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Abstract
Over the years, a large number of state-of-the-art classification methods have been proposed, many however,

are "black box" models and therefore lack clear interpretability. Although their classification performance is very
good, this lack of interpretability is problematic, since it omits a lot of information. Presenting classification
methods in a simple and understandable way, enables humans trust a model, as well as design policy based on
the findings of the model. To this end, a number of methods based on rule lists have been proposed. In this
paper we will compare two such methods, CLASSY and RCAR+. Both these models seek to successfully classify
observations in a clear and interpretable way. Based on empirical experiments we find that CLASSY is the more
practical of the two.
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1 Introduction and Problem Description

In recent years, the use of machine learning for classification has become ever more wide spread. Many sophisti-
cated methods have been proposed (Aly, 2005). Many of these methods however, can be characterised as so-called
"black box" methods. That is, their inner mechanics are complex and a lot of calculations and steps are needed to
perform a single prediction. Therefore it is often unclear what drives the classification. Hence these methods lack
a straightforward interpretation. In certain applications this is undesirable, since the classification process might
be of greater interest than its result. For instance when researching corporate processes or government policies
that lead to a specific outcome. In these cases, there is a desired outcome. Being able to interpret the decisions
made by the classification method is crucial to understanding the forces in play. Based on this information, for
example, one can better design employee training programs or accurately improve a production process. Rule
based algorithms are a solution to this problem, since they are easy to interpret and understand. They do, however,
have certain limitations. A rule list of length k has the following form:

Rule Case Class probability Usage
1 IF α = TRUE THEN P(A) = 0.4

P(B) = 0.6 a

2 ELSE IF β = FALSE THEN P(C) = 0.5
P(D) = 0.5 b

...
k ELSE THEN P(Z) = 1.0 z

Here each line corresponds to a rule. For instance if variable α is TRUE then the probability that an observation
corresponds to class A is 0.4. The last rule is the default rule, that is, it classifies the observations not assigned by a
previous rule. The usage refers to the number of times a rule is used to classify an observation. Most classical rule
based classification methods, such as Repeated Incremental Pruning to Produce Error Reduction (RIPPER) (Cohen,
1995), have been designed to perform binary classification. They are inapt to deal with the increased complexity
encountered in multi-class classification. Since many real world problems have more than 2 classes, new methods
were needed. In this paper we will consider two such methods.
First, we will consider the newly proposed CLASSY algorithm (Proença and van Leeuwen, 2020). This method
makes use of the Minimum Description Length (MDL) principle to extract accurate and concise rule lists from the
data. Its benefits include minimal dependency on hyper parameters, hence extensive tuning is not required. This
in turn mitigates the risk of overfitting the model. Secondly, we will consider RCAR+ (Azmi and Berrado, 2020).
This method seeks to achieve simillar results as the aforementioned CLASSY, but does so in a very different way.
The first part of the methods is very similar. When fitting the model however, RCAR+ makes use of multinomial
regression to determine which rules should be included. The purpose of this paper is to evaluate the relative
performance of these two novel approaches. This will help businesses and policymakers determine the best (and
more interpretable) approach currently available, as well as give insight into more promising directions for future
research. In the next section we will discuss relevant literature concerning our methods, such as the principles
and ideas behind them, as well as alternative approaches. We will then describe their workings and introduce the
methods of comparison we will use in our experiments. Next we will discuss data and results for the empirical
experiments. Finally we will present our conclusion and considerations for future research.

2 Literature

In this section we will give a brief overview of previous work regarding interpretable learning models, as well as
methods to provide interpretation to other non-interpretable classification methods. Furthermore, an introduction
to the MDL-principle is provided, as well as a brief history on regression.

2.1 Machine learning

Machine learning models are algorithms that seek to estimate, predict or classify observations based on character-
istics (Molnar, 2019). There are two general types of machine learning methods, supervised and unsupervised. In
unsupervised learning, we can differentiate different problems between clustering and association. For these
problems, method is not trained to give certain responses, but analyses the data for common patterns. These
models are often used to gain valuable insight into the data, such as the presence of a clustering structure. A
common unsupervised method is K-means-clustering (Friedman et al., 2001). In contrast, supervised learning
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makes use of labelled data. There is a known dependent variable, and the model is "trained" to give certain
responses using a portion of the data using this variable. Problems that can be solved with supervised learning
are classification and prediction. Common supervised learning methods include Linear and Logistic regression, as
well as all classification methods discussed in the remainder of this paper.

2.2 Interpretability

As stated in the problem description, the interpretability of classification methods is very important for various
reasons. There is, however, no mathematical definition of model interpretability (Molnar, 2019). We therefore
must make use of a non-mathematical definition of interpretability to formalise this concept. In Miller, 2019,
the authors define interpretability as "the degree to which a human can understand the cause of a decision". This
definition can successfully be applied to our classification method. When using a black box model, such as an
Artificial Neural Network (ANN), the inner mechanics of the classifier are unclear. Therefore humans, have trouble
understanding the cause of decisions made by such methods. Rule lists, however, provide a clear and concise road
map, that can logically classify observations based on specific characteristics. Therefore, humans can understand
the cause of decisions made by the algorithm. The importance of interpretability in certain situations cannot be
overstated. It has been shown that interpretable models are easier to examine in terms of fairness and causality
(Doshi-Velez and Kim, 2017). Furthermore, being able to understand a decision, enables humans to better trust
said decision (Ahmad et al., 2018).

2.3 Linear and Logistic regression

Interpretable machine learning models for prediction have been around for a long time. Among the first, and
perhaps most famous, was the linear regression model. It was first Legendre and Gauss the early 19th century to
predict planetary orbits (Stigler, 1986). A few years later, the method was popularised in the social sciences by
Quetelet. Since then, a large number of more advanced methods has been derived from and based on the linear
model (Friedman et al., 2001). An adaptation of the linear model for classification is Logistic Regression. The
origins of the logistic function, on which the Multinomial Logistic Regression is based, can be traced back to the
1800s (Cramer, 2002). Its first application in the context of regression and binary classification was around in the
late 1950s when it was first used to as an alternative to the PROBIT model, which makes use of the cumulative
distribution (CDF) of a normal distribution. A decade later, the logistic regression model was extended to multiclass
classification by Theil, 1969. Since then it has been used in countless applications (Kleinbaum et al., 2002). It is
especially useful in situations where model coefficients need to be analysed. This can be done by analysing the
effect of regressors on the odds-ratio’s of different classes. This can be interpreted as the effect a regressor has on
the probability of being in a certain class. For the purpose of this paper, we will make use of the Lasso regularised
regression algorithm (Friedman et al., 2010) to fit our RCAR+ model to the rule space. This regularisation gives
explicit control over the model complexity to avoid overfitting.

2.4 Rule based classification

Interpretable classification algorithms based on rule list have been used since the late 1970’s (Quinlan, 1979).
They have the key advantage of interpretability over so "black box" methods (Fürnkranz et al., 2012). For a long
time, rule based classification has been limited to binary problems. This is due to the fact that learning the classifier
becomes significantly more complex as the number of classes increases. Early methods for binary classification
using probabilistic rule lists, based on greedy heuristics include, among others, CN2 (Clark and Niblett, 1989),
Desicion List (Rivest, 1987) and FOIL (Quinlan and Cameron-Jones, 1995). Of these early methods (Cohen,
1995), RIPPER has proved to be the most popular and successful. There exist many methods to generalize RIPPER
to multiclass problems. These include, among others, RipMC (Asadi and Shahrabi, 2016) and Jrip (Shahzad et al.,
2013). In the late nineties, several methods based on pattern mining, like CBA (Liu et al., 1998) were introduced.
These methods first find common patterns in the data using a rule mining algorithm, and then make use of an
optimisation techniques to prune these sets as much as possible, while retaining classification accuracy. The most
widespread rule miners are APRIORI (Agrawal et al., 1993), which we will also use, and ECLAT (Zaki et al., 1997).
The methods used to prune the mined rules are specific to each algorithm. Newer methods based on association
rules techniques are BRL (Letham et al., 2015) and IDS (Lakkaraju et al., 2016). Methods based on decision trees,
which are closely related to rule lists, have also been developed. Successful classic decision tree methods include
CART (Breiman et al., 1984) and C4.5 (QUINLAN, 1993). Decison tree based models sufferer, however, from
instability with respect to disturbances in the data (Oates and Jensen, 1997). As a result, Random Forest was
developed (Breiman, 2001). It aims to reduce variance in decision trees and thereby increase stability. Methods
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using linear programming techniques to construct rule lists have also been proposed (Akyüz and Birbil, 2021).
Methods using fuzzy rule sets have also been proved to be successful (Alcala-Fdez et al., 2011). Instead of using
thresholds and hard cuts, they make use linguistic terms in their rules to define the antecedents (Ishibuchi et al.,
2004). This makes interpretation easy. A major shortcoming is, however, the lack of probability distributions over
the classes. Since deterministic classification is sometimes misleading, especially when there are multiple classes,
where some may share characteristics and therefore are more suited to probabilistic classification.

2.5 Alternative approaches

To make classification methods interpretable, some have looked beyond rule based models. There exist several
methods that seek to explain the inner mechanics of "black box" models. Among the first such models to be
used is LIME (Ribeiro et al., 2016). It seeks to explain individual classifications made by the model with an
local approximation using a linear model. Since then, several methods have improved upon its shortcomings. An
example of which is Anchors (Ribeiro et al., 2018). A major shortcoming of these methods is that, while they
provide accurate decisions at the local level, these do not generalise to the global perspective (Mi et al., 2020).
Therefore they can not be translated to policy or used to make general real-world decisions.

2.6 Minimum Description Length

The MDL-principle can be used to summarise data (P. D. Grünwald and Grunwald, 2007). It is a method for
inductive inference and is based on the principal that any regularity in the data can be compressed. Compress in
this sense implies that the data can be described with fewer symbols or less memory. The degree to which the data
can be reduced depends on its regularity/randomness. For instance, while an infinite Fibonnachi sequence can be
reduced to a simple formula and two initial values, and infinite sequence of coin tosses cannot be reduced. The
main concept is that all data lies somewhere between these two extremes- completely predictable vs completely
random -and therefore can be compressed to some extent. The concept is an instance of the more general Ocam’s
Razor (Gao et al., 2000). Several methods seeking to formalize MDL and use it for data compression have been
proposed(Budhathoki and Vreeken, 2015 , Vreeken et al., 2011). Furthermore, it has been used in model selection
(P. Grünwald, 2000, Hansen and Yu, 2001). In the context of classification, the MDL principle has also previously
been applied. In RIPPER and C4.5 it is used as a criterion for pruning the rule set.

3 Methodology

3.1 CLASSY

3.1.1 Probabilistic rule lists

Consider a supervised Boolean dataset D. That is a boolean dataset X with a label Y . An instance x refers to an
observation with k binary values such that x ∈ X. A pattern a occurs in an instance x if x satisfies it. That is, if
we have that all elements in a are also in observed in instance x, or a ⊆ x. A probabilistic rule list (PRL)is an
ordered list of k rules. Each of the rules corresponds to a probability distribution on the classes. That is, if an
instance is classified by rule r, it is class 1 with probability p1 etc. A rule is defined as a pair ri = (ai, θ(ai)). Here
pattern ai is the antecedent and θ(ai)) is the consequent, a probability distribution over the classes. The rules are
a list are ordered in the following way:

rule 1: IFa1 ⊆ x THEN y ∼ Categorical(θ1)

rule 2: ELSE IFa2 ⊆ x THEN y ∼ Categorical(θ2)

default: ELSE y ∼ Categorical(θ∅)

An instance x is classified by the first rule r∗ that corresponds to the pattern in x. If no rule is activated,
the instance is classified by the default (final) rule. Once an instance is classified by a rule r∗, it is assigned to
the class that has the highest conditional probability, given that the instance is classified by r∗. More formally,
ŷ = arg maxc∈C θ

c

3.1.2 Estimation methods

To estimate the parameters θi in the model, the we first have to define support and usage. The support Sai of
a pattern ai refers to the number of times a specific pattern occurs in the training data. The usage Uai refers
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to how often a rule ri is invoked. To calculate the categorical distribution for each of the rules, we make use
of class-conditioned datasets Dy=c, which simply is defined as a subset of D such that y = c for all d ∈ Dy=c.
Similarly, the class conditioned usage is computed as the usage over Dy=c and denoted by U (ai,c). Given these
concepts we define a smoothed maximum likelihood estimator as follows:

θ̂ci =
U (ai,c) + ε

Uai + |C|ε

3.1.3 Minimum Description Length

To select the optimal model, given our parameter estimates. We resort to the MDL principle. This principle
essentially seeks the model that is able to describe the data and the model in the shortest possible code. This can be
modelled as L(D,R) = L(Y |X,R)+L(R),or: The combined length of the data and the model is equal to the length
of the class labels given the attributes and the model plus the model itself. In order to quantify this we need to
encode the model and the data. The model is encoded as per Equation 1. Here LN(i) = log k0+log i+log log i+. . .
and k0 ≈ 2.865064. The pattern length L(ai) is defined as L(ai) = LN(|ai|) + |ai| log |V | where V denotes the set
of variables.

L(R) = LN(|R|) +
∑
ai∈R

L(ai) (1)

The classlabels are encoded using prequential plugin code, which implements our estimator and is defined in
Equation 2.

Pplugin(yi = c|Yi−1 :=
|{(y ∈ Yi−1|y = c}+ ε|∑
k∈y |{(y ∈ Yi−1|y = c}+ ε|

(2)

The encoding of the full data set can be broken down into the encoding of each of its subset. Therefore it is
possible to encode the dataset as L(Y |D,R) =

∑
ai∈R L(Y ai |Dai , R)

3.1.4 Algorithm

To solve the PRL with MDL-formulation, the CLASSY algorithm makes use of a separate-and-conquer greedy
search. This search is characterised by local greedy optimisation of sub-problems, which are then combined to
form the global solution. In this instance this means that the algorithm iteratively searches for the next best rule
to add to the list. The best rule is defined here as the rule that leads to the largest normalised gain in compression
of the data. To calculate the Normalised Compression Gain (NCG), we first need to define Absolute Compression
Gain (ACG).

∆L(D,R⊕ r′) = L(D,R)− L(D,R⊕ r′) (3)
It defined as the difference in code length before and after adding rule r to our list R. We then divide the ACG by
the usage, the number of times a rule is invoked, to obtain the NGC.

δL(D,R⊕ r′) =
∆L(D,R⊕ r′)

Ua
(4)

In the algorithm, candidates are rules that are considered for R. They are generated with a pattern mining
algorithm, in this case FP-growth (Borgelt, 2003). The RemoveRedundant() method removes all redundant
candidates that satisfy the following two properties: 1. if a rule is a strict subset of another rule, 2. and that same
rule has lower of equal support, it is redundant and removed.

Input: dataset D, rule candidate set C
Output: multiclass probabilistic rule list R

1 C= RemoveRedundancy(C)
2 R = ∅
3 repeat
4 r = arg max∀r′∈C : L(D,R⊕ r′)
5 R = R⊕ r
6 UpdateCandidates(D,R,C)

7 until δL(D,R⊕ r′) ≤ 0, ∀ r′ ∈ C;
8 return R

Algorithm 1: CLASSY algorithm
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3.2 RCAR+

The Regularized Class Association Rules (RCAR+) algorithm is based on association rules. It works by combining
three main elements. The first being a method to mine an exhaustive set of Class Association Rules (CARs). This
can be done using a number of pattern mining methods (Azmi and Berrado, 2020). For the purpose of this
paper we will make use of APRIORI algorithm (Agrawal, Srikant, et al., 1994). Next the model is fitted using a
multinomial regularised logistic regression algorithm. In the final stage we optimise the rules and construct the
model. The multiclass version of RCAR+, RCAR+ is implemented in R and included in the arulesCBA-package
(Hahsler et al., 2020). We will now provide a description of RCAR+.

3.2.1 Rule Mining

To mine the CARs, the algorithm makes use of an pattern mining method, APRIORI. The algorithm decomposes
all possible item sets in D, from large to small, and iterativaly checks whether a certain set meets the minimum
support threshold. Then the algorithm filters this set of candidates with according to a predefined confidence
threshold. If this is the case, a rule A⇒ C is generated. An instanced ∈ D is associated with class C if it satisfies
A. That is if we have all elements in A are also in observed in instance d, or A ⊆ d.

Input: dataset D, minimum support level s
Output: Rule set R

1 L1 = {size 1-itemset}
2 for k = 2, Lk−1 6= ∅, k + + do
3 Ck = generateCandidates(Lk−1)
4 foreach t ∈ D do
5 Ct = subset(Ck, t)
6 foreach c ∈ Ct do
7 c.count++
8 end
9 Lk = {c ∈ Ck|c.count ≥ s}

10 R = R ∪ Lk
11 end
12 end
13 return R

Algorithm 2: APRIORI algorithm as described in Agrawal, Srikant, et al., 1994

3.2.2 Model fitting

We will now fit the model to the rule set using Multinomial Logistic Regression. Consider the training dataD, with
N instances and Pattributes. Each instance is associated a class y ∈ C. The set of Q different CARs, mined by the
algorithm, which satisfy the support s and confidence c thresholds are defined as followsRs,c = {rq : Aq ⇒ yq}Qq=1

with yq ∈ C. The rule space is given by the transformation in as follows:
RP −→ RQ

D −→ A(D) = {Aqk(D)}Qq=1

Here Aq represents the condition of rule rq with the following definion:

Aq =

{
1 if Aq applies for instance Di

0 otherwise
Note that the probability of case k corresponding to instance i in the rule space A(Di) can be modeled by

means of the multinomial logistic model. Then πk(A(Di)) is the probability of case k in the rule space A(Di) for
parameter {βjk}Qj=1 in the model:

πk(A(Di)) =
exp(β0k +

∑Q
q=1 βqkAq(Di))∑C

k=1 exp(β0k +
∑Q
q=1 βqkAq(Di))

(5)

The model then fits each rule to a class with the following Lasso penalised log-likelihood function:

{βjk}Qj=1 = max
(β0k,βk)∈Q+1

1

N

N∑
i=1

(logP (Y = k|Di)− λ
Q∑
q=1

|βq| (6)
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3.3 Methods of comparison

In this section, the ways we compare our two methods are described. To measure accuracy, we will make use of
hit-rates. These are computed as the number of correctly predicted instances, divided by the number of incorrectly
predicted instances. Furthermore, we will make use of the weighted Recall and weighted Precision measures, as
well as the weighted F1-score (Goutte and Gaussier, 2005). In binary classification, Precision is defined as the
number of correctly classified positives (True Positives, or TP) divided by the total number of actual positives (TP
+ FP) in the data. For multi class data sets, we first calculate the precision per class. That is, the proportion of
the class that is correctly identified, divided by the total class size. To calculate the weighted precision, we then
take the weighted average of the class precision (Sokolova and Lapalme, 2009). Similarly, recall is defined as the
proportion of true positives to the total number of predicted positives (TP + FN). We calculate the weighted recall
in the same way we do weighted precision. That is, we compute the score per class and then take the weighted
average.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

In the example below we calculate the weighted precision (AP) for 3 classes, A, B and C. Here TP (A) denotes
true predictions of A, and #A denotes the actual number of A.

WeightedPrecision =
1

#A+ #B + #C

(
#A× TP (A)

#A− TP (A)
+

#B × TP (B)

#A− TP (B)
+

#C × TP (C)

#C − TP (C)

)
Precision and recall cannot be maximised simultaneously, since they imply different things. Maximising precision
is done, by making sure there are as little false positives (FP) predictions as possible. This implies a conservative
model suitable for situations where the consequences of a positive classification are high, and one needs to be sure
the classification is correct. A practical example would be fraud detection. Here it is important to catch fraudulent
people. But it is even more important to avoid false positives, due to the severe personal consequences of being
marked as a fraud. Avoiding FP-instances comes at the cost of false negative (FN) instances. In other situations,
the consequences of an FP classification may be much lower than a FN classification. An example of this is disease
detection. Someone who tests false positive may have to quarantine for a few weeks, while someone who is FN
can cause an outbreak. Hence all classification problems are a trade off between precision and recall. To evaluate
models in an objective way, we need to capture both these traits in a single measure. The F1 score is an example
of one such measure. It is defined as the harmonic mean of precision (P) and recall (R).

F1 =
2× P ×R
P +R

Furthermore we will make use of Area Under the ROC Curve (AUC). The receiver operator characteristic (ROC)
curve, plots the TP-rate against the FP-rate for different classification thresholds (Fan et al., 2006). The area
under this curve, AUC, can be interpreted as the probability that a random positive instance is ranked higher
than a random negative instance (Huang and Ling, 2005). Therefore it serves as a measure of model quality. The
AUC measure can be generalised to multiclass classification by averaging one-against-the-rest comparisons of the
classes (Hand and Till, 2001). The interpretability will be measured based on the number of rules in the model.
Finally we include the run times to indicate computational intensity. This serves as a measure of the model’s
practicality and scalability.

4 Empirical Experiments

4.1 Data

We will make use of two kinds of data for our experiments. First we will compare our models using 17 widely used
benchmark data sets. These were obtained from the LUCS/KDD Repository (Coenen, 2011), and can be found
in Table 1. They are distinct in their characteristics in terms of number of instances, variables and class labels.
Therefore they will provide a comprehensive and nuanced insight into the method’s respective performances. The
data sets from this repository are available as index matrices. That is, they have previously been post processed
and have been saved as compressed binary matrices. The interpretation of this compression is as follows: A row in
the index matrix [2, 5, 14, 21] corresponds to a row in the binary matrix that is zero everywhere, except at index 2,
5, 14 and 21, where it has value 1. In order to run our methods, we reconstruct the binary matrix and the multi
class labels. An in-depth description of each data sets is included in the repository.1

1https://cgi.csc.liv.ac.uk/ frans/KDD/Software/LUCS-KDD-DN/exmpleDNnotes.html
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Dataset Instances Boolean Variables Classes
hepatitis 155 48 2
ionosphere 351 155 2
horsecolic 368 81 2
cylBands 540 120 2
breast 699 14 2
pima 768 34 2

tictactoe 958 26 2
mushroom 8124 84 2

adult 48842 96 2
iris 150 14 3
wine 178 63 3

waveform 5000 96 3
heart 303 46 5

pageblocks 5473 39 5
led7 3200 22 10

pendigits 10992 81 10
chessbig 28056 54 18

Table 1: Dataset overview

Secondly, we will apply our methods to a real world application. We will seek to classify types of stars based
on characteristics like temperature, color, radius. The dataset has been gathered by the North American Space
Association (NASA) and was publicly available.2 A summary of the data can be found in Table 2 There are a total
of 6 types, all of which occur in the data 40 times. These are, in order from small to large (by mass):
• Red Dwarf
• Brown Dwarf
• White Dwarf
• Main Sequence
• Super Giant
• Hyper Giant

Temperature Luminoscity Radius Magnitude Color Spectral Class
Min 1.939 0 0,0084 -11,920 Blue 56 A 19
Max 40.000 849.420 1948,5000 20,060 Blue White 41 B 46
Mean 10.497 107.188,4 237,1578 4,382 Red 112 F 17
1st Q 3.344 0 0,1027 -6,232 White 10 G 1
Median 5.776 0,1 0,7625 8,313 Other 21 K 6
3rd Q 15.056 198.050 42,7500 13,697 M 111

O 40

Table 2: Summary of NASA Stars dataset, Luminoscity and Radius are relative to the Sun

4.2 Results

In order to standardise the results for computational performance, all experiments will be performed on a single
machine, with a 2,7 GHz Quad-Core Intel Core i7 processor and 16 GB 2133 MHz LPDDR3 random access
memory. Since the implementation of the CLASSY algorithm does not support the use of multi-thread computing,
this option was also disabled for RCAR+. To ensure a correct representation of the performance estimates, all
experiments will be repeated 10 fold using different random training partitions. This helps to avoid outliers and
therefore helps to give an accurate representation of the performance. While performing the RCAR+ experiments,
we experienced a severe issue. For the larger datasets (WaveForm, PenDigits and ChessBig), the random access
memory (RAM) required during the rule pruning phase would exceed the machines capacity of 16GB. To resolve
this, the maximum rule length parameter was limited to 3 from its default of 5 for these datasets. Since this
reduced the number of possible rules, it allowed the experiments to run without issue. Due to the fact that this is
a practical limitation of the method, it was decided that these results should directly be compared to the other
results, without altering the parameters for the smaller datasets and CLASSY model.

2https://www.kaggle.com/brsdincer/star-type-classification/metadata
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4.2.1 Method comparison using benchmark data

We will now consider the empirical results for the aforementioned benchmark data sets. The performance in
terms of accuracy is comparable. For the binary data sets CLASSY was slightly more accurate with an average of
0.85 against RCAR+ with 0.82. A two-sided T-test for the differences of this these means results in a P-value of
0.33. Therefore they are not statistically different at the 5% level. For the multiclass datasets, the difference was
larger, with CLASSY and RCAR+ having an average weighted accuracy of 0.80 and 0.72, respectively. Again we
use the T-test to determine their differences and find a P-value of 0.31. Hence the means for the multiclass data
sets are also not significantly different. There are however, differences per data set. Classy performed better in 10
data sets, while RCAR+ was better in the remaining 7. Overall there seems to be very little difference in accuracy
between the two methods.

Binary datasets
Model Hepatitis Ionosphere HorseC CylBands Breast Pima TicTacToe Mushroom Adult
CLASSY 0.776 0.877 0.918 0.689 0.924 0.779 0.892 1.000 0.844
RCAR+ 0.795 0.932 0.859 0.719 0.905 0.724 0.621 0.999 0.843

Table 3: Accuracy estimates for binary datasets

Multiclass datasets
Model Iris Wine Waveform Heart PageBlocks Led7 PenDigits ChessBig
CLASSY 0.923 0.834 0.742 0.970 0.884 0.756 0.949 0.313
RCAR+ 0.921 1.000 0.797 0.553 0.895 0.717 0.640 0.260

Table 4: Weighted Accuracy estimates for multiclass datasets

We now look to the other performance estimates. As we saw with the estimates for accuracy, the two models
are very close. For the binary datasets we see that, on average, only the AUC is statistically different at the 5%
level. In all cases CLASSY performs slightly better, although this difference is not significant. For the multiclass
data sets, the difference is even less. From the P-value estimates from out 2 sided T-test in Table 6 we find that
none are significant at the 5% level. For individual data sets, however, larger differences can be observed. The
dataset for which the largest difference in performance can be observed is PenDigets. This dataset has 10 classes,
and is only surpassed by ChessBig with 18 classes. From the performance estimates we see that CLASSY still
performs well for PenDigets, having all performance measures above 0.94. The results for RCAR+ for this dataset
are considerably worse, with weighted precision, recall and F1 valued at 0.557, 0.642 and 0.586, respectively.
The AUC is better with an estimate of 0.798, but this is substantially surpassed by CLASSY with an AUC of 0.988.
When looking at the largest dataset in terms of classes, ChessBig with 18 classes, we see that the performance for
both methods is substantially worse when compared to datasets with fewer classes.

Precision Recall F1 AUC
Dataset CLASSY RCAR+ CLASSY RCAR+ CLASSY RCAR+ CLASSY RCAR+
Hepatitis 0.777 0.500 0.766 0.438 0.771 0.467 0.656 0.662
Ionosphere 0.897 0.915 0.877 0.982 0.871 0.947 0.903 0.915
Horsecolic 0.819 0.833 0.818 0.965 0.818 0.894 0.817 0.825
CylBands 0.799 0.815 0.689 0.400 0.634 0.537 0.781 0.669
Breast 0.934 0.989 0.924 0.864 0.925 0.922 0.951 0.923
Pima 0.771 0.728 0.779 0.946 0.767 0.823 0.718 0.602
TicTacToe 0.921 0.621 0.912 1.000 0.910 0.766 0.972 0.817
Mushroom 1.000 0.998 1.000 1.000 1.000 0.999 1.000 0.999
Adult 0.836 0.749 0.844 0.578 0.838 0.653 0.881 0.756
Mean 0.862 0.794 0.845 0.797 0.837 0.779 0.853 0.796
P-value 0.16 0,48 0.22 0.04

Table 5: Performance Estimates for Binary Datasets
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Weighted
Precision Recall F1 AUC

Dataset CLASSY RCAR+ CLASSY RCAR+ CLASSY RCAR+ CLASSY RCAR+
Iris 0.923 0.908 0.921 0.938 0.921 0.913 0.949 0.969
Wine 0.834 1.000 0.822 1.000 0.823 1.000 0.705 1.000
Waveform 0.742 0.796 0.739 0.797 0.739 0.796 0.894 0.828
Heart 0.970 0.382 0.968 0.566 0.968 0.449 0.973 0.660
PageBlocks 0.884 0.803 0.914 0.898 0.898 0.848 0.702 0.515
Led7 0.756 0.728 0.742 0.718 0.745 0.718 0.936 0.816
PenDigits 0.949 0.557 0.949 0.642 0.949 0.586 0.988 0.798
ChessBig 0.222 0.252 0.292 0.259 0.225 0.190 0.715 0.601
Mean 0.785 0.678 0.793 0.727 0.784 0.688 0.858 0.773
P-value 0,41 0,58 0,46 0,28

Table 6: Performance Estimates for Multiclass Datasets

We will now asses the interpretability and practicality of our models. First we will asses the average number
of rules per for each model. With one exception, for TicTacToe, CLASSY has on average much fewer rules in
comparison to RCAR+. In several cases the difference is extreme. For instance for the Hepatitis dataset (Classy 1,
RCAR+ 24), the Wine dataset (Classy 2, RCAR+ 48) and the Heart dataset. For multiclass dataset the ratio’s are
less extreme, but the difference remains substantial. For instance for the Led7 dataset where Classy use 19 rules,
and RCAR+ 164. The differences between the models in terms of runtimes are similar to what we observed for the
number of rules. In all cases, CLASSY was substantially faster than RCAR+. The closest RCAR+ came to CLASSy
was for the PenDigits dataset, when the ratio, with CLASSY as a baseline, was approximately 3.4. Note however,
from Tables 4 and 6 that CLASSY significantly outperformed RCAR+ in this case. More commonly, RCAR+ is 10
times closer. This is the case for 11 out of 17 datasets. An extreme case is the Pima dataset where, on average,
RCAR+ was 890 times slower. To illustrate this point, we have plotted the the runtime against the cardiality
of the candidate set and the variable set. These plots can be found in in Figure 1. Note that the scale of the
candidate set is a log scale. We see that the runtime for RCAR+ increases at a much greater rate than for CLASSY,
both in terms of total number of variables and candidates. This is problematic for the practicality of RCAR+,
as it limits the size of the datasets for which it can be used. The long runtimes for WaveForm, PenDigits and
ChessBig (679.22, 621.95 and 897.98, respectively,) are especially notable. This is because of the aforementioned
limitation of maximum rule length due to lack of RAM.

Number of Rules Runtime (sec.)
CLASSY RCAR+ CLASSY RCAR+

Hepatitis 1 24 2.33 90.19
Ionosphere 4 42 13.49 606.97
Horsecolic 1 14 1.51 69.32
CylBands 2 36 2.86 353.97
Breast 2 14 0.73 2.95
Pima 2 6 0.22 195.86
TicTacToe 9 8 15.69 89.8
Mushroom 4 32 11.91 87.85
Adult 35 124 38.54 1128.75
Iris 2 29 1.92 13.04
Wine 2 48 2.25 1016.08
Waveform 21 100 69.71 679.22
Heart 1 20 22.99 654.01
PageBlocks 6 23 24.15 297.38
Led7 19 164 23.29 256.94
PenDigits 24 31 187.81 621.95
ChessBig 18 30 23.97 897.98

Table 7: Interpretability and efficiency estimates for Benchmark Datasets
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Figure 1: Runtime versus Candidates and Variables for RCAR+ (red) and CLASSY (blue)

4.2.2 Application: Star classification

We now turn to the applied experiment where we seek to evaluate the quantitative and qualitative performances
of our respective models in classifying stars based on their features. In terms of Classification Performance, we
see from Table 8 that CLASSY performs better. Across all measures, CLASSY scores higher than RCAR+. Upon
examining the one-against-rest ROC curves for both estimators, found in Figure 2, we see that this is mainly due a
low AUC for Class 0 (Red Dwarf). Note that since the ROC curves are averaged across 10 different training sets, it
is unlikely this is due to a bad fit. CLASSY clearly performs better on this particular data set.

Weighted
Model Accuracy Precision Recall F1 AUC
CLASSY 0.986 0.987 0.986 0.986 0.991
RCAR+ 0.858 0.862 0.858 0.858 0.953

Table 8: Average Classification Performance for Star Classification

Figure 2: Average ROC curves for Star classification

The difference in performance becomes much larger when comparing the interpretability and computational
intensity. The average runtime for RCAR+ was 8.74 seconds, compared to just 1.07 seconds for CLASSY. For
this data set the difference may seem trivial, but as stated in Section 4.2.1, it becomes problematic for larger
datasets. In terms of interpretability, the number of conditions in the RCAR+ model is 4 times as large as the in
the CLASSY model.
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Model Rules Conditions Average Rule Length Runtime
CLASSY 6 12 2.00 1.07
RCAR+ 26 48 1.85 8.74

Table 9: Interpretability estimates for Star Classification

We further investigate the interpretability by directly examining the models. We see that the model trained by
the CLASSY algorithm is very useful in practice. With only a single rule per class, the model is easy to interpret by
anyone, even those without mathematical knowledge or training. Furthermore, the class distribution gives key
insight into the confidence associated with the estimate. A similar measurement of confidence is provided by the
RCAR+ model. This is not a complete distribution, however, but a one-versus-the-rest confidence indication. This
can be problematic when the rule confidence is low, since no information on competing classes is included.

Star Classification using CLASSY
Rule Condition Class probability Usage

RD BD WD MS SG HG
1 IF Temp ≥ 3572.0 AND Rad < 0.09 THEN 0.0 0.0 1.0 0.0 0.0 0.0 26
2 ELSE IF Rad < 0.24 AND Mag ≥ 14.36 THEN 1.0 0.0 0.0 0.0 0.0 0.0 23
3 ELSE IF Lum < 0.72 AND SC = M THEN 0.0 1.0 0.0 0.0 0.0 0.0 30
4 ELSE IF Rad< 24.5 AND Mag≥ -5.87 THEN 0.0 0.0 0.0 1.0 0.0 0.0 27
5 ELSE IF Rad < 1000.0 AND Mag≥ -7.65 THEN 0.0 0.0 0.0 0.0 1.0 0.0 31
6 ELSE 0.0 0.0 0.0 0.0 0.0 1.0 31

Star Classification using RCAR+
Rule Condition Class Probability
1 IF Temp = [1.94e+03 , 3.53e+03) AND Rad = [0.0084,0.158) THEN RD 0.87
2 IF Rad = [0.0084 , 0.158) THEN RD 0.500
3 IF Rad = [0.158 , 11.1) AND Color = Red THEN BD 1.00
4 IF Rad = [0.158 , 11.1) AND Mag = [-4.88,12.4) THEN MS 0.75
5 IF Rad = [0.0084 , 0.158) AND Mag = [12.4,20.1] THEN RD 0.67
6 IF Temp = [1.94e+03 , 3.53e+03) AND Mag = [12.4,20.1] THEN RD 0.69
7 IF Lum = [1.24e+05 , 8.49e+05] AND Rad = [11.1,1.95e+03] THEN HG 0.58
8 IF Temp = [1.94e+03 , 3.53e+03) AND Lum = [8e-05,0.00131) THEN RD 0.83
9 IF Rad = [11.1 , 1.95e+03] AND Mag = [-11.9,-4.88) THEN HG 0.62
10 IF Rad = [11.1 , 1.95e+03] THEN WD 0.62
11 IF Rad = [11.1 , 1.95e+03] AND Color = Red THEN HG 0.80
12 IF Lum = [1.24e+05 , 8.49e+05] AND Mag = [-11.9,-4.88) THEN HG 0.58
13 IF Temp = [3.53e+03 , 1.19e+04) AND Rad = [11.1,1.95e+03] THEN HG 0.81
14 IF Color = Blue-white , THEN MS 0.75
15 IF Rad = [11.1 , 1.95e+03] AND SC = M THEN HG 0.80
16 IF Lum = [8e-05 , 0.00131) AND Color = Red THEN RD 0.70
17 IF Temp = [1.19e+04 , 4e+04] AND Rad = [0.158,11.1) THEN MS 1.00
18 IF Mag = [-11.9 , -4.88) AND SC = M THEN HG 0.80
19 IF Temp = [3.53e+03 , 1.19e+04) AND Mag = [-11.9,-4.88) THEN WD 0.81
20 IF Rad = [0.0084 , 0.158) AND Color = Red THEN RD 0.87
21 IF Rad = [0.158 , 11.1) AND SC = M THEN BD 1.00
22 IF Lum = [8e-05 , 0.00131) AND SC = M THEN RD 0.70
23 IF Mag = [-11.9 , -4.88) THEN HG 0.62
24 IF Lum = [0.00131 , 1.24e+05) AND Color = Red THEN BD 0.78
25 IF Lum = [0.00131 , 1.24e+05) AND SC = M THEN BD 0.78
26 IF Mag = [-11.9 , -4.88) AND Color = Red THEN HG 0.80

5 Conclusion

In this paper we set out to evaluate interpretable classification models CLASSY and RCAR+. To this end we
performed several empirical experiments. In total we made use of 18 datasets for our comparison. Across almost
all data sets, the classification performance of CLASSY and RCAR+ was comparable. In terms of interpretability
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and practicality, however, there were more significant distinctions. Without exception, CLASSY had fewer rules and
was faster than RCAR+. In addition to the dramatic difference in number of rules, RCAR+ requires substantially
computing power for similar or worse results. Therefore we conclude that for the purposes of generating a model
that is easy to interpret and use, CLASSY is the obvious choice. Perhaps if an additional phase of pruning on the
RCAR+ models was performed, they would be comparable in ease-of-use. This does not, however, address the
concerns regarding runtime and computational intensity. This brings us to the limitations of the experiments
conducted in this paper. Since both CLASSY and RCAR+ have been implemented by different people, the relative
quality of the implementations could skew the results. This is especially relevant for the results regarding runtime
as small inefficiencies in the code can lead to significant differences in run time. A possible consideration for future
research is to include an analysis of the method implementations, for any inefficiencies. Another consideration
is to implement another rule pruning step for the RCAR+ method. This would convert the output format to
resemble the consecutive rules produced by CLASSY, as well as remove any redundant rules.
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A Code

A.1 Data preprosessing (R)

l i b ra ry ( readr )
l i b ra ry ( phonTools )

input _data <− as .matrix ( read_delim ( " Documents/Thes i s /Data/ hor seCo l i c . csv " ,
"  " , escape _double = FALSE , col _names = FALSE ,
tr im _ws = TRUE))

dim = 85
n_ c l a s s e s = 2
############ Pro c e s s data #########
my_data = zeros (nrow( input _data ) ,dim)
#c r e a t e b inary matr ix from index matr ix
for (row in 1:nrow( input _data )) {

for ( column in 1: ncol ( input _data )) {
i f ( ! i s .na( input _data [row , column ]) ) {

co ln r = input _data [row , column]
my_data [row , co ln r ] = 1

}
}

}
#con s t r u c t ( mu l t i c l a s s ) l a b e l from f i n a l c columns
c lass _ i n d i c a t o r s = my_data [ , (dim−n_ c l a s s e s +1):dim]
my_data = as . data . frame (my_data ) [1 : (dim−n_ c l a s s e s )]
l a b e l = c lass _ i n d i c a t o r s [ ,1]
for (row in 1:nrow( input _data )) {

for ( c lass in 1:n_ c l a s s e s )
i f ( c lass _ i n d i c a t o r s [row , c lass ] == 1) {

l a b e l [row] = c lass
}

}
y = l abe l
my_data = cbind (y ,my_data )
my_data = my_data [my_data$y != 0 ,]
my_data$y = fac tor (my_data$y )
rm( input _data )
rm( c lass _ i n d i c a t o r s )
rm( y )
########### Export b i na r i z e d data to CSV

write . csv (my_data , " ho r seCo l i c . csv " )

A.2 Experiments CLASSY (Python)

from pandas import read_csv
from r u l e l i s t import Ru l eL i s t
from sk l ea rn . model_se lec t ion import t r a i n _ t e s t _ s p l i t
from sk l ea rn . met r i c s import accuracy_score , r e c a l l _ s c o r e , roc_auc_score ,

p re c i s i on_ s co re , f1_score , confus ion_matr ix
import numpy as np

my_data = read_csv ( " . / da t a s e t s / h e p a t i t i s . csv " )

Y = my_data . y
weights = Y . va lue_counts ( s o r t=Fa l se )
X = my_data . drop ( ’ y ’ , a x i s=1)
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X_tra in , X_tes t , y_ t ra in , y _ t e s t = t r a i n _ t e s t _ s p l i t (X , Y , t e s t _ s i z e =0.25
, random_state=94)

model = Ru l eL i s t ( ta sk= ’ p r ed i c t i on ’ , target_model= ’ c a t e g o r i c a l ’
, min_support=0.1 , beam_width=100, max_depth=5)

model . f i t ( X_tra in , y _ t r a i n )

y_pred = model . p r ed i c t ( X_ te s t )

y_prob = model . pred ic t_proba ( X_ te s t )
y_prob = np . vs tack (( y_ t r a i n . unique ( ) , y_prob ))
y_prob = y_prob [ : , y_prob [0 ] . a r g so r t ( ) ]
y_prob = np . de l e t e ( y_prob , 0 , 0)

i f y_ t e s t . unique ( ) . s i z e == 2:
y_prob = y_prob [ : , 1]
b ina ry_p red i c t i on = y_pred

accuracy = s t r (round( accuracy_score ( y _ t e s t . values , y_pred ) , 3))
r e c a l l = s t r (round( r e c a l l _ s c o r e ( y _ t e s t . values , y_pred , average=" weighted " ) , 3))
p r e c i s i on = s t r (round( p r e c i s i on_ s co r e ( y _ t e s t . values , y_pred , average=" weighted " )

, 3))
f1_score = s t r (round( f1_score ( y _ t e s t . values , y_pred , average=" weighted " ) , 3))
AUC = s t r (round( roc_auc_score ( y_ te s t , y_prob , average=" weighted " , mu l t i _ c l a s s=" ovr " ) , 3))

num_rules = s t r (model . number_rules )
runtime = round(model . runtime , 3)
print ( "%s %s %s %s %s %s %s " %
(num_rules , runtime , accuracy , p rec i s i on , r e c a l l , f1_score , AUC))

A.3 Experiments RCAR+ (R)

l i b ra ry ( arulesCBA )
l i b ra ry ( caTools )
l i b ra ry (pROC)
l i b ra ry ( ca r e t )
l i b ra ry ( e1071)
l i b ra ry (mlbench )
l i b ra ry (kmed)
l i b ra ry ( t i c t o c )
l i b ra ry ( e v c l a s s )
l i b ra ry ( readr )
l i b ra ry ( phonTools )

my_data <− read_csv ( " Documents/Thes i s / da ta s e t s / i r i s . csv " )
my_data$X1 = NULL
my_data$y = fac tor (my_data$y )

########### Pa r t i t i o n data #######
smp_ s i z e <− f loor (0.75 * nrow(my_data ))
set . seed (125)

t r a i n _ ind <− sample ( seq_ len (nrow(my_data ) ) , s i z e = smp_ s i z e )

t r a i n <− my_data [ t r a i n _ ind , ]
t e s t <− my_data[− t r a i n _ ind , ]
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r e s u l t =t e s t [1]
colnames ( r e s u l t ) = c ( " a c tua l " )
t e s t <− t e s t [−1]
############## Es t imate RCAR+ + runtime ##########
t i c ( "Model es t imate " )
RCAR+_model = RCAR+(y~. , data = tra in , verbose = TRUE , cv . glmnet . args = l i s t ( n fo ld s = 10) ,

parameter = l i s t ( conf idence = 0.9 , support = 0.1 , minlen=1, maxlen = 5) ,
lambda = NULL )

runtime = toc ()

######### Ca l c u l a t e h i t r a t e #######
r e s u l t$p red i c t i on = predict (RCAR+_model , t e s t )
accuracy = (sum( r e s u l t [1] == r e s u l t [2]) ) /nrow( r e s u l t )

############ Ca l c u l a t e num Rul e s #########
weights_ ru l e = RCAR+_model [[ " r u l e s " ]] @quality [[ " weight " ]]
Num_ r u l e s = length (weights_ ru l e [weights_ ru l e > 0.05])
########### Confus ion Matrix & s c o r e s #############
matrix = confus ionMatr ix ( r e s u l t$pred i c t i on , r e s u l t$ac tua l )
my_mat = matrix$byClass
num_ c l a s s e s = nlevels ( r e s u l t$ac tua l )
i f (num_ c l a s s e s > 2) {

c l a s swe igh t s = table (my_data$y )

my_mat[ i s .na(my_mat)] = 0
Weighted_F1 = sum(my_mat[ ,7] * c l a s swe igh t s )/sum( c l a s swe igh t s )
Weighted_ r e c a l l = sum(my_mat[ ,6] * c l a s swe igh t s )/sum( c l a s swe igh t s )
Weighted_ p r e c i s i on = sum(my_mat[ ,5] * c l a s swe igh t s )/sum( c l a s swe igh t s )

} else {
Weighted_F1 = my_mat[7]
Weighted_ r e c a l l = my_mat[6]
Weighted_ p r e c i s i on =my_mat[5]

}

############# Ca l c u l a t e AUC #############
AUC_ r e s u l t = mu l t i c l a s s . roc ( unclass ( r e s u l t$ac tua l ) , unclass ( r e s u l t$p red i c t i on ))$auc

############# Write r e s u l t s f i l e ###########
pr in tRes = setNames (data . frame (matrix (ncol = 3 , nrow = 1)) , c ( " r u l e s " , " runtime " , " accuracy " ))
pr in tRes$ r u l e s = Num_ r u l e s
pr in tRes$runtime = round( runtime$ toc − runtime$ t i c , 2 )
pr in tRes$accuracy = round( accuracy , d i g i t s =3)
pr in tRes$p r e c i s i on = round(Weighted_ prec i s i on , d i g i t s =3)
pr in tRes$ r e c a l l = round(Weighted_ r e c a l l , d i g i t s =3)
pr in tRes$F1 = round(Weighted_F1 , d i g i t s =3)
pr in tRes$AUC = round(AUC_ r e su l t , d i g i t s =3)

in spe c t ( sort ( r u l e s (RCAR+_model ) , by = " weight " ))
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