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Abstract
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the financial market. The risk measures are essentially about the tail behavior of the innovations

from the ARMA-GARCH models, which can be estimated using the extreme value theory (EVT).

By considering consistent non-Gaussian Quasi-Maximum Likelihood Estimator in estimating

ARMA-GARCH models, we improve the performance of the EVT approach in conditional Value-

at-Risk and conditional expected shortfall estimations. Furthermore, we prove that the gain in

performance of the EVT approach can also be achieved when certain inconsistent non-Gaussian

Quasi-Maximum Likelihood Estimators are used. We also consider a parametric method with

skewed distribution and the ARMA-GJR-GARCH model in this study.
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1 Introduction

In the past decades, it has always been the primary concern of financial institutions and central banks

to be able to accurately capture and forecast market risk. In order to be able to cover unexpected

losses, banks are required by the central banks to maintain a sufficient amount of capital against

future adverse movements of the market. Financial risk measures are then needed to estimate the

risk that a bank is exposed to. The ability of having an idea of future risks is also important to

financial institutions themselves as it is crucial for internal risk management. These real-life needs

naturally lead to the interests in finding prominent financial risk measures.

Two well-known stylized features of financial returns are heteroskedasticity and heavy-tailed

distribution. To take heteroskedasiticy into account, volatility models such as generalized autore-

gressive conditional heteroskedasticity (GARCH) were developed (Bollerslev, 1986). Similar to the

volatility models where the conditional and stationary distribution of the volatility are differenti-

ated, risk measure can be classified into conditional risk measures and stationary risk measures.

Though both risk measures provide insightful information on the returns, all the important appli-

cations mentioned above are about the conditional risk measures. In the rest of this paper, we will

focus on the conditional risk measures.

One of the most straightforward risk measures is Value-at-Risk (VaR). The conditional VaR for a

future period of a portfolio is essentially a quantile of the distribution of the return, which is defined

over the given period conditioning on all the past information. The distribution of the return on a

portfolio is also often called the Profit-and-Loss (P&L) distribution. Another popular risk measure

is conditional expected shortfall (ES), which is the expected value of the return given it is smaller

or larger than a certain value conditioning on the past information. Many research on estimation

methods of these two risk measure have been done in the past years, see, for example, Taylor

(2008), Taylor (2007) and Patton et al. (2019). Apart from their popularity in recent research, VaR

and ES are also particularly relevant to banks and central banks nowadays. In the most recently

revised version of the minimal capital requirements (Basel Committee, 2019) published by Bank for

International Settlements, ES is used as a risk measure in the internal model approach and VaR is

required in the backtesting for this approach.

Both VaR and ES of a portfolio are directly related to the tail of its P&L distribution. The

research on estimating these two risk measure are then essentially about estimating the tail of

the P&L distribution. Two of the most basic ways of estimating the P&L distributions are the

historical simulation and parametric method based on the volatility models. However, both of these

methods suffer from certain drawbacks. In the historical simulation method, we simply use the

historical data to calculate the empirical distribution of the returns. Though historical simulation

is easy to implement, it naturally imposes the assumption that the distribution of the return on a

portfolio is the same over time and hence homoskedastic, which does not fit the stylized features

of financial returns. Moreover, historical simulation requires a large number of observations to

provide a good estimation of the tail, which is not always feasible in practice. Parametric methods

based on volatility models are very straightforward to implement once the models are estimated.
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We can forecast the volatility of the return based on the chosen volatility model. The forecast

volatility together with the underlying distribution assumed by the model directly lead to the

forecast distribution of future returns. This type of methods are expected to perform well given

that the assumption of underlying data generating process (DGP) is correct. However, making

correct assumptions about the distribution of the innovation can be hard when using real data.

And in practice, conditional normality is often assumed, which does not provide a good fit for many

financial return series.

Another class of approaches to estimate VaR and ES is based on the extreme value theory

(EVT). Some examples of early research in EVT methods are Dańıelsson and de Vries (1997) and

Embrechts et al. (1999). McNeil and Frey (2000) proposes an EVT method combining volatility

models and historical simulation for the estimation of VaR and ES. Their idea is to first fit an AR-

GARCH model using the Maximum Likelihood Estimation (MLE) to filter out the residuals, and

then estimate the distribution of the residuals using EVT and historical simulation. They focused

on a general EVT set-up by assuming that the tail of the distribution can be approximated by a

generalized Pareto distribution (GPD). Furthermore, they showed that their method outperforms

the unconditional EVT and volatility modelling assuming GARCH and normality. As an addition

to their work, Chan et al. (2007) derived the statistical properties of the VaR estimator proposed

by McNeil and Frey (2000). They instead considered a semi-parametric method using the Hill

estimator (Hill, 1975) that focuses on the situation of heavy-tailed innovations. Moreover, they

replaced MLE by the Gaussian Quasi-Maximum Likelihood Estimator (GQMLE) when estimating

the GARCH model.

The recent work from Hoga (2019a) generalized the two-step approach from McNeil and Frey

(2000). For the estimation of VaR and ES, they considered the EVT method combining with the

general ARMA-GARCH model. For financial time series, the ARMA-GARCH model is consid-

ered as a benchmark model nowadays. Hoga (2019a) also derived the limit distribution of their

estimators and proposed the use of self-normalization in the construction of confidence interval for

their estimators. Furthermore, they generalized the non-parametric EVT method in McNeil and

Frey (2000) and Chan et al. (2007) by considering other extreme value index estimator. They also

considered a different method in selecting the number of order statistics k that are used for tail

estimation. For the estimation of ARMA-GARCH model in their simulation study, in addition to

the GMQLE, they considered a Laplace Quasi-Maximum Likelihood Estimator which is a special

case of the non-Gaussian Quasi-Maximum Likelihood Estimator (NGQMLE) proposed by Berkes

and Horváth (2004).

In a simulation study, Hoga (2019a) showed that the data dependent k leads to near-optimal

results. However, there is no clear comparison to the k selection method used by Chan et al. (2007).

Furthermore, the simulation study also does not show the benefit of considering an ARMA-GARCH

model instead of AR-GARCH or GARCH. Hoga (2019a) also used an empirical study to compared

the relative performance of their method to the method proposed by Chan et al. (2007) and showed

that their own method performs relatively better. However, as showed in the above discussion, there
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are two major differences between the two methods. Hoga (2019a) considered a general ARMA-

GARCH setting with data dependent k, whereas Chan et al. (2007) considered a GARCH model

with fixed k given the sample size. Consequently, their result is unclear about what is the exact

cause of the improved performance in their method. The first goal of this paper is to construct a

more complete simulation and empirical study, where we study alternative choices for each part of

the two-step EVT approach in detail.

Next, we consider an improved parametric method for VaR and ES estimation. One major

challenge of the parametric method based on the volatility model is to make reasonable assumptions

about the distributions of the innovations. McNeil and Frey (2000) suggested that the parametric

method with a GARCH model assuming the Student’s t-distribution can work quite well when the

data is symmetric. However, apart from being heavy-tailed, empirical evidence (Diebold, 2012)

has suggested that the innovations from financial data are sometimes asymmetrically distributed.

This suggests that neither the Normal distribution nor the Student’s t-distribution can be used

as a satisfying assumption in practice. In this paper, we consider a parametric method based on

an ARMA-GARCH model, where the innovations are assumed to follow the skew t-distribution

proposed by Jones and Faddy (2003). This method is then used as the baseline-method when

evaluating the performance of the EVT methods.

Thirdly, we further generalize the ARMA-GARCH model from Hoga (2019a) by considering an

asymmetric ARMA-GARCH model. Past research have documented asymmetric relation between

stock returns and volatility (see, for example, Nelson (1991)), which motivated extended GARCH

models that captures this asymmetric relation. In this paper, additional to the standard ARMA-

GARCH model, we consider a ARMA-GJR-GARCH model, where the volatility process is modeled

using the GJR-GARCH model proposed by Glosten et al. (1993).

Fourthly, we consider a different estimation method for the ARMA-GARCH model. In particu-

lar, we consider the three-step NGQMLE approach proposed by Fan et al. (2014). The first-step in

the two-step EVT approach requires good estimates of the ARMA-GARCH coefficients. It is then

non-trivial to find a consistent and efficient estimation method when estimating the ARMA-GARCH

model. As mentioned earlier, McNeil and Frey (2000) considered the MLE, which might be inconsis-

tent when the assumed distribution is different from the true distribution. The first-step estimation

procedure was then improved by Chan et al. (2007) by considering the GQMLE, which is proven

to be consistent and asymptotically normal when the true innovation distribution has finite fourth

moment (Francq and Zaköıan, 2004). Hoga (2019a) further considered the NGQMLE in a simula-

tion study when the true distribution has infinite fourth moment, which was shown by Berkes and

Horváth (2004) to be consistent without the finite fourth moment requirement if some alternative

moment conditions are met. Another advantage of NGQMLE is that it is more efficient in general

comparing to the GQMLE when the true distribution of the innovations is non-Gaussian (Fan et al.,

2014). However, the alternative moment conditions required by the consistency of NGQMLE are

in general not met by the common GARCH representation. For the consistency of NGQMLE, it

is then needed to impose new identifiability constraint based on the chosen non-Gaussian density
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(see, for example, Francq and Zakoian (2019)). Fan et al. (2014) showed that in general the simple

NGQMLE without special moment conditions is inconsistent and they argued that moment con-

ditions should be determined before choosing the estimation method, which is the case for most

research. Fan et al. (2014) then proposed a three-step consistent NGQMLE, which is practical,

robust and more efficient comparing to GQMLE. Another advantage of the three-step approach is

that it can be applied to more general ARMA-GARCH models. We try to study whether a more

efficient estimation procedure for ARMA-GARCH can result in better VaR and ES estimates using

the two-step EVT methods.

Lastly, we prove that though the simple NGQMLE is in general inconsistent, the conditional

VaR and conditional ES estimates using the EVT approach are in fact not affected by the resulting

inconsistent coefficient estimates. This result is important as it shows that the inconsistent simple

NGQMLE, which is more efficient than GQMLE when innovations are heavy-tailed, can be used as

a valid estimator in the two-step EVT approach. More generally, our result shows that the EVT

method is unaffected by a class of incorrect estimation methods.

The reminding of this paper is structured as the following. Section 2 contains the main method-

ology. In Section 3 we first replicate important simulation results from Hoga (2019a), after which

we use Monte Carlo simulation to make a thorough comparison among the previously mentioned

methods. Section 4 conducts analysis on the real dataset which is also used by Hoga (2019a).

Section 5 concludes.

2 Methodology

2.1 The ARMA-GARCH Model

Let Xi be the loss returns, which are the original returns multiplied by −1, on a portfolio. We

consider an ARMA(p,q) model

Xi =

p∑
j=1

φjXi−j + εi −
q∑
j=1

νjεi−j (1)

with generalized GARCH(h, k) errors:

εi = σiUi, Ui ∼ F.i.i.d.(0, 1), (2)

σ2i = g(εi−1, ..., εi−h, σi−1, ..., σi−k, ρ) (3)

where ρ is a parameter vector and F is some continuous distribution with mean zero and unit

variance. An example of the function in (3) is:

g(εi−1, ..., εi−h, σi−1, ..., σi−k, ρ) = ω +

h∑
j=1

ψjε
2
i−j +

k∑
j=1

βjσ
2
i−j ,where ρ = (ω, ψ1, ..., ψh, β1, ..., βk),
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such that (2) and (3) define the standard GARCH(h, k) errors. More complicated GARCH type

models can also be represented by g(·), such as the EGARCH model with:

g(εi−1, ..., εi−h, σi−1, ...,σi−k, ρ) =

exp

ω +
h∑
j=1

{
ψj(

∣∣∣∣ εi−jσi−j

∣∣∣∣− E[

∣∣∣∣ εi−jσi−j

∣∣∣∣] + αj
εi−j
σi−j

)

}
+

k∑
j=1

βj log(σ2i−j)

 ,

where ρ = (ω, ψ1, ..., ψh,α1, ..., αh, β1, ..., βk),

and the GJR-GARCH model with:

g(εi−1, ..., εi−h, σi−1, ..., σi−k, ρ) = ω +
h∑
j=1

ψjε
2
i−j +

h∑
j=1

φjε
2
i−jI(εi−j < 0) +

k∑
j=1

βjσ
2
i−j ,

where I(·) is the indicator function and ρ = (ω, ψ1, ..., ψh, φ1, ..., φh, β1, ..., βk).

Following from Hoga (2019a), we impose adjusted standard assumptions on the ARMA-GARCH

model as the following:

Assumption 1. The characteristic polynomials of the AR and the MA terms have roots inside

the unit circle and do not share common root.

Assumption 2. ρ is restricted such that volatility is guaranteed to be positive and there exist

unique stationary to the GARCH equation.

There are two additional mild conditions on the model, for which we refer to Assumption 3 and 4

from Hoga (2019a).

The right-tail one-step ahead 100α (α ∈ (0, 1)) percent conditional VaR can then be defined as

xα,n := inf{x : P (Xn+1 ≤ x|Xn+1−k, k ≥ 1) ≥ 1− α, x ∈ R}.

Note that the right-tail VaR for loss returns is the left-tail VaR for original returns, which is in

the interest of finance. CES is defined as the expected return given the return is in its best (or

worst) 100α percent case conditioning on the past information. Using the previous definition on

conditional VaR, we can define the right-tail one-step ahead 100α (α ∈ (0, 1)) percent CES as

Sα,n := E[Xn+1|Xn+1 > xα,n, Xn, Xn−1, ..., X1].

The goal is to estimate xα,n and Sα,n, which can be rewritten into the following as in Hoga

(2019a):

xα,n =
[
µn+1 + σn+1x

U
α |Xn, Xn−1, ..., X1

]
, (4)

Sα,n =
[
µn+1 + σn+1S

U
α |Xn, Xn−1, ..., X1

]
, (5)
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where

µn+1 =

p∑
j=1

φjXn+1−j −
q∑
j=1

νjεn+1−j ,

xUα is defined as the (1−α) quantile of Ui and SUα = E[Ui|Ui > xUα ] for any i. Hoga (2019a) showed

that µn+1 can be recursively written into a function of X1, ..., Xn and the ARMA coefficients from

(1). We can then consistently estimate µn+1 if we can consistently estimate the ARMA-GARCH

model defined in (1), (2) and (3).

We can rewrite (1) and (3) into the following estimators for εi and σ2i respectively, i = 1, ..., n:

ε̂i = X̃i −
p∑
j=1

φiX̃i−j +

q∑
j=1

νj ε̂i−j (6)

σ̂2i = g(ε̂i−1, ..., ε̂i−h, σ̂i−1, ..., σ̂i−k, ρ), (7)

where X̃i = Xi for i = 1, ..., n and X̃0 = X̃−1 = ... = ε̂0 = ε̂−1 = ... = σ̂0 = σ̂−1 = ... = 0. We then

also have an estimator for µn+1:

µ̂n+1 =

p∑
j=1

φjX̃n+1−j −
q∑
j=1

νj ε̂n+1−j ,

The only reminding part that still need to be estimated in (4) and (5) is then xUα and SUα . We

estimate xUα and SUα using the parametric and the EVT method which are introduced in later

sections.

2.2 EVT Based Estimation of the Tail

We define the residual Ûi = ε̂i/σ̂i, where ε̂i and σ̂i are defined in (6) and (7). We are interested in

estimating xUα and SUα assuming that the distribution of Ui’s is heavy-tailed. As proposed by Hoga

(2019a), we assume the following:

lim
x→∞

U(xy)

U(x)
= yγ for all y > 0, (8)

where U(x) is the (1 − 1/x)-quantile of F , which was defined earlier as the distribution of Ui. We

assume γ > 0 so that F is heavy-tailed. With a sample U1, ...Un, it is then important to determine

which observations are from the tail. We assume that there are k out of the n observations belonging

to the right tail, where k = kn. We then have an integer sequence {kn}, on which we impose the

following assumption as in Hoga (2019a):

k = kn →∞ with 1 ≤ k < n and k/n→ 0 as n→∞ (9)

6



Now for any α � k/n, we can estimate xUα using the Weissman (1978) estimator. We take the

definition of this estimator from Hoga (2019a), which is as presented below:

x̂Uα := U

(
1

α

)
≈

̂
U
(n
k

)(nα
k

)−γ̂
. (10)

Let the order statistics of {Ûi}ni=1 be defined as U1:n ≤ U2:n ≤ ... ≤ Un:n. We can then estimate

U
(
n
k

)
using the (n − k)th order statistic of Un denoted by Un−k:n. To estimate γ Hoga (2019a)

considered two estimators. The first one considered by him is the Hill (1975) estimator

γ̂H :=
1

k

k−1∑
i=0

log

(
Un−i:n
Un−k:n

)
, (11)

which was also considered in Chan et al. (2007) and McNeil and Frey (2000). The additional

estimator for γ employed in Hoga (2019a) is the so-called MR estimator from Danielsson et al.

(1996) that can be defined as the following:

γ̂MR =
1

2

1
k

∑k−1
i=0 {log(Un−i:n)− log(Un−k:n)}2

γ̂H
(12)

With the assumption in (8) and 0 < γ < 1, Hoga (2019a) suggested the following estimator for

SUα :

ŜUα :=
x̂Uα

1− γ̂
(13)

The value of k need to be determined for all the above estimators. We want to pick k such

that the approximation using GPD fits Un−k+1:n, Un−k+2:n, ..., Un:n reasonably well. Hoga (2019a)

proposed the following estimator:

k∗ := arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

∣∣∣∣∣Un−j,n − Un−k,n
(
j

k

)−γ̂∣∣∣∣∣
]
. (14)

2.3 Confidence Interval for EVT based conditional VaR and conditional ES

To analyse the asymptotics of γ̂H and γ̂MR, Hoga (2019a) considered stochastic processes γ̂H(t) and

γ̂MR(t), which are constructed using a refined sequential tail empirical process (see also Einmahl

et al. (2016)). These stochastic processes can be estimated as the following:

γ̂H(t) =
1

bktc

bktc∑
i=1

log

(
Uk(t, i)

Uk(t, 0)

)
, (15)

γ̂MR =
1

2

1
bktc

∑bktc
i=1 {log(Uk(t, i))− log(Uk(t, 0))}2

γ̂H(t)
, (16)
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where Uk(t, i) is the (bktc + 1 − i)th largest value of Umn , ..., Ubntc, mn → ∞, mn < n and mn

= o(
√
k) when n → ∞. Instead of using all observations, Hoga (2019a) exclude the first mn − 1

observations, which takes the initialization effect into account.

Hoga (2019a) then showed that, let γ̂(t) be either γ̂H(t) or γ̂MR(t), (10) and (13) can be adapted

into the following:

x̂Uα (t) := Ûk(t, 0)
(nα
k

)−γ̂(t)
, (17)

ŜUα (t) :=
x̂Uα (t)

1− γ̂(t)
, (18)

which can then be used with (4) and (5) to obtain the following estimators:

x̂α,n(t) = µ̂n+1 + σ̂n+1x
U
α (t), (19)

Ŝα,n(t) = µ̂n+1 + σ̂n+1S
U
α (t), (20)

A note here is that x̂α,n(1) and Ŝα,n(1) are essentially the estimators in (11) and (12) after adjusting

for the initial effect. In the reminding of this paper we estimate xα,n and Sα,n for the whole sample

using x̂α,n(1) and Ŝα,n(1).

With all the previous assumptions we mentioned in this section and some additional mild con-

ditions (see Hoga (2019a) Section 2.4), Hoga (2019a) showed the following asymptotic distribution

of z ∈ x, S:

1

σ̂γ̂,γ

√
k

log(k/(nα))
log

(
ẑα,n(1)

zα,n

)
D−−−−−→

(n→∞)
N (0, 1), (21)

log2
(
ẑα,n(1)
zα,n

)
∫ 1
t0
t2log2

(
ẑα,n(t)
ẑα,n(1)

)
dt

D−−−−−→
(n→∞)

W 2(1)∫ 1
t0

[W (t)− tW (1)]2dt
=: Vt0 , (22)

where W (t), 0 ≤ t ≤ 1 is the standard Brownian motion, Φ is the cumulative distribution function

of a standard normal distribution, σ̂γ̂H ,γH = γ̂H and σ̂γ̂MR,γMR
=
√

2γ̂MR.

Equation (21) made use of normal approximation, which leads to the following asymptotic 1−τ -

confidence interval for xα,n and Sα,n based on normal approximation:

I1−τna :=

[
ẑα,n(1)exp

{
−Φ(1− τ

2
)σ̂γ̂,γ

log(k/(nα))√
k

}
, ẑα,n(1)exp

{
Φ(1− τ

2
)σ̂γ̂,γ

log(k/(nα))√
k

}]
,

whereas (22) used the principle of self-normalization, based on which Hoga (2019a) derived another
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confidence interval based on self-normalization:

I1−τsn :=

[
ẑα,n(1)exp

{
−

√
Vt0,1−τ

∫ 1

t0

t2log2
(
ẑα,n(t)

ẑα,n(1)

)
dt

}
,

ẑα,n(1)exp

{√
Vt0,1−τ

∫ 1

t0

t2log2
(
ẑα,n(t)

ẑα,n(1)

)
dt

}]
,

where t0 defines the starting time of the stochastic processes or in other words, the smallest sample,

in the approximation of the confidence interval and Vt0,1−τ is the (1− τ)-quantile of Vt0 .

2.4 Parametric method with skew t-distribution

In the previous sections we showed how xUα and SUα can be estimated using the EVT method.

Another approach to estimate xUα and SUα is the parametric approach, for which we need to assume

the exact parametric representation of F . Here we consider the skew t-distribution introduced

by Jones and Faddy (2003). The density function of the four-parameter skew t-distribution is as

follows,

f∗(x) = f(x; a, b, µ, σ)

= C−1a,bσ
−1
{

1 +
(x− µ)/σ

(a+ b+ (x− µ)2/σ2)1/2

}a+1/2{
1− (x− µ)/σ

(a+ b+ (x− µ)2/σ2)1/2

}b+1/2

, (23)

where

Ca,b = 2a+b−1B(a, b)(a+ b)1/2,

B(a, b) is the beta function, µ is the location parameter, σ is the scale parameter, a > 0 and b > 0

are used to control skewness and tail-behavior. The corresponding cumulative distribution function

is as the following:

F ∗(x) = I{1+(x−µ)/
√

(a+b)σ2+(x−µ)2}/2(a, b), (24)

where I·(·, ·) is the incomplete beta function ratio. It is shown by Jones and Faddy (2003) that,

given a > r/2 and b > r/2, the r-th moment of a skew-t random variable T with µ = 0, σ = 1 can

be written as the following:

E(T r) =
(a+ b)

r
2

2rB(a, b)

r∑
i=0

(
r

i

)
(−1)iB

(
a+

r

2
− i, b− r

2
+ i
)
.

We then assume F is the standardized skew t-distribution with µ = 0, σ = 1, unknown a and b.

The unknown parameters can be estimated using MLE. We can then directly obtain an estimator

for xUα using the left-continuous inverse of F , which is defined as the following :

x̂Uα = F←(1− α) (25)
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and SUα can be estimated as

ŜUα =

∫ ∞
x̂Uα

F (x)dx. (26)

To obtain confidence intervals for the parametric method, we consider the non-parametric boot-

strapping method. After noticing that the non-parametric bootstrapping cannot be applied directly

to the returns due to their dependencies, we bootstrap the fitted residuals instead. The procedure

of constructing the confidence intervals here can then be defined in three steps: 1. We fit the data

using a chosen ARMA-GARCH model assuming skew t-distributed innovations and obtain x̂Uα and

ŜUα . 2. The Ûi’s obtained using the fitted model in the first step are then used to bootstrap the

confidence intervals for x̂Uα and ŜUα . 3. We calculate the confidence interval of conditional VaR and

conditional ES estimates using (4) and (5). Even though this procedure is not ideal as it ignores

the uncertainty from model estimation, we prefer it for its simplicity.

2.5 Estimation of the GARCH model

It is important for the finite-sample accuracy of both the EVT and parametric method that we have

a consistent and efficient estimating method for the GARCH model. Furthermore, as showed in

Hoga (2019b), it is essential to have
√
n-consistent estimator for GARCH to construct the confidence

intervals as presented in Section 2.3.

In general, MLE does not lead to consistent estimates if the assumed distribution is misspecified.

An example of consistent estimator for ARMA-GARCH is the GQMLE (see Francq and Zaköıan

(2004)), which can be defined as the following for the model defined in (1)-(3):

ζ̂n = arg min
ζ∈Z

{
n−1

n∑
i=1

`i(ζ)

}
, (27)

where ζ = (φ1, ..., φp, ν1, ..., νq, ρ
′)′, Z is set of all possible values for ζ and `i = ε̂2i /σ̂

2
i + logσ̂2i . The

GQMLE is
√
n-consistent if the distribution of the innovations has finite fourth moment.

In this paper, We also consider a more efficient consistent estimator for the ARMA-GARCH

model. Specifically, we consider the NGQMLE proposed by Fan et al. (2014). To illustrate the

main idea of this estimator, we again consider the model defined in (1)-(3) where we reparameterize

(2) and (3) into the following:

εi = κσiUi, Ui ∼ F.i.i.d.(0, 1), (28)

σ2i = g(εi−1, ..., εi−h, σi−1, ..., σi−k, ρ
∗), (29)

where κ is the scale parameter and ρ∗ is the restricted parameter vector such that the intercept is

equal to one. As a result, we have the following expanded parameter vector ζ = (φ1, ..., φp, ν1, ..., νq,

κ, ρ∗′)′. A note here is that estimators defined in (6) and (7) are not influenced by this reparam-

eterization. Furthermore, it is straightforward how the model can be reparameterized back to the
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model defined in section 2.1, which allows us to use the previous results.

We use d(·) to denote the density function of a chosen non-Gaussian distribution. Following

Fan et al. (2014), we define a parametric family of quasi-likelihood {ηd : 1
ηd
d( ·ηd )}, where η > 0.

The parameter η is the scaling parameter of the quasi-likelihood, which is used to minimize the

discrepancy between the quasi-likelihood family and the true error density f measured by the

Kullback-Leibler Information distance (KLID) (Fan et al., 2014). After estimating ηd, the idea is

to estimate ζ using the quasi-likelihood function modified by ηd.

We then present the three-step approach (see Fan et al. (2014)) adapted to our generalized

ARMA-GARCH model.

The first step is to conduct GQMLE for the reparameterized model:

ζ̂n = arg max
ζ∈Z

1

n

{
n∑
i=1

(
−log(κσ̂i)−

ε̂2i
2σ̂2i κ

2

)}
, (30)

where σ̂i and ε̂i can again be estimated using (6) and (7). After obtaining ζ̂n, We then estimate ηd

by maximizing the following equation:

η̂d = arg max
η>0

1

n

n∑
i=1

{
−log(η) + logd

(
ε̂i(ζ̂n)

ηκ̂σ̂i(ζ̂n)

)}
, (31)

where ε̂i(ζ̂n) and σ̂i(ζ̂n) are the estimator of εi and σi defined in (6) and (7), where coefficients

are replaced by their estimates from ζ̂n. Finally, we obtain ζ̃n, the NGQMLE for ζ, through the

following:

ζ̃n = arg max
ζ∈Z

1

n

n∑
i=1

{
−log(η̂dκσ̂i) + logd

(
ε̂i

η̂dσ̂iκ

)}
. (32)

In the reminding of this paper, we refer the NGQMLE constructed using (30)-(32) as 3SNGQMLE.

However, it should be noted that, in general 3SNGQMLE is not always more efficient comparing

to GQMLE. Fan et al. (2014) concluded three situations when comparing the relative efficiency of

3NGQMLE and GQMLE: (1) If the true distribution of the innovations is heavier-tailed than the

chosen non-Gaussian distribution, 3NGQMLE is more efficient than GQMLE. (2) If true distribution

of the innovations has lighter tail comparing to Gaussian distribution, GQMLE is more efficient.

(3) If the true distribution of the innovations lies in between the chosen non-Gaussian distribution

and Gaussian distribution regarding heaviness of the tail, the relative efficiency of 3SNGQMLE and

GQMLE depends on to which distribution the true distribution is closer. As mentioned in section

1, numerous research have shown that financial returns have heavy-tailed innovations. This means

that under the context of this paper, it should always be possible to pick a non-Gaussian distribution

such that the 3SNGQMLE is more efficient than GQMLE.

To deal with situations where the innovation have infinite fourth moment, Hoga (2019a) consider

the NGQMLE with Laplace distribution. However, as shown by Berkes and Horváth (2004), the

11



following moment condition is needed for the Laplace NGQMLE to be consistent:

E(|Ui|) = 1.

It is straightforward that σ2i in (2) will no longer be the conditional variance with the above condition

imposed. Consequently, reparameterization is required for (2) and (3). However, to the best of our

knowledge, Hoga (2019a) did not take the above moment condition into account. Hence, the Laplace

NGQMLE considered in Hoga (2019a) is not consistent and leads to inconsistent GARCH coefficient

estimates.

Even though the GARCH coefficients estimated using simple NGQMLE without additional

moment conditions are in general inconsistent, we found that the conditional VaR and conditional

ES estimates based on the EVT method are in fact not affect by the this specific kind of inconsistent

estimates. We will prove this finding in the reminding of the section.

For simplicity of the notations, here we consider the GARCH(1,1) model as a special case of the

model defined in (1)-(3):

Xi = σiUi, Ui ∼ F.i.i.d.(0, 1), (33)

σ2i = ω + ψ1X
2
i−1 + β1σ

2
i−1, (34)

with the following reparameterized form:

Xi = κviUi, (35)

v2i = 1 + a1X
2
i−1 + b1v

2
i−1, (36)

It is straightforward that ω = κ2, ψ1 = κ2a1, β1 = κ2b1.

Fan et al. (2014) showed if the simple NGQMLE with d(·) is used to estimate the model defined

in (35) and (36), for the scale parameter the maximum of the likelihood would be achieved at η̂dκ̂

instead of κ̂, where κ̂ and η̂d are the consistent estimators from (30)-(32). Consequently, when we

reparameterize the biased estimators for coefficients in (35) and (36) back to coefficients in (33) and

(34), we would have the following estimators:

ω̃ = η̂2dκ̂
2 = η̂2dω̂, ψ̃1 = η̂2dκ̂

2â1 = η̂dψ̂1, β̃1 = κ̂2b̂1 = β̂1,

where ω̂, ψ̂1, β̂1, â1 and b̂1 are the consistent estimators of parameters in (33)-(36). It is clear that

with the simple NGQMLE, we have biased estimates of coefficients of the GARCH model. In the

reminding the section, we use the same notations to differentiate the consistent estimators from the

(potentially) inconsistent estimators.

We then look into how xα,n and Sα,n estimates reacts when the inconsistent NGQMLE estimators

were used in the first step of the EVT method. Using the estimators in (7) together with the above
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inconsistent NGQMLE estimators we have the following inconsistent estimator for σ2i , i = 2, ..., n:

σ̃2i = ω̃ + ψ̃1X
2
i−1 + β̃1σ̃

2
i−1,

where we let σ̃1
2 = ω̃ and recursively we have

σ̃i
2 = η̂2dσ̂

2
i . (37)

This directly leads to the biased residual estimates

Ũi = Xi/σ̃i = Xi/(η̂dσ̂i) = Ûi/η̂d. (38)

We observe that all the biased residuals are original residuals scaled by 1/η̂d. Using the invariant

property of the Hill and the ES estimator when then have:

γ̃H = γ̂H , γ̃MR = γ̂MR. (39)

Next we use the positive homogeneity property of coherent risk measures. Notice that the biased

residual estimates in (38) can also be seen as unbiased residual estimates for returns obtained by

scaling original returns with 1/η̂d. Then by positive homogeneity we have:

x̃Uα =
1

η̂d
x̂Uα , S̃Uα =

1

η̂d
ŜUα . (40)

Similar results can be obtained in the same way for estimators defined in (15)-(18). A detailed

alternative proof of (39) and (40) are included in appendix A.1. With the above results, we are

now ready to derive the xα,n and Sα,n estimates based on the inconsistent NGQMLE estimates of

GARCH coefficients. Using (19), (20), (37) and (40), we have:

x̃α,n(t) = σ̃n+1x̃
U
α (t) = η̂dσ̂n+1 ·

1

η̂d
x̂Uα (t) = σ̂n+1x̂

U
α (t) = x̂α,n(t),

S̃α,n(t) = σ̃n+1S
U
α (t) = η̂dσ̂n+1 ·

1

η̂d
ŜUα (t) = σ̂n+1Ŝ

U
α (t) = Ŝα,n(t).

We proved that using the inconsistent simple NGQMLE instead of the consistent 3SNGMQLES

does not change the xα,n and Sα,n estimates based on the EVT method. The biasness in coefficients

and the resulting residual estimates are canceled out while applying the EVT method. This result

of robustness does not only apply to the case where the inconsistent NGQMLE is used. In general,

using any incorrect estimation method that only leads to inconsistent κ estimates would not prevent

the EVT method from providing correct xα,n and Sα,n estimates. Another example here would be

imposing incorrect assumptions on the variance of Ui.
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Table 1
τ -quantile Vt0,τ of Vt0

τ t0 0.50 0.60 0.70 0.80 0.90 0.95 0.975 0.99 0.995
Vt0,τ 0.3 4.70 7.57 12.46 21.30 41.06 69.40 103.86 150.43 199.03

0.2 3.93 6.46 10.48 17.79 34.74 54.59 79.38 124.31 157.93
0.1 3.52 5.82 9.30 15.99 30.34 50.15 76.47 109.86 136.72

3 Monte Carlo Simulation

3.1 Important previous results

In this section we verify the important simulation results from Hoga (2019a). In order to avoid

different results from Hoga (2019a) caused by trivial reasons, we adapted part of the code from

Hoga (2019b) after verifying its correctness.

The first essential simulation result from Hoga (2019a) is the table of quantile of Vt0 , which is

defined in (22). As discussed in the previous section, these quantiles are needed when constructing

confidence intervals for xα,n and Sα,n using the self-normalization method. The quantiles are ob-

tained through fitting the empirical distribution function of Vt0 , where we numerically approximate

the Brownian motion and the integration. As in Hoga (2019a), we obtained τ -quantials of Vt0 for

t0 = [1, 2, 3] and a sequence of value for τ between 0.5 and 1. The quantiles are shown in Table 1.

In their simulation study, Hoga (2019a) investigated the relative performances between the Hill

estimator and the MR estimator in estimating conditional VaR and conditional ES. They found

that in general there is no substantial evidence indicating better performance of the MR estimator.

Moreover, they compared the finite sample coverage probabilities of I0.95na and I0.95sn . They found

that I0.95sn has higher coverage probabilities in most cases at the cost of having a wider confidence

interval. To show the above results, Hoga (2019a) considered three different data generating pro-

cesses (DGPs). Even though the three DGPs are constructed with different underlying models and

distributions for the error terms, the conclusions drawn from them by Hoga (2019a) were similar.

In this section, we then only consider the first DGP used by Hoga (2019a), which is defined as the

following:

Xi = εi, where εi = σiUi, Ui ∼ st3(5)

σ2i = 0.95 · 202

252
+ 0.1 · ε2i−1 + 0.85 · σ2i−1, (41)

where sta(b) denotes the standardized skewed Student’s t-distribution introduced by Azzalini and

Capitanio (2003). Note that the skewed Student’s t-distribution here is defined differently from the

skew t-distribution that we mentioned in the Section 2.4. Here, a denotes the degree of freedom, b

is the skewness parameter and the standardization is done to ensure the condition in (2) is met.

The rest of the settings are set to be the same as in Hoga (2019a) throughout the reminding

of section 3.1. In particular, the ARMA-GARCH coefficients from (33) are estimated by GQMLE.

We estimate xα,n and Sα,n for n = 1000 and α = 0.025, 0.01, 0.005. The estimation is done using
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the EVT method with estimators defined in (19) and (20), where mn is set to 10 to cancel out

initialization effects. In constructing the above estimators, we consider γ̂H(t) and γ̂MR as defined

in (15) and (16). A note here is that in rare cases γ̂ is larger than 1, which does not satisfy our

previous assumption when estimating Sα,n. Following the suggestion by Hoga (2019a), we truncate

all γ̂ > 0.9 to 0.9 in conditional ES estimations. For the choice k, we consider the estimator in (14)

with kmax = 200 and kmin = 50. The confidence intervals of x̂α,n and Ŝα,n are constructed using

both I0.95na and I0.95sn , where we take t0 = 0.2. Lastly, all the simulations are run for 10,000 iterations.

Table 2
Average value of k∗, bias, RMSE, coverage probabilities and length of confidence intervals
constructed using normal approximation and self-normalization for xα,n and Sα,n under three
different α with Hill and MR estimators. The considered DGP is as in (41) with n = 1000 and
10000 simulation repetitions.

Coverage Interval length
Model Estimator k∗ z α Bias RMSE I0.95na I0.95sn I0.95na I0.95sn

(27) Hill 68 xα,n 2.5% -0.04 0.52 0.49 0.74 0.26 0.54
1% -0.11 0.62 0.70 0.80 0.59 0.89
0.5% -0.16 0.73 0.76 0.84 0.89 1.28

Sα,n 2.5% -0.09 0.64 0.39 0.82 0.30 1.01
1% -0.12 0.77 0.60 0.87 0.68 1.60
0.5% -0.10 0.89 0.68 0.89 1.03 2.17

MR 98 xα,n 2.5% 0.06 0.51 0.61 0.75 0.41 0.68
1% 0.00 0.60 0.81 0.81 0.82 1.07
0.5% -0.06 0.70 0.86 0.84 1.20 1.47

Sα,n 2.5% 0.03 0.62 0.54 0.82 0.48 1.16
1% 0.00 0.75 0.71 0.85 0.96 1.71
0.5% 0.02 0.89 0.76 0.84 1.40 2.26

Table 2 compares performances of the Hill and the MR estimator in estimating xα,n and Sα,n.

We compare the two methods by comparing bias, root mean-squared-error (RMSE) and the coverage

probabilities of the confidence intervals. We also compare the length of the confidence interval from

the two confidence interval construction methods.

Table 2 show that the MR estimator has lower biases for small α comparing to the Hill estimator.

However, this is not the case when we look at the RMSE, from which we cannot draw the conclusion

on one estimator outperforming the other. Moreover, the RMSE is higher for conditional ES than

for conditional VaR. In Table 2, we can also see that I0.95sn has higher coverage probability than I0.95na

in almost all situations accompanied by wider confidence intervals. However, confidence intervals

constructed using self-normalization still have lower coverage than the nominal level (0.95 in our

simulation), which could be caused by the uncertainty from ARMA-GARCH coefficient estimates

in finite samples (Hoga, 2019a).

As mentioned in the previous section, I0.95na and I0.95sn are constructed using the asymptotic

approximations in (21) and (22) respectively. To evaluate the finite-sample validity of these two

approximations, Hoga (2019a) compared the distribution of the random variables on the left and

on the right side of these equations by probability-probability(PP) plots. Here, we do the same for
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the DGP from (33) and the results PP plots are presented in Figure 1. We can see from Figure 1

that the approximations based on self-normalization provide better fits comparing to the normal

approximations for both the Hill estimator and the MR estimator.

Figure 1: PP plots for the left-hand and right-hand side random variables in (21)(top) and (22)(bot-
tom) for model (33) for left-tail S0.01,1000.

In order to evaluate the effect of different choices of k on the results from Table 2, we alter k for

a sequence of values between kmin and kmax and check how the evaluation measures from Table 2

change accordingly. Figure 2 presents values of these evaluation measures under different choice of

k for left-tail Ŝ0.01,1000 under model (41). The performances of both EVT methods using the Hill

estimator and the MR estimator heavily depend on the choice of k. As also documented by Hoga

(2019a), the data dependent k∗ seems to performs reasonably well since using its average value (in

Table 2) attains high coverage probabilities, low biases and low RMSE. However, there is not clear

evidence from Figure 2 indicating better performance from the data dependent k∗ comparing to the

fixed choice k̂ = b1.5(logn)2c = 71 suggested by Chan et al. (2007). We will further look into the

finite sample performance of different choices of k in later sections.

Overall, the conclusions we drew from this section are similar to those in Hoga (2019a). We find

that in general I0.95sn has higher coverage probabilities than I0.95na . This is in line with our finding of the

approximation in (22) with self-normalization being more accurate than the approximation in (21)

with normal approximation. We also found that the data dependent k∗ has desirable performance.

However, it is unclear whether the data dependent k∗ should be preferred over the fixed choice of

k proposed by Chan et al. (2007). We also did not find evidence indicating better performance of

the MR estimator comparing to the Hill estimator or vice versa.
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Figure 2: Biases and RMSEs for left-tail S0.01,1000 as a function of k ∈ [50, 200] using the Hill
estimator (a) and the MR estimator (b) for model (33), together with the finite sample coverage
probabilities and interval lengths of the corresponding I0.95na (solid) and I0.95sn (dotted).

3.2 The skew-t Parametric Method

In this section we evaluate the performance of the skew-t parametric method as proposed in section

2.4. Specifically, We compare the performance of the skew-t parametric method in conditional VaR

and conditional ES estimation to the EVT method, where the same set-up for the EVT method

as in section 3.1 is used. We consider following DGPs with skewed and non-skewed innovation

distributions respectively:

Xi = εi, where εi = σiUi, Ui ∼ st4.5(0), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (42)

Xi = εi, where εi = σiUi, Ui ∼ st4.5(5), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (43)

where sta(b) again denotes the standardized skewed Student’s t-distribution from Azzalini and

Capitanio (2003). Note that in the DGPs above, the distribution of the innovations has finite

fourth moment such that GQMLE is
√
n-consistent (Francq and Zaköıan, 2004). As discussed in

section 2.4, the 95% confidence interval of xα,n and Sα,n estimated using the parametric method is

constructed using the non-parametric bootstrapping method. Due to the fact that bootstrapping

methods are very time-consuming, the simulations in this section are all ran for only 1000 iterations.

We consider estimation of xα,n and Sα,n for n = 1000 and α = 0.01. The results of the simulations

are presented in Table 3-4.

Table 3 presents the results of the model in (34), which is a GARCH(1,1) model with heavy-tailed

and standard Student’s t-distribution for innovations. We found that in this case the parametric
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Table 3
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method and parametric method. The considered EVT
methods are based on Hill and MR estimators with model estimated using GQMLE. The considered
DGP is as in (34) with n = 1000 and 1000 simulation repetitions.

Coverage Interval length
Model Method Estimator k z Bias RMSE I0.95na I0.95sn I0.95na I0.95sn

(34) EVT Hill k∗ = 58.49 xα,n 0.04 0.48 0.88 0.91 0.97 1.34
Sα,n -0.39 1.00 0.67 0.96 1.45 3.64

MR k∗ = 64.60 xα,n 0.28 0.51 0.82 0.76 1.17 1.28
Sα,n -0.03 0.83 0.84 0.93 1.75 3.11
z Bias RMSE Coverage Interval length

Parametric xα,n -0.04 0.26 0.75 0.47
Sα,n 0 0.41 0.81 0.94

Table 4
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method and parametric method. The considered EVT
methods are based on Hill and MR estimators with model estimated using GQMLE. The considered
DGP is as in (35) with n = 1000 and 1000 simulation repetitions.

Coverage Interval length
Model Method Estimator k z Bias RMSE I0.95na I0.95sn I0.95na I0.95sn

(35) EVT Hill k∗ = 59.57 xα,n -0.03 0.23 0.72 0.80 0.21 0.29
Sα,n -0.09 0.28 0.57 0.84 0.24 0.54

MR k∗ = 87.86 xα,n 0.02 0.22 0.80 0.75 0.28 0.31
Sα,n -0.03 0.26 0.76 0.85 0.33 0.51
z Bias RMSE Coverage Interval length

Parametric xα,n -0.13 0.52 0.84 1.59
Sα,n -0.07 0.62 0.96 2.04

method has much lower RMSEs for xα,n and Sα,n estimation comparing to the EVT method with the

Hill or MR estimator, which indicates better performance of the parametric method. The coverage

probabilities of the confidence intervals based on the parametric method are too low. Better coverage

is achieved by Isn for either the Hill or the MR estimator and Ina with the MR estimator. We do,

however, observe that the confidence intervals of the EVT method are wider than those of the

parametric method. Wider confidence intervals lead to higher coverage probabilities that are closer

to the correct level than the shorter ones.

We observe that, however, the performance of the parametric method is not ideal when the

innovations are skewed. The results for the GARCH(1,1) model with heavy-tailed and skewed

Student’s t-distribution for innovations are presented in Table 4. Table 4 shows that, for both xα,n

and Sα,n estimation, the RMSEs of the parametric method is larger than the RMSEs of the EVT

method regardless the choice of the Hill or the MR estimator. Different from what we observed for

model (34), here the better coverage is achieved by the parametric method.

To conclude this section, we found that the parametric method has better performance in terms

of RMSE when innovations follow the Student’s t-distribution, whereas the RMSE indicates better

performance of the EVT method when the innovations follow the skewed Student’s t-distribution
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from Azzalini and Capitanio (2003). A possible explanation here is that the skew t-distribution

proposed by Jones and Faddy (2003), which is used by our parametric method, does not fit the

skewed Student’s t-distribution (Azzalini and Capitanio, 2003) well. This does not only lead to

undesirable quantile estimation, which is the key of conditional VaR and ES estimation. It also

poses concerns on the consistency of the GARCH coefficient estimates. Here we estimate the model

using NGQMLE with the skew t-distribution. And as discussed previously, the NGQMLE is in

general inconsistent when the underlying distribution is different from the true distribution.

The conclusion regarding coverage probabilities of the confidence intervals is a bit unclear. This

is mainly caused by the fact the confidence intervals from both methods suffer from some drawbacks,

which are potentially the cause of less ideal coverage. For the parametric method, we do not take

the uncertainty of GARCH coefficients estimates into account. This is justified by the fact that

the coefficient estimated using GQMLE converges way faster than xUα and SUα from (4) and (5)

asymptotically (Hoga, 2019a). However, in finite sample, the uncertainty of the GARCH coefficient

estimates still exist and is not captured by Ina or Isa. We will also see in the later sections that

better coverage can be achieved when a more efficient estimation method than GQMLE is considered.

Since as demonstrated in section 2.4, the confidence interval of the parametric method are estimated

using non-parametric bootstrapping of the residuals, where the uncertainty from GARCH coefficient

estimates is again ignored.

3.3 Comparison of GQMLE and (3S)NGQMLE

In this section we evaluate the effects of different estimation methods of the ARMA-GARCH model

on the two-step EVT method. Specifically, we consider the 3SNGQMLE and GQMLE defined

in section 2.5. This section has the following goals: 1. When the innovations have heavy-tailed

distribution, we explore whether the more efficient 3SNGQMLE can increase the performance of

the EVT method in xα,n and Sα,n estimation. 2. We study the relative efficiency of GQMLE and

3SNGQMLE in the EVT method when considering different true distributions for the innovations

with varying degrees of heaviness in their tails.

In the first step of the EVT method, we estimate the ARMA-(GJR)-GARCH coefficients with

GQMLE and 3SNGQMLE respectively. For 3SNGQMLE, we consider the Student’s t-distribution

with degree of freedom equal to 5 and 10 as the chosen non-Gaussian distributions. We keep the

rest of the settings of the EVT method the same as in section 3.1. We again consider estimation of

xα,n and Sα,n for n = 1000 and α = 0.01.

We generate data from GARCH, ARMA-GARCH and ARMA-GJR-GARCH models, where in-

novations follow the Student’s t-distribution and its skewed variant (Azzalini and Capitanio, 2003)

with degree of freedom equal to 4.5, 8, 15 and 30. In this section we present results of the GARCH

model with the Student’s t-distribution with degree of freedom equal to 4.5, 8 and 30. The corre-
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sponding DGPs are (42) and the follows:

Xi = εi, where εi = σiUi, Ui ∼ st8(0), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (44)

Xi = εi, where εi = σiUi, Ui ∼ st30(0), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (45)

Similar conclusions can be drawn from the results of the rest of the models, which are included

in Appendix B.1.

Table 5

Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n

and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.

The considered EVT methods are based on the Hill and MR estimators with two methods in model

estimation. The considered DGP is as in (42) with n = 1000 and 1000 simulation repetitions.

Coverage

Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(42) GQMLE 0.578 Hill k∗ = 58.42 xα,n 0.060 0.334 0.868 0.891

Sα,n -0.354 0.788 0.670 0.932

MR k∗ = 63.39 xα,n 0.295 0.431 0.796 0.761

Sα,n -0.004 0.648 0.834 0.922

3SNGQMLE(t5) 0.463 Hill k∗ = 58.98 xα,n 0.059 0.311 0.889 0.909

Sα,n -0.364 0.776 0.672 0.948

MR k∗ = 64.43 xα,n 0.287 0.414 0.818 0.774

Sα,n -0.023 0.639 0.843 0.930

3SNGQMLE(t10) 0.469 Hill k∗ = 58.54 xα,n 0.062 0.310 0.885 0.904

Sα,n -0.356 0.773 0.680 0.951

MR k∗ = 64.09 xα,n 0.290 0.416 0.810 0.770

Sα,n -0.015 0.639 0.840 0.930

Table 5-8 present results obtained using three different coefficient estimators, where both the

Hill and MR estimators are considered in the second step of the EVT method. We again evaluate

the quality of xα,n and Sα,n estimates in terms of bias, RMSE and coverage probabilities. We also

report the sum RMSEs of the coefficient estimates from the first step.

Table 5 contains the results for the model with very heavy-tailed innovations. In this case, the

distribution of the innovations has heavier tail than both non-Gaussian distributions that we selected

for the 3SNGQMLE. We observe that in this case the sum RMSEs of the coefficient estimates of

GQMLE is much larger comparing to the two 3SNGQMLEs that are considered. The efficiency

gains from the first step coefficient estimates using 3SNGQMLE are also associated with improved

xα,n and Sα,n estimates. Table 5 shows that the lowest RMSE and highest coverage (in bold) are

achieved when the 3SNGQMLE is used. Furthermore, the sum coefficient RMSE of the 3SNGQMLE

increases when the Student’s t-distribution with a larger degree of freedom is considered. This is to

be expected since the distribution in the DGP is heavier than both of the distributions we picked.

By considering the Student’s t-distribution with higher degree of freedom we are deviating further

from the true distribution in terms of heaviness in the tail.
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Table 6
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on the Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (44) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(44) GQMLE 0.464 Hill k∗ = 55.40 xα,n 0.048 0.249 0.888 0.922
Sα,n -0.342 0.576 0.658 0.931

MR k∗ = 63.62 xα,n 0.287 0.369 0.759 0.693
Sα,n -0.014 0.415 0.881 0.949

3SNGQMLE(t5) 0.441 Hill k∗ = 55.63 xα,n 0.048 0.245 0.892 0.928
Sα,n -0.345 0.571 0.654 0.931

MR k∗ = 64.03 xα,n 0.284 0.365 0.764 0.717
Sα,n -0.021 0.408 0.888 0.946

3SNGQMLE(t10) 0.435 Hill k∗ = 55.58 xα,n 0.049 0.242 0.895 0.929
Sα,n -0.342 0.567 0.659 0.941

MR k∗ = 64.10 xα,n 0.286 0.364 0.761 0.707
Sα,n -0.016 0.405 0.885 0.949

We then consider model (44) where the true distribution has lighter tail comparing to (42). No-

tice that the true distribution in this situation lies in between the two distributions for 3SNGQMLE

in terms of heaviness of the tail. We observe from Table 6 that the 3SNGQMLE(t10) results in better

coefficient estimates than the 3SNGQMLE(t5), while both 3SNGQMLEs outperform the GQMLE.

Table 10 further shows that the resulting xα,n and Sα,n estimates using 3SNGQMLEs are better

the ones obatined using GQMLE. However, the differences in coefficient and risk measure RMSEs

between GQMLE and 3SNGQMLE are not as noticeable as the previous situation, where the true

distribution has heavier tail.

Table 7
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on the Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (45) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(45) GQMLE 0.433 Hill k∗ = 54.79 xα,n 0.043 0.180 0.910 0.909
Sα,n -0.317 0.442 0.597 0.906

MR k∗ = 67.52 xα,n 0.267 0.311 0.740 0.605
Sα,n -0.028 0.267 0.920 0.935

3SNGQMLE(t5) 0.443 Hill k∗ = 54.77 xα,n 0.041 0.184 0.906 0.909
Sα,n -0.324 0.452 0.604 0.896

MR k∗ = 67.25 xα,n 0.264 0.311 0.737 0.600
Sα,n -0.035 0.273 0.919 0.933

3SNGQMLE(t10) 0.431 Hill k∗ = 54.79 xα,n 0.043 0.181 0.910 0.912
Sα,n -0.320 0.444 0.612 0.904

MR k∗ = 67.37 xα,n 0.266 0.311 0.731 0.599
Sα,n -0.031 0.269 0.921 0.936

Lastly we consider the model in (45) where the true innovation distribution is closer to a standard
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Gaussian distribution comparing to the previous two models. Table 7 shows that in this situation the

GQMLE outperforms 3SNGQMLE(t5) in terms of both the coefficient and risk measure estimations.

The 3SNGQMLE with lighter distribution (t10) results in slightly better coefficient estimates than

the GQMLE. However, using the GQMLE in model estimation still leads to better xα,n and Sα,n

estimates.

Figure 3 shows how RMSE of x̂α,n and Ŝα,n varies when the Student’s t-distribution with different

degree of freedom is considered for 3SNGQMLE. The plots provides some intuition on how the chosen

non-Gaussian distribution is related to the RMSE of x̂α,n and Ŝα,n. We observe that, as expected,

the closer the chosen distribution to the true distribution the lower the sum coefficient RMSEs. It

is further shown by Figure 3 that there is in general a positive relation between coefficient RMSE

and RMSE of x̂α,n and Ŝα,n, except the area close to the optimum. For both x̂α,n and Ŝα,n, the

lowest RMSE is obtained using the distribution different from the one that leads to the lowest sum

coefficients RMSEs. Moreover, the lowest RMSEs for x̂α,n and Ŝα,n are achieved with different

distributions. We also find that all the relative RMSEs in figure 3 are negative. This indicates that

3SNGQMLE using the Student’s t-distribution with any degree of freedom from [2.5, 20] outperforms

GQMLE in terms of coefficient, xα,n and Sα,n estimates.

x̂α,n Ŝα,n

Figure 3: Relative sum RMSEs of the GARCH cofficient estimates and RMSE of x̂α,n and Ŝα,n with
the model estimated using 3SNGQMLE with the Student’s t-distribution with a sequence of degree
of freedom from 2.5 to 20, with minimal (vertical lines). The vertical axis indicate the difference
from the RMSE using GQMLE. The true model is GARCH(1,1) with st6(0) and the simulation is
done for 10,000 iterations

To sum up, we show that the 3SNGQMLE in general leads to better coefficient, xα,n and Sα,n

estimates when the innovations are heavy-tailed. The advantage of using 3SNGQMLE with a fixed

heavy-tailed distribution in the EVT method is well-established with heavily tailed innovations.

However, with the true distribution getting closer to Gaussian, the performance of 3SNGQMLE

with a fixed heavy-tailed distribution decreases and even becomes worse than GQMLE. Furthermore,

we showed the performance of 3SNGQMLE can be further improved if we are able to select the

appropriate non-Gaussian distribution. Finding the best distribution can be tricky, as we have
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shown that the distribution that leads to the best coefficient estimates does not necessarily lead to

the best x̂α,n and Ŝα,n. In conclusion, given that the returns are heavy-tailed, our results provide

evidences indicating that the 3SNGQMLE should be preferred over GQMLE.

Table 8

Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n

and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.

The considered EVT methods are based on Hill and MR estimators with two methods in model

estimation. The considered DGP is as in (46) with n = 1000 and 1000 simulation repetitions.

Coverage

Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(46) 3SNGQMLE(t2.5) 0.448 Hill k∗ = 54.79 xα,n 0.046 0.214 0.901 0.922

Sα,n -0.340 0.519 0.621 0.937

MR k∗ = 67.52 xα,n 0.275 0.340 0.771 0.675

Sα,n -0.032 0.350 0.913 0.943

NGQMLE(t2.5) 2.367 Hill k∗ = 54.77 xα,n 0.045 0.211 0.902 0.922

Sα,n -0.341 0.518 0.621 0.937

MR k∗ = 67.25 xα,n 0.274 0.337 0.772 0.677

Sα,n -0.033 0.347 0.914 0.943

We prove in section 2.5 that although the simple NGQMLE is inconsistent, the inconsistent

estimates do not influence the xα,n and Sα,n estimates using the EVT approach. To shed some light

on this result, we consider the following DGP:

Xi = εi, where εi = σiUi, Ui ∼ st11(0), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1. (46)

Now we again apply the EVT approach for estimation of xα,n and Sα,n, where in the first step we

estimate the coefficients using the 3SNGQMLE and the simple NGQMLE respectively. For both

non-Gaussian estimation method we consider the Student’s t-distribution with degree of freedom

equal to 2.5. Table 8 shows that the sum RMSEs of the coefficient estimates using the simple

NGQMLE is more than 5 times larger than the sum RMSEs using the 3SNGQMLE, whereas the

biases, RMSEs and coverage of the resulting xα,n and Sα,n estimates are near identical between

two model estimation methods. We notice that the simple NGQMLE results in near negligibly

better xα,n and Sα,n estimates. One possible explanation is that the 3NGQMLE is exposed to more

numerical uncertainty since all three steps of it requires numerical optimization. Table 8 verifies our

proof in section 2.5 by showing the inconsistency of the simple NGQMLE and the resulting near

identical xα,n and Sα,n estimates comparing to the 3SNGQMLE.

3.4 The choice of k

In this section we study whether the data-dependent k∗ from Hoga (2019a) leads to better xα,n and

Sα,n estimates comparing to the fixed sample-size-determined k̂ proposed by Chan et al. (2007).

We consider the same settings for the EVT method as in section 3.3 with two changes: 1. The
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Table 9
Average value of k∗, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method with k∗ and k̂ . The considered EVT methods
are based on Hill and MR estimators with model estimated using GQMLE and 3SNGQMLE. The
considered DGP is as in (42) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator Estimator k z Bias RMSE I0.95na I0.95sn

(42) GQMLE Hill k∗ = 58.42 xα,n 0.060 0.334 0.868 0.891
Sα,n -0.354 0.788 0.670 0.932

k̂ = 71 xα,n -0.039 0.343 0.916 0.927
Sα,n -0.791 1.125 0.509 0.879

MR k∗ = 63.39 xα,n 0.295 0.431 0.796 0.761
Sα,n -0.004 0.648 0.834 0.922

k̂ = 71 xα,n 0.281 0.429 0.837 0.765
Sα,n -0.282 0.732 0.855 0.932

3SNGQMLE(t10) Hill k∗ = 58.54 xα,n 0.062 0.310 0.885 0.904
Sα,n -0.356 0.773 0.680 0.951

k̂ = 71 xα,n -0.036 0.319 0.933 0.937
Sα,n -0.79 1.108 0.513 0.881

MR k∗ = 64.09 xα,n 0.290 0.416 0.810 0.770
Sα,n -0.015 0.639 0.840 0.930

k̂ = 71 xα,n 0.276 0.414 0.842 0.777
Sα,n -0.293 0.724 0.854 0.938

model is estimated with GQMLE and 3SNGQMLE with t10. 2. When choosing k, in addition to

the data-dependent k∗ defined in (14), we also consider k̂ = b1.5(logn)2c = 71 (Chan et al., 2007).

The goal is to estimate xα,n and Sα,n with n = 1000 and α = 0.01.

For the DGP, we again consider GARCH, ARMA-GARCH and ARMA-GJR-GARCH models

with heavy-tailed, skewed and non-skewed innovations.

Table 9 presents results for the model in (42). We observe that, for both x̂α,n and Ŝα,n, the

lowest RMSE is achieved using the data-dependent k∗. An interesting finding is that the fixed k̂

leads to better coverage for conditional VaR with both the Hill and the MR estimator, whereas the

highest coverage for conditional ES is still obtained using the data-dependent k∗.

We draw the same conclusion as above from the rest of the DGPs, which are included in Appendix

B.2 . Overall, we find that the data-dependent k∗ leads to better estimates of xα,n and Sα,n when

n = 1000. However, in this situation, the fixed k̂ has acceptable performance and the confidence

intervals constructed using it has better coverage for xα,n comparing to the ones constructed using

k∗.

4 Empirical Study

The aim of this section is to compare relative performances of all the methods in conditional VaR and

conditional ES estimation in an empirical study, where we also demonstrate the empirical relevance

of the 3SNGQMLE. In the empirical study we consider data on historic stock index returns. As in
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Hoga (2019a), we consider returns of six global indices including DAX 30, CAC 40, DIJA, NASDAQ,

Nikkei 225, and HSI. We retrieve 20-year data from 1/1/1997 to 31/12/2016 on the six series from

Hoga (2019b).

We again consider the EVT method as well as the parametric method. For both methods, we fit

the data using the GARCH(1,1), AR(1)-GARCH(1,1), ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-

GJR-GARCH(1,1) models. As mentioned in section 2.4, we consider the parametric method with

the skew t-distribution, where the models are then estimated using maximum-likelihood estimation.

For the EVT method, we fit the models using GQMLE and 3SNGQMLE with the Student’s t-

distribution and degree of freedom equal to 10. We again consider the Hill estimator and the MR

estimator with fixed and data-dependent k, where we let kmin = 50 and kmax = 200. And mn is set

to 10 to remove the initial effect. In total we consider 36 combinations of methods.

For all six financial series, we consider one-step-ahead forecast of xα,n and Sα,n with the rolling

window scheme, where the window size is set to 1000 and α is set to 0.005.

Same as in Hoga (2019a), we check the unconditional and conditional coverage of xα,n estimates

using the tests of Kupiec (1995) (UC) and Berkowitz et al. (2011) (CC) respectively. Then, again as

suggested by Hoga (2019a), we calculate the quantile score, Q(Xi, xi), to evaluate the xα,n forecasts

and asymmetric Laplace (AL) log score, LS(xi, Si, Xi) , to jointly evaluate the performance of Sα,n

and xα,n forecasts, where Xi is the actual return, xi and Si are the conditional VaR and ES estimate

corresponding the ith observation,

Q(Xi, xi) = (Xi − xi)(α− I(Xi ≤ xi)) and

LS(xi, Si, Xi) = −log

(
α− 1

Si

)
− Q(Xi, xi)

αSi
.

For each method, we add up the scores calculated over the entire forecast period, where a smaller

score indicates better performance.

We focus on the results regarding NASDAQ and Nikkei 225 in this section, where the results of

the other four indices are included in Appendix B.3.

We use UC and CC to evaluate the quality of out-of-sample conditional VaR forecasts, where a

good conditional VaR forecast is expected to have correct conditional and unconditional coverage.

Table 10 and 11 show that only ARGARCH-3S-k∗-Hill, ARMAGARCH-3S-k∗-Hill, ARMAGJRGARCH-

3S-k̂-MR, ARMAGJRGARCH-3S-k∗-Hill and ARMAGJRGARCH-3S-k∗-MR are never rejected by

both tests at 10%, out of the 36 methods we are considering. We observe that by choosing fixed k̂,

GQMLE and the GARCH model do not lead to desirable conditional VaR estimates when evaluating

with UC and CC. We also find that, when considering the GARCH(1,1) and AR(1)-GARCH(1,1)

model, the MR estimator has poor performance. This is in line with the finding of Hoga (2019a).

However, our results suggest that the MR estimator has improved performance when the asymmetric

GARCH model is considered. The estimates from the parametric method with skew t-distribution

have correct UC and CC for Nikkei 225 but not NASDAQ.

Table 10 and 11 present the quantile score and AL log score for the 36 methods considered in
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Table 10
P-values of UC and CC test together with quantile score and AL log score for one-step-ahead xα,n
and Sα,n forecasts of NASDAQ with data from 1/1/1997 to 31/12/2016, α = 0.005 and n = 1000.

Index Model Method UC CC Quantile score AL log score

NASDAQ GARCH(1,1) GQMLE k̂ Hill 0.023∗∗ 0.074∗ 0.963 -8406.65
MR 0.028∗∗ 0.000∗∗∗ 0.952 -8501.9

k∗ Hill 0.629 0.119 0.945 −8558.712
MR 0.016∗∗ 0.000∗∗∗ 0.953 -8505.81

3SNGQMLE k̂ Hill 0.068∗ 0.085∗ 0.979 -8329.79
MR 0.127 0.000∗∗∗ 0.964 -8386.23

k∗ Hill 0.48 0.114 0.962 -8433.37
MR 0.08∗ 0.000∗∗∗ 0.964 -8377.75

Parametric 0.007∗∗∗ 0.063∗ 0.976 -8452.859

ARMA(1,0)-GARCH(1,1) GQMLE k̂ Hill 0.023∗∗ 0.074∗ 0.960 -8431.8
MR 0.028∗∗ 0.000∗∗∗ 0.952 -8514.48

k∗ Hill 0.629 0.119 0.944 -8571.39
MR 0.016∗∗ 0.000∗∗∗ 0.953 -8517.26

3SNGQMLE k̂ Hill 0.068∗ 0.085∗ 0.945 -8536.3
MR 0.127 0.000∗∗∗ 0.935 -8626.54

k∗ Hill 0.48 0.114 0.930 −8672.869
MR 0.08∗ 0.000∗∗∗ 0.935 -8632.46

Parametric 0.007∗∗∗ 0.063∗ 0.979 -8431.853

ARMA(1,1)-GARCH(1,1) GQMLE k̂ Hill 0.013∗∗ 1 0.955 -8447.22
MR 0.049∗∗ 0.000∗∗∗ 0.940 -8556.6

k∗ Hill 0.48 0.999 0.938 -8589.27
MR 0.028∗∗ 0.000∗∗∗ 0.94 -8565.86

3SNGQMLE k̂ Hill 0.068∗ 0.085∗ 0.944 -8535.43
MR 0.08∗ 0.000∗∗∗ 0.938 -8604.95

k∗ Hill 0.629 0.119 0.931 −8668.357
MR 0.049∗∗ 0.000∗∗∗ 0.939 -8606.54

Parametric 0.007∗∗∗ 0.063∗ 0.976 -8452.871

ARMA(1,1)-GJR-GARCH(1,1) GQMLE k̂ Hill 0.013∗∗ 1.000 0.947 -8445.12
MR 0.193 0.938 0.904 -8638.7

k∗ Hill 0.068∗ 1.000 0.925 -8567.03
MR 0.392 0.965 0.902 -8650.01

3SNGQMLE k̂ Hill 0.041∗∗ 1.000 0.938 -8492.99
MR 0.682 0.982 0.895 -8687.64

k∗ Hill 0.169 1.000 0.916 -8630.21
MR 0.682 0.982 0.895 −8697.105

Parametric 0.007∗∗∗ 1.000 0.961 -8483.126

Note. * indicates significance at 10%, ** indicates significance at 5%, and *** indicates significance at 1%.

this section. For each model the lowest scores are in bold and the lowest scores from all 36 methods

are underlined. Three important conclusions can be drawn from Table 10 with respect to the loss

scores. First of all, We find that except for the GARCH model, the 3SNGQMLE leads to better

xα,n and Sα,n estimates. Secondly, the data-dependent k∗ performs relatively better than the fixed

k̂. Lastly, the more complicated models, especially the ARMA(1,1)-GJR-GARCH(1,1) model, have

better performance comparing to the simple GARCH(1,1) model. While the last two conclusion

can also be drawn from Table 11 for the index Nikkei 225 over our sample, Table 11 indicates that

the GQMLE performs better than the 3SNGQMLE in all four models. One possible explanation is

that the true distribution of innovations in this case is closer to the standard Gaussian distribution

in terms of KLID than the Student’s t-distribution with degree of freedom equal to 10. For the

parametric method, we focus on its scores in Table 11 as it does not lead to correct UC and CC for
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NASDAQ. We observe from Table 11 that it outperforms the EVT method when the GARCH(1,1)

model is considered. Moreover, the scores of the parametric-method’s estimates are not much higher

than the scores from the EVT method for the other three models, where EVT performs better. As

it is not feasible to check the significance of difference among scores from 32 method, we perform

the Diebold-Mariano (DM) test (Diebold and Mariano, 2002) to test whether the scores from the

methods with the lowest scores are significantly lower than the scores from the baseline GARCH-

GQMLE-K̂-Hill. We find that for both indices, the improvements in scores are significant at 5%.

The p-values of the DM tests can be found in Appendix B.3.

Table 11
P-values of UC and CC test together with quantile score and AL log score for one-step-ahead xα,n
and Sα,n forecasts of Nikkei 225 with data from 1/1/1997 to 31/12/2016, α = 0.005 and n = 1000.
Index Model Method UC CC Quantile score AL log score

N225 GARCH(1,1) GQMLE k̂ Hill 0.567 0.003∗∗∗ 1.114 -7443.009
MR 0.090∗ 0.000∗∗∗ 1.141 -7448.163

k∗ Hill 0.913 0.000∗∗∗ 1.123 -7473.916
MR 0.054∗ 0.000∗∗∗ 1.143 -7425.835

3SNGQMLE k̂ Hill 0.306 0.093∗ 1.122 -7411.449
MR 0.089∗ 0.000∗∗∗ 1.120 -7463.556

k∗ Hill 0.426 0.099∗ 1.117 -7460.401
MR 0.054∗ 0.000∗∗∗ 1.127 -7426.960

Parametric 0.567 0.104 1.113 −7487.832

ARMA(1,0)-GARCH(1,1) GQMLE k̂ Hill 0.424 0.099∗ 1.112 -7448.402
MR 0.141 0.009∗∗∗ 1.116 -7482.260

k∗ Hill 0.906 0.004∗∗∗ 1.11 −7493.982
MR 0.09∗ 0.010 1.120 -7461.808

3SNGQMLE k̂ Hill 0.426 0.099∗ 1.125 -7400.698
MR 0.054∗ 0.000∗∗∗ 1.127 -7426.303

k∗ Hill 0.569 0.104 1.121 -7438.054
MR 0.017∗∗ 0.000∗∗∗ 1.133 -7388.283

Parametric 0.567 0.104 1.112 -7489.000

ARMA(1,1)-GARCH(1,1) GQMLE k̂ Hill 0.424 0.099∗ 1.112 -7449.081
MR 0.141 0.009∗∗∗ 1.116 -7482.989

k∗ Hill 0.906 0.004∗∗∗ 1.11 −7494.619
MR 0.09∗ 0.010 1.120 -7462.281

3SNGQMLE k̂ Hill 0.426 0.099∗ 1.124 -7403.153
MR 0.054∗ 0.000∗∗∗ 1.126 -7427.061

k∗ Hill 0.569 0.104 1.120 -7439.910
MR 0.031∗∗ 0.000∗∗∗ 1.132 -7389.377

Parametric 0.567 0.104 1.112 -7490.047

ARMA(1,1)-GJR-GARCH(1,1) GQMLE k̂ Hill 0.305 0.093∗ 1.063 -7571.569
MR 0.031∗∗ 0.141 1.067 -7627.009

k∗ Hill 0.424 0.099∗ 1.054 −7642.774
MR 0.031∗∗ 0.141 1.070 -7623.713

3SNGQMLE k̂ Hill 0.306 0.093∗ 1.067 -7572.645
MR 0.141 0.137 1.073 -7611.244

k∗ Hill 0.732 0.109 1.063 -7631.449
MR 0.213 0.135 1.073 -7612.728

Parametric 0.424 0.099∗ 1.064 -7638.153

Note. * indicates significance at 10%, ** indicates significance at 5%, and *** indicates significance at 1%.

The conclusions that we drew above are surprising since Nikkei 225 is known to be volatile

with extreme outcomes, for which we then expect the 3SNGQMLE to outperform the GQMLE.
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NASDAQ N225

Figure 4: Histogram of sample kurtosis of returns of NASDAQ and Nikkei 225 from 1/1/1997
to 31/12/2016. The returns are fitted using ARMA(1,1)-GJR-GARCH(1,1) and 3SNGQMLE(t10)
with the rolling window scheme with size 1000.

Table 12
P-values of UC and CC test together with quantile score and AL log score for one-step-ahead xα,n and
Sα,n forecasts of Nikkei 225 with filtered data from 1/1/1997 to 31/12/2016, α = 0.005 and n = 1000.

Index Model Method UC CC Quantile score AL log score

N225 GARCH(1,1) GQMLE k̂ Hill 0.939 0.999 0.579 -3892.066
MR 0.034∗∗ 0.924 0.614 -3822.094

k∗ Hill 0.583 0.993 0.594 -3873.816
MR 0.006∗∗∗ 0.861 0.617 -3795.336

3SNGQMLE k̂ Hill 0.697 1.000 0.575 −3901.730
MR 0.006∗∗∗ 0.000∗∗∗ 0.588 -3855.049

k∗ Hill 0.939 0.999 0.579 -3889.238
MR 0.002∗∗∗ 0.000∗∗∗ 0.593 -3820.628

To analyse the differences between two indices, we take a closer look at the residuals from the

estimated models. Figure 4 presents the sample kurtosis from our estimation samples for NASDAQ

and N225. We observe that the majority of the samples from Nikkei 225 have kurtosis close to

3, whereas the kurtosis for most samples from NASDAQ are centered around 4. We notice that

there are some samples with very high kurtosis for both indices, especially Nikkei 225. To study

whether the samples with low kurtosis are causing 3SNGQMLE to have poor performance, we

remove the observations whose corresponding estimation period has sample kurtosis below 3.7 from

the forecast samples of Nikkei 225 and re-evaluate the performance of the EVT methods. In total, we

remove 1495 observations from the forecast sample with 3904 observations. Table 12 shows that, as

expected, 3SNGQMLE outperforms GQMLE using the filtered sample when the GARCH(1,1) model

is considered. The same conclusion is drawn when the ARMA(1,0)-GARCH(1,1), ARMA(1,1)-

GARCH(1,1) and ARMA(1,1)-GJR-GARCH(1,1) models are considered, for which the results are

included in Appendix B.3.

We notice that most of the reminding samples from Nikkei 225 after filtering overlap with one

of the crisis periods in Japan. The beginning of our data are from the periods during which the
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Japanese economy was still suffering from the 90’s asset price bubble. And most observation from the

second half of our data set are from the period affected by the 2008 crisis. While both NASDAQ and

Nikkei 225 exhibited high volatility during the crisis periods, our results indicate that innovations of

Nikkei 225 have thinner tail than NASDAQ during the more stable periods. One possible explanation

for this finding is that NASDAQ mainly consists of stocks from the information technology sector,

where there is presence of speculative bubbles that collapse periodically (Anderson et al., 2010).

The emergence and collapsing of bubbles could potentially be the cause of heavy-tailed innovations

of NASDAQ during non-major-crisis period comparing to Nikkei 225 that consists of stocks from

companies in diverse sectors.

A possible way to improve the performance of 3SNGQMLE when estimating samples from Nikkei

225 is to pick a non-Gaussian distribution with lighter tail. However, further research need to be

done to determine the best distribution to use in this situation.

In conclusion, we show in this section the advantage of considering the data-dependent k∗ and

the asymmetric ARMA-GJR-GARCH model when applying the EVT method in conditional VaR

and conditional ES estimation. Furthermore, we demonstrate the advantages of considering the

3SNGQMLE instead of the GQMLE in model estimation. We show that using the 3SNGQMLE

in the EVT methods leads to better conditional VaR and ES estimates when the innovations are

heavy-tailed. From economic aspects, heavy-tailed innovations for stock returns can be associated

with characteristics of the sectors and special periods such as the financial crisis periods. We then

suggest one to the choose estimation method using the available prior knowledge of the stocks.

Evaluating the sample kurtosis of the estimation period could also provide some hints on which

estimation method should be used.

5 Discussion and Conclusion

In this article, we extend the EVT method in conditional VaR and ES estimations from Hoga (2019a)

by considering a better model estimation method and more general asymmetric ARMA-GARCH

models. We also verify the results from Hoga (2019a) and provide a clearer comparison among all

models and estimators. Furthermore, we consider an improved parametric method with the skew

t-distribution.

First of all, we verify the results from Hoga (2019a) where similar conclusions were drawn. We

further explicitly show the advantage of considering the data-dependent k∗ and the ARMA-GARCH

model in more extensive simulation and empirical studies comparing to Hoga (2019a). In addition,

we consider the ARMA-GJR-GARCH model. We verify our simulation results and show that the

conclusions overall do not change when the ARMA-GJR-GARCH model is considered. We further

show the advantages of considering the ARMA-GJR-GARCH model in an empirical study. Another

study that is not included in this article is the robustness check of different models. It is meaningful

if one can show which model is the most robust when the data is generated using different models.

Seondly, We show that the 3SNGQMLE can improve the finite-sample performance of the EVT

method comparing to the commonly used GQMLE when the innovations are heavy-tailed. We
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then relax the assumptions from Hoga (2019a) and prove that the inconsistent simple NGQMLE

leads to the same conditional VaR and ES estimates as the consistent 3SNGQMLE. Despite the

fact that in general the simple NGQMLE is inconsistent and hence is not considered in research

or applications, our results show that it is valid when estimating conditional VaR and ES using

the EVT method. And the simple NGQMLE should be preferred over GQMLE when we have

heavy-tailed innovations. Even though the simple NGQMLE leads to same conditional VaR and

ES estimates as the 3SNGQMLE, we nevertheless prefer the latter for two reasons. Firstly, the

3SNGQMLE leads to consistent coefficient estimates while the simple NGQMLE does not. As

demonstrated by our results, the bias of the estimates from the simple NGQMLE is high when

the picked distribution is far from the true distribution. The biased coefficient estimates loses

their interpretability, which is often important in applications. Second of all, the 3SNGQMLE has

more room for further improvements. We show that the performance of NGQMLEs can be further

improved if the appropriate non-Gaussian distribution is picked. Fan et al. (2014) proposed a way of

choosing optimal non-Gaussian distribution when applying the 3SNGQMLE. This method can then

be used to improve the efficiency of the 3SNGQMLE in coefficient estimates. However, as shown by

our results, the best coefficient estimates do not necessarily lead to the best conditional VaR and ES

estimates. It can be interesting for future research to look into the exact relation between efficiency

in coefficient estimates and efficiency in conditional VaR and ES estimates in finite sample.

We verify our simulation results on actual data in an empirical study. We show the situation

where the 3SNGQMLE outperforms GQMLE and also the case where GQMLE has more desirable

performance. We link our findings to the economics environment and characteristics of different

stock indices. More importantly, we provide intuitions in the selection between 3SNGQMLE and

GQMLE using economic reasoning and statistical features of the sample. However, the intuitions we

provide are immature and do not lead to a well-established selecting scheme for model estimation

methods, which can be interesting for future research.

Last but not the least, We show in a simulation study that the parametric method provides

more accurate conditional VaR and ES estimates when the innovations follow the Student’s t-

distribution. Whereas the EVT method is more desirable when the innovations follow the skewed

Student’s t-distribution. Though the performance of the considered parametric method is not ideal

and cannot replace the EVT methods, we do see potential in the parametric method as there is

plenty room to further improve its performance. Our results also show that the confidence intervals

constructed for the parametric method are not ideal. To address this, future research can consider

other bootstrapping techniques (e.g. block bootstrapping) instead. Moreover, the bootstrapping

in our study was only done with 1000 iterations and better coverage could be achieved if more

iterations were used. Overall, our results regarding the parametric method provide some useful

insights for future research.

30



References

Anderson, K., Brooks, C., and Katsaris, A. (2010). Speculative bubbles in the sp 500: Was the tech

bubble confined to the tech sector? Journal of Empirical Finance, 17(3):345–361.

Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with

emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 65(2):367–389.

Basel Committee (2019). Minimum capital requirements for market risk. https://www.bis.org/

bcbs/publ/d457.pdf.
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Appendix A

A.1 Proof

Following from (38), it is clear that the order statistics of Ũi is the scaled version of the order statistics

of Ûi without the order being changed . Defining the order statistics of Ũi as Ũ1:n ≤ Ũ2:n ≤ ... ≤ Ũn:n,

it is easy to see from above that Ũh:n = Uh:n/η̂d for h = 1, ..., n. We then see that though Ũi and

its order statistics are biased, the Hill and the MR estimator remaining the same. From (11) and

(12) we have:

γ̃H :=
1

k

k−1∑
i=0

log

(
Ũn−i:n

Ũn−k:n

)
=

1

k

k−1∑
i=0

log

(
Un−i:n/η̂d
Un−i:n/η̂d

)

=
1

k

k−1∑
i=0

log

(
Un−i:n
Un−i:n

)
= γ̂H ,

γ̃MR =
1

2

1
k

∑k−1
i=0 {log(Ũn−i:n)− log(Ũn−k:n)}2

γ̃H

=
1

2

1
k

∑k−1
i=0 {log(Un−i:n/η̂d)− log(Un−i:n/η̂d)}2

γ̂H

= γ̂MR,

where the data-dependent estimator for k defined in (14) can be written as the following:

k̃∗ = arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

∣∣∣∣∣Ũn−j,n − Ũn−k,n
(
j

k

)−γ̃∣∣∣∣∣
]

= arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

∣∣∣∣∣ 1

η̂d
Ûn−j:n −

1

η̂d
Ûn−k:n

(
j

k

)−γ̂∣∣∣∣∣
]

= arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

1

η̂d

∣∣∣∣∣Ûn−j:n − Ûn−k:n
(
j

k

)−γ̂∣∣∣∣∣
]

= k∗

Using (10) and (13) we can then write the following:

x̃Uα =
˜
U
(n
k

)(nα
k

)−γ̃
(47)

=
1

η̂d

̂
U
(n
k

)(nα
k

)−γ̂
=

1

η̂d
x̂Uα

S̃Uα =
x̃Uα

1− γ̃
=
x̂Uα /η̂d
1− γ̂

= ŜUα (48)
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A.2 Technical Notes

In this section we discuss the interesting technical problems we ran into during this research. We

hope sharing them can provide some help for future research to replicate our results and inspirations.

The first note is regarding the τ -quantile in Table 1. The values in Table 1 are lower comparing

to the results from Hoga (2019a). One of the causes of the differences is the sample size used in

Brownian motion approximation. After increasing the sample size from 100, 000 to 1000, 000, we

obtained larger values for t0 = 0.2 and t0 = 0.3. However, the values for t0 = 0.1 decreased after

increasing the sample size.

The second note here is about the starting point for optimizations when applying the 3SNGQMLE.

Before applying the 3SNGQMLE in the EVT method, we first tried to replicate part of the results

from Fan et al. (2014). We found that the results from Fan et al. (2014) could only be exactly

replicated if the true DGP values are used as the starting point for likelihood optimizations. And

the performance of 3SNGQMLE gets worse when a random starting point is picked instead. A

suggestion by us is to pick a sequence of stating points when applying 3SNGQMLE in empirical

studies, which is not implemented in this study due to time constraints.

Thirdly, in the empirical study we find that the coefficients are very close to zero and could not

be correctly estimated for some indices. To solve this issue, we multiply the returns by 100 before

the estimation and scale the conditional VaR and ES forecasts back to the original level for forecast

evaluation.

Lastly, in the empirical study, not all the estimation samples lead to feasible estimates. As this

problem doesn’t occur often, we drop these samples and take it into account when scaling the final

scores.
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Appendix B

B.1 Additional Simulation Result for 3.3

This section contains additional simulation results for section 3.3. The additional DGPs considered

are as the following:

Xi = εi, where εi = σiUi, Ui ∼ st4.5(5), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (49)

Xi = εi, where εi = σiUi, Ui ∼ st8(5), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (50)

Xi = εi, where εi = σiUi, Ui ∼ st15(0), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (51)

Xi = εi, where εi = σiUi, Ui ∼ st15(5), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (52)

Xi = εi, where εi = σiUi, Ui ∼ st30(5), σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (53)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st4.5(0)

σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (54)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st4.5(5)

σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (55)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st8(0)

σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (56)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st8(5)

σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (57)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st15(0)

σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (58)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st15(5)

σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (59)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st30(0)

σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (60)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st30(5)

σ2i = 1 + 0.2 · ε2i−1 + 0.2 · σ2i−1, (61)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st4.5(0)

σ2i = 1 + 0.2 · ε2i−1 + 0.1 · ε2i−1 · I(εi−1 < 0) + 0.2 · σ2i−1, (62)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st4.5(5)

σ2i = 1 + 0.2 · ε2i−1 + 0.1 · ε2i−1 · I(εi−1 < 0) + 0.2 · σ2i−1, (63)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st8(0)

σ2i = 1 + 0.2 · ε2i−1 + 0.1 · ε2i−1 · I(εi−1 < 0) + 0.2 · σ2i−1, (64)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st8(5)

σ2i = 1 + 0.2 · ε2i−1 + 0.1 · ε2i−1 · I(εi−1 < 0) + 0.2 · σ2i−1, (65)
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Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st15(0)

σ2i = 1 + 0.2 · ε2i−1 + 0.1 · ε2i−1 · I(εi−1 < 0) + 0.2 · σ2i−1, (66)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st15(5)

σ2i = 1 + 0.2 · ε2i−1 + 0.1 · ε2i−1 · I(εi−1 < 0) + 0.2 · σ2i−1, (67)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st30(0)

σ2i = 1 + 0.2 · ε2i−1 + 0.1 · ε2i−1 · I(εi−1 < 0) + 0.2 · σ2i−1, (68)

Xi = 0.2 ·Xi−1 + 0.2 · εi−1 + εi, where εi = σiUi, Ui ∼ st30(5)

σ2i = 1 + 0.2 · ε2i−1 + 0.1 · ε2i−1 · I(εi−1 < 0) + 0.2 · σ2i−1. (69)
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Table B1.1
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (43) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(43) GQMLE 0.588 Hill k∗ = 57.45 xα,n 0.026 0.332 0.850 0.887
Sα,n -0.265 0.658 0.685 0.948

MR k∗ = 65.40 xα,n 0.222 0.389 0.790 0.744
Sα,n 0.014 0.570 0.842 0.917

3SNGQMLE(t5) 0.468 Hill k∗ = 58.36 xα,n 0.032 0.278 0.886 0.911
Sα,n -0.261 0.598 0.691 0.957

MR k∗ = 66.07 xα,n 0.225 0.346 0.805 0.760
Sα,n 0.014 0.502 0.851 0.928

3SNGQMLE(t10) 0.482 Hill k∗ = 57.86 xα,n 0.034 0.278 0.885 0.910
Sα,n -0.255 0.594 0.694 0.958

MR k∗ = 66.10 xα,n 0.227 0.346 0.809 0.762
Sα,n 0.019 0.501 0.848 0.928

Table B1.2
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (50) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(50) GQMLE 0.473 Hill k∗ = 55.83 xα,n 0.037 0.220 0.880 0.896
Sα,n -0.304 0.504 0.624 0.941

MR k∗ = 65.011 xα,n 0.251 0.321 0.785 0.691
Sα,n -0.016 0.355 0.882 0.939

3SNGQMLE(t5) 0.438 Hill k∗ = 56.08 xα,n 0.041 0.210 0.884 0.906
Sα,n -0.304 0.496 0.644 0.941

MR k∗ = 65.09 xα,n 0.254 0.318 0.793 0.683
Sα,n -0.018 0.346 0.890 0.946

3SNGQMLE(t10) 0.439 Hill k∗ = 56.03 xα,n 0.040 0.210 0.883 0.907
Sα,n -0.304 0.495 0.640 0.940

MR k∗ = 65.07 xα,n 0.253 0.317 0.789 0.682
Sα,n -0.017 0.346 0.893 0.940
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Table B1.3
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (51) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(51) GQMLE 0.458 Hill k∗ = 54.88 xα,n 0.032 0.206 0.890 0.911
Sα,n -0.354 0.513 0.587 0.906

MR k∗ = 65.02 xα,n 0.267 0.326 0.754 0.628
Sα,n -0.042 0.325 0.910 0.944

3SNGQMLE(t5) 0.458 Hill k∗ = 55.12 xα,n 0.03 0.206 0.898 0.918
Sα,n -0.361 0.518 0.587 0.908

MR k∗ = 64.95 xα,n 0.265 0.324 0.757 0.627
Sα,n -0.05 0.326 0.91 0.942

3SNGQMLE(t10) 0.453 Hill k∗ = 54.94 xα,n 0.031 0.205 0.902 0.919
Sα,n -0.358 0.516 0.594 0.912

MR k∗ = 65.09 xα,n 0.267 0.325 0.762 0.638
Sα,n -0.046 0.324 0.913 0.95

Table B1.4
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (52) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(52) GQMLE 0.431 Hill k∗ = 54.58 xα,n 0.039 0.179 0.917 0.925
Sα,n -0.308 0.438 0.616 0.911

MR k∗ = 66.22 xα,n 0.258 0.305 0.752 0.620
Sα,n -0.022 0.271 0.939 0.947

3SNGQMLE(t5) 0.434 Hill k∗ = 54.78 xα,n 0.037 0.178 0.914 0.929
Sα,n -0.314 0.441 0.616 0.913

MR k∗ = 66.07 xα,n 0.255 0.303 0.763 0.625
Sα,n -0.028 0.273 0.946 0.947

3SNGQMLE(t10) 0.429 Hill k∗ = 54.71 xα,n 0.038 0.177 0.916 0.924
Sα,n -0.309 0.437 0.617 0.919

MR k∗ = 66.15 xα,n 0.256 0.303 0.758 0.623
Sα,n -0.025 0.271 0.941 0.944
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Table B1.5
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (53) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(53) GQMLE 0.418 Hill k∗ = 54.34 xα,n 0.032 0.171 0.911 0.916
Sα,n -0.322 0.436 0.571 0.896

MR k∗ = 64.60 xα,n 0.254 0.297 0.739 0.610
Sα,n -0.036 0.250 0.931 0.963

3SNGQMLE(t5) 0.435 Hill k∗ = 54.53 xα,n 0.030 0.172 0.904 0.915
Sα,n -0.328 0.442 0.575 0.893

MR k∗ = 67.62 xα,n 0.250 0.295 0.749 0.616
Sα,n -0.044 0.257 0.932 0.960

3SNGQMLE(t10) 0.423 Hill k∗ = 54.46 xα,n 0.031 0.171 0.911 0.920
Sα,n -0.325 0.438 0.577 0.886

MR k∗ = 67.63 xα,n 0.252 0.296 0.754 0.622
Sα,n -0.040 0.253 0.930 0.958

Table B1.6
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (54) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(54) GQMLE 0.763 Hill k∗ = 57.93 xα,n 0.046 0.358 0.870 0.911
Sα,n -0.372 0.818 0.679 0.954

MR k∗ = 64.509 xα,n 0.282 0.447 0.805 0.764
Sα,n -0.021 0.672 0.840 0.940

3SNGQMLE(t5) 0.618 Hill k∗ = 58.50 xα,n 0.041 0.317 0.891 0.931
Sα,n -0.397 0.798 0.689 0.953

MR k∗ = 65.16 xα,n 0.272 0.422 0.823 0.790
Sα,n -0.053 0.659 0.864 0.944

3SNGQMLE(t10) 0.631 Hill k∗ = 58.31 xα,n 0.045 0.320 0.886 0.927
Sα,n -0.383 0.791 0.688 0.955

MR k∗ = 65.19 xα,n 0.276 0.424 0.816 0.781
Sα,n -0.040 0.654 0.862 0.942
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Table B1.7
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (55) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(55) GQMLE 0.780 Hill k∗ = 58.72 xα,n 0.017 0.352 0.826 0.877
Sα,n -0.312 0.748 0.644 0.932

MR k∗ = 64.66 xα,n 0.217 0.398 0.785 0.761
Sα,n -0.025 0.629 0.794 0.916

3SNGQMLE(t5) 0.615 Hill k∗ = 59.40 xα,n 0.021 0.346 0.865 0.901
Sα,n -0.319 0.798 0.659 0.935

MR k∗ = 65.24 xα,n 0.218 0.387 0.806 0.785
Sα,n -0.035 0.669 0.831 0.919

3SNGQMLE(t10) 0.630 Hill k∗ = 59.53 xα,n 0.024 0.357 0.856 0.903
Sα,n -0.310 0.796 0.652 0.934

MR k∗ = 65.11 xα,n 0.221 0.399 0.802 0.774
Sα,n -0.028 0.674 0.825 0.913

Table B1.8
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (56) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(56) GQMLE 0.640 Hill k∗ = 55.79 xα,n 0.059 0.249 0.876 0.906
Sα,n -0.319 0.555 0.658 0.939

MR k∗ = 64.13 xα,n 0.290 0.373 0.738 0.665
Sα,n -0.002 0.413 0.878 0.941

3SNGQMLE(t5) 0.609 Hill k∗ = 56.00 xα,n 0.052 0.248 0.880 0.916
Sα,n -0.340 0.581 0.660 0.937

MR k∗ = 64.18 xα,n 0.282 0.365 0.753 0.680
Sα,n -0.024 0.427 0.871 0.939

3SNGQMLE(t10) 0.607 Hill k∗ = 55.87 xα,n 0.056 0.248 0.884 0.908
Sα,n -0.332 0.574 0.675 0.936

MR k∗ = 64.43 xα,n 0.286 0.367 0.745 0.671
Sα,n -0.015 0.423 0.880 0.936
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Table B1.9
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (57) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(57) GQMLE 0.653 Hill k∗ = 55.66 xα,n 0.033 0.237 0.857 0.898
Sα,n -0.303 0.513 0.645 0.916

MR k∗ = 65.59 xα,n 0.245 0.332 0.762 0.707
Sα,n -0.018 0.377 0.860 0.932

3SNGQMLE(t5) 0.611 Hill k∗ = 55.88 xα,n 0.033 0.232 0.866 0.902
Sα,n -0.313 0.518 0.641 0.919

MR k∗ = 65.53 xα,n 0.243 0.328 0.773 0.727
Sα,n -0.030 0.376 0.859 0.933

3SNGQMLE(t10) 0.611 Hill k∗ = 55.90 xα,n 0.034 0.230 0.867 0.908
Sα,n -0.307 0.511 0.648 0.924

MR k∗ = 65.58 xα,n 0.244 0.327 0.767 0.725
Sα,n -0.025 0.372 0.865 0.930

Table B1.10
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (58) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(58) GQMLE 0.610 Hill k∗ = 55.02 xα,n 0.045 0.204 0.879 0.900
Sα,n -0.324 0.475 0.614 0.918

MR k∗ = 65.55 xα,n 0.275 0.330 0.748 0.642
Sα,n -0.021 0.300 0.906 0.932

3SNGQMLE(t5) 0.611 Hill k∗ = 55.17 xα,n 0.040 0.202 0.871 0.908
Sα,n -0.339 0.488 0.595 0.906

MR k∗ = 65.45 xα,n 0.270 0.325 0.745 0.657
Sα,n -0.036 0.304 0.896 0.945

3SNGQMLE(t10) 0.600 Hill k∗ = 55.19 xα,n 0.043 0.200 0.883 0.909
Sα,n -0.332 0.481 0.601 0.902

MR k∗ = 65.47 xα,n 0.272 0.326 0.743 0.655
Sα,n -0.030 0.301 0.904 0.939
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Table B1.11
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (59) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(59) GQMLE 0.621 Hill k∗ = 54.90 xα,n 0.048 0.213 0.888 0.901
Sα,n -0.294 0.450 0.626 0.928

MR k∗ = 67.00 xα,n 0.267 0.334 0.723 0.620
Sα,n -0.008 0.303 0.913 0.944

3SNGQMLE(t5) 0.616 Hill k∗ = 55.05 xα,n 0.044 0.213 0.885 0.907
Sα,n -0.305 0.461 0.601 0.921

MR k∗ = 66.89 xα,n 0.263 0.330 0.730 0.635
Sα,n -0.018 0.306 0.911 0.945

3SNGQMLE(t10) 0.611 Hill k∗ = 54.97 xα,n 0.046 0.212 0.885 0.908
Sα,n -0.300 0.455 0.612 0.923

MR k∗ = 66.99 xα,n 0.266 0.331 0.722 0.621
Sα,n -0.013 0.303 0.915 0.951

Table B1.12
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (60) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(60) GQMLE 0.594 Hill k∗ = 54.70 xα,n 0.026 0.190 0.899 0.906
Sα,n -0.347 0.475 0.549 0.881

MR k∗ = 67.91 xα,n 0.257 0.308 0.734 0.616
Sα,n -0.048 0.280 0.918 0.954

3SNGQMLE(t5) 0.611 Hill k∗ = 54.52 xα,n 0.021 0.191 0.894 0.905
Sα,n -0.359 0.484 0.535 0.894

MR k∗ = 67.80 xα,n 0.251 0.305 0.738 0.619
Sα,n -0.061 0.285 0.928 0.949

3SNGQMLE(t10) 0.596 Hill k∗ = 54.69 xα,n 0.023 0.189 0.895 0.911
Sα,n -0.353 0.478 0.543 0.883

MR k∗ = 67.81 xα,n 0.253 0.306 0.737 0.621
Sα,n -0.055 0.281 0.921 0.952
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Table B1.13
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (61) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(61) GQMLE 0.593 Hill k∗ = 54.57 xα,n 0.032 0.200 0.876 0.895
Sα,n -0.321 0.452 0.577 0.887

MR k∗ = 67.43 xα,n 0.256 0.315 0.688 0.592
Sα,n -0.033 0.279 0.911 0.941

3SNGQMLE(t5) 0.604 Hill k∗ = 54.93 xα,n 0.030 0.192 0.876 0.902
Sα,n -0.330 0.454 0.558 0.895

MR k∗ = 67.23 xα,n 0.253 0.310 0.707 0.598
Sα,n -0.042 0.275 0.914 0.941

3SNGQMLE(t10) 0.592 Hill k∗ = 54.83 xα,n 0.032 0.194 0.878 0.900
Sα,n -0.325 0.452 0.571 0.892

MR k∗ = 67.35 xα,n 0.255 0.311 0.699 0.591
Sα,n -0.038 0.276 0.913 0.945

Table B1.14
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (62) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(62) GQMLE 0.861 Hill k∗ = 58.06 xα,n -0.210 0.460 0.793 0.860
Sα,n -0.752 1.109 0.454 0.872

MR k∗ = 64.49 xα,n 0.043 0.386 0.909 0.876
Sα,n -0.374 0.829 0.784 0.915

3SNGQMLE(t5) 0.694 Hill k∗ = 58.40 xα,n -0.206 0.406 0.817 0.880
Sα,n -0.749 1.055 0.472 0.869

MR k∗ = 64.73 xα,n 0.042 0.333 0.932 0.893
Sα,n -0.378 0.773 0.786 0.931

3SNGQMLE(t10) 0.709 Hill k∗ = 58.27 xα,n -0.203 0.412 0.816 0.881
Sα,n -0.743 1.058 0.474 0.874

MR k∗ = 64.90 xα,n 0.046 0.341 0.928 0.887
Sα,n -0.370 0.778 0.782 0.925
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Table B1.15
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (63) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(63) GQMLE 0.867 Hill k∗ = 58.45 xα,n -0.194 0.412 0.782 0.861
Sα,n -0.589 0.893 0.466 0.884

MR k∗ = 64.51 xα,n 0.011 0.349 0.895 0.886
Sα,n -0.295 0.685 0.777 0.923

3SNGQMLE(t5) 0.697 Hill k∗ = 58.61 xα,n -0.179 0.350 0.810 0.889
Sα,n -0.572 0.836 0.462 0.895

MR k∗ = 64.83 xα,n 0.023 0.286 0.920 0.906
Sα,n -0.281 0.615 0.788 0.937

3SNGQMLE(t10) 0.713 Hill k∗ = 58.27 xα,n -0.178 0.347 0.808 0.896
Sα,n -0.567 0.824 0.475 0.899

MR k∗ = 64.90 xα,n 0.024 0.285 0.923 0.902
Sα,n -0.277 0.607 0.796 0.935

Table B1.16
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (64) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(64) GQMLE 0.719 Hill k∗ = 55.78 xα,n -0.220 0.365 0.762 0.845
Sα,n -0.714 0.889 0.317 0.800

MR k∗ = 63.81 xα,n 0.026 0.267 0.947 0.884
Sα,n -0.374 0.596 0.753 0.903

3SNGQMLE(t5) 0.667 Hill k∗ = 55.55 xα,n -0.223 0.368 0.762 0.862
Sα,n -0.722 0.903 0.305 0.803

MR k∗ = 63.86 xα,n 0.022 0.264 0.947 0.893
Sα,n -0.384 0.609 0.752 0.901

3SNGQMLE(t10) 0.668 Hill k∗ = 55.67 xα,n -0.222 0.365 0.772 0.860
Sα,n -0.718 0.897 0.304 0.792

MR k∗ = 63.86 xα,n 0.024 0.262 0.953 0.894
Sα,n -0.380 0.602 0.768 0.906
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Table B1.17
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (65) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(65) GQMLE 0.741 Hill k∗ = 55.80 xα,n -0.207 0.378 0.726 0.812
Sα,n -0.634 0.813 0.290 0.769

MR k∗ = 64.40 xα,n 0.016 0.299 0.928 0.882
Sα,n -0.332 0.570 0.730 0.885

3SNGQMLE(t5) 0.681 Hill k∗ = 55.85 xα,n -0.212 0.359 0.739 0.822
Sα,n -0.642 0.803 0.269 0.768

MR k∗ = 64.44 xα,n 0.012 0.273 0.941 0.905
Sα,n -0.340 0.553 0.733 0.886

3SNGQMLE(t10) 0.684 Hill k∗ = 55.83 xα,n -0.209 0.362 0.728 0.823
Sα,n -0.637 0.803 0.282 0.768

MR k∗ = 64.35 xα,n 0.014 0.279 0.939 0.898
Sα,n -0.336 0.555 0.736 0.887

Table B1.18
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (66) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(66) GQMLE 0.664 Hill k∗ = 54.98 xα,n -0.210 0.330 0.728 0.824
Sα,n -0.664 0.794 0.239 0.735

MR k∗ = 65.13 xα,n 0.035 0.236 0.928 0.878
Sα,n -0.339 0.510 0.701 0.870

3SNGQMLE(t5) 0.662 Hill k∗ = 55.01 xα,n -0.214 0.338 0.712 0.807
Sα,n -0.672 0.805 0.216 0.727

MR k∗ = 64.87 xα,n 0.031 0.242 0.933 0.875
Sα,n -0.347 0.520 0.708 0.873

3SNGQMLE(t10) 0.655 Hill k∗ = 55.12 xα,n -0.212 0.336 0.720 0.820
Sα,n -0.668 0.801 0.214 0.733

MR k∗ = 64.91 xα,n 0.034 0.242 0.933 0.869
Sα,n -0.343 0.517 0.706 0.881
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Table B1.19
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (67) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(67) GQMLE 0.677 Hill k∗ = 55.13 xα,n -0.200 0.319 0.708 0.780
Sα,n -0.621 0.741 0.226 0.700

MR k∗ = 66.42 xα,n 0.033 0.233 0.932 0.878
Sα,n -0.315 0.475 0.718 0.835

3SNGQMLE(t5) 0.679 Hill k∗ = 55.00 xα,n -0.202 0.319 0.709 0.780
Sα,n -0.627 0.750 0.220 0.691

MR k∗ = 66.21 xα,n 0.030 0.227 0.927 0.880
Sα,n -0.322 0.482 0.713 0.840

3SNGQMLE(t10) 0.669 Hill k∗ = 55.17 xα,n -0.201 0.317 0.701 0.772
Sα,n -0.623 0.744 0.224 0.693

MR k∗ = 66.33 xα,n 0.031 0.227 0.930 0.878
Sα,n -0.319 0.477 0.713 0.842

Table B1.20
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (68) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(68) GQMLE 0.657 Hill k∗ = 54.72 xα,n -0.217 0.33 0.698 0.793
Sα,n -0.658 0.774 0.161 0.655

MR k∗ = 67.23 xα,n 0.021 0.224 0.932 0.887
Sα,n -0.349 0.494 0.69 0.824

3SNGQMLE(t5) 0.663 Hill k∗ = 54.64 xα,n -0.219 0.338 0.701 0.787
Sα,n -0.664 0.783 0.149 0.635

MR k∗ = 67.20 xα,n 0.019 0.234 0.939 0.884
Sα,n -0.354 0.503 0.693 0.828

3SNGQMLE(t10) 0.649 Hill k∗ = 54.88 xα,n -0.218 0.333 0.707 0.791
Sα,n -0.661 0.777 0.154 0.641

MR k∗ = 67.18 xα,n 0.02 0.229 0.935 0.891
Sα,n -0.352 0.498 0.699 0.824
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Table B1.21
Average value of k, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method, with sum RMSEs of the coefficient estimates.
The considered EVT methods are based on Hill and MR estimators with two methods in model
estimation. The considered DGP is as in (69) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator RMSE(coefficients) Estimator k z Bias RMSE I0.95na I0.95sn

(69) GQMLE 0.653 Hill k∗ = 54.66 xα,n -0.205 0.293 0.701 0.764
Sα,n -0.627 0.720 0.172 0.612

MR k∗ = 67.39 xα,n 0.027 0.185 0.945 0.874
Sα,n -0.327 0.440 0.671 0.822

3SNGQMLE(t5) 0.669 Hill k∗ = 54.58 xα,n -0.209 0.298 0.687 0.766
Sα,n -0.634 0.731 0.164 0.602

MR k∗ = 67.55 xα,n 0.023 0.188 0.944 0.870
Sα,n -0.334 0.451 0.664 0.822

3SNGQMLE(t10) 0.654 Hill k∗ = 54.55 xα,n -0.206 0.294 0.688 0.760
Sα,n -0.630 0.725 0.167 0.610

MR k∗ = 67.35 xα,n 0.025 0.185 0.945 0.875
Sα,n -0.330 0.444 0.666 0.817

B.2 Additional Simulation Result for 3.4
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Table B2.1
Average value of k∗, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method with k∗ and k̂ . The considered EVT methods
are based on Hill and MR estimators with model estimated using GQMLE and 3SNGQMLE. The
considered DGP is as in (42) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator Estimator k z Bias RMSE I0.95na I0.95sn

(43) GQMLE Hill k∗ = 57.45 xα,n 0.026 0.332 0.850 0.887
Sα,n -0.265 0.658 0.685 0.948

k̂ = 71 xα,n -0.061 0.358 0.916 0.918
Sα,n -0.618 0.937 0.547 0.890

MR k∗ = 65.40 xα,n 0.222 0.389 0.790 0.744
Sα,n 0.014 0.570 0.842 0.917

k̂ = 71 xα,n 0.207 0.387 0.821 0.745
Sα,n -0.213 0.656 0.861 0.920

3SNGQMLE(t10) Hill k∗ = 57.86 xα,n 0.034 0.278 0.885 0.910
Sα,n -0.255 0.594 0.694 0.958

k̂ = 71 xα,n -0.052 0.297 0.935 0.923
Sα,n -0.606 0.865 0.553 0.894

MR k∗ = 66.10 xα,n 0.227 0.346 0.809 0.762
Sα,n 0.019 0.501 0.848 0.928

k̂ = 71 xα,n 0.211 0.344 0.837 0.763
Sα,n -0.207 0.571 0.873 0.927

Table B2.2
Average value of k∗, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method with k∗ and k̂ . The considered EVT methods
are based on Hill and MR estimators with model estimated using GQMLE and 3SNGQMLE. The
considered DGP is as in (42) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator Estimator k z Bias RMSE I0.95na I0.95sn

(54) GQMLE Hill k∗ = 57.93 xα,n 0.046 0.358 0.870 0.911
Sα,n -0.372 0.818 0.679 0.954

k̂ = 71 xα,n -0.057 0.381 0.917 0.928
Sα,n -0.827 1.199 0.530 0.891

MR k∗ = 64.51 xα,n 0.282 0.447 0.805 0.764
Sα,n -0.021 0.672 0.840 0.940

k̂ = 71 xα,n 0.270 0.443 0.828 0.765
Sα,n -0.306 0.779 0.856 0.938

3SNGQMLE(t10) Hill k∗ = 58.31 xα,n 0.045 0.320 0.886 0.927
Sα,n -0.383 0.791 0.688 0.955

k̂ = 71 xα,n -0.055 0.338 0.935 0.932
Sα,n -0.827 1.147 0.526 0.894

MR k∗ = 65.19 xα,n 0.276 0.424 0.816 0.781
Sα,n -0.040 0.654 0.862 0.942

k̂ = 71 xα,n 0.261 0.421 0.845 0.783
Sα,n -0.323 0.753 0.865 0.940

48



Table B2.3
Average value of k∗, bias, RMSE, coverage probabilities and length of confidence intervals for x̂α,n
and Ŝα,n with α = 0.01, estimated using EVT method with k∗ and k̂ . The considered EVT methods
are based on Hill and MR estimators with model estimated using GQMLE and 3SNGQMLE. The
considered DGP is as in (42) with n = 1000 and 1000 simulation repetitions.

Coverage
Model Coefficient Estimator Estimator k z Bias RMSE I0.95na I0.95sn

(62) GQMLE Hill k∗ = 57.47 xα,n 0.055 0.434 0.837 0.881
Sα,n -0.362 0.889 0.637 0.933

k̂ = 71 xα,n -0.054 0.452 0.880 0.901
Sα,n -0.844 1.257 0.490 0.859

MR k∗ = 62.84 xα,n 0.306 0.514 0.765 0.746
Sα,n 0.011 0.749 0.808 0.931

k̂ = 71 xα,n 0.294 0.511 0.799 0.753
Sα,n -0.290 0.847 0.826 0.918

3SNGQMLE(t10) Hill k∗ = 57.63 xα,n 0.062 0.379 0.863 0.903
Sα,n -0.364 0.831 0.659 0.940

k̂ = 71 xα,n -0.045 0.392 0.906 0.916
Sα,n -0.840 1.209 0.497 0.882

MR k∗ = 64.30 xα,n 0.305 0.473 0.780 0.766
Sα,n -0.001 0.691 0.823 0.926

k̂ = 71 xα,n 0.291 0.472 0.813 0.778
Sα,n -0.303 0.801 0.831 0.930

B.3 Additional Empirical Results
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Table B3.1
P-values of UC and CC test and quantile score for one-step-ahead xα,n forecast together with AL
log score for one-step-ahead Sα,n forecast of CAC40, where α = 0.005

Index Model Method UC CC Quantile score AL log score

CAC40 GARCH(1,1) GQMLE k̂ Hill 0.061∗ 1 1.015 -8349.89
MR 0.22 0.011∗∗ 0.993 -8460.04

k∗ Hill 0.225 0.106 0.997 −8486.993
MR 0.148 0.012∗∗ 0.996 -8460.27

3SNGQMLE k̂ Hill 0.152 1 1.018 -8354.16
MR 0.094∗ 0.014∗∗ 1.009 -8395.74

k∗ Hill 0.904 0.138 1.002 -8473.46
MR 0.058∗ 0.015∗∗ 1.013 -8386.99

Parametric 0.061 0.088 1.023 -8380.962

ARMA(1,0)-GARCH(1,1) GQMLE k̂ Hill 0.061∗ 1 1.015 -8350.67
MR 0.434 0.15 0.993 -8458.63

k∗ Hill 0.225 0.106 0.996 -8485.09
MR 0.315 0.153 0.995 -8463.1

3SNGQMLE k̂ Hill 0.061∗ 1 1.013 -8367.75
MR 0.314 0.01 0.994 -8448.94

k∗ Hill 0.747 0.128 0.993 −8501.952
MR 0.094∗ 0.014∗∗ 0.997 -8442.38

Parametric 0.061 0.088 1.023 -8379.010

ARMA(1,1)-GARCH(1,1) GQMLE k̂ Hill 0.061∗ 1 1.015 -8348.91
MR 0.315 0.01 0.994 -8455.19

k∗ Hill 0.225 0.106 0.997 −8483.78
MR 0.148 0.012∗∗ 0.996 -8453.77

3SNGQMLE k̂ Hill 0.098∗ 1 1.017 -8348.53
MR 0.219 0.011∗∗ 1.004 -8401.19

k∗ Hill 0.904 0.138 1 -8470.61
MR 0.094∗ 0.014∗∗ 1.008 -8391.28

Parametric 0.061 0.088 1.024 -8370.274

ARMA(1,1)-GJR-GARCH(1,1) GQMLE k̂ Hill 0.098∗ 1 1.035 -8353.94
MR 0.001∗∗∗ 0.154 1.035 -8331.32

k∗ Hill 0.917 0.134 1.027 -8387.12
MR 0.001∗∗∗ 0.154 1.041 -8274.36

3SNGQMLE k̂ Hill 0.227 1 1.025 -8393.86
MR 0.034∗∗ 0.16 1.023 -8380.73

k∗ Hill 0.573 0.146 1.019 −8441.622
MR 0.034∗∗ 0.16 1.026 -8339.99

Parametric 0.442 0.999 1.034 -8411.463

Note. * indicates significance at 10%, ** indicates significance at 5%, and *** indicates significance at 1%.
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Table B3.2
P-values of UC and CC test and quantile score for one-step-ahead xα,n forecast together with AL
log score for one-step-ahead Sα,n forecast of DJI, where α = 0.005
Index Model Method UC CC Quantile score AL log score

DJI GARCH(1,1) GQMLE k̂ Hill 0.352 0.108 0.79 -9109.87
MR 0.127 0.001∗∗∗ 0.771 −9269.175

k∗ Hill 0.682 0.007∗∗∗ 0.779 -9225.62
MR 0.049∗∗ 0.001∗∗∗ 0.774 -9252.25

3SNGQMLE k̂ Hill 0.353 0.999 0.787 -9139.52
MR 0.028∗∗ 0.001∗∗∗ 0.773 -9243.92

k∗ Hill 0.85 0.133 0.777 -9232.51
MR 0.028∗∗ 0.001∗∗∗ 0.777 -9228.1

Parametric 0.110 1.000 0.802 -9133.778

ARMA(1,0)-GARCH(1,1) GQMLE k̂ Hill 0.249 0.102 0.791 -9101.96
MR 0.127 0.001∗∗∗ 0.771 -9265.09

k∗ Hill 0.682 0.007∗∗∗ 0.779 -9225.4
MR 0.049∗∗ 0.001∗∗∗ 0.774 -9250.24

3SNGQMLE k̂ Hill 0.25 1 0.78 -9173.13
MR 0.048∗∗ 0.014∗∗ 0.758 −9317.754

k∗ Hill 0.972 0.992 0.767 -9274.91
MR 0.028∗∗ 0.001∗∗∗ 0.763 -9299.87

Parametric 0.110 1.000 0.802 -9135.885

ARMA(1,1)-GARCH(1,1) GQMLE k̂ Hill 0.249 0.102 0.791 -9104.42
MR 0.127 0.001∗∗∗ 0.771 −9267.057

k∗ Hill 0.682 0.007∗∗∗ 0.778 -9228.15
MR 0.049∗∗ 0.001∗∗∗ 0.774 -9253.3

3SNGQMLE k̂ Hill 0.353 0.999 0.787 -9143.71
MR 0.028∗∗ 0.001∗∗∗ 0.773 -9251.33

k∗ Hill 0.85 0.133 0.777 -9232.51
MR 0.028∗∗ 0.001∗∗∗ 0.777 -9229.91

Parametric 0.110 1.000 0.802 -9135.885

ARMA(1,1)-GJR-GARCH(1,1) GQMLE k̂ Hill 0.11 1 0.763 -9243.85
MR 0.127 0.92 0.73 -9450.32

k∗ Hill 0.48 0.999 0.745 -9363.46
MR 0.028∗∗ 0.85 0.731 -9468.62

3SNGQMLE k̂ Hill 0.041∗∗ 1 0.761 -9272.1
MR 0.279 0.952 0.727 -9461.87

k∗ Hill 0.25 1 0.741 -9397.64
MR 0.08∗ 0.899 0.728 −9471.748

Parametric 0.041 1 0.781 -9229.8

Note. * indicates significance at 10%, ** indicates significance at 5%, and *** indicates significance at 1%.
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Table B3.3
P-values of UC and CC test and quantile score for one-step-ahead xα,n forecast together with AL
log score for one-step-ahead Sα,n forecast of GDAXI, where α = 0.005

Index Model Method UC CC Quantile score AL log score

GDAXI GARCH(1,1) GQMLE k̂ Hill 0.064∗ 1.000 0.999 -8276.641
MR 0.032∗∗ 0.016∗∗ 0.973 -8429.394

k∗ Hill 0.603 0.998 0.969 −8478.759
MR 0.018∗∗ 0.017∗∗ 0.973 -8453.724

3SNGQMLE k̂ Hill 0.064∗ 1.000 0.997 -8310.101
MR 0.032∗∗ 0.158 0.975 -8410.189

k∗ Hill 0.458 0.999 0.969 -8471.466
MR 0.032∗∗ 0.158 0.972 -8432.074

Parametric 0.022 1.000 1.016 -8306.475

ARMA(1,0)-GARCH(1,1) GQMLE k̂ Hill 0.064∗ 1.000 0.997 -8284.672
MR 0.054∗ 0.015∗∗ 0.973 -8434.676

k∗ Hill 0.603 0.998 0.968 −8485.091
MR 0.032∗∗ 0.016∗∗ 0.972 -8458.212

3SNGQMLE k̂ Hill 0.064∗ 1.000 1.008 -8258.094
MR 0.089∗ 0.157 0.979 -8362.935

k∗ Hill 0.458 0.999 0.979 -8407.418
MR 0.089∗ 0.157 0.977 -8378.788

Parametric 0.064 1.000 1.024 -8274.403

ARMA(1,1)-GARCH(1,1) GQMLE k̂ Hill 0.064∗ 1.000 0.997 -8285.406
MR 0.054∗ 0.015∗∗ 0.972 -8436.013

k∗ Hill 0.603 0.998 0.967 −8487.041
MR 0.032∗∗ 0.016∗∗ 0.972 -8458.860

3SNGQMLE k̂ Hill 0.159 0.099∗ 1.031 -8194.249
MR 0.032∗∗ 0.016∗∗ 1.007 -8273.620

k∗ Hill 0.766 0.126 1.002 -8341.301
MR 0.032∗∗ 0.016∗∗ 1.006 -8278.335

Parametric 0.038 1.000 1.018 -8294.144

ARMA(1,1)-GJR-GARCH(1,1) GQMLE k̂ Hill 0.335 0.999 1.001 -8329.239
MR 0∗∗∗ 0.026∗∗ 1.003 -8284.454

k∗ Hill 0.416 0.147 0.988 -8381.558
MR 0∗∗∗ 0.026∗∗ 1.003 -8278.463

3SNGQMLE k̂ Hill 0.766 0.996 1.001 -8347.151
MR 0.001∗∗∗ 0.151 0.997 -8297.357

k∗ Hill 0.208 0.153 0.987 −8418.035
MR 0.001∗∗∗ 0.151 0.999 -8280.203

Parametric 0.159 1.000 1.021 -8332.851

Note. * indicates significance at 10%, ** indicates significance at 5%, and *** indicates significance at 1%.
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Table B3.4
P-values of UC and CC test and quantile score for one-step-ahead xα,n forecast together with AL
log score for one-step-ahead Sα,n forecast of HSI, where α = 0.005
Index Model Method UC CC Quantile score AL log score

HSI GARCH(1,1) GQMLE k̂ Hill 0.050 0.073∗ 0.985 -7940.409
MR 0.097∗ 0.001∗∗∗ 0.983 -8039.546

k∗ Hill 0.083∗ 0.001∗∗∗ 0.970 -8078.663
MR 0.097∗ 0∗∗∗ 0.985 -8033.145

3SNGQMLE k̂ Hill 0.016∗∗ 1.000 0.961 -8043.929
MR 0.151 0∗∗∗ 0.946 -8199.277

k∗ Hill 0.029∗∗ 0.068∗ 0.938 −8213.388
MR 0.034∗∗ 0∗∗∗ 0.954 -8184.611

Parametric 0.008 1.000 0.993 -8042.463

ARMA(1,0)-GARCH(1,1) GQMLE k̂ Hill 0.050 0.073∗ 0.988 -7933.981
MR 0.152 0∗∗∗ 0.983 -8031.099

k∗ Hill 0.132 0.002∗∗∗ 0.966 −8097.73
MR 0.152 0∗∗∗ 0.988 -8022.184

3SNGQMLE k̂ Hill 0.133 0∗∗∗ 0.986 -7976.857
MR 0.059∗ 0∗∗∗ 0.991 -8035.187

k∗ Hill 0.293 0∗∗∗ 0.981 -8082.382
MR 0.019∗∗ 0∗∗∗ 0.997 -8011.871

Parametric 0.008 1.000 0.988 -8064.060

ARMA(1,1)-GARCH(1,1) GQMLE k̂ Hill 0.050 0.073∗ 0.988 -7936.318
MR 0.152 0∗∗∗ 0.983 -8030.647

k∗ Hill 0.132 0.002∗∗∗ 0.966 -8096.370
MR 0.152 0∗∗∗ 0.987 -8024.243

3SNGQMLE k̂ Hill 0.084∗ 0.078∗ 0.979 -7990.634
MR 0.096∗ 0.001∗∗∗ 0.973 -8091.992

k∗ Hill 0.202 0.002∗∗∗ 0.970 −8114.44
MR 0.034∗∗ 0∗∗∗ 0.978 -8076.125

Parametric 0.008 1.000 0.985 -8077.279

ARMA(1,1)-GJR-GARCH(1,1) GQMLE k̂ Hill 0.029∗∗ 1.000 0.949 -8079.471
MR 0.152 0.009∗∗∗ 0.927 -8247.380

k∗ Hill 0.050 1.000 0.927 -8249.356
MR 0.059∗ 0.011∗∗ 0.931 -8255.223

3SNGQMLE k̂ Hill 0.016∗∗ 1.000 0.938 -8147.449
MR 0.325 0.134 0.916 -8316.625

k∗ Hill 0.202 1.000 0.920 -8298.768
MR 0.226 0.008∗∗∗ 0.918 −8329.556

Parametric 0.008 1.000 0.951 -8201.880

Note. * indicates significance at 10%, ** indicates significance at 5%, and *** indicates significance at 1%.

Table B3.5
P-values of UC and CC test together with quantile score and AL log score for one-step-ahead xα,n and
Sα,n forecasts of Nikkei 225 with filtered data from 1/1/1997 to 31/12/2016, α = 0.005 and n = 1000.

Index Model Method UC CC Quantile score AL log score

N225 ARMA(1,0)-GARCH(1,1) GQMLE k̂ Hill 0.697 1.000 0.577 -3895.662
MR 0.071∗ 0.947 0.590 -3854.531

k∗ Hill 0.813 0.997 0.581 -3890.553
MR 0.015∗∗ 0.896 0.594 -3830.416

3SNGQMLE k̂ Hill 0.697 1.000 0.573 −3904.435
MR 0.006∗∗∗ 0∗∗∗ 0.587 -3856.574

k∗ Hill 0.939 0.999 0.578 -3893.909
MR 0.002∗∗∗ 0∗∗∗ 0.591 -3829.911
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Table B3.6
P-values of UC and CC test together with quantile score and AL log score for one-step-ahead xα,n and
Sα,n forecasts of Nikkei 225 with filtered data from 1/1/1997 to 31/12/2016, α = 0.005 and n = 1000.

Index Model Method UC CC Quantile score AL log score

N225 ARMA(1,1)-GARCH(1,1) GQMLE k̂ Hill 0.697 1.000 0.577 -3896.705
MR 0.071∗ 0.947 0.590 -3855.512

k∗ Hill 0.813 0.997 0.581 -3891.261
MR 0.015∗∗ 0.896 0.594 -3831.205

3SNGQMLE k̂ Hill 0.697 1.000 0.575 −3900.817
MR 0.006∗∗∗ 0∗∗∗ 0.589 -3851.606

k∗ Hill 0.939 0.999 0.579 -3888.824
MR 0.002∗∗∗ 0∗∗∗ 0.593 -3820.122

Table B3.7
P-values of UC and CC test together with quantile score and AL log score for one-step-ahead xα,n and
Sα,n forecasts of Nikkei 225 with filtered data from 1/1/1997 to 31/12/2016, α = 0.005 and n = 1000.
Index Model Method UC CC Quantile score AL log score

N225 ARMA(1,1)-GJR-GARCH(1,1) GQMLE k̂ Hill 0.309 1.000 0.571 -3913.687
MR 0.034∗∗ 0.924 0.570 -3944.222

k∗ Hill 0.309 1.000 0.563 -3963.633
MR 0.034∗∗ 0.924 0.575 -3930.322

3SNGQMLE k̂ Hill 0.309 1.000 0.563 -3946.524
MR 0.388 0.987 0.565 -3971.853

k∗ Hill 0.697 1.000 0.56 −3980.805
MR 0.583 0.993 0.565 -3972.351

Table B3.8
P-values of the one-sided DM test-statistics for the quantile score and AL log score

Quantile score AL log score

NASDAQ 0.0023 0.026
N225 0.005 0.03
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