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Abstract

This paper considers the problem a safety first investor faces when optimizing a mixed port-
folio of a stock index mutual fund and a bond index mutual fund. It focuses on constructing a
Value at Risk (VaR) based on the tail index estimates modelled by a second order Hall expansion,
and particularly on finding the optimal number of extreme values to compute these estimates.
The tail parameters are estimated for several methods of selecting the optimal the amount of
extreme values and each of these estimates are used to construct a VaR and an optimal portfolio
mix. These are used to compare each of the selection methods such that the solution for the
portfolio problem can be improved. It is shown that improvement can be made when consciously
choosing a selection method. The best performing method depends on the size of the estimation
sample.
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1 Introduction

An important aspect of investing is finding a measure of risk for an investment. This also seems
to be a difficult aspect, as the distribution of stock and bond returns is uncertain. Especially for
a safety first investor this is a relevant issue, as downside risk is his most important motivation
when constructing a portfolio. The safety first investor wishes to maximize the expected return of a
portfolio under the condition that it has a certain small probability of falling below a threshold. This
problem was introduced by Roy (1952), where he proposes the Value at Risk (VaR) as a measure
for this downside risk. In order to make the right decisions, a good estimation of the VaR is of
great importance. Therefore, constructing the VaR may be considered as a salient ”subproblem” of
the safety first portfolio problem. This subproblem can be challenging, especially when the investor
allows for small probabilities of VaR violations, i.e. the thresholds for minimum returns are far in
the tail of the distribution. The challenge lies in the fact that asset return distributions experience
heavy tails.

Jansen et al. (2000) consider the above described portfolio problem while accounting for the
heavy tails of asset return distributions. They examine the decision problem that a safety first
investor faces when allocating a portfolio that consists of a U.S. stock index mutual fund and/or
a U.S. bond index mutual fund. They propose to estimate the VaR by means of extreme value
theory and address the problem of modelling the heavy tails in the asset distributions with a semi-
parametric approach. The tails are modelled by a distribution that to the first order is equal to
the Pareto distribution, with an unknown first order tail parameter. They estimate this parameter
by the commonly used tail index estimator from Hill (1975), which relies on the m most extreme
values of a data sample. This tail index estimate is used to construct a VaR such that an optimal
portfolio allocation can be selected. The procedure by Jansen et al. (2000) tends to select corner
solutions, assigning the full weight of the portfolio to the asset with the thinnest tails. Hyung and
de Vries (2007) revise the portfolio allocation problem from Jansen et al. (2000) and model the tails
from the asset return distributions by the second order expansion introduced by Hall (1990). The
second order expansion additionally contains a second order tail index, which is estimated by an
estimator proposed by Danielsson et al. (2000). This estimator depends on the first order tail index
estimate and on m as well. Hyung and de Vries (2007) further replicates the estimates and values
from Jansen et al. (2000) and find that when accounting for the second order tail index, optimal
interior solutions can be found where Jansen et al. (2000) selected optimal solutions in the corner.

Another problem arises in selecting the optimal value for the sample fraction size m in both
tail index estimators. Accurate estimates crucially depend on this value and in turn, the VaR com-
putation and portfolio allocation essentially depend on the tail index estimates. More specifically,
increasing the sample fraction size causes an increase in the bias of the Hill estimator, while it
simultaneously reduces its variance. The optimal value for m should balance the bias and variance
in order to obtain reliable estimates. Selecting the optimal value is a widely encountered problem
in the literature and several methods have been proposed. However, not one has been found to
be overall superior. Which method performs best may depend on, among other things, the sample
size and the underlying tail distribution. Jansen et al. (2000) use the method introduced by Hall
(1990) to select m. In order to present their improvement, Hyung and de Vries (2007) adopt the
exact values from Jansen et al. (2000) even though the method by Hall (1990) imposes undesirable
restrictions on the second order tail index. Consequently, further improvement may be achieved
when applying a different method for the selection of m. Therefore, the goal of this paper is to im-
prove the allocation of a mixed stock- and bond index portfolio for a safety first investor, by solving
the problem with an alternative method of sample fraction selection. The results from solving this
problem for multiple methods of selecting m will be compared in order to find an improvement of



the method from Hall (1990).

I will consider four methods, which I will compare with the Hall method and with one another.
The first method is introduced by Danielsson et al. (2000), and focuses on selecting the sample
fraction size that minimizes the asymptotic mean squared error(AMSE) of the Hill estimator. This
method requires a double bootstrap procedure to estimate the AMSE and provides an estimator
for a control variate to replace the theoretical true value of the tail index. The second method is
introduced by Drees and Kaufmann (1998). This is a sequential method that considers the maximum
random fluctuation of the AMSE. If this maximum is exceeded, the fluctuation can not be random
and therefore must be dominated by a bias. Both these methods rely on asymptotic arguments and
favour large estimation samples. The remaining two methods I discuss in this paper are of a more
heuristic nature. They initially estimate the tail index using a small amount of observations. This
amount is then increased until the fluctuations of the Hill estimates are sufficiently low. The two
methods to measure the fluctuations that will be discussed in this paper are proposed by Schouten
(2017) and by Danielsson et al. (2019). Furthermore, I will discuss the differences between the
estimation results obtained in this paper and those obtained by Hyung and de Vries (2007). I
find that the optimal portfolio selected by the safety first criterion is not affected by the selection
methods in their particular problem. However, I show that for some other examples, different
selection methods may result in different and improved optimal portfolios. In addition, this paper
concludes that the estimate of the VaR can be significantly improved when using the method by
Drees and Kaufmann (1998) or the one by Schouten (2017) to estimate the tail indices, depending
on the size of the estimation sample. Improvement is measured by regarding violations of the VaR.
As tail events occur rarely by definition, I will construct a cross-sectional data set by pooling similar
data from other countries in order obtain enough informative observations.

Danielsson et al. (2019) have done a similar study but their focus is on which method produces
the best estimate of the first order tail index only. They perform several simulations of known dis-
tributions and examine which sample fraction selection method results in the tail index estimates
closest to the true value. They conclude that their own introduced distance metric method performs
best. This method measures the distance between the quantile function of a distribution that sat-
isfies a first order expansion and the empirical quantile. As this paper only focuses on distributions
that satisfy the second order expansion I will not consider this distance metrics method.

The remainder of this paper is outlined as follows: in the next section I provide a mathematical
description of the safety first criterion and extreme value theory, in Section 3 I will elaborate on the
mentioned sample fraction size selection methods, in Section 4 the data is described that is used for
estimation and evaluation, Section 5 provides an overview of the estimation and evaluation results
and finally, I will draw my conclusions in Section 6.

2 Theoretical Framework

2.1 Safety First Criterion

The portfolio problem of choosing the optimal mix between a U.S. stock index fund and a U.S.
bond index fund is based on the safety first criterion. An investor decides a level of wealth, s, and
a probability § such that the invested wealth falls below s with a probability of at most §. Now, as
in Roy (1952), define

1 if p=P[>,wiVigp1+br <s] <06
m =
1—p else,



where w; denotes the weight of invested amount in risky asset i, which has value V;; at time ¢ and
b is the amount lent or borrowed at risk free rate r. They then define the safety first problem as

max (7, (1)
wi,b

subject to
Z w;Vig + b =Wy,

(2
where W, is the initial wealth of the investor. As in Hyung and de Vries (2007), I approach the
problem in a way proposed by Arzac and Bawa (1977). They find that it can be separated into two
problems. For the first part, define the gross return R = Y, w;Vj 41/ >, w;Vi; and quantile g5(R)
such that P[R < ¢s(R)] = 0. The first step is to solve

max%. (1)

w; 1 —qs(R)

In the second step the scale of the risky portfolio and the amount borrowed are obtained from the
budget constraint
s —rW;
qs(R) — 1’
This paper focuses on the first step and for more details on the second step I refer to Arzac and
Bawa (1977). Now the problem remains in finding a creditable value for gs(R), which I will discuss
in the next subsection.

We—b=

2.2 Extreme Value Theory

The value g5(R) defined in Section 2.1 can be interpreted as a VaR level corresponding to probability
6. Finding a suitable value requires accurate modelling of the tails of the underlying distribution.
To account for the heavy tails, consider asset return distributions that come from a class of regularly

varying distributions, such that
1— F(tx)

lim —~f =2 ¢ 2

t—oo 1 — F(t) ’ ( )
with tail index a > 0. Here, a larger(lower) index corresponds to thinner(fatter) tails. The heavy
tails property from distributions that satisfy Equation (2) follows from the fact that their tails
decline by a power, thus slower than tails of distributions that decline exponentially, e.g. the normal
distribution. This slow decline causes moments larger than « to be unbounded. In the context of
this paper, only the mean returns are required to compute the optimal portfolio allocation and
therefore v should be greater than 1. Now, following Hyung and de Vries (2007), we consider a
more specific class of distributions, those that satisfy the so called Hall expansion

1 - F(X)= Az 1+ Bz ? 4 o(z™7)], (3)

for s — oo, with first order tail index o > 0, second order tail index 8 > 0, A > 0, B a real constant
and little-oh notation o(-)!. One can verify that the Hall expansion satisfies the property of Equation
(2), so that it belongs to the class of regularly varying distributions. Hyung and de Vries (2007)
find that for two different, assets with returns X; and X5, that have a symmetric distribution such
that

1 — F(s) = P[X; > s] = P[X; < —s] = Ajs~%[1 + Bjs P + o(s7%)], (4)

for ¢ = 1,2 and large loss threshold s, the following theorem holds for the convolution X; + Xs:

1See Appendix A for further details on little-oh



Theorem 1 Suppose that the tails of the distributions of X1 and Xa satisfy Equation (4). Moreover,
assume 1 < a1 < ag so that E[X] is bounded. When X1 and Xy are independent, the asymptotic
2-convolution up tot the second order terms is

(i). if ae — ay < min(B1,1), then P[X; + Xo > s] = A1s™* + Ags™ 2 + o(s™*2)
(ii). if 1 < ag —ay and 1 < By, then P[X1 + Xo > 5] = A1s™ + Aja E[Xo]s~ @1 4 o(s792)
(iii). if By < ag — ay and By < 1, then P[X1 + Xo > 5] = A1s™ 4+ A;Bys~ 1781 4 o(s~17A1)
(v). if ag —ag =1 < B1, then P[X1 + Xo > s] = A1s™ + {As + A1a1 E[X2]}s72 + o(s~?2)
(v). if ag — a1 = PB1 < 1, then P[X1 + Xo > s] = A1s™ + {Aa+ A1 B1}s™ 92 4 o(s™ 1)
(vi). if aa—ay = B1 =1, then P[ X1+ X2 > s] = A1s™ ' +{As+ A1 E[Xo]+ A1 B1 }s~*240(s*2)

For proof of this theorem I refer to Hyung and de Vries (2007). Furthermore, they use Theorem 1
to prove that the VaR(w,p), for which

PlwX; + (1 —w)Xy > VaR(w,p)] =p

with probability p, is a convex function of the portfolio allocation w, This convexity ensures, under
certain conditions, interior solutions for the portfolio allocations with optimal VaR levels. The first
order tail index will be estimated by means of the Hill (1975) estimator, as in the majority of the
literature. This is defined as follows:

1 1 &
Y=o = Z[IOg(Xi,(n-l—l—j)) —10g(Xi (n—m,))]; (5)
(A (2 ]:1

e}

for asset i = 1, 2, where n is the number of observations, m; the tail fraction size for estimation of tail
index a; and X (,,,) the m-th ascending order statistic from the sample {X; 1, ..., X; »}. Danielsson
et al. (2000) find the following estimator for the ratio between the first and second order tail indices

Bi log(1i;)
a;  2log(n) — 2log(m)’ ©)

which is shown to be consistent if m is a consistent estimator of the asymptotically optimal value for
m. The exact meaning of m being a consistent estimator will become clear in Section 3.1. Note that
both tail index estimators are a function of the sample tail fraction size, thus it seems important to
compute a suitable value for it. Several methods have been proposed in the literature to select the
level of m, of which I will discuss four of them in the following section.

3 Methodology

3.1 Sample Fraction Selection

The optimal value of m, which will be denoted as m*, should balance the variance and bias of the
Hill estimator. A large m could cause the Hill estimator to select values which are too close to the
center of the distribution to be considered a tail event. This would therefore lead to a bias in the tail
index estimator, which grows as m becomes larger. However, when m is large, the Hill estimator
will select observations that occur more often and closer to one another, which inherently decreases



the variance. As an illustration of this phenomenon, Figure 1 shows the plotted Hill estimates
from a sample drawn from the Student-t distribution with 4 degrees of freedom - ergo o = 4 -, for
different levels of m. The Student-t distribution is one of the theoretical distributions that satisfy
the Hall expansion. Clearly, the Hill estimates fluctuate heavily for small values of m and stabilize
as m gets larger, but then drift away from the true value of 4. A mathematical illustration of the
bias-variance trade off is given in Appendix B.

Figure 1: Hill Plot
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Hill estimates for first order tail index « for different levels of sample fraction size m. The esti-
mates are based on 10.000 random draws from a Student-t distribution with 4 degrees of freedom.

Indeed, the term ”balance” here is rather vague and there are several ideas of what value for m
can be considered as optimal. I will discuss four methods of selecting optimal value m*, which can
be considered to be one of two approaches: an approach based on asymptotic arguments or a more
heuristic approach. The asymptotic methods discussed in Section 3.1.1 and 3.1.2 are based on a
theorem introduced by Mason (1982), which states that if sequence m = m,, — oo and m,/n — 0
when n — oo, then 4(m,) — 7. Sequences that satisfy these asymptotic properties are called
intermediate sequences. The optimal value for m is the one that minimizes the mean squared error
of 4, but this value depends on the unknown value . Therefore, to obtain the estimator in Equation
(6), the idea is to find a consistent estimator m = m,, for the optimal sequence m,,, based on the
available sample. The estimate computed by this estimator is then used as m*.

As the above described estimation methods are based on asymptotic arguments, they may
not perform very well in finite samples. It therefore seems logical to also examine an alternative
approach. Section 3.1.3 and 3.1.4 describe methods that consider the variance-bias trade off for
the Hill estimator 4 by trying several values m and take the lowest such that the fluctuations of 4
are sufficiently small in the region of m. These methods do not yield a consistent estimator 1 as
described for the asymptotic methods, however, since Equation (6) can be written as

5 log(m) a1
p= 2log(n) — 2log(m) T (7)

regions with small fluctuations in 4 should also have small fluctuations in B . Therefore the optimal



values for m found by these methods may be optimal for both tail index estimates.

3.1.1 Double Bootstrap Method

Danielsson et al. (2000) propose to find such an estimator 7 by applying two subsample bootstrap
procedures. Their approach is to find a sample fraction size that minimizes the asymptotic mean
squared error (AMSE) of 4, which is defined as

AMSE(9) = AsyE[(7(m) —v)?], (8)

with Hill estimate 4 and true value v. However, regular bootstrap does not necessarily provide an
estimate for the AMSE that is asymptotically equivalent to it. The unsmooth nature of 4 causes its
bias to be a major contributor to the AMSE and regular bootstrap to seriously underestimate the
bias. Hall (1990) solve this problem by drawing reboot samples of size ni, such that it is smaller
than the original sample size n. They use this difference between n; and n to smooth out 4 and
estimate and minimize the AMSE. This procedure is adopted by Danielsson et al. (2000) and in
addition they propose to replace the unknown value v from Equation (8) with the control variate

m

Z0m) = > (loa(Xn-41) ~ log(Xon)*
=1

for which the AMSE has the same rate of convergence as the AMSE(%). Then the following bootstrap
estimate for the mean squared error is used

Q(n1,my) == E[((Zny (m1) — 23, (m1)?)?] 9)

where Z,,(m1), 4n,(m1) and m; are the control variate, Hill estimator and sample fraction, re-
spectively, corresponding to the bootstrap samples of size ni;. They show that the values for m
that minimize AMSE(%) and Q(n,m) are of the same order. Q(ni,m1) is then estimated for each

my and the value mj such that mj = argmin Q(ni1, m1) is stored. This process is repeated for a
mi

2
bootstrap sample of size ny = % to obtain m3. Finally, the optimal sample fraction based on n; is

computed as
log(ny)—log(my)

(mW( log? (m3) )wwv

m3 \ (2log(n1) —log(m}))? ’

which is the value for m to be used in Equations (5) and (6) to estimate the tail indices. To
determine ni, they suggest repeating the whole procedure for a range of values of ny, such that
ny =n!'~¢for 0 < e < 1/2, and use the value that minimizes the ratio

Q(nl’ mjlﬁ)Q
Q(n27 mz)
The range of values for n; and the amount of bootstrap resamples are to be decided by personal

preferences or available computing time. The implementation of this method is summarized in the
following algorithm

k
Mgy =



Algorithm 1: Double bootstrap method
input : Amount of bootsrap resamples b, bootstrap resample size nq, full sample size n
output: Optimal fraction of sample size

1 Draw b bootstrap resamples of size nq
2 for m; =1,...,n; do
. 2
3 | Q(na,m) == E[((Zn, (m1) = 2(3m, (m1)?)’]
4 end
5 m] = argmin{Q(n1,m1)}
mi
6 Draw b bootstrap resamples of size ng = n?/n
7 for mo =1,...,n9 do
. 2
8 | Qna,ma) = E[((Zay(m2) = 2(4n,(m2)?)]
9 end
10 m} = argmin{Q(n2, ma)}
m
: log(nl)?log;(mf)
« _ (m})? log?(m7) fog(my
11 return my, = ml§ ((2log(nl)—loz}g(m’l‘))2

3.1.2 Sequential Method

Another approach that yields a consistent estimate of the tail index ratio is proposed by Drees and
Kaufmann (1998). They use the following slightly different notation for the Hall expansion

1 — F(X) = Az 7[1+ Bz~ % +o(z~ 7)),

which is equivalent to Equation (3) when o = % and p = g They build on the result from Hall
and Welsh (1985) that the AMSE of the Hill estimator is minimal for

1
2p 2\ 2p+1
P

They state that the maximum random fluctuation of i'/2(3(i) — 7) for 2 < i < my,, is of order
log(log(n)) for all intermediate sequences m,, and introduce a sequential procedure to obtain an
asymptotically consistent estimator to compute m™*. Furthermore, they define the stoppage time of
a sequence of Hill estimators by

M (Tn,) = min {m €2, ...,n\2max il/QH_l(i) — ’y_l(mn)| > rn},

<i<mn

where 7, = 2.53n!/* is a sequence such that y/log(log(n)) < r, < n'/? and # is an initial es-
timator of 4. Under the conditions 7, = o(n'/?) and \/log(log(n) = o(r,), it is shown that

1/(1-¢)
<mn(r;)/mn(rn)5> , with € € (0,1), has the optimal order for m,. This leads to the optimal

value

R R 1/(1—e)
b = [(zﬁ 1) (2425,) Y 2D (mnw;)/mn(rn)e) ]



with

/20 4—1(;) _ 2—1 _
2<i<r[1§31}§(m)]{z -9 ([’\mn(rn)])‘}

2<i<1{\13£(rn){i1/2 A=1(i) — A= (AT (rn)) ’}

where X € (0,1). After extensive simulations they find the best results for 4 = 4(2v/n*), where n*
is the amount of positive observations, ¢ = 0.7 and A = 0.6. It may occur that the threshold r, is
too large. In that case, Drees and Kaufmann (1998) suggest repeatedly replacing r, by 0.97;, until
My () is defined. The implementation of the Sequential method is summarized in the following
algorithm

J108(3) ~ .

p(rn, A) = log

Algorithm 2: Sequential method

input : Data sample, parameters € and A
output: Optimal fraction of sample size

1 5 =4(2vnt)

2 r, = 2.5n/*

3 my(ry) = min {m €2,..,n

22%%{\/5I’?(i)_1 —A(m)~t > Tn}}

/215 (=1 _2 ([ -1
251‘5[1??52@”)]{1 @)~ =AM n(ra)) T}

R B _1
4 p(rnv )‘) - log max {il/zwg’%_&()\mn(rn))fl‘} /lOg()\) 2

2<i<Amn (rn)

1/(1—¢)
5 return mp, = [(Qﬁ + 1)71/ﬁn(2&2ﬁ)1/(2ﬁ+1) (mn(ri)/mn(rnf) }

3.1.3 Stability Method

Schouten (2017) has found a way to quantify fluctuation -or lack of fluctuation as he measures
stability- and developed an algorithm to find the optimal fraction size m*. First, define a domain of
sample fraction sizes that is allowed, i.e. m € {¢1n?, ..., conP}, where ¢;n? and con? are the minimum
and maximum accepted value for m, respectively. c¢1, co and p are chosen such that 0 < ¢; < ¢ and
0 < p < 1. A value for stability in a region around m is expressed as

m+k—1

S(m)= > (A +1) =4G)),

i=m—k

where k € N is the region around m and should be small enough such that the stability measure is
representative, but not too small since that could compute a small value (indicating more stability)
for a region with coincidental stability. Then the optimal value for m is found by

Mg = argmin{S(m) - m},
m

where ¢ > 0. I will stick to his method by using the same values for ¢; = 0.2, co = 3, p = 0.5 and
q = 0.5. For the latter, he finds that 0.5 yields the best results, among a sequence of values, for
several distributions of the underlying CDF that satisfy the Hall expansion. A value for k£ will be
assigned such that the moving window {m — k,...,m + k} is about 1% of the sample. The imple-
mentation of the Stability method is summarized in the following algorithm



Algorithm 3: Stability method

input : Minimum acceptable value my,;, for m, maximum acceptable value m,,q; for m,

size k of region around m and parameter ¢

output: Optimal fraction of sample size
1 for m = muin, ..., Mmar do
2 | S(m) =513 +1) = A6)])
3 end
4 return m}, . = argmin{S(m) - mi}

m

3.1.4 Eye-Ball Method

The Eye-Ball method derives its name from ”eyeballing” a Hill plot and choose m by simply ob-
serving where the fluctuations are relatively small and the bias not too evident. This method is
quantified by Danielsson et al. (2019), who propose that m should be chosen such that a certain
percentage of Hill estimates over a moving window should fall within a small region of the first
estimate in that window. The optimal value m™* is then defined as

1 w
mt, =min{k €2,...,n —wlh < P ZI{’y(m—l-i) <A(m) +€}},
i=1

where w is the size of the moving window, e the permitted bound around ~y(m) such that no less than
h% of the estimates on window w should be within this bound for m to be a candidate. They state
that typically w = 1% of the sample, h = 90% and € = 0.3. Therefore these values will also be used
in this paper. The implementation of the Eye-Ball method is summarized in the following algorithm

Algorithm 4: Eye-ball method
input : Moving window size w, size € of region around §(m) and percentage h of estimates
that should be within this region
output: Optimal fraction of sample size
1 form=2, .. n"—wdo

2 | 2= 20 I(m+i) € {A(m) £ €]
3 if h < z then

4 ‘ return mg,, =m

5 end

6 end

3.2 Evaluation

Each of the methods mentioned in Section 3.1 will be used to calculate an optimal stock- and bond
index portfolio for k£ countries over a training dataset of n periods. Then, for all k£ portfolios, the
amount of violations over a test dataset are counted. For a good measure of the VaR, the fraction
of observed violations should be close to the predefined probability §. To measure ”closeness”,
following van Os (2021), first define the indicator function

. o 1 if Ri,nJrj < %(R)
B 0 if Rinyj > qs(R)’

10



for country i = 1,2, ...,k and j = 1,2,...,T and where R;; and ¢5(R) are respectively the gross port-
folio return at time ¢ and the VaR, as defined in Section 2.1. Furthermore, let T = Zle Z;F:l I nyjs
where T is the total sum of observations in each of the countries’ test datasets, and T = 17 + Tp.
Then, assuming tail events occur independently, I will test for correct unconditional coverage by
testing Ho : P[Ip4+; = 1] = § against Hy : P[l;41 = 1] = m # §. The likelihood function under the
null becomes

L) = (1 —0s)Tosh

and under the alternative
L(r) =1 —nm)logT,

Here, 7 will be replaced by maximum likelihood estimator & = %, so that we can compute the
likelihood ratio test statistic

L(9) 2
LR =-21 ~ 1). 10
o8 (g3 ) ~ ) (10)
This test statistic will be computed for the four discussed sample fraction selection methods and
used for comparison.

4 Data

To compare the results obtained in this paper to the results from Hyung and de Vries (2007), the
data in both papers should be comparable. As it is unclear which exact stock and bond indices they
used, I will use the S&P 500 and the Dow Jones Equal Weight corporate bond index. The latter
tracks the total returns of 100 large and liquid investment-grade bonds issued by companies in the
U.S. The monthly simple returns for these indices are computed and the sample used to optimize
the portfolio runs from January 1926 until December 1992. Data over the period from January 1993
until December 2020 is left for evaluating the discussed methods. As tail events occur rarely by
definition, the evaluation period is probably too short to form meaningful conclusions. Therefore, I
collected similar data of stock and bond indices from other countries to build a cross sectional data
sample. This data was available over roughly the same period for the countries Italy, France, the
Netherlands, Switzerland and the U.K. At least for the larger part of this period, these countries
were relatively stable first world countries and should therefore make good comparisons for a U.S.
stock and bond portfolio. Table 1 shows some summary statistics for the returns of the stock- and
bond indices of these countries. N denotes the number of available observations from January 1926
- December 1992, which are used for estimation. Only the observations of the U.K. bond index
begin from July 1932. T denotes the number of observations in the test data sample, which all
begin in January 1993 but have varying end dates. Both numbers may vary slightly per country
due to a lack of observations for various reasons. The large values for the Jarque-Bera statistics
reject the hypothesis of a normal distribution. All values for kurtosis are substantially larger than 3,
which confirms the presence of fat tails in all the index returns. Stock indices generally have fatter
tails than bond indices but for Italy, the kurtosis for the bond index is higher than for the stock
index. However, considering the large difference in standard deviations of both indices, outliers of
the bond index returns may still be smaller in absolute value than those of the stock index returns.
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Table 1: Summary statistics for simple monthly asset returns

Mean SD Kurtosis Jarque-Bera N T Full Sample Period
Us Stocks | 0.0066 0.0673 52 81578 804 335 | Jan 1926 - Dec 2020
Bonds | 0.0054 0.0181 10 1514 804 335 | Jan 1926 - Dec 2020
UK Stocks | 0.0008 0.0578 16 6285 804 339 | Jan 1926 - Mar 2021
Bonds | 0.0041 0.0027 10 1659 714 339 | Jul 1932 - Mar 2021
It Stock | 0.0053 0.0757 9 1388 803 340 | Jan 1926 - Apr 2021
Bonds | 0.0013 0.0024 15 2878 804 340 | Jan 1926 - Apr 2021
Swi Stocks | 0.0046 0.0444 9 1194 804 340 | Jan 1926 - Apr 2021
Bonds | 0.0016 0.0109 8 26770 804 340 | Jan 1926 - Apr 2021
Fra Stocks | 0.0070 0.0613 16 6652 794 341 | Jan 1926 - May 2021
Bonds | 0.0006 0.0026 13 3449 804 341 | Jan 1926 - May 2021
NL Stock | 0.0041 0.0543 19 9371 780 340 | Jan 1926 - Apr 2021
Bonds | 0.0006 0.0158 18 7462 786 340 | Jan 1926 - Apr 2021

A corporate bond index is not available for the sample period for all countries so I will use
a government bond index for the Netherlands, France and Italy. Jansen et al. (2000) state that
corporate bond returns and government bond returns are highly correlated and are therefore in-
terchangeable in this particular problem. This correlation may not apply to all countries but as
the goal of this paper is to compare different sample selection methods, the most important thing
is that all methods are applied to the same data. As stock indices I selected the FTSE All-Share
indices for the U.K and Italy, the CAC-40 index for France, the SBC index for Switzerland and an
All-Shares index for the Netherlands. All index time series were obtained from the Global Financial
Data(GFD) database, except for the S&P 500 index which comes from the CRSP database.

5 Results

5.1 Revisit to Hyung and de Vries (2007)

As in Hyung and de Vries (2007), I will first estimate the parameters using each of the sample fraction
sizes and use those to calculate a value at risk with probability § = 2/n for several hypothetical
portfolio combinations. For the portfolio combinations the fraction of stocks is varied from 0% to
100% with steps of 10%. In Hyung and de Vries (2007) they copy the sample fraction sizes from
Jansen et al. (2000), where they use the selection method introduced by Hall (1990). As the data
in this paper is not identical to Hyung and de Vries (2007) and Jansen et al. (2000), I applied their
method to this data and included the estimates in the results. The result differ slightly, where
they select a sample fraction size of 13 and 16 for U.S. stocks and bonds, respectively, I will select
18 and 15. These sample fraction sizes and corresponding parameter estimates are displayed in
Table 2, along with the sample fraction sizes and parameter estimates from the methods discussed
in Section 3.1. All results were computed in R. Except for the Stability method, I used functions
from Ossberger (2020), with some slight modifications, to estimate the tail indices and to compute
m*. Here, one might notice a few remarkable results. The first is the relatively large U.S. bond
tail index estimate of 4.4442 when using the Sequential method, compared to the other estimates.
Furthermore, the U.S. bond tail index estimate when using the Stability method is curious in two
ways. Its value of 1.7378 is less than 2, suggesting the variance of U.S. bond returns is infinite.
In addition, its value is lower than the estimate for the U.S. stock tail index (2.0754) when using
the same method. This would indicate that the U.S. bond index suffers more extreme losses than
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the U.S. stock index, which contrasts with the other estimates. A possible explanation is that the
input parameters co and ¢ in Algorithm 3 favour a large sample size, therefore causing a bias in the
estimate.

Table 2: Tail indices estimates, optimal fraction sizes and order statistics for U.S. assets sample January
1926 - December 1992

U.S. Stocks U.S. Bonds
m o« I3 X(m) m o« 15} Xm)
Hall 18 2.6468 1.0068 -0.1291 | 15 2.6923 0.9156 -0.0381
DB 28 2.2171 1.1002 -0.1003 | 14 2.7580 0.8985 -0.0382
Seq 45 2.2285 1.3791 -0.0812 | 3 4.4442 0.4366 -0.0680
Stable | 49 2.0754 1.4434 -0.0758 | 52 1.7378 1.2537 -0.0164
Eye 16 2.6053 0.9221 -0.1365 | 16 2.8415 1.0057 -0.0369

Except for the estimation results from the sequential method, all results fall under case (7) from
Theorem 1. Using this theorem and following Hyung and de Vries (2007), the VaR levels ¢s for net
returns for each portfolio allocation can be estimated by solving

W Args * + (1 —w)?Axqy ™ =0 (11)

for corresponding portfolio allocation w and probability . Here «; is the first order tail index
estimate for asset i and A; is the Weissman (1978) estimator A; = 72 (—X(,,,))*, where X, is
the m — th largest negative return and n the number of observations in the full estimation sample.
The results from the Sequential method fall under case (i7) from Theorem 1 and the VaR levels can
be estimated in a similar way by solving

wi Ay + wi Aea E[(1 — wi) Xalgy ! & 5, (12)

where 7 is the asset 1 or 2 with the lowest first order tail index estimate, and w; the portfolio fraction
of asset 7. Since the fraction w; is a factor in both terms, it is impossible to use these estimates to
compute the VaR levels for a portfolio with 0% asset i. The VaR levels with § = 1/402 = 0.0025 for
each of the portfolio allocations are displayed in Table 3. For example, for an 80% stock portfolio
and tail indices constructed by using the Double Bootstrap method, solve the equation

0.82'2171 % % ” 0_10032.2171 % q6—2.2171 + 0'22.7580 * % * 0.03822’7580 * q6—2.7580 ~ 0.0025

to obtain g5 ~ 0.2962. Since the order statistics in Equation (11) are mapped on the positive
quadrant, the additive inverse of g5 is taken such that losses can be considered in terms of negative
returns again. The most optimal levels in Table 3 are marked with an asterisk. As in Hyung and de
Vries (2007), these VaR levels for all methods favour a portfolio with 10% stock. This portfolio mix
has the lowest expected loss for a risk level of 0.25%. Its VaR levels obtained from the Hall-, Double
Bootstrap- and Eye-Ball method are quite similar but differ substantially from those obtained from
the Sequential- en Stability method.
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Table 3: VaRs for net portfolio returns with probability § = 0.0025

qs Hall DB Seq Stable Eye
100% stock | -0.2956  -0.3291  -0.3276  -0.3532  -0.3026
90% stock | -0.2660  -0.2962  -0.2965 -0.3183  -0.2724
80% stock | -0.2365 -0.2633  -0.2632  -0.2841  -0.2422
70% stock | -0.2071  -0.2305  -0.2309  -0.2506  -0.2120
60% stock | -0.1780  -0.1980  -0.1987 -0.2182  -0.1820
50% stock | -0.1494  -0.1659  -0.1664  -0.1871  -0.1525
40% stock | -0.1221  -0.1349  -0.1342  -0.1580 -0.1239
30% stock | -0.0977  -0.1065 -0.1019  -0.1323  -0.0979
20% stock | -0.0801  -0.0844  -0.0694 -0.1124  -0.0784
10% stock | -0.0748* -0.0742* -0.0368* -0.1026* -0.0715*

0% stock -0.0802  -0.0772 NA -0.1066  -0.0764
The results in Table 3 are used to maximize ﬂg&% from Equation (1). Here, I will use risk free

rate r = 1 and ¢s(R) is the VaR of gross return R, therefore ¢gs(R) = 1 + gs. The expected return
E[R] for a portfolio is computed by weighting the mean gross returns -which are obtained from
the mean net returns in Table 1- of both assets according to the corresponding portfolio allocation.
For example, the mean gross returns for the U.S. stock index and U.S. bond index are 1.0066 and

1.0054, respectively, such that a 60% stock portfolio with VaR constructed by the Eye-Ball method

is valued 06*1(1)0_6(614;%%2128)0 54-1_ (.0336. These values are displayed in Table 4 for each selection

method and portfolio allocation. Maximum values for all methods are obtained from a portfolio with
10% stocks, where Hyung and de Vries (2007) favour a portfolio with 20% stocks under the same
conditions. Although the sample fraction selection methods do not affect the portfolio allocation in
this case, it can still be of interest to examine how well the VaR estimates perform.

Table 4: Safety first optimization values with » = 1 and § = 0.0025

PR Hall DB Seq Stable  Eye
r—gs(R

100% stock | 0.0223 0.0201 0.0201 0.0186 0.0218
90% stock | 0.0244  0.0219 0.0219 0.0204 0.0238
80% stock 0.0269 0.0242 0.0241 0.0224 0.0263
70% stock | 0.0301 0.0271 0.0270 0.0249 0.0294
60% stock | 0.0344  0.0309 0.0308 0.0280 0.0336
50% stock | 0.0402 0.0361 0.0361 0.0321 0.0393
40% stock | 0.0482  0.0436  0.0438  0.0372  0.0475
30% stock | 0.0590 0.0541 0.0565 0.0435 0.0588
20% stock | 0.0704 0.0668  0.0813  0.0502 0.0719
10% stock | 0.0738* 0.0744* 0.1500* 0.0538* 0.0772*
0% stock 0.0673  0.0699 NA 0.0507  0.0707

5.2 Evaluation

For the countries U.K., Switzerland, Italy, France and the Netherlands, the same computations as
in Section 5.1 were made. The estimation results are displayed in Tables 13-17 in Appendix C, along
with the sample fraction sizes. These estimations are used to compute the VaR levels and select
the optimal portfolios. Table 5 shows the stock fraction in the selected optimal portfolio in the
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parentheses and the corresponding VaR levels for each country and each of the sample size selection
methods. Unlike the case with a U.S. mixed portfolio, different sample sizes may lead to different
optimal allocations for portfolios from these countries. Smaller differences in the VaR levels and /or
large difference between the mean stock return and the mean bond return cause Equation (1) to be
maximized for different stock fractions. For the same reason it is also possible that this portfolio
selection criterion selects corner solutions -as is the case for two sample selections methods for the
U.K. and France- even though the optimal VaR levels occur for interior portfolio allocations.

Table 5: Optimal stock fractions and corresponding VaRs

qs .

(Optimal Stock Fraction) UK It Swi Fra NL

Hall -0.0946 -0.1042 -0.1265 -0.0408 -0.0956
(10%)  (30%)  (10%)  (10%)  (30%)

DB -0.1000 -0.0904 -0.0934 -0.0102 -0.0933
(10%)  (30%)  (30%)  (0%) (30%)

Seq -0.1118 -0.0923 -0.0981 -0.0197 -0.1108
(0%) (30%)  (30%) (10%)  (40%)

Stab -0.1217 -0.1433 -0.1092 -0.013  -0.1898
(0%) (50%)  (20%)  (0%) (60%)

Eye -0.0977 -0.0896 -0.0947 -0.0213 -0.1234
(10%)  (30%)  (20%)  (10%)  (40%)

Table 6: Violations as fraction of test sample size and test statistics

Violations/T | Hall DB Seq Stab Eye

US 0/335 0/335 3/335 0/335 0/335
UK 0/339  0/339  0/339  0/339  0/339
It 0/340 1/340 1/340 0/340 1/340
Swi 0/340  2/340  2/340  0/340  2/340
Fra 0/341  0/341  1/341  0/341  0/341
NL 0/340 0/340 0/340 0/340 0/340
Total 0/2035  3/2035 6/2035 0/2035 3/2035
LR 10.1877  1.0081 0.1551 10.1877  1.0081
(p-value) (0.0014) (0.3154) (0.6937) (0.0014) (0.3154)

To examine the influence of the sample size selection on the portfolio allocation for a safety first
investor, the monthly returns of each the selected optimal portfolios are computed over the period
January 1993 - December 2020 (may vary slightly per country depending on available data). Every
time a return falls below the corresponding VaR level ¢s(R), a violation is counted for the fraction
selection method it was computed with. For example, the Double Bootstrap method computed
VaR level g5(R) =1 — 0.0934 = 0.9066 and selected 30% stock as the optimal portfolio mix of the
Swiss stock index and the Swiss bond index. The monthly gross return of this particular portfolio
fell below 0.9066 two times since January 1993. Table 6 shows that the Sequential method has the
most violations, with a total of 6. The Double Bootstrap method and the Eye-Ball method both
have a total of 3 violations and the Hall en Stability method have none. The absence of violations
may indicate that these two methods computed VaR levels which are too safe for the corresponding
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probability level. For a good fit the amount of violations should be near 2035 x 0.0025 = 5, where
2035 is the sum of the test sample sizes given in Table 1. In the last column of Table 6 the LR
statistics from Equation (10) are given for each method, with 77 the total amount of violations
and T = 2035. In the parentheses are the corresponding p-values. The large numbers for the LR
statistics for the Hall and the Stability method confirm that their computed VaR levels were indeed
too safe. We may reject the null hypothesis of correct unconditional coverage at a probability of
0.014%. We fail to reject the null hypothesis for the remaining three methods and the highest p-
value for the Sequential method suggests this sample fraction selection method results in the most
”correct” VaR level. Both methods with an asymptotic approach perform quite well and from the
heuristic methods only the Eye-Ball method performs reasonably well. In this case, the estimation
sample sizes of 804 are quite large, which is favorable for the asymptotic approaches. In the next
section I will examine if these methods perform worse relative to the heuristic methods in smaller
estimation samples.

5.3 Small Estimation Sample

I re-estimated the tail indices for each of the methods using a sample of 300 observations from
January 1950 - December 1974. The results for the U.S. stock and bond indices are displayed in Table
7. The estimates from the smaller sample are somewhat larger, which could be expected since smaller
samples have less extreme values. The Stability method computed a first-order tail parameter for
the U.S. stock index that seems out of line with the other estimates, as it is substantially larger. The
estimates for the other countries can be found in Tables 18-22 in Appendix D. For both the Swiss
stock index and bond index, the Double Bootstrap method and the Sequential method computed
infinite first order tail indices. The small sample size and lack of extreme values caused them to
select an optimal sample fraction smaller than two. The Swiss portfolios will not be included in the
evaluation for these two methods.

The estimates are used to compute the VaR levels again with probability 2/n = 0.0067. Table 8
shows that the losses that occur with this probability are lowest for the 10% portfolio allocation for
all methods, as was the case for the large estimation sample. The mean returns of the indices over
the new sample are needed to maximize Equation (1) and are shown in Table 9. The computations
of Equation (1) for the eleven U.S. portfolio allocations are show in Table 10. This time, the different
sample fraction selection methods may select different optimal portfolio allocations. The Sequential
method and the Stability method pick a portfolio with 20% in the stock index, where the other
three allocate only 10% to the stock index. These computations were made for the other countries
and the optimal portfolios for each method are displayed in Table 11, along with the corresponding
VaR levels.

Table 7: Tail indices estimates, optimal fraction sizes and order statistics for U.S. assets sample January
1950 - December 1974

US Stocks US Bonds
m o« I3 X(m) m o« B X(m)
Hall 14 3.4642 1.4899 -0.0625 | 13 4.9953 2.0388 -0.0153
DB 2 3.7728 0.2573 -0.1184 | 3  4.0781 0.4861 -0.0195
Seq 13 3.3136 1.3539 -0.0629 | 17 4.3052 2.1221 -0.0139
Stable | 7 5.1929 1.3433 -0.0818 | 5 4.7782 0.9384 -0.0189
Eye 12 3.1187 1.2026 -0.0646 | 12 5.1052 1.9685 -0.0154
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Table 8: VaRs for net portfolio returns with probability 6 = 0.0067

qs Hall DB Seq Stable Eye
100% stock | -0.1094  -0.1182  -0.1105 -0.1040 -0.1146
90% stock | -0.0985  -0.1064  -0.0994 -0.0936 -0.1034
80% stock | -0.0876  -0.0946  -0.0884  -0.0832  -0.0923
70% stock | -0.0766  -0.0828  -0.0773  -0.0728  -0.0811
60% stock | -0.0657  -0.0710  -0.0663  -0.0624  -0.0700
50% stock | -0.0547  -0.0591  -0.0553  -0.0520  -0.0588
40% stock | -0.0438  -0.0474  -0.0443  -0.0416  -0.0476
30% stock | -0.0331  -0.0358 -0.0336  -0.0314  -0.0363
20% stock | -0.0237  -0.0252  -0.0244  -0.0223  -0.0250
10% stock | -0.0205*% -0.0201* -0.0211* -0.0207* -0.0198*
0% stock NA -0.0212  -0.0228 -0.0229 NA

Table 9: Mean simple monthly returns over January 1950 - December 1974 and test sample sizes

US UK It

Stocks Bonds Stocks Bonds Stocks Bonds
Mean | 0.0095 0.0032 0.0027 0.0003 0.0038 0.0016
T 551 551 555 555 547 547

Swi Fra NL

Stocks Bonds Stocks Bonds Stocks Bonds
Mean | 0.0048 0.0010 0.0055 0.0002 0.0052 0.0012
T 555 555 556 556 557 557

Table 10: Safety first optimization with » = 1 and § = 0.0067

E[R]—r

—a () Hall DB Seq Stable  Eye
100% stock | 0.0864  0.0799  0.0855  0.0909  0.0825
90% stock | 0.0893  0.0830  0.0888  0.0943  0.0853
80% stock | 0.0930  0.0867  0.0928  0.0986  0.0889
70% stock | 0.0977  0.0916  0.0980  0.1041  0.0934
60% stock | 0.1040  0.0980  0.1049  0.1114  0.0994
50% stock | 0.1126 0.1071 0.1146 0.1217  0.1077
40% stock | 0.1253  0.1205  0.1289  0.1370  0.1199
30% stock | 0.1460 0.1422 0.1514 0.1616 0.1398
20% stock | 0.1860  0.1770  0.1824* 0.1967* 0.1780
10% stock | 0.1889* 0.1911* 0.1824 0.1852 0.2041*
0% stock NA 0.1493 0.1407 0.1404 NA
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Table 11: Optimal stock fractions and corresponding VaRs

as .

(Optimal Stock Fraction) UK It Swi Fra NL

Hall -0.0098 -0.0813 -0.0236 -0.0149 -0.0531
(0%) (40%)  (10%)  (10%)  (30%)

DB -0.0099 -0.0819 -0.0168 -0.0497
(0%) (50%) (10%)  (30%)

Seq -0.0045 -0.0821 0.0172  -0.0451
(0%) (50%) (10%)  (30%)

Stab -0.0129 -0.0888 -0.0315 -0.0147 -0.0512
(0%) (40%)  (10%)  (10%)  (30%)

Eye -0.0096 -0.0584 -0.0257 -0.0141 -0.0497
(0%) (30%)  (10%)  (10%)  (20%)

In the same way as in Section 5.2, the returns of the optimal portfolios are observed and the
amount of violations of the corresponding VaR level are counted over the sample from January 1975
- December 2020. The amount of violations, the LR statistics and the corresponding p-values are
shown in Table 12. Adding up the sizes of all the test samples (see Table 9) gives T' = 2766 for
the Double Bootstrap and Sequential method and 1" = 3321 for the remaining methods. For good
VaR levels, the total amount of violations should be 2766 * 0.0067 = 18 and 3321 % 0.0067 = 22 for
the respective methods. Note that these numbers are already exceeded by the U.S. portfolios only.
A probable explanation for the high numbers of violations in the U.S. is that the estimations are
based on a sample period with rather low volatility. Then 13 of the violations occur during one of
three periods with high volatility: shortly after Silver Thursday in March 1980, shortly after Black
Monday in 1987 or during the Financial Crisis from 2007-2009.

It is interesting to see that the Sequential method performs worst with a LR statistic of 103,
even though this method performed best with the larger estimation sample. Especially when taking
in mind that this procedure failed to produce tail index estimates for both Swiss indices, there is
clear evidence that it performs poorly in smaller samples. The Stability method, which was one of
the two worst performers in the large sample, is now the best performer with a LR statistic of 18.
Yet, the null hypothesis of correct unconditional coverage is rejected for all methods, which is largely
due to the high amount of violations of the U.S. portfolios. If they were to be excluded one would
obtain LR statistics (p-values) of 13.6078(0.0002), 5.2755(0.0216), 66.1593(0.0000), 0.4016(0.5263)
and 33.7940(0.0000) for the respective methods in the same order as Table 12. Now, we fail to
reject correct unconditional coverage for the VaR levels constructed by the Stability method and
the Double Bootstrap method with respective significance levels of 52.63% and 2.16%.
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Table 12: Violations as fraction of test sample sizes and test statistics

Violations/T | Hall DB Seq Stab Eye

US 26/551  28/551  22/551  24/551  26/551
UK 5/555 5/555 30/555 0/555 5/555
It 4/547 6/547 6/547 1/547 15/547
Swi 13/555 - - 4/555 11/555
Fra 5/556  3/556  3/556  6/556  7/556
NL 9/557  10/557  16/557  10/557  10/557
Total 62/3321 52/2766 77/2766 45/3321 74/3321
LR 48.0527  40.7741 103.6591 18.0447  75.1679
(p) (0.0000)  (0.0000) (0.0000)  (0.0000) (0.0000)

6 Conclusion

This paper examines and compares different methods of selecting the optimal sample fraction size
when estimating the tail indices of tails modelled by a second order Hall expansion. The different
estimation results are then used to construct Value at Risk levels and ultimately to select an optimal
portfolio allocation between a mutual fund that tracks a stock index and one that tracks a bond
index. This selection is done conform the Safety First Criterion, which deals with the expected
return of a portfolio allocation and the maximum risk the investor is willing to take. I have shown
that the choice of fraction size is important to construct a good estimate of the VaR and that in
some cases, it affects the optimal portfolio allocation. The goal of this paper was to improve the
portfolio allocations constructed by Hyung and de Vries (2007), where they used the Hall method
to select the fraction size. Although the allocation for this particular problem was not affected, the
Hall method was outperformed by three of the discussed methods in terms of violations of the VaR.
Therefore, replacing the Hall method will yet lead to an improvement in the sense that it gives the
investor a more accurate threshold of the disaster return corresponding to a small probability. The
Sequential method, introduced by Drees and Kaufmann (1998), came out best in the test for this
problem for the larger estimation sample with 804 observations. This same method performed worst
when the estimation sample is smaller, containing 300 observations, and even failing to compute
tail index estimates in certain occasions. In the small estimation sample, the Stability method
from Schouten (2017) resulted in the best performing estimate of the VaR. The Double Bootstrap
method performed reasonably well for both sample sizes in terms of violations, although it also
failed to produce tail index estimates in some cases. The Eye-Ball method performed well on the
large estimation sample but quite poorly on the small sample. The Hall method performed poorly
on both estimation samples.

As different estimates of the Hill estimator can affect the VaR performance and the portfolio
allocation, it may as well be of interest to examine how different estimators could have an effect
on these issues. Other estimators are proposed by de Haan and Resnick (1984), Hall and Welsh
(1985), Pickands (1975) and Mason (1982). Furthermore, the second order tail index in this paper
is estimated by an estimator proposed by Danielsson et al. (2000), even though there are other
estimators proposed in the literature. A few examples are those by Gomes and Martins (2002),
Ljunberg and Enqvist (2002) or Peng and Qi (2004).
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Appendices

A Little-oh Notation

The little-oh notation o(g(x)) is an asymptotic notation and is used to describe a loose upper bound
of a function f(x). By mathematical definition, from Landau (1909), f(x) = o(g(z)) if

From this definition follows that if f(x) = h(x)o(g(x)), which implies % = o(g(x)), then

xlggo g(z)  a—oo h(z)g(z)

such that f(z) = h(z)o(g(x)) is equivalent to f(x) = o(h(x)g(x)). For the little-oh notation in the
Hall expansion this means Az~%o(x %) = o(Az=*7#). Note that constant A does not affect the
rate at which the function converges to 0, such that Equation (3) can be rewritten as

P[X > x| — Az™% — ABz=* P = o(z7*F),

and therefore
, P[X > x] — Az=® — ABz*8
lim = =
T—00 (L'_O‘_B

Intuitively, you can say that, as x — oo, the function in the numerator declines faster than the term
in the denominator.

B Bias-Variance Trade Off

Danielsson et al. (2019) show that for random variable X, with a distribution that satisfies the Hall
expansion, the asymptotic bias for the Hill estimator

1 1 _ —BBs™’ 5
R = R "

is a function of threshold s. As the threshold becomes smaller, the sample fraction size m will
become larger since it will include more observed values closer to the center of the distribution.
From Equation (13) it is obvious that if s decreases, i.e. m increases, the bias increases. For the
asymptotic variance of the Hill estimator they show that is also a function of s

1 s8¢ n 8@
var| — | = ——= + o — |.
& nAa? n

This equation shows that if s decreases, the variance of the Hill estimator decreases.

20



C Tables Large Sample

Table 13: Tail indices estimates, optimal fraction sizes and order statistics for U.K. assets sample January
1926 - December 1992 for the stock index and sample January 1932 - December 1992 for the bond index

U.K. Stocks U.K. Bonds
m o« I3 X(m) m o« B X(m)
Hall 50 2.4664 1.7369 -0.0765 | 21 3.4234 1.4778 -0.0504
DB 11 2.6582 0.7426 -0.1233 | 4  3.0218 0.4040 -0.0845
Seq 45 2.2285 1.4713 -0.0812 | 8 2.9207 0.5624 -0.0669
Stable | 49 2.0754 1.4435 -0.0758 | 28 2.4295 1.2498 -0.0392
Eye 16 2.6053 0.9221 -0.1365 | 11 3.2290 0.9277 -0.0609

Table 14: Tail indices estimates, optimal fraction sizes and order statistics for Italian assets sample January
1926 - December 1992

Italian Stocks Italian Bonds
m o« I3 X(m) m o« 15} Xm)
Hall 55 2.7962 2.0897 -0.0908 | 23 2.9633 1.3071 -0.0462
DB 11 3.5460 0.9909 -0.1583 | 5  4.2213 0.6687 -0.0857
Seq 2 37767 0.2183 -0.2591 | 15 3.0490 1.0369 -0.0536
Stable | 22 3.4479 1.4813 -0.1286 | 48 1.8588 1.2766 -0.0275
Eye 14 3.9113 1.2746 -0.1516 | 14 3.0384 0.9898 -0.0541

Table 15: Tail indices estimates, optimal fraction sizes and order statistics for Dutch assets sample January
1926 - December 1992

Dutch Stocks Dutch Bonds
m o« I3 X(m) m o« 15} X(m)
Hall 61 2.2297 1.7984 0.0611 | 23 3.1452 1.3963 0.0382
DB 33 2.3565 1.3026 0.0826 | 3  3.3660 0.3321 0.0784
Seq 22 25980 1.1253 0.1035 | 4 2.9647 0.3891 0.0720
Stable | 43 2.1245 1.3786 0.0701 | 78 1.7886 1.6865 0.0169
Eye 10 2.2349 0.5906 0.1353 | 13 2.3620 0.7385 0.0454

Table 16: Tail indices estimates, optimal fraction sizes and order statistics for French assets sample January
1926 - December 1992

French Stocks French Bonds
m o« I3 X(m) m o« B X(m)
Hall 30 3.4946 1.8141 -0.0928 | 52 2.4903 1.7966 -0.0023
DB 14 3.2381 1.0908 -0.1168 | 9  2.6412 0.6459 -0.0058
Seq 39 3.7506 2.2798 -0.0846 | 2 3.5779 0.2068 -0.0134
Stable | 56 2.7821 2.1116 -0.0705 | 39 2.6365 1.5960 -0.0026
Eye 14 3.3381 1.0908 -0.1168 | 17 2.8742 1.0551 -0.0041
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Table 17: Tail indices estimates, optimal fraction sizes and order statistics for Swiss assets sample January
1926 - December 1992

Swiss Stocks Swiss Bonds
m o« I3 X(m) m o« 15} X(m)
Hall 52 1.7928 1.5852 -0.0644 | 51 2.1971 1.2363 -0.0304
DB 4 2.6772 0.3565 -0.1418 | 9  2.7273 0.6547 -0.0696
Seq 10 3.5280 0.9259 -0.1312 | 20 2.4962 1.0425 -0.0511
Stable | 36  2.4325 1.4032 -0.0781 | 12 2.7454 0.8113 -0.0669
Eye 15 2.6773 1.1492 -0.1168 | 10 3.3793 0.7026 -0.0695

D Tables Small Sample

Table 18: Tail indices estimates, optimal fraction sizes and order statistics for U.K. assets sample January
1950 - December 1974

UK Stocks UK Bonds
m o« I3 X(m) m o« 15} Xm)
Hall 16 2.8863 1.3635 -0.0906 | 21 1.9901 1.1378 -0.0030
DB 3  3.5964 0.4036 -0.1736 | 4 3.6542 0.5862 -0.0082
Seq 14 3.1772 1.3665 -0.0924 | 5 3.2312 0.6346 -0.0034
Stable | 48 1.5951 1.6817 -0.0416 | 45 1.5326 1.5349 -0.0017
Eye 10 2.8641 0.9685 -0.1095 | 10 2.1921 0.7413 -0.0046

Table 19: Tail indices estimates, optimal fraction sizes and order statistics for Italian assets sample January
1950 - December 1974

Italian Stocks Italian Bonds
m o« I3 X(m) m o« 15} X(m)
Hall 38 2.5034 2.2001 -0.0501 | 17 1.8914 0.9323 -0.0281
DB 12 3.2421 1.2501 -0.0855 | 7 3.9734 1.0278 -0.0864
Seq 4  4.5132 0.0724 -0.1270 | 20 3.5762 1.9756 -0.0658
Stable | 33 2.5568 2.0220 -0.0537 | 32 1.4828 1.1464 -0.0159
Eye 5 4.3495 0.8542 -0.1196 | 5 2.8109 0.5520 -0.0532

Table 20: Tail indices estimates, optimal fraction sizes and order statistics for Dutch assets sample January
1950 - December 1974

Dutch Stocks Dutch Bonds
m o« I3 X(m) m o« B X(m)
Hall 19 2.5848 1.3775 -0.0658 | 23 2.5253 1.5395 -0.0172
DB 2 3.0394 0.2102 -0.1403 | 6  2.5814 0.5907 -0.0325
Seq 4 4.0770 0.6540 -0.1167 | 3  3.5439 0.4224 -0.0407
Stable | 15 2.7143 1.2254 -0.0711 | 24 2.5177 1.5819 -0.0171
Eye 9 27403 0.8577 -0.1087 | 8 2.3349 0.6692 -0.0263

22



Table 21: Tail indices estimates, optimal fraction sizes and order statistics for French assets sample January
1950 - December 1974

French Stocks French Bonds
m o« I3 X(m) m o« 15} X(m)
Hall 22 25564 1.5103 -0.0566 | 24 2.2605 1.4203 -0.0018
DB 7 22798 0.5903 -0.0943 | 14 1.9026 0.8183 -0.0023
Seq 7 22798 0.5903 -0.0943 | 2 2.4067 0.1664 -0.0079
Stable | 28 2.6951 1.8907 -0.0518 | 27 1.9094 1.3049 -0.0016
Eye 12 2.7606 1.0645 -0.0714 | 10 2.1607 0.7373 -0.0024

Table 22: Tail indices estimates, optimal fraction sizes and order statistics for Swiss assets sample January
1950 - December 1974

Swiss Stocks Swiss Bonds
m o« I3 X(m) m o« B X(m)
Hall 19 2.4553 1.1947 -0.0786 | 27 1.5593 0.8798 -0.0017
DB 2 20752 0.1302 -0.1589 | 74 1.2861 1.6378 -0.0005
Seq 20 2.3545 1.1773 -0.0712 | 18 1.4782 1.6689 -0.0024
Stable | 63 1.8421 1.8629 -0.0379 | 36 1.2856 0.9556 -0.0013
Eye 11 2.6524 0.8328 -0.0965 | 6  2.1028 0.4257 -0.0050
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