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Abstract

Over the last decades, data mining has been one of the most researched topics for data analysis.

A popular example of data mining is classification, in particular multiclass classification. A

plethora of methods and approaches for multiclass classification exist, but most methods only

focus on the accuracy of the classification, disregarding the interpretability of the obtained

results. Opposite to this, methods that do provide interpretable results often achieve low

accuracy results. This leads to an unavoidable trade-off between accuracy and interpretability

which has no clear single solution.

The CLASSY algorithm, proposed by Proença and Leeuwen (2020), is one of the few algo-

rithms capable of obtaining accuracy and interpretability results competitive with other state-

of-the-art algorithms. CLASSY performs multiclass classification based on rule lists. These rule

lists are constructed using patterns mined from a data set using a frequent pattern mining al-

gorithm. This research tries to improve the CLASSY algorithm by using other frequent pattern

mining approaches, namely Apriori and ECLAT, instead of the current one FP-growth.

Twenty data sets from the UCI Repository for Machine Learning are used to test this, com-

paring accuracy, Area Under the ROC Curve (AUC) and computation time results. These re-

sults showed that there was no difference between the accuracy and AUC results. The computa-

tion times were significantly slower for ECLAT compared to FP-growth, but between FP-growth

and Apriori no significant difference was found. This leads to the conclusion that changing the

frequent pattern mining algorithm does not result in an improvement in performance measures

of the CLASSY algorithm.

1



Contents

1 Introduction 3

2 Literature review 5

3 Theoretical background 7

3.1 Rule list based multiclass classification . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Minimum Description Length principle . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 CLASSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Changing CLASSY 11

4.1 FP-growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Apriori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 ECLAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Data preparation 13

5.1 Normalization and Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Computational experiments 16

6.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Discussion 19

8 Conclusion 21

8.1 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A Appendix 25

A.1 Comparison with original results . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.2 README.txt for code files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2



1 Introduction

Ever since the introduction of computers, the concept ‘data’ has been used in many different

areas and currently can be found virtually anywhere. With this massive amount of data comes

an increasing desire to analyze the data and understand its features. One of the most researched

areas for this is data mining, which can be best described as a process where raw data is

transformed into useful information. This is a very broad and general area, but it can be

divided into two categories: model building and pattern detection (Hand and Adams 2014).

For this research, the focus is on pattern detection.

Over the last decades, most pattern detection methods have implemented some form of

machine learning techniques. A well known example of this is classification, which will be

addressed in this research. Classification is the process of giving an item a label that best

corresponds to the characteristics of that item. In a data context this means categorizing a

data set into different classes based on different rules. An easy example of this is classifying

people based on gender. Someone who is male is classified in one group and someone who is

female in the other. This example is also called a binary classification, as the sample is divided

into two distinct groups.

However in practice, often there are more than two groups. The problem is then called

multiclass classification. There are quite some methods to achieve this, but there is a recurring

problem with many of these methods. Although the accuracy and efficiency of these methods are

often quite high, understanding how the method got its results often is too difficult for a human

brain. In other words, the interpretability of these methods is very low. However, methods

that do provide interpretable results often cannot reach competitive accuracy results. This

leads to a complex trade-off between interpretability and accuracy when choosing a multiclass

classification method.

This trade-off has been focus of previous research, but as it is a recent research topic there

have not been many solutions. For multiclass classification interpretability is difficult, because

often there are many parameters resulting in a complex model which is incomprehensible to the

human brain. Proença and Leeuwen (2020) introduce a novel approach to finding interpretable

multiclass classifiers using probabilistic rule lists, called CLASSY. The CLASSY algorithm is

one of the few interpretable multiclass classification methods, so it raises the question if its

performance can be improved while still retaining its interpretability.

The CLASSY algorithm is based on three different theoretical subjects: constructing a rule

list, the Minimum Description Length (MDL) principle and mining the patterns for the rule list.

The main idea behind the algorithm is constructing rule lists using the MDL-principle. These
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areas of the algorithm will stay untouched, because changing those will create an inherently

different algorithm which is not the purpose of this research. Hence, only the pattern mining

part is left. The pattern mining approach used for CLASSY is a frequent pattern mining

approach and is called Frequent Pattern (FP)-growth. To test if CLASSY can be improved,

other frequent pattern mining algorithms will be implemented in the algorithm. The following

research question can be constructed from this:

Can the CLASSY algorithm be improved by using other frequent pattern mining approaches?

There exist many frequent pattern mining algorithms, but for this research two popular alterna-

tives will be used, namely Apriori (Agrawal, Srikant, et al. 1994) and ECLAT (Zaki 2000). The

three pattern mining approaches will be compared using three performance measures: accu-

racy, Area Under the ROC Curve (AUC) and computation time. To empirically test the effects

of changing the pattern mining algorithm twenty data sets from the UCI Machine Learning

Repository will be utilized. To be able to use the data sets in the CLASSY algorithm, they

first need to be normalized and discretized. This is done using the LUCS-KDD (Liverpool Uni-

versity Computer Science - Knowledge Discovery in Data) DN (Discretisation/Normalisation)

software. Some data sets contain missing values which can lead to biased results. The CLASSY

algorithm has no built-in function to deal with missing values, so research is done to see if the

algorithm can be adjusted to deal with missing values.

Missing values turned out to be a problem which could not be fixed, so the choice was made

to not use data sets that contain missing values. After running the algorithm for the twenty

data sets and each frequent pattern mining algorithm, the accuracy and AUC results turned

out to be exactly the same for the three frequent pattern mining algorithms. The computation

times are different between the three frequent pattern mining approaches, so Friedman’s test is

used in combination with Holm’s post-hoc procedure to test if this difference is significant. The

computation times were significantly higher for ECLAT compared to FP-growth, but between

FP-growth and Apriori no significant difference was found.

So changing the frequent pattern mining algorithm has no effect on the accuracy and AUC

results. For the ECLAT algorithm the computation times were significantly slower, but there

was no significant evidence that the computation times of the Apriori algorithm were faster or

slower. Concluding, changing the frequent pattern mining algorithm leads to no improvements

in performance for the CLASSY algorithm.

The remainder of this paper is structured as follows: Section 2 gives an overview of the

existing literature on the topic. This is followed by a discussion of the theoretical backgrounds

of the algorithm in Section 3. Section 4 contains a review of the different frequent pattern
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mining algorithms. Section 5 gives a quick overview of the preparation that is done to the

data sets, followed by the computational experiments done with them in Section 6. Finally, the

discussion and conclusion are given in Section 7 and 8 respectively.

2 Literature review

This section gives an overview of related work in interpretable classification. In addition, the

literature is related back to the CLASSY algorithm to illustrate the differences. Classification

is an important area of data mining, so there is a substantial amount of previous research into

methods that perform classification well. Most research is done to improve the accuracy of

classification methods, but improving the interpretability of these methods has recently gotten

more popular.

Classification is possible in many ways using many different methods. One of the earliest,

and easiest, classification methods is decision trees. Breiman et al. (1984) and Quinlan (2014)

propose algorithms which perform classification accurately. The nature of decision trees makes

them easy to interpret, and both algorithms, being CART and C4.5 respectively, are still con-

sidered amongst the top-performing decision tree algorithms. Dhebar and Deb (2020) discuss

rule extraction from non-linear decision trees where interpretability is otherwise difficult. The

downside of using decision trees to perform classification is that they often do not have global

optimization criteria, leading to the need for so called hyperparameters to avoid overfitting.

Interpretable models are often associated with the use of rules that explain how the classi-

fication is being done. These classifications methods are categorized as rule-based classification

models. A Bayesian framework is an early example of rule based classification, where rules

are learned using Bayesian theory (Buntine 1989). More recently, T. Wang et al. (2017) and

Letham et al. (2015) have discussed more accurate interpretable classification algorithms for the

Bayesian framework. However, most Bayesian based models, including the previous mentioned,

can only perform binary classification and sometimes need up-front statistical assumptions.

Rule lists are a widely used tool to combine the rules that explain the classification into a

single interpretable list. Cohen (1995) proposed a novel approach for multiclass classification

with the RIPPER algorithm using the Minimum Description Length (MDL) principle. RIPPER

is a top-performing algorithm, but was recently improved by Asadi and Shahrabi (2016) to

be able to perform global optimisation, as this was one of the shortcomings of the previous

version. However, it still requires the use of hyperparameters to avoid overfitting. One of the

algorithms which was made to be faster than the RIPPER algorithm is the MCAR algorithm

proposed by Thabtah, Cowling, and Peng (2005). MCAR produces accurate results very fast,
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but it constructs very complex rules, making interpretability often difficult. The algorithm is

improved by Yusof and Refai (2012), leading to a higher accuracy and less rules being generated.

However, the rules still remain complex, so interpretability was not improved.

Evolutionary programming is sometimes used to minimize the number of rules and conditions

to maximize the interpretability. The ICRM algorithm (Cano, Zafra, and Ventura 2013) being

such a method. The major disadvantage is that the accuracy of these models is often low due

to the high possibility of important rules being omitted. On top of this, computation times

are often slow compared to other classification algorithms. A recent research by Aoga et al.

(2018) implements rule list based classification using the MDL principle in a similar way as the

CLASSY algorithm. Their algorithm only works for binary classification though, and focuses

more on describing the data set rather than the classification of it.

Sometimes rules can be extracted after an uninterpretable algorithm has been performed.

Malioutov and Varshney (2013) propose a method to extract rules, but rule extraction is an

inherently different type of rule based classification, so comparison is difficult.

Fuzzy rule based algorithms, like the FURIA model by Hühn and Hüllermeier (2009), are

known for high accuracy and a distinct way of interpretability, but the fuzzy rules are put

together in a rule set instead of a rule list. A rule set can be an accurate classifier, in some cases

as accurate as the RIPPER algorithm (T. Wang 2018), but they often fall behind in terms of

accuracy.

Another increasingly popular method aimed at increasing interpretability is making so called

’black-box’ models interpretable in some way. Neural networks have provided high classification

accuracy results due to the vast amount of calculations within each network, but left inter-

pretability to be desired. Augasta and Kathirvalavakumar (2011) and Zhang, Wu, and Zhu

(2018) propose different methods to make neural networks more interpretable, either through

rule extraction or by making the neural networks themselves more interpretable.

Support Vector Machine (SVM) algorithms belong to the most used classification algorithms

due to their high accuracy and low computation times. Originally SVM algorithms only worked

for binary classification and were uninterpretable (Crammer and Singer 2001). Barakat and

Bradley (2010) and Z. Wang and Xue (2014) provide solutions to both problems, adjusting

SVM algorithms to be more interpretable and working for multiclass problems. However, no

algorithm combining the two has been proposed yet, so using SVM algorithms for the multiclass

case still is uninterpretable.

The CLASSY algorithm incorporates all the advantages of the algorithms mentioned, by

using interpretable rule lists similar to RIPPER, but without the need for hyperparameters.
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CLASSY also refines the use of the MDL based rule list, proposed in Aoga et al. (2018), by

transforming it to work for classification instead of description.

3 Theoretical background

In this section, the theoretical background behind the CLASSY algorithm proposed by Proença

and Leeuwen (2020) is discussed. The theory can be divided into three parts: rule list based mul-

ticlass classification, multiclass classification using the Minimum Description Length principle,

and pattern mining. Combining these three into one algorithm gives the CLASSY algorithm.

3.1 Rule list based multiclass classification

The main objective of the algorithm is to perform multiclass classification. Multiclass classi-

fication can be performed using numerous methods, but here probabilistic rule lists are used.

Rule list based classification can be described as finding a set of rules that can predict the

class of items. A probabilistic rule list is an ordered list where each rule provides a probability

distribution for the different classes that are affected by that rule. These lists always end with a

default rule, which captures all the items that remained unaffected by every rule. An example

of a rule list obtained by the CLASSY algorithm can be found in Table 1.

A rule is made up of two things: an antecedent and a consequent. The antecedent is a certain

pattern for the available variables, and the consequent is a categorical distribution for the class

labels. The pattern is a logical conjunction of variable values over all variables. For example,

if there are three binary variables x1, x2 and x3, a possible pattern could be [x1 = 1 ∧ x3 = 1].

In this case, this pattern only occurs iff x1 = x3 = 1, the value of x2 does not influence the

classification. Ultimately, in the probabilistic rule list, such as Table 1, these binary variables

correspond to different variable values.

The categorical distribution consists of probabilities for each of the classes that are affected

through the antecedent. For example, if the previous mentioned antecedent classifies the item

into class A, yA, or class B, yB with probabilities 0.30 and 0.70 respectively, the categorical

distribution is (P[yA] = 0.30 , P[yB] = 0.70). Combining the antecedent and the consequent gives

the following general structure for a rule: IF {antecedent} occurs THEN class ∼ {consequent}.

Combining all rules and the default rule and transforming the binary variables into variable

specific equations, results in the complete probabilistic rule list as shown in Table 1. An item,

also called an instance consisting of values for each of the available variables, is passed down

through the rule list and is classified with the categorical distribution of the first rule that
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Table 1: Probabilistic rule list of the Wine data set. P(Type x) refers to the probability of the

observation being wine type x. Usage refers to the number of examples covered by a certain rule and

class label.

Rule Antecedent Consequent Usage

1 IF [OD280/OD315 <= 2.097 ∧ THEN P(Type 1 ) = 0.02 0

Hue <= 0.853 ] P(Type 2 ) = 0.04 1

P(Type 3 ) = 0.93 41

2 ELSE IF [2.171 <Malic-acid <= 3.704 ∧ THEN P(Type 1 ) = 0.02 0

Flavanoids <= 1.202 ] P(Type 2 ) = 0.11 0

P(Type 3 ) = 0.77 6

3 ELSE IF [688 <Proline ∧ THEN P(Type 1 ) = 0.96 45

13.371 <Alcohol ] P(Type 2 ) = 0.02 0

P(Type 3 ) = 0.02 0

4 ELSE IF 13.141 <Alcohol <= 13.295 THEN P(Type 1 ) = 0.78 6

P(Type 2 ) = 0.11 0

P(Type 3 ) = 0.11 0

5 ELSE IF 688 <Proline THEN P(Type 1 ) = 0.45 8

P(Type 2 ) = 0.50 9

P(Type 3 ) = 0.05 0

Ø ELSE ELSE THEN P(Type 1 ) = 0.02 0

P(Type 2 ) = 0.95 61

P(Type 3 ) = 0.03 1

matches with the variable values. In the case of more than one class being apparent in the

categorical distribution, the class with the highest probability is chosen.

In practice, the antecedents and consequents are not given and need to be extracted and

estimated from the data set. While the consequent can only be estimated after the antecedents

are extracted, its estimation is discussed first as the extraction requires an in depth explanation.

The consequents are estimated using a smoothed maximum likelihood estimator, where for each

rule the specific probability for each class is estimated. This is done by dividing the number of

times a pattern occurs and is classified by that rule with a specific class, by the total number

of times a patterns occurs and is classified by that rule. The total number of times a pattern

occurs and is classified by a rule is also called the support of that pattern. Both the numerator

and the denominator are adjusted by adding error terms ε and |Y|ε, respectively, where Y is

the set of all available classes.
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3.2 Minimum Description Length principle

The extraction of the antecedents is an important process as the antecedents must provide the

most accurate model possible. This process consists of two parts: first obtaining all possible

antecedents and second finding out which combination of antecedents results in the most accu-

rate and compact rule list. The rule list needs to be compact, because the more compact a rule

list is, the more interpretable it is. To achieve this, the Minimum Description Length (MDL)

principle is used. The general idea behind the MDL principle is that a model where the data is

compressed the most is the best model (Grünwald and Grunwald 2007). For the construction

of a rule list, this means the data and model need to be transformed in a way where the MDL

principle can be applied.

For the model, the universal code for integers and the uniform code are used to encode the

different model components. The universal code for integers is given by LN = log(k0) + log∗(i)1

where log∗(i) = log(i) + loglog(i) + ... and k0 = 2.865064. This universal code penalizes an

increase in i, so it is used for components where a high number is not desired such as the number

of rules or the length of a pattern. The uniform code is used when all elements are the same, as

it encodes all elements with an equal length. This code often is in the form of - log ε
|Y|ε , where

the numerator and denominator can take on different values depending on the elements that

needs encoding.

The data is encoded using a different approach, namely using the prequential plug-in code.

This code is used, because of its asymptotic optimality without the need for prior knowledge of

the class probabilities. The prequential plug-in code also automatically provides the smoothed

maximum likelihood estimators of the categorical distribution for each consequent mentioned in

Section 3.1. The data consists of the so-called instances which contain values for the different

variables and the corresponding class labels. The instances are treated as the input of the

algorithm so only the class labels need encoding. Each label is given a uniform code at first

which is increased by one every time it is counted. The prequential plug-in code for the classes

is then formulated as the number of times a class has been present up until a certain point,

divided by the total number of classes that have been present up until that point. Similarly

as the smoothed maximum likelihood estimator, both the numerator and the denominator are

adjusted with an error term ε. The prequential plug-in code is then used as a parameter to be

used in the universal code for integers to be encoded similarly as the model encoding.

1To encode the lengths into bits, all logarithms are base 2
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3.3 The algorithm

Obtaining all possible antecedents is done through pattern mining algorithms, in particular,

frequent pattern mining algorithms. Frequent patterns are “itemsets, subsequences, or sub-

structures that appear in a data set with frequency no less than a user-specified threshold” Han

et al. (2007). Subsequently, frequent pattern mining is the process of extracting these frequent

patterns. For the CLASSY algorithm the FP-growth method is used. This method is further

explored in Section 4.1.

3.3.1 CLASSY

The final step is to combine the previous mentioned theoretical subjects to specify an approach

which iteratively adds the best rule to the rule list from the set of all patterns. To do this, a

heuristic algorithm based on the separate-and-conquer strategy, discussed by Fürnkranz, Gam-

berger, and Lavrač (2012), is used. This algorithm starts with a rule list containing only the

default rule and iteratively adds the rule that gives the most compression in the data. After

a rule is added, the part of the data that it compresses is removed and the new best rule is

searched for. These steps are repeated until the data can no longer be compressed.

The mentioned compression is based on the normalized compression gain, which is the

absolute gain divided by the number of times the pattern inside the rule occurs. The absolute

gain is defined as the difference in length of the encoded model and data before and after the

addition of a specific rule. Normalized gain is used in favor of absolute gain, because it has a

higher support for rules that contain less instances but are more accurate for predictions.

A useful property for frequent pattern mining algorithm is the anti-monotone property of

their support. The property says that if pattern a has less conditions than pattern b, pattern

a will occur more than pattern b. This implies that the support of pattern a is bigger than or

equal to the support of pattern b. This property makes mining frequent patterns efficient, but it

also can be used to remove strictly redundant rules. Given all frequent patterns, if pattern c is

a strict subset of pattern d and their support is the same, pattern d is called strictly redundant.

It is redundant, because pattern d will always be encoded with a larger length and hence will

never be preferred above pattern c.

Below the CLASSY algorithm is shown in Algorithm 1. For the sake of clarity, the specific

notation used in Proença and Leeuwen (2020) is not introduced. Instead verbal explanations of

the individual lines are given.
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Algorithm 1: CLASSY

Input: Data set, list of candidates (set of frequent patterns)

Output: Multiclass probabilistic rule list

1 Remove strictly redundant rules;

2 Initialize the rule list, R, with only the default rule;

3 repeat

4 Select the best rule to add to the rule list based on the normalized compression gain;

5 Add the rule to the rule list R;

6 Update the candidate list by removing the data affected by the rule and update the

gain of the candidate list;

7 until No rule improves the compression of the data;

8 return R

4 Changing CLASSY

The previous section has discussed the three main theoretical subjects of the CLASSY algorithm.

To improve the algorithm, these subjects need to be adjusted. The main idea behind the

algorithm is to perform multiclass classification using MDL-based rule lists. So those two

theoretical subjects will stay untouched, as altering them will lead to a completely different

algorithm which is not the purpose of this research. So the third theoretical part, pattern

mining, will be the focus for altering the algorithm. Currently, the FP-growth algorithm,

proposed by Borgelt (2005), is being used within CLASSY. However there are multiple other

competing frequent pattern mining algorithms. For this research, two different algorithms will

be tested, namely the Apriori and ECLAT algorithms. Apriori was first introduced by Agrawal,

Srikant, et al. (1994), and ECLAT by Zaki (2000). Both algorithms will be explained, as well

as FP-growth to illustrate the difference between these algorithms and discuss the advantages

and disadvantage of each algorithm.

4.1 FP-growth

Starting with the frequent pattern mining algorithm currently being used within CLASSY, FP-

growth. The general idea behind the FP-growth method is that it constructs an FP tree from

where the most frequent patterns are mined. The tree consists of nodes that correspond to the

different items in the itemsets from the data. Here, an itemset is a possible pattern from the

data set, which can be seen as a combination of variables with specific values. Note that an

itemset does not necessarily have to contain all the available variables. An item corresponds to
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one specific variable-value of the itemset.

The FP tree is constructed in multiple steps: first every item in all observations is counted

and ordered in a descending order. Second, all items that have a support value lower than

the threshold, and hence are infrequent, are removed from the list of items. Third, for each

observation in the data set their frequent items are sorted in descending order. Fourth, the FP

tree is constructed one observation at a time where the first node is a ‘null’ node, the second

node is the most frequent item of that observation, the third node is the second most frequent

item of that observation and so on. Each adjacent item in an observation is connected to form

a path. If a new observation shares a prefix with an itemset that is already in the FP-tree, the

new observation shares the already existing prefix in the tree, branching off where it differs, and

the count of the nodes that it shares is increased by one. Each node that corresponds to the

same item, but is on a different path is horizontally linked. This is important for the eventual

mining of the frequent patterns.

From the constructed FP tree, frequent patterns can be mined by first traversing the different

paths in the tree from the bottom to the top and examining the count of each of the linked

nodes. These paths are called conditional pattern bases. If the count of an item meets the

support threshold, they are used to construct a Conditional FP tree. Lastly, from this tree the

frequent patterns can be mined directly.

4.2 Apriori

The Apriori algorithm is one of the first algorithms that was proposed for frequent pattern

mining. The algorithm is based on the Apriori property, which states that all subsets of a

frequent subset must be frequent. The Apriori algorithm uses this the other way around by

using the fact that if a subset is infrequent, all of its supersets will also be infrequent.

The first step of the algorithm is the same as for FP-growth, which is counting all individual

items in all observations. These items are called 1-itemsets, where the 1 corresponds to the

number of items in the itemset. The items that do not satisfy the support threshold are left

out for the next iteration. In the next iteration, the remaining items are joined together to

form every possible combination. For example, 1-itemsets {a}, {b} and {c} satisfy the support

threshold. For the next iteration, the 2-itemsets {ab}, {ac} and {bc} are counted and checked for

the support threshold. The itemsets with a support count lower than the threshold are removed,

and the 3-itemsets are formed by combining the remaining 2-itemsets with each other. This is

continued until the k -itemsets has the size of the largest possible pattern and the most frequent

itemset is obtained.
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4.3 ECLAT

The Equivalence Class Clustering and bottom-up Lattice Traversal (ECLAT) algorithm is sim-

ilar to the Apriori algorithm. Where the Apriori algorithm works in a horizontal way, scanning

one observation after another, the ECLAT algorithm works vertically. Instead of counting all

items mixed together, ECLAT first counts all the observations where the first variable-value

occurs and puts those observations into an itemset. This is done for all variable-values, result-

ing in itemsets for every variable-values. Now, the same as for the Apriori algorithm, these

1-itemsets are checked for satisfaction of the support threshold and those who do not satisfy

the threshold are removed. The remaining 1-itemsets are then combined into 2-itemsets like for

the Apriori algorithm. This process continues until no more k-itemsets can be constructed, or

no more k-itemsets satisfy the support threshold. At this point, the frequent patterns can be

obtained.

4.4 Advantages and disadvantages

Each of the algorithms has its advantages and disadvantages. The Apriori and ECLAT algo-

rithms are easy to understand and most of the time quite easy to implement. However, the

computation times can differ substantially. For Apriori, the entire database needs to be scanned

repeatedly, leading to an increase in memory usage and computation time. The ECLAT al-

gorithm is very similar to Apriori, but since it searches vertically and mines frequent items

differently, there is no need to scan the database multiple times as one time is enough. So the

computation time of ECLAT is expected to be quicker than Apriori.

The FP-growth algorithm also only requires one scan of the database and there is no need

for candidate generation as the patterns are directly mined from the tree. This would lead to an

expected computation time faster than the other two algorithms. However, the implementation

and execution of the FP-growth algorithm is more difficult.

Experiments will show if these expectations are empirically founded, and if there is a trade-

off between computation time and implementation difficulty or if there is a significant difference

in the eventual accuracy results for the multiclass classification.

5 Data preparation

This section discusses the several preparations that need to be made to the data sets. This

includes normalization and discretization of the data sets in Section 5.1 , as well as the treatment

of missing values in Section 5.2.
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5.1 Normalization and Discretization

Before the data sets can be used in the algorithm, they first need to be discretized and nor-

malized. Discretization can be described as the process of turning continuous data items into

unique integer labels based on a number of sub-ranges where each item inside of a certain range

gets the corresponding integer label. But a data set rarely consist of only continuous data

items, often nominal data items are also present and normalization is necessary. Normalization

is similar to discretization, as it is a process where nominal data items are turned into unique

integer labels based on their value.

These processes are made easier by the LUCS-KDD DN software developed by Frans Co-

enen2, who made a, Java implemented, user-friendly interface for this. One important aspect

of the normalization and discretization is dividing the value range for a certain attribute into

an appropriate number of sub-ranges. Each sub-range has its own corresponding number that

is given to an attribute value if it is in the sub-range. For example, the values for attribute 1

range from 0 to 10. Dividing this range into five sub-ranges leads to the following sub-ranges:

[0,2], [2-4], [4-6], [6-8] and [8-10]. Each sub-range gets a unique number: 11, 12, 13, 14 and

15 respectively. For a certain observation, if the value for attribute 1 is equal to 5.3, its new

value becomes 13. A low number of sub-ranges is usually desired as it leads to fewer columns

in the final data sets which in turn leads to quicker computation times. But choosing a value

smaller than the number of classes can lead to less accurate results, unless the number of classes

is relatively big (>5). Experiments by Frans Coenen have shown that a value of 5 provides a

good trade-off between accuracy and computation time.

Another useful feature which comes before the normalization and discretization part is row

randomization. Some data sets are ordered in some way, either based on class labels or based on

some attribute. This can lead to a skewed result, so randomizing the rows is a useful precaution.

After this, the data set is ready to be normalized and discretized.

However, the software provides a last option before saving the transformed data, distributing

the classes. This feature tries to improve the accuracy by making sure that the distribution

between the classes is even for the entire data set. The last thing that needs to be discussed is

missing values and how to deal with them.

5.2 Missing values

A recurring problem for some data sets from the UCI Machine Learning Repository is that

they contain many missing values. There are multiple options in dealing with missing values,

2https://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/lucs-kdd_DN.html
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one better than the other. One of the more obvious solutions is deleting the observations that

contain the missing values. However this comes with a great loss of information and is hence

undesirable.

Another solution is replacing the missing value with a specific value. This value can be

a constant for each attribute, or it could be computed based on other values in the missing

value’s column. Before these options are further explored, first a difference between two different

stages of the data set where the missing values can be treated must be discussed. First is the

raw data set taken directly from the UCI Repository, and second after the normalization and

discretization have taken place. This distinction must be made, because the data sets have

different properties and different aspects that need to be accounted for.

Starting with the first stage, the first thing to note is that the most common, and mostly

used, way of noting missing values in data sets on the UCI Repository is by placing a ‘?’ on the

place of the missing value. This makes it easy to replace the missing value with another fitting

value. However this value is restricted due to the way the normalization and discretization

software is constructed. The software requires a schema file where every variable’s properties

are present. This also contains the possible values for each variable or a mention of the variable

being continuous. This means the imputed values must follow these properties or the schema

file needs to be adjusted.

The first is very difficult to do, as replacing the missing values in a way that they correspond

to the properties could lead to biased and inaccurate results for non-continuous variables. The

second is also not ideal, as replacing the missing values with estimated values means it is difficult

to keep track what values are imputed, especially with many missing values. Hence adjusting

the schema file would prove very difficult. On top of this, naming a non-continuous variable

a continuous variable in the schema file to overcome this issue leads to the normalization and

discretization software to be inaccurate.

The second stage is after the normalization and discretization has taken place, but here it

is impossible to replace the missing values. The software does register the missing values, but

deletes the single value that is missing. After the normalization and discretization has taken

place, the exact location of the missing value in an observation is lost and the only thing that is

left is a row with a smaller dimension than the other rows. From this point it seems impossible

to impute the missing value.

Hence for the purpose of this research, data sets with missing values are not considered for

the computational experiments.
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6 Computational experiments

In this section the effect of changing the frequent pattern mining algorithm will be empirically

tested based on three performance measures: accuracy, Area Under the Receiving Operating

Characteristic Curve (Bradley 1997) and computation time. Accuracy states the correct number

of classifications transformed into a percentage. The Area Under the Receiving Operating

Characteristic Curve (AUC) is a measure to calculate the overall performance of the classifier.

Originally, the AUC can only be used for binary classifiers, but using the weighted AUC it can

also be applied for the multiclass case. The weighted AUC takes into consideration the specific

class distribution of a data set and weights accordingly.

The computation time is the average over five algorithm repetitions, run on a 64-bit Windows

operator, with Intel Core i7-6700HQ CPU at 2.60 GHz and 16.0 GB RAM.

6.1 Data sets

To test the effects of changing the frequent pattern mining algorithm in the CLASSY algorithm

twenty distinct data sets are used. These twenty data sets are a mix of data sets also used

for computational experiments in Proença and Leeuwen (2020) and new data sets. This mix

is chosen to test if CLASSY performs differently compared to the original experiments. All of

the data sets are from the UCI Machine Learning Repository3. Table 2 contains descriptive

statistics of the twenty used data sets, where the new data sets are marked with an asterisk.

The data sets vary in size, number of binary variables after normalization and discretization,

and number of classes. This gives a broad insight in the effects and performance of the CLASSY

algorithm.

6.2 Results

For each of the three different frequent pattern mining algorithms, the algorithm is run multiple

times to obtain representative averages. For this experiment, the same parameter values for

the minimum support and the maximum pattern length are used as in Proença and Leeuwen

(2020). This means the minimum support is fixed at 5% and the maximum pattern length

at 4. Table 3 contains the performance measure results for the three frequent pattern mining

algorithms for all twenty data sets.

The first notable observation that can be made from Table 3 is that the accuracy and AUC

results are exactly the same between the three frequent pattern mining algorithms. To research

whether the algorithms mine exactly the same patterns, the total number of pattern candidates

3http://archive.ics.uci.edu/ml
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Table 2: Descriptive statistics of the data sets used for the computational experiments. N is the number

of observations in each data set. V is the set of binary variables. Y is the set of available classes. The

data sets are ordered on the number of classes and on the number of observations after that. New data

sets compared to the computational experiments in Proença and Leeuwen (2020) are marked with an

asterisk.

Data set N |V | |Y|
Haberman* 306 9 2

Ionosphere 351 155 2

Pima 768 36 2

Tictactoe 958 27 2

Banknotes* 1372 18 2

Iris 150 16 3

Tae* 151 19 3

Wine 178 65 3

Seeds* 210 34 3

Wholesale* 440 29 3

Cmc* 1473 32 3

Waveform 5000 98 3

Pageblocs 5473 41 5

Nursery* 12960 27 5

Shuttle* 43500 43 7

Yeast* 1484 31 10

Led7 3200 14 10

Pendigits 10992 79 10

Chessbig 28056 40 18

Abalone* 4177 38 28

mined by each algorithm is given in Table 4. For Haberman and Banknotes the same number

of patterns is mined, but for the other data sets the number candidates differ. So in general,

the three algorithms mine a number of patterns that are unique to them and hence the final set

of possible candidates is different.

For the Haberman and Wholesale data sets, the AUC is equal to 0.5, which means that

the the algorithm is unable to discriminate between the prediction of different classes. This is

explained due to the fact that the final rule lists for these data sets only contain the default

rule, which makes prediction impossible.

The second observation from Table 3 is that the computation times are different for the

three frequent pattern mining algorithms. For some data sets, like Banknotes, these differences

are minimal, while for Pendigits the difference is almost two seconds. The second to last row

contains the average computation time for each approach. The average computation time for

the FP-growth algorithm is the lowest.
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Table 3: Classification performance results (5-times repeated average for computation time). The last two rows contain the average values for the performance

measures and the ranks of the computation times. New data sets compared to the computational experiments in Proença and Leeuwen (2020) are marked with

an asterisk.

Accuracy AUC Computation time (s)

Data set FP-growth Apriori ECLAT FP-growth Apriori ECLAT FP-growth Apriori ECLAT

Haberman* 0.7353 0.7353 0.7353 0.5000 0.5000 0.5000 0.90 0.92 0.92

Ionosphere 0.9373 0.9373 0.9373 0.9404 0.9404 0.9404 34.22 33.54 33.72

Pima 0.7474 0.7474 0.7474 0.7452 0.7452 0.7452 1.04 1.02 1.10

Tictactoe 0.9833 0.9833 0.9833 0.9759 0.9759 0.9759 1.16 1.20 1.20

Banknotes* 0.8695 0.8695 0.8695 0.9407 0.9407 0.9407 1.00 1.00 1.00

Iris 0.9600 0.9600 0.9600 0.9800 0.9800 0.9800 0.92 0.92 0.98

Tae* 0.4702 0.4702 0.4702 0.6215 0.6215 0.6215 0.90 0.90 1.02

Wine 0.9438 0.9438 0.9438 0.9887 0.9887 0.9887 1.54 1.52 1.54

Seeds* 0.9000 0.9000 0.9000 0.9568 0.9568 0.9568 0.94 0.94 0.90

Wholesale* 0.7818 0.7818 0.7818 0.5000 0.5000 0.5000 1.00 0.96 0.90

Cmc* 0.5431 0.5431 0.5431 0.7045 0.7045 0.7045 1.32 1.32 1.32

Waveform 0.7802 0.7802 0.7802 0.9245 0.9245 0.9245 61.78 62.84 62.34

Pageblocs 0.9281 0.9281 0.9281 0.7397 0.7397 0.7397 2.40 2.40 2.50

Nursery* 0.9361 0.9361 0.9361 0.9929 0.9929 0.9929 3.46 3.56 3.50

Shuttle* 0.9626 0.9626 0.9626 0.9874 0.9874 0.9874 13.66 13.60 13.70

Yeast* 0.5458 0.5458 0.5458 0.7976 0.7976 0.7976 1.70 1.78 1.80

Led7 0.7525 0.7525 0.7525 0.9497 0.9497 0.9497 1.70 1.70 1.72

Pendigits 0.9410 0.9410 0.9410 0.9913 0.9913 0.9913 121.24 123.20 123.13

Chessbig 0.5193 0.5193 0.5193 0.9089 0.9089 0.9089 15.92 16.2 16.26

Abalone* 0.2693 0.2693 0.2693 0.7324 0.7324 0.7324 3.92 3.90 3.96

Average 0.7753 0.7753 0.7753 0.8439 0.8439 0.8439 13.536 13.671 13.676

Rank 1.7 1.9 2.4
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To test if these differences are significant, Friedman’s test (Friedman 1937) is used. Friedman’s

test makes use of the ranking between the different approaches for each data set. For example,

for the Ionosphere data set the ranks for FP-growth, Apriori and ECLAT would be 1, 2, 3

respectively. For equal values, the average is taken for the ranks that the two values would

have covered. So for the Haberman data set the ranks would be 1, 2.5 and 2.5. These ranks

are then used to calculate a test statistic which is used to test the null hypothesis that the

three frequent pattern mining approaches perform equally well. The average rank for the three

different approaches is given in the last row of Table 3. Looking at the average rank, the

FP-growth algorithm performs slightly better than the other two.

The Friedman’s test statistic for the computation times is equal to 7.156 with a corresponding

p-value equal to 0.028.

To test for a specific difference that is present, a post-hoc analysis is used. The Wilcoxon test

together with the Holm procedure is used, because the Wilcoxon test often provides more power

as it employs more information (Pereira, Afonso, and Medeiros 2015). The null hypothesis for

testing the difference between two frequent pattern mining algorithms, is that the two algorithms

perform on par. Taking the FP-growth algorithm as the control group, the p-values for post-hoc

analysis with Apriori and ECLAT are 0.391 and 0.073, respectively.

7 Discussion

This section provides a thorough discussion of the results mentioned in Section 6.2, starting

with the first two performance measures, the accuracy and AUC results. It was noted that

for each data set the results were exactly the same across the three frequent pattern mining

algorithms. This could mean that the algorithms all mined the exact same set of candidates,

but Table 4 shows that was not the case. However, the accuracy and AUC results being the

exact same can be explained through the way the patterns are selected for the rule list. The

most frequent patterns are chosen, which means that a pattern which is unique to one of the

mining approaches has a high chance of being one of the more infrequent patterns. This means

the choice of most frequent patterns comes from the sets of candidates that are overlapping

between the algorithms. This leads to the accuracy and AUC results being the same.

For the data sets with an AUC equal to 0.5 (Haberman and Wholesale) further inspection

of the data sets shows that many of the observations contain exactly the same value, leading

to only one pattern being frequent and a distinction between different classes to be impossible.

A possible explanation for this can be found in the way the data sets are normalized and

discretized. For each attribute the value range is divided in at most 5 sub-ranges, where each
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Table 4: Total number of possible frequent pattern candidates mined by each frequent pattern mining

algorithm. New data sets compared to the computational experiments in Proença and Leeuwen (2020)

are marked with an asterisk.

Data set FP-growth Apriori ECLAT

Haberman* 7 7 7

Ionosphere 367489 367918 368127

Pima 535 535 538

Tictactoe 1844 1851 1855

Banknotes* 100 100 100

Iris 134 135 135

Ta * 338 332 340

Wine 15003 14989 14985

Seeds* 1045 1046 1047

Wholesale* 272 273 288

Cmc* 2289 2237 2285

Waveform 87207 87192 84811

Pageblocs 2874 2826 2908

Nursery* 2213 2206 2193

Shuttle* 4486 4388 4383

Yeast* 4815 4761 4844

Led7 2492 2496 2486

Pendigits 106087 106240 105982

Chessbig 1323 1303 1341

Abalone* 7812 7641 7780

sub-range has a different number which is given to the value of the observation if it is in that

sub-range. If the range is very broad due to some outliers in the data set, many of the values

will fall into the same sub-range, leading to the same patterns being present. Ultimately this

leads to the inability to perform predictions and the AUC being equal to 0.5.

The third performance measure for the pattern mining algorithms is the computation time.

Table 3 showed that these were different for the three pattern mining algorithms, and this

difference was statistically tested using the Friedman’s test. The Friedman’s test statistic for

the computation times is equal to 7.156 with a corresponding p-value equal to 0.028. So the

null hypothesis of equal performance is rejected at a 5% significance level. Hence there is a

significant evidence of a difference between the three frequent pattern mining algorithms.

The test statistics for the post-hoc analysis of the test, taking the FP-growth algorithm as

the control group, are equal to 0.391 and 0.073 for Apriori and ECLAT, respectively. Hence

in both cases the null hypothesis can not be rejected at a 5% level, but for ECLAT it can

be rejected at a 7.5% significance level. So for Apriori, there is no significant evidence that
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FP-growth and Apriori do not perform on par. However, with a slightly higher significance

level there is significant evidence that FP-growth and ECLAT do not perform on par. So

looking at the results in Table 3, FP-growth performs significantly better than ECLAT at a

7.5% significance level.

The insignificance of the tests on a 5% level can be explained due to the low computation

times for most of the data sets where the differences between the frequent pattern mining

algorithms are minimal. For data sets like Ionosphere or Chessbig, the computation time is

higher leading to a bigger difference between the algorithms. This can be explained due to

these data sets having many different attributes with a big range of possible values. This leads

to a large number of binary variables after normalization and discretization and hence a bigger

number of patterns that need to be checked for frequency.

When comparing the results of this research to those in Proença and Leeuwen (2020), pro-

vided in Appendix A.1, almost all accuracy and AUC results are higher in this research. This

is remarkable as the results are obtained using the exact same version of the algorithm. A

possible explanation could be that Proença and Leeuwen (2020) use 10 times repeated 10-fold

crossvalidation, whereas this research does not. This means for this paper, the entire data set

is used for training the algorithm instead of 90%, leading to a better trained algorithm and

subsequently higher accuracy and AUC results.

8 Conclusion

This research gives an answer to the research question: ‘Can the CLASSY algorithm be improved

by using other frequent pattern mining approaches? ’ The different frequent pattern mining

approaches that were compared are the FP-growth (the current one), Apriori and ECLAT

algorithms. The performance of each of the algorithms was tested based on accuracy, AUC and

computation times. For the accuracy and AUC, the results were exactly the same across all

algorithms. However, the computation times were different so Friedman’s test and a post-hoc

analysis were used to test for significance. The data sets were significantly different across all

three, but the post-hoc analysis provided only evidence for FP-growth and ECLAT differing

significantly. Hence using the ECLAT algorithm for pattern mining results in no significant

improvement, but rather a significant degeneration of computation times. For the Apriori

algorithm, there was no significant evidence that it did not perform on par with FP-growth.

This means using Apriori does not result in a significant improvement of computation times.

Concluding, using other frequent pattern mining approaches does not result in significant

improvements to the performance measures of the CLASSY algorithm.
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8.1 Future research

This research only focused on different frequent pattern mining approaches as a way of improving

the CLASSY algorithm. However, there are more methods to mine patterns, based on different

principles. For future research fundamentally different pattern mining approaches could be

tested, like the beam search algorithm.

The differences between computation times were more significantly present for data sets

with a larger number of attributes. Future research could limit the use of data sets to those

with a high number of attributes.

Lastly, the CLASSY algorithm contains more areas which can be improved, like the data

and model encoding. Future research could be improving the CLASSY algorithm in those areas

to make the algorithm more accurate or interpretable for multiclass classification.
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A Appendix

A.1 Comparison with original results

Table 5: Accuracy and AUC results for the original paper (Proença and Leeuwen 2020) and for this

new research.

Accuracy AUC

Data set Original New Original New

Ionosphere 0.89 0.9373 0.88 0.9404

Pima 0.73 0.7474 0.70 0.74523

Tictactoe 0.98 0.9833 0.98 0.9759

Iris 0.95 0.96 0.97 0.98

Wine 0.89 0.9438 0.95 0.9887

Waveform 0.75 0.7802 0.92 0.9246

Pageblocs 0.93 0.9282 0.74 0.7397

Led7 0.74 0.7525 0.94 0.9497

Pendigits 0.92 0.94102 0.99 0.9913

Chessbig 0.50 0.5193 0.90 0.9089

A.2 README.txt for code files

This file contains additional explanation on the different code files used

for this thesis.

Two code files were used: one for performing the multiclass classification

(CLASSY algorithm) and the other for Friedman’s test and the Wilcoxon

post-hoc procedure.

Both code files are provided in a separate zip-file on SIN-Online.

That zip-file also contains the original README.txt file for clarification.

############################################################################

1. CLASSY algorithm (mdl_rulelists.py)__

Most of the explanation for this code is in the code file and was written

by the authors. This can also be read for additional explanation, it can be

found in line 11-136.
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In addition, most of the code has remained untouched as I only changed

the pattern mining part, and wrote some additional code

to run the algorithm with my own data sets.

||Changing the frequent pattern mining algorithm||

Changing the frequent pattern mining algorithm proved to be very easy,

as there were built-in function from the PyFIM package.

The original authors also used this for FP-growth, so I only had

to change the function where the patterns were being mined.

This is in line 405 (itemsets.extend([r[0] for r in

fpgrowth(data_aux,supp=minsupp,zmin= 2,zmax=maxlhs)])), where ’fpgrowth’

can be simply replaced with ’apriori’ and ’eclat’ to work for the different

frequent pattern mining approaches.

||Making the code work for my data sets and other issues||

Importing the data files proved to be a problem, so lines 565-570 are

dedicated to importing the data set via numpy and transforming it into

a set (instead of a list or numpy array).

The original code required a binary data set (containing 1’s and 0’s)

to be imported, as a parameter for the function ’binary2itemsets’, where

it is transformed into an itemset, together with two other variables:

’cl’ and ’item2sets’.

My data sets were continuous or already in itemset format,

hence this function was unusable or unnecessary.

This means I had to code the definition of ’cl’ and ’item2sets’.

This is done in lines 572-580.

For binary classification, the function ’label_binarize’ provided a

vector instead of a matrix, which is why in lines 592-596 I wrote

additional code for the binary classification where the correct ’y_aux’ is

calculated.
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The if-statement is there to also work for multiclass classification,

where the original line of code is still present.

The last lines of code are there to provide some other insights

in the classification.

||Running the code||

To run the code, only two things need to be edited for each

different data set.

Line 564: Insert the name of the data set (not necessary for the

code to run, but makes it clearer.

Line 565: Insert the path to the data set, or if the code file is

in the same folder as the data set simply insert the name of the data set.

Changing the frequent pattern mining approach was discussed before,

but again it is simply changing ’fpgrowth’ in line 405 to ’apriori’ or ’eclat’.

############################################################################

__2. Friedman’s test and the Wilcoxon post-hoc procedure

(friedmans_and_posthoc.py)__

The computation times for the three frequent pattern mining algorithms

are added manually.

Friedman’s test has a built in function from scipy.stats which is utilized.

Wilcoxon post-hoc procedure with Holm adjusted p-values also has a

built-in function from scikit-learn which is utilized.
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