(0.9) 68.1 (1.9) 27.5 (3.0) 82.1(1.5) 2.4(1.4) 71.3(2.5) 3.5(2.1)

Tuned for Fair 85.4(0.5) 18.0(0.9) 65.9(2.3) 23.8(3.9) 82.0(1.4) 1.8(1.3) 70.0(3.0) 0.0(0.0)

LR Tuned for Acc 79.9(0.3) 6.7(4.6) 68.1 (1.6) 27.7 (3.3) 78.0(1.7) 0(0.0) 74.4(2.4) 11.5(5.7)

Tuned for Fair 79.9(0.2) 4.5(0.5) 67.5(1.8) 26.9(2.9) 78.0(1.7) 0.0(0.0) 71.8(2.7) 2.3(1.0)

The benchmarks show CART and LR can find higher optimal accuracies when tuned for accuracy.

Only for default does LR find similar accuracy and fairness in comparison with Fair CG. When tuned for

fairness, both benchmarks find much better accuracy and lower unfairness for adult. For compas their

optimal fairness is considerably higher than for Fair CG, but this includes on average a 20%-point higher

accuracy when tuned for fairness. For default and credit the results are more comparable. The Fair

CG algorithm with Demographic parity mainly classifies similar accuracy for different complexity and

fairness, so graphs did not prove to be insightful.

4.8 Comparison across fairness measures

Finally, we compare different fairness results when tuned for one of them. This means when tuned for

Equality of opportunity, those related constraints were added to the integer program of the fair CG

algorithm. The fairness metrics of Equalized odds and Demographic parity are analyzed in that case.

4.8.1 Tuned for Equality of opportunity

The different fairness metrics satisfy different fairness definitions. We continue by investigating whether

the Fair CG model optimized for Equality of opportunity also holds promising Equalized odds and De-

mographic parity results. Equalized odds has identical constraints to Equality of opportunity for false

negatives. Therefore, we only look at the Hamming equalized odds (-), which identifies false positives. For

illustration the values of Equalized odds and Demographic parity are displayed in Table 8. There Abbre-

viations EqOp (Equality of opportunity), HEO (Hamming equalized odds) and DemPar (Demographic

Parity) are used. It shows when tuning Equality of opportunity for fairness, the Hamming equalized

odds (-) is low. Demographic parity shows a similar pattern to Hamming equalized odds (-). Hamming

equalized odds (-) is even lower when tuned for accuracy. This is generally also the case, although it just

as Equality of opportunity is relatively high for the compas dataset.
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Table 8: Mean Accuracy and Fairness Results when tuned for Equality of Opportunity

Adult Accuracy EqOp HEO(-) DemPar

Adult Tuned for Acc 82.8(0.4) 7.0(1.7) 6.3(0.8) 9.2(0.4)

Tuned for Fair 82.3(0.4) 1.3(0.8) 4.9(0.8) 9.4(0.6)

Compas Tuned for Acc 68.2(1.8) 22.2(5.5) 16.9(6.5) 16.9(3.1)

Tuned for Fair 53.0(1.6) 0.0(0.0) 0.0(6.5) 0.0(0.0)

Default Tuned for Acc 82.1(0.4) 0.2(1.5) 1.0(0.3) 1.3(0.6)

Tuned for Fair 77.9(0.4) 0(0.3) 0.2(0.3) 0.0(0.0)

German Tuned for Acc 73.2(3.5) 2.4(6.4) 0.5(0.7) 1.8(1.8)

Tuned for Fair 70.0(2.9) 0.0(0.0) 0.0(0.7) 0.0(0.0)

Note : EqOp is equivalent to HEO(+)

Three sets of graphs are made per dataset. In Figure 4 and Appendix A.3 Figures 11-13, the Hamming

loss (-) term with respect to the Equality of opportunity gap target always finds its optimal point between

the values 0 and 0.2 for epsilon. This suggests a value can be found here where Equalized odds is relatively

fair. In practice, this case is not more useful than optimizing for Equalized odds immediately. In terms of

the false positive rate with respect to the Equality of opportunity gap target (as in Figure 4c), the scale

of the y-axis is important to take into account. Coherent to the tables, the largest gaps between groups

are to be found for the compas dataset, then adult and followed by much smaller differences for German

credit and default. Coherent to earlier findings, a higher complexity target leads to higher false positive

rates for all datasets in Appendix A.3 figures 11-13. Only in Figure 4b we observe a slight decrease.

Graphs of the effects of the Equality of opportunity target and complexity on the Demographic parity

gap are displayed in Appendix A.4 Figures 14-16.
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Figure 4: Impact of the fairness constraint (a) on hamming loss (-) and the false positive rate (c) and

the impact of the complexity target on the false positive rate (b).

4.8.2 Tuned for Equalized odds

Since EqOp and HEO(-) in Table 9 are tuned for when considering Equalized odds, we focus on Demo-

graphic parity. When tuned for accuracy, again the disparity between groups is greater when considering
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datasets adult and compas. When tuned for fairness all disparities are zero. This is further elaborated

on in the Discussion section. Graphs of the effects of the Equalized odds target and complexity on the

Demographic parity gap are displayed in Appendix A.5 Figures 17-19.

Table 9: Mean Accuracy and Fairness Results when constrained with Equalized odds

Accuracy EqOp HEO(-) DemPar

Adult Tuned for Acc 80.7(1.2) 2.1(5.0) 12.5(5.4) 7.2(1.2)

Tuned for Fair 75.9(0.7) 0.0(5.0) 0.0(1.3) 0.0(0.0)

Compas Tuned for Acc 67.1 (1.6) 21.1 (8.9) 12.2(5.4) 15.1(2.0)

Tuned for Fair 53.0(1.0) 0.0(8.9) 0.0(5.0) 0.0(0.0)

Default Tuned for Acc 82.0(0.2) 0.0(0.2) 1.2(1.0) 1.1(0.5)

Tuned for Fair 82.0(0.2) 0.0(0.2) 0.0(1.0) 0.0(0.0)

German Tuned for Acc 72.4(3.0) 5.9(2.2) 9.5(0.7) 1.7(1.6)

Tuned for Fair 70(2.8) 0.0(2.2) 0.0(0.7) 0.0(0.0)

Note: EqOp is equivalent to HEO(+)

4.8.3 Tuned for Demographic parity

Next, we consider the scores for Equality of opportunity and Equalized odds when constraining Fair CG

for Demographic parity. Equality of opportunity is equal to the (+) term for Equalized odds. The results

are displayed in Table 10.

Table 10: Mean Accuracy and Fairness Results for Demographic Parity

Accuracy DemPar EqOp HEO(-)

Default 78.0(0.7) 0.0(0.0) 0.0(0.0) 0.0 (0.0)

Adult 24.1(0.8) 19.6(0.6) 0.0(0.0) 13.0(4.0)

Compas 47.0(0.7) 13.2(4.6) 0.0(0.0) 16.6(3.5)

German 70.0(2.4) 0.0(0.0) 0.0(0.0) 0.0(2.2)

Note : The values for tuning for accuracy and fairness coincide for this table.

For default and german fair classifications are found. Only for adult and compas a relatively high score

for unfairness in Demographic parity is accompanied by a relatively high score for the gap of the false

positive rate (HEO(-)). As the results are similar to when tuned for fairness or accuracy, only one value

is displayed. When tuned for Demographic parity, the unfairness measured by Equality of opportunity

is minimal.
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5 Discussion

In the discussion we consider the questions asked in the introduction: Does the Fair CG algorithm

perform similarly when applied to different datasets? Which fairness metric leads to the highest accuracy

in prediction? In addition, special attention is given to taking the fairness metrics simultaneously into

account. We structure the discussion by separately treating the different fairness metrics and at last

discussing the comparison between them.

5.1 Equality of opportunity

Similar to Lawless and Günlük (2021) we observe Equality of opportunity as a relatively straightforward

fairness measure producing promising results. Three out of four datasets have relatively low fairness for

optimal accuracy. Furthermore, Equality of opportunity gaps of close to 0 can be obtained with accuracies

that are still competitive. There is a clear trade-off between relaxing the fairness constraint in training

and the realized false negative rates. The rapid differences in Equality of opportunity when its target is

relaxed shows neither data or algorithm is likely to inherently capture fairness if not specifically being

programmed to do so. Likewise, a clear fairness-accuracy trade-off is seen in Figure 1c. However, when

fairness restrictions are relaxed to increase accuracy, gains are very skewed to the early and relatively

low decreases in fairness. After this first burst of accuracy-increase, only a slight increase in accuracy is

witnessed while relaxing the fairness constraint further. Therefore, this shows satisfactory fairness can

be accompanied by decent accuracy.

If the user of the algorithm were solely maximizing accuracy, then the fraction of correct classifications

is expected to be highest. In the compas example this would be 70%. Nonetheless, if the Equality of

opportunity gap were to be kept at 0.1, then around 4% of correct classifications would be sacrificed to

ensure the difference in false negative rates between groups is low. Ceteris paribus this would imply the

opportunity for the disadvantaged group would increase (or the opportunity for the group with more

abundant positive classifications might decrease) with at least an overall cost of more false classifica-

tions. This leads to two conclusions. First, the implications of using fairness metrics must be carefully

researched. In other words, what are the effects of the fairness measure on the classification performance

for different groups? Secondly, in a policy setting it might help to set fairness standards and optimize

accuracy constrained to these standards.

5.2 Equalized odds

As Equalized odds includes Equality of opportunity it is valuable to compare Equality of Opportunity

when optimizing for either of the two. When tuned for accuracy, there is more fairness in terms of

Equality of opportunity if Equalized odds is used as a constraint for three out of four datasets. Only for

the German credit dataset does fairness decrease when optimizing for Equalized odds. The unfairness

measures are for both very low when tuned for fairness, there is no notable difference. As Equalized odds

is the stricter fairness measure, it takes a higher toll on accuracy. When tuned for accuracy, the difference
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between the accuracy found by using Equality of opportunity is only 1 to 2-percent points higher than for

Equalized odds. The additional cost of establishing similar false positive rates among groups seems low

for the additional benefit concerning fairness. In deciding between Equality of Opportunity and Equalized

odds, the context of the problem should be taken into account. Classifying the risk of recidivism (compas)

might be different than classifying a customer as a bad risk (credit).

The Fair CG algorithm achieves 2-percent points lower optimal accuracy for the German credit dataset

than the competing benchmarks. However, the accompanying sum of positive and negative term parts

of equalized odds is considerably lower. The German credit dataset was evaluated using gender as the

sensitive attribute. The dataset also contained foreign as a potential sensitive attribute, but given that

the Fair CG algorithm is not able to provide sensible classifications for this setting, we find this to be a

clear example for the need of fairness. When a group with potentially lower opportunity or odds is too

small to be classified, it is hard for an algorithm to come up for their rights.

5.3 Demographic parity

The third fairness metric was not implemented in the Fair CG setting before. The measure itself, namely

similar positive prediction rates among groups, seems straightforward. However, the implementation

proved more challenging. For instance, special attention needs to be given to the misclassification of

negatively labeled data and the pricing problem. The expectation of a relatively more straightforward

fairness metric leading to potentially high accuracy and/or high fairness is not met. The Fair CG algo-

rithm performed poorly on adult and compas datasets to the extent that random guessing in expectation

leads to twice the accuracy of the Fair CG algorithm. This problem did not occur for the default and

German credit datasets. With this formulation for Fair CG, Demographic parity is not competitive to

Equality of opportunity and Equalized odds. This is also found by analyzing the benchmark results. The

accuracies of CART and LR unanimously outperform those from Fair CG, yet the gaps in Demographic

parity are remarkably high even when the results are tuned for fairness. For the adult dataset LR finds

the fairest classifier, with a cost of 5.5-percent points in accuracy in comparison to CART. This result

is surprising, given the actual positive rates in the datasets were not particularly unequally distributed.

This finding tempers the optimism suggested by Lawless and Günlük (2021) after finding promising re-

sults for Equality of opportunity and Equalized odds. Namely, for other fairness metrics there is still

enough work to be done.

5.4 Comparison among fairness metrics

As inherently implementing Demographic parity has proven to be difficult, we resort to finding the

measure while optimizing for Equality of opportunity or Equalized odds. The reason for this is two-fold.

In addition to the earlier mentioned reason, satisfying different fairness metrics is regarded as difficult

by the literature. Nevertheless, if an algorithm is fair by one definition and unfair by another, this may

cause confusion about the common understanding of fairness. Lack of research into this area urges us to

keep looking for optimal fairness across definitions.
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Equalized odds is a stricter fairness condition than Equality of opportunity in terms of false classifi-

cations. The question of interest is whether Demographic parity differs when tuned for one or the other.

These differences are low. When tuned for accuracy the Demographic disparity is lower when tuned for

Equalized odds for all datasets, although the difference is only larger than 11% for the adult dataset.

The results when tuned for fairness only differ for the adult dataset. There the Demographic disparity

when tuned for Equality of opportunity disappears when tuning for Equalized odds.

We consider the values for Equality of opportunity and Equalized odds when constraining the al-

gorithm for Demographic parity. We see that for adult and compas the unfairness with respect to

Demographic parity is shared with unfairness for the false positive rates (HEO(-)). As the positive rates

differ (due to the unfairness in the Demographic parity measure), this gets expressed in a difference in

false positive rates. In a worst-case scenario, one group receives more positive classifications, which are

predominantly false, resulting in bad scores for both fairness metrics. This shows another side of the

coin. Given correlated fairness metrics, if one is unfair, other metrics follow.

The aim of this paper is ambitious. Namely, finding a classifier that is accurate, interpretable and

fair. Depending on the fairness constraint, interpretability and fairness in the boolean rule set setting do

not generally influence each other greatly. However, both are shown to have a negative relationship with

accuracy. One suggestion is to sacrifice interpretability for fairness. However, in delicate matters such

as fairness, understanding the reasoning behind decision-making is key. This obviously is harder with a

more complicated model. In the conclusion several suggestions will be laid out to take further steps in

balancing the respective trade-offs between interpretability and fairness and their effects on accuracy.

6 Conclusion

This paper extended the research into Boolean rule sets constrained with Equality of opportunity and

Equalized odds to the German credit dataset and Demographic parity. Furthermore, the various fairness

metrics are evaluated when the model is constrained to a different fairness metric. We started by asking

the question:

What is the effect of different fairness metrics on the accuracy of an interpretable machine learning

model?

To answer this question, we first investigated if the Fair CG algorithm performs comparatively when

it is applied to different datasets. The addition of the German credit dataset taught us two things: First,

the results are not very different from the default dataset in terms of fairness, which is in the same

domain. Second, with a 1000 rows it was clearly smaller than the other datasets, and this was noticed

in its performance. Overall it is clear that FairCG had more difficulty with two datasets (compas and

credit) to create a combination of high accuracy and fairness, in comparison to the other datasets where

this was more doable. Next, we considered which fairness metric led to the highest accuracy in prediction.

It was known that Equality of opportunity as a less strict measure could attain higher accuracy than

Equalized odds. Beforehand, it was expected that Demographic parity, which does not make assumptions
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about labels, might lead to higher accuracy than when accounting for other fairness measures. However,

this was not the case. Generally, when we tune for fairness, all three fairness metrics attain very low

levels. This showed instead of only considering fairness metrics separately, attempts to satisfy multiple

definitions of fairness at once have potential.

In conclusion, among these fairness metrics, Equality of opportunity leads to the highest accuracy.

However, more difficult is finding the optimal balance between fairness and accuracy. In experiments we

have shown the tendency for a combination of still-low unfairness and already high accuracy. Whether

that is optimal depends on the objective as well as on research outside of economics and computer science.

The fairness we require should not be in the hands of the machine as it is a question for human society.

This research intended to take a next step to fair and interpretable classification. In this new field it

is sensible to start with fairness definitions that are straightforward to grasp, which led to investigating

Demographic parity. However, there is plenty of room for improvement. The time limitation led to only

using 5-fold cross-validation. Although the effect on the larger datasets was small, higher cross-validation

might lead to better results for the German credit dataset. Also, the Fair CG algorithm subject to the

Demographic parity constraint was not able to provide competitive classification for the compas and adult

datasets. Modifying the formulation as an attempt to fix this problem could greatly elevate the value of

this research. Lastly, here follows a range of suggestions for further research:

• In this research the focus was on binary prediction, which can be intuitively evaluated. Nevertheless,

uncertainty was not taken into account. If the model could express its degree of certainty about a

prediction, this could greatly increase its practical use. Developing this might be a bigger challenge

for boolean rule sets than for other types of algorithms. For neural networks for instance, there

exist methods for this (Ribeiro, Singh, & Guestrin, 2016b).

• Econometric methods (here referred to as algorithms) were mostly used for research and finance.

With the rapid advancements in machine learning the intersection between algorithms and eco-

nomics has quickly become more important, while it seems that the moral and ethical considera-

tions for fairness fall behind. The use of machines gives us a chance to break with unfair practices.

A strong question is whether the machines can fix this for us, or if we first need to elevate human’s

moral standards.

• We advise to investigate the details of produced rule sets, something which should be done in

cooperation with domain experts, such as lawyers, psychologists and sociologists. In the case of

compas; Properly compare the outcomes of the algorithms with human judgment.

• The use of the German credit dataset has shown what is needed to make fairness standard practice

in machine learning. Large data samples from different places and times, and proper checks of the

labels provided. This high cost might well be worth the added predictive power of algorithms.

• Consider solving the problem in an optimization context where tuning for fairness and accuracy is

done through weighting both aspects to find optimal values for the fairness-accuracy trade-off.
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Conforti, M., Cornuéjols, G., Zambelli, G., et al. (2014). Integer programming (Vol. 271). Springer.

Corbett-Davies, S., & Goel, S. (2018). The measure and mismeasure of fairness: A critical review of fair

machine learning. arXiv preprint arXiv:1808.00023 .
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A Appendix

A.1 Equality of opportunity
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Figure 5: Impact of the fairness target on the false negative rate(a), acquired fairness (b) and accuracy

(c) for the adult dataset.
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Figure 6: Impact of the fairness target on the false negative rate(a), acquired fairness (b) and accuracy

(c) for the default dataset.

A.2 German credit Equalized odds
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Figure 7: Impact of the Equalized odds target on Hamming loss (+) observed.
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Figure 8: Impact of the Equalized odds target on Hamming loss (-) observed.
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Figure 9: Impact of the complexity targets and Equalized odds target on accuracy for the German

credit dataset.
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Figure 10: Impact of the complexity target on Equalized odds (+) and (-) observed for the German

credit dataset.
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A.3 Equalized odds results when tuning for Equality of opportunity

0.0 0.2 0.4 0.6 0.8 1.0
Equality of Opportunity Gap Target 

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Fa
lse

 P
os

iti
ve

 R
at

e

compas

Train G1
Test G1
Train

Test
Train G2
Test G2

0.0 0.2 0.4 0.6 0.8 1.0
Equality of Opportunity Gap Target 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ha
m

m
in

g 
Lo

ss
 G

ap
 (-

) O
bs

er
ve

d

compas

Train
Test

10 12 14 16 18 20
Complexity Target C

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Fa
lse

 P
os

iti
ve

 R
at

e

compas

Train G1
Test G1
Train

Test
Train G2
Test G2

Figure 11: Impact of the fairness target on the false positive rate(a) and hamming negative loss gap (-)

(b) and the impact of the complexity target on the false positive rate (c) for the compas dataset.
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Figure 12: Impact of the fairness target on the false positive rate (a) and hamming negative loss gap

(-) (b) and the impact of the complexity target on the false positive rate (c) for the default dataset.
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Figure 13: Impact of the fairness target on the false positive rate (a) and hamming negative loss gap (-)

(b) and the impact of the complexity target on the false positive rate (c) for the German credit dataset.
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A.4 Demographic parity results when tuning for Equality of opportunity
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Figure 14: Impact of the Equality of opportunity target and complexity targets on the Demographic

parity gap for the compas dataset.
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Figure 15: Impact of the Equality of opportunity target and complexity targets on the Demographic

parity gap for the adult dataset.
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Figure 16: Impact of the Equality of opportunity target and complexity targets on the Demographic

parity gap for the German credit dataset.
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A.5 Demographic parity results when tuning for Equalized odds
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Figure 17: Impact of the Equalized odds target and complexity targets on the Demographic parity gap

for the compas dataset.
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Figure 18: Impact of the Equalized odds target and complexity targets on the Demographic parity gap

for the adult dataset.
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Figure 19: Impact of the Equalized odds target and complexity targets on the Demographic parity gap

for the German credit dataset.

A.6 README of the code

A ZIP file of the code is handed in with this thesis and can be distributed upon request. Attached is the

README of the code. Folders are in bold, files in italic. The code is split up in two main folders: BRS

(Boolean Rule Sets) and BRS demographic.

• BRS consists of the code for fairness metrics Equality of Opportunity and Equalized odds

• BRS demographic consists of the code for the Demographic parity metric
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Both folders have a similar structure:

• The different datasets can be found in the data folder

• The Graphing folder consists of three folders considering datasets with accuracy and fairness

performance (Results), these are used to create graphs (Notebooks) which are saved to the

Graphs folder

• The subfolders in the Results folder in the Graphing folder all contain a notebook to merge the

result text files such that they can be used to compute statistics or make graphs

• The results from the Graphing folder are generated from the Results folder These results are gen-

erated in EqOp Tests.ipynb for Equality of opportunity and Hamming EO Tests.ipynb for Equalized

odds. In the BRS demographic folder this is the DemPar Tests.ipynb file

• The Benchmark algorithms are computed in the Benchmark folder

The algorithm works due to a couple of python files:

• The test helpers.py file is called as a file which calls the other files

• The fairness modules folders consist of the different representations for the different fairness

metrics

• The master model.py file, the rule generator folder and the CompactDoubleSidedMaster.py, Clas-

sifier.py, binerizer.py and DNFRuleModel.py files are called by the test helpers.py file

When considering Demographic parity a couple of changes are made:

• In the fairness modules folder the DemographicParity.py file is created

• The test helpers.py file is adapted to compute the demographic parity gaps between the groups

• The master model CompactDoubleSidedMaster.py is adapted for the column generation constraints

and the pricing problem

• The GeneralRuleGenerator.py file includes the coefficient for Demographic parity in the pricing

problem objective
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