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Abstract

This paper explores the applicability of decorrelated score methods. I used three interest
models with (non)convex penalty functions to find the degree of application of this method
under the pointwise weak convergence assumptions. In a simulation, I find that decorrelated
score methods have high applicability in a low dimension. However, the interest models show

varying degrees of general application in high dimensions.

1 Introduction

With the development of information gathering techniques, the observed data with prominent
amount characteristics in economics has increased rapidly and considerably impacted the tradi-
tional regression analysis of economics. It is a proven and refined big data technology that causes
an observation value containing too much information. When performing regression analysis, the
amount of explanatory variables is far more than the observation value. However, traditional re-
gression methods, such as linear regression, usually use least squares to estimate parameters, which
is more likely to cause overfitting problems and strict multicollinearity. Besides, in the case that
the number of regressors d is far more extensive than the number of observations n, the coefficient
vector [ is rank deficient and bias (Javanmard and Montanari, 2014). Many high-dimensional
models are applied to solve the above issues over the last decades. The high-dimensional model
currently plays a crucial role in some economic research fields. It presents both wide ranges of ap-
plication and considerable importance in the economics fields. The high-dimensional models, with
a small number of significant explanatory variables s<n, are to capture the main characteristics of
regression models Belloni and Chernozhukov (2011). It is worth noting that the high dimensionality
and a few significant explanatory variables form a high-dimensional sparse matrix of parameters.
At present, the mainstream of the most pursued research progress of high-dimensional model is
point estimation. Buehlmann (2006) and Greenshtein and Ritov (2004) focus on consistency for
prediction; Oracle inequalities and parameter estimation, for example, are studied in Bunea et al.
(2007) and Juditsky et al. (2012). In addition, some papers (Fan and Lv (2008), Meinshausen and
Biithlmann (2006)) were to introduce a method concerning variable selection for high-dimensional
models. Belloni et al. (2011) elaborates some examples considering the databases with many re-
gressors, e.g., the American Housing Survey records. Moreover, the explosive growth and collection
of panel data have prompted the large-scale use of high-dimensional models. Vector autoregression

model is used with a high-dimensional database to make analysis and forecast based on Fan et al.



(2011).

A large part of theoretical research in high-dimensional models is conducting a statistical test
and confidence regions for the assessment study. In some statistical theoretical studies, confidence
intervals and hypothesis testing are the keys to exploring the reliability of models. For this reason,
many econometric economists have proposed related testing methods. C.-H. Zhang and Zhang
(2014), Voorman et al. (2014), and Javanmard and Montanari (2014) provide methods to explore the
confidence intervals and hypothesis testing for the parameters of high-dimensional models. Athey et
al. (2016) illustrates a general method to find the average treatment effect without exploring some
treatment prerequisites for nuisance parameters for high dimensional models, which is a further
study for statistic test.

To realize and apply the high-dimensional models, many researchers employ penalized regression
and study an assessment work for these estimators, such as maximum likelihood (MLE) or maximum
penalized likelihood estimator (MPLE). The penalty functions consist of a convex penalty and a
non-convex penalty. Generally, we consider Lasso and Dantzig selectors as convex penalty functions,
where both are approximately equivalent shown by Bickel et al. (2009), Lounici et al. (2008),
and James et al. (2009). Inverting Karush- Kuhn-Tucker (KKT) conditions Van de Geer et al.
(2014) are mentioned to give optimality properties under the assumption on high-dimensional
sparse models. MCP and SCAD are considered as non-convex penalty. Admittedly, convex penalty
functions solve high-dimensional sparse regression problems, especially lasso penalty function C.-H.
Zhang and Huang (2008). However, it inevitably caused the bias of the estimators Liu et al. (2012).
Hereby, some debiased methods are proposed to correct the bias of regression with convex functions,
e.g. Zou (2006), T. Zhang et al. (2009), and Zhou (2009).

Ning, Liu, et al. (2017a) proposes a new method named decorrelated score methods to make a
hypothesis test and find an optimal confident interval for a univariate interest parameter in a general
framework. Besides, it develops a limiting distribution for the statistic test under the pointwise
weak convergence. Then, a one-step estimator, following asymptotically normal distribution, is to
construct an optimal confidence interval.

In this paper, I focus on sparse high dimensional modeling with the general decorrelated score
methods proposed in Ning, Liu, et al. (2017a) and explores to which extend does this general theory
applies in regression models. A research question arises about the applicability and generalization
of decorrelated score methods for interest models and other available regression models. Does

general application mean feasibility under multiple penalty functions, various regression models,



characteristics of high-dimensional data sets, e.g., collinearity, and even different convergence con-
ditions?. To solve them, the basic models, namely linear regression, logistic regression, and Poisson
regression, are first performed with decorrelated score methods, lasso, and SCAD penalty functions
to verify the general framework of decorrelated score methods. This study considers pointwise weak
convergence as an asymptotic standard and characterizes the limiting behavior of decorrelated score
functions. Afterward, a simulation procedure is to perform three interest models. Finally, the cov-
erage rate of a confidence interval and statistical power of the local alternative hypothesis study
the applicability of decorrelated score models.

Moreover, two applications in practice are conducted with linear regression and Poisson re-
gression. A discussion and concerns about the simulation results are presented combined with
mathematically theory to find the limitation, asymptotic property, doubts in the study and answer
the research question in this paper. Finally, I give a general framework of decorrelated score func-
tion aimed at double interest parameters based on the asymptotic conditions and mathematical
proof in Ning, Liu, et al. (2017a) and Ning, Liu, et al. (2017b). The simulation results imply that
decorrelated score methods have high applicability and generalization in the interest models and
other general models with d = n. This model can tolerate convex and non-convex penalty functions
and a variety of regression models. However, in the case of d > n, different models show different
applicability. Linear regression performs well, while Poisson regression does the opposite.

This paper is organized as follows. Section 2 describes the methodology and simulation set-
tings. Afterward, Section 3 presents the simulation results of three interest models and gives two
applications in the real world. The implication of the results is then discussed in Section 4. Lastly,

section 4 illustrates some limitations and concludes the research questions.

2 Methodology

In this section, I demonstrate the application of score function concerning high dimensional models
and the confidence regions for #*. S is defined as a multivariate random variable. Assume n is
the sample size such that the database is a set {Si,S52,...,5,}. Let § denote a d dimensional
parameter for this model and II=span(/3). Let 8* denote the optimal estimated value of 8. To
explore a univariate unknown parameter, I divide the parameters into two parts where one part is
the target parameter §; The other part is regarded as nuisance parameters in a (d-1) dimensional
parameter vector denoted as +, such that 3 = (6,77)”. An asymptotic theory is introduced for the

three interest models to achieve the limiting distribution of decorrelated score functions. I consider



the linear regression, logistic regression, and Poisson regression with decorrelated score methods
as interest models and make the power of statistical tests and coverage of confident regions with
them. Finally, I implement a simulation study to find the coverage of the confidence and the power
of the statistical test.

The estimated f is obtained by maximum penalized likelihood estimation (MPLE) for sparse

high-dimensional models. The general form of MPLE is as the below equation.

B :arggleiﬁll(ﬂ) + P)\(B) (1)

where /() is a loss function and Py(/3) is a penalty function with a tuning parameter . Besides,
is divided into two components: parameters of interest § and nuisance parameter . In this study,
[(B) is the negative log-likelihood. Due to the wide range of selection of penalty, both convex
penalty functions and non-convex penalty functions are applicable to estimate 5. Therefore, lasso
and SCAP are selected as candidates for penalty functions. The penalty functions are introduced

as the following part.

e The Least Absolute Shrinkage and Selection Operator (Lasso) penalty function is a
selection for maximum penalized likelihood estimator (MPLE). Tibshirani (1996) illustrated
this penalty, which is a linear regression method that uses L1 regularization. The use of
this L1 regularization makes the weight of some learned features achieve sparsity and feature

selection. The equation of Lasso is that py(8) = A||S]|1.

e Smoothly clipped absolute deviation (SCAD) penalty function is to introduce a penalty
to reduce bias in regression process Fan and Li (2001). The penalty function of this method

is symmetric and non-convex, and can handle singular matrices to produce sparse solutions.

(aX — )4

|B]
e = [ e+ B

I(z > \)}dz

Given the loss function (), Fisher information in this study is defined as I, where I g, Igg, 1,
and Iy, are the partitions of I. A general decorrelated score method was proposed to construct
a general framework to make a score test for § = 0 and find an optimal confidence interval. The

equation of this new type of score function is as the below.

5(07 7) = Val(ea 7) - wT Vo l(@, 7) (2)



where w! = 19717_71. In practice, § is estimated by MPLE while w is the estimation of Dantzig
type estimator. In order to construct a valid and optimal confidence region with decorrelated score
function for the interest parameter 6, this paper use one-step estimator to obtain 6. Similar to
one-step huber estimation (Bickel, 1975), one-step method are considered to resolve the multiple
roots of 5(6,4) = 0. The general one-step estimator of penalized M-estimator 6 is § = 6 — S(B)/igh,
where fgh = vzgl(ﬁ) — T V?Y@ (B) Besides, the one-step estimator 6 is asymptotic normal and

semiparametrically efficient in this study.

Asymptotics

Pointwise weak convergence and uniform weak convergence are two important asymptotic theories
to find the limiting distribution of decorrelated score functions under the null hypothesis. The
convergence of the former is weaker than that of the latter. Ning, Liu, et al. (2017a) illustrate
four conditions Assumption 3.1-3.4 to establish point-wise and weak convergence to give a limiting
distribution of decorrelated score functions with linear regression, logistic regression, and Poisson
regression, namely lim,, oo |[Pg+(U,, < t) — ®(t)| = 0. If the Corollary 4.1, 4.3, 4.4, or 4.5 hold in
Ning, Liu, et al. (2017a), U, is calculated by the below equation with the null hypothesis of § = 0.

U = n'/25(0,4) I, (3)
It is highlighted that U, is a density of the given n* statistical series (score statistics series), which
is a pivotal quantity. Besides, probability distribution of U,, does not rely on nuisance parameters as
the decorrelated score function S(6, ) is uncorrelated with nuisance score functions v7,1(3). Fur-
thermore, Ning, Liu, et al. (2017a) provides another assumptions A.1-A.4 for uniform weak conver-
gence. If the new conditions hold, new limiting behaviour arise: lim, SUPg= 11, SUPtcR \]P’g* ([7” <
t)—®(t)| = 0, where Il is a parameter space that IIp = {(0,v)s.t.||supp(y)|| < supp(B*), supp(5) <K
n}. Besides, the establishment of U, under the uniform weak convergence gives the limiting be-
haviour for local power of alternative hypothesis. In this situation, 6 is equal to C’n*¢, where ¢ is
set to 1/2. Based on Godambe (1991), the general estimated decorrelated score functions S(6, %) is
an approximately unbiased regarding to #. In addition, one-step estimator 6! is biased but approx-

imately normal distributed. The optimal confidence interval of #* in a (1 - «) x 100% level with

! As the loss function is the negative log-likelihood, Ig)., = o, the variance of 6 is identical to I;hfl.



decorrelated score functions, under the pointwise weak convergence, is constructed as the follows.

A

672071 (1 — a/2)[; )%, 0+ 0 2o (1 - a/2) ], ) (4)

The proof of the above limiting behaviour is shown in Ning, Liu, et al. (2017a) and Ning, Liu, et al.
(2017Db).

Interest Models with Decorrelated Score Methods

In this part, the general framework of decorrelated score methods is applied in linear regression,
logistic regression, and Poisson regression. Define Q; = (Z;, X ZT )T, a sub-Gaussian vector under the
above assumptions, as the collection of all covariates for observation i, where Z; € R, X; € R4 L.
Let A" denote a tuning parameter for the Dantzig selector (Candes, Tao, et al., 2007). The general
estimation procedure of decorrelated score function is as follows: First, it is required to calculate
a penalized M-estimators B with convex or nonconvex penalty functions in equation 1, where the
estimation process is operated by cross-validations with tuning parameter A\. Next, employing a
Dantzig type estimator 1 is to calculate an approximate value of w with the tuning parameter \'.

Finally, the decorrelated score function S (0,%) is estimated as equation 2.

Linear Regression with Decorrelated Score Method

The general from of linear regression with decorrelated score methods is Y; = 6* Zi+'yTXi+5i, where
e is the error item satisfying E(g;) = 0 and homoscedasticity assumption, namely E(?) = o2, for i
= 1,2,...,n. Based on Ning, Liu, et al. (2017a), Bickel et al. (2009), and Javanmard and Montanari,
2014, the negative Guassian quasi log-likelihood is that I(8) = (2n)71 Y | (Y; — A7Q;)?. Thus,
the estimated decorrelated score function of linear regression with the known o is as the below
equation. .

5(0,4) = — 3% —ATX0)(Z — 07 X))

a n
=1

where  is the estimator of Dantzig Selector, namely, w = argmin||w||; such that

o0



In this case, the estimation of Fisher information is I = ﬁ Py QZQ;TF and partial Fisher infor-

mation is as the following equation.

i, = U{ Zz? T(ii){z)} (5)

The test statistic U,, under the null hypothesis in this model is that

" —-1/2
Uy, =— Jn1/2ZY ATX Z-—wTX{ ZZQ T(;g)(z)} (6)

The error variance is unknown in many cases, but decorrelated score functions in linear regres-
sion are highly dependent on the standard deviation o. Especially in practical applications, we
usually estimate standard deviation & of the regression error. With the estimated ﬁ, & can be

obtained with the equation & = % Yo (Y — BTQi)Q. U, is that
- 1 . . . _
Un =175 > (% —7TX0)(Zi — 07 X;)(Hz — i Hx7)™")? (7)
onl/2 4 -
1=

where Hy = %E?:l Z%? and Hxyz = %Z?:l Z:X;. The asymptotic properties show U and U are
uniformly asymptotically equivalent, where Corollary 4.3 in Ning, Liu, et al. (2017a) gives the

asymptotic distribution of U, with the null hypothesis.

Logistic Regression with Decorrelated Score Method

As introduced before, logistic regression with decorrelated score function is the model of the inter-
est. This model in this study is used for binary classification with high dimensional explanatory
variables. Since the Logistic regression model is an extension of linear regression applied to the
category, which implies that this regression model satisfies the assumptions of Corollary 4.1-4.3 in
Ning, Liu, et al. (2017a), and its test statistical U,, approximation conforms to the standard normal
distribution. The estimated decorrelated score function is as the below equation with the estimated

Dantzig Selector w under the hypothesis of 8 = 0.



The Dantzig Selector w in this case is estimated with the objective function @ = argmin||w||; such

that

I~ eap(B'Q) ., po
o et 7

o
The equation of test statistics U, is identical to another two interest models. One of the distinct

is partial Fisher information; See the below equation.

S 1 eap(ATQ) "
Tpy ==Y i Zi(Z;i — wT X, 8
0w 2 U eaprQu ) )

The test statistic [?n here is that

o= — ._M _aTx = exp(BTQ;) (7wl X1/
U = Z;(Y 7 (i X)) Xz){; T eap3r O 2%~ WX} )

Poisson Regression with Decorrelated Score Method

Another interest model in this study is Poisson regression, which is another generalized linear
regression form. Likewise, I calculate the estimated decorrelated score function, confidence interval
to make further simulation and test statistics. Un of this model. The decorrelated score function

is shown below with the hypothesis of § = 0.

where w = argmin||w||;, such that

1 « 5
H > eap(BTQi)(Zi —w X)) Xi|| <N
n =1 00
In addition, the partial Fisher information in this model is that
1 n
loy =5, 2 x5 Q) 22~ wTXo) (10)
1=
Here, the test statistic U, in this model is that
n n
Un =Y (Vi — exp(yXi))(Zs — 0" X){ D exp(B87 Qi) Zi(Z; — w X;)} /2 (11)
i=1 i=1



Simulation

In this simulation study, a derived confidence interval, power of statistical test with decorrelated
score function are covered and performed. Besides, this procedure is based on the pointwise weak
convergence to explore the limiting behavior under the null and alternative hypothesis. More-
over, the implementation of confident intervals’ coverage involves the Markov Chain Monte Carlo
(MCMC) simulation process. The interest models here consist of linear regression, logistic regres-

sion, and Poisson regression with decorrelated score methods.

Simulation Procedure

Throughout the simulation study, I first set the data generator process (DGP) of the covariates X:
n = 100 independent and identical distribution samples with a multivariate Gaussian distribution
N4(0,%), where d = 100,200,500 and ¥ is a diagonal-constant matrix with 3;; = pl"~Jl. p has
four potential values, namely, 0.25, 0.4, 0.6, and 0.75. The magnitude of p determines the strength
of the collinearity of the data from DGP. For the true value of 8%, it satisfies ||5*||, = s, where
Bs = (1,...,1) is Dirac measure with s = 3. For the simulation process of linear regression, there
is a standard Gaussian noise assumed in DGP, that is, Y = X3* + ¢, where ¢ is a n x 1 vector
following standard normal distribution. Regarding to generator of Y in logistic regression, Y is
assumed to follow the binomial distribution with the probability of success on each trial is equal
to m. In terms of Poisson regression, Y is following Poisson distribution with a vector of
non-negative means exp(X 5%).

This simulation study mainly studies several aims: finding the impact of different penalties and
different degrees of high-dimensional d on coverage and powers of statistical tests. First, the three
interest models are conducted with the n = d. Interest models take maximum penalized likelihood
separately with lasso and SCAD penalty functions. Then, for the discussion and comparison of the
two penalty equations, a penalty formula is selected to do a higher-dimensional simulation. It is
emphasized that the selection of penalty items is not based on the simulation results that best meet
the theoretical expectations. On the contrary, the selection of penalty functions should consider and
weigh the theoretical expectations and the actual performance of the simulation. For example, the
lasso is regarded as a penalty function that causes a relatively large bias by many researchers. Thus,
it is more likely to produce rather unsafe or unreasonable simulation results during the simulation

process. However, suppose the interest model with lasso does not have abnormal outcomes. In that



case, it is acceptable to use lasso for higher-dimensional models since this paper aims to explore
the generalization of the general theory of decorrelated score methods and tolerance to different
parameters and penalties. SCAP is a non-convex penalty term. Typically, it is considered to be
better than lasso in the process of debias. However, this does not mean that SCAP will be selected
as a higher-dimensional simulation study, as described above. Then, the performance of the interest
model in a higher dimension, that is, d > n, becomes the focus of further research. Here, the ratio
of the dimensions d and n is 2 and 5.

In each simulation process, DGP first generates covariates. Then according to different models
and settings, I calculate Y. Next, calculate penalized M-estimators and Dantzig type estimators to
get U, and part Fisher Information I |y» according to equation 6, 9, or 112. Then, the confidence
interval coverage and power of the statistical test are calculated. The hypothesis in this study
is Hy with 8 = 0 versus local alternative H; with 81 # 0. The tuning parameters A\ and X are
corresponding to the cross-validated loss for the lasso or SCAD penalties of MPLE and the Dantzig
Selector. The alternative values (1 in this simulation study ranges from 0.05 to 0.55 to evaluate
the power of the selected tests

There are 500 times replications for each simulation process. A global count variable records
whether the actual value 6 is contained in the estimated confident interval in each replication with
a particular model. If it holds, the count variable will add 1, otherwise 0. Then, I can obtain
the coverage by the calculation of the proportion of the containing times. For the power of the
statistical test, with various values of p and interest models, I calculate the probability that rejects
the null hypothesis of § = 0, where the alternative hypothesis H, of a particular value between 0
and 0.55 is assumed true.

In practice, I exploit "cv.glmnet”3 to realize the linear model via Lasso penalized maximum

»4

likelihood with k-fold cross-validation for . Likewise, ”cv-gds”* is applied to make Dantzig Selector

95

with the cross-validation to obtain an optimal A\. Then, we plugin this optimum into ”gds”® and

obtain w, which is the coeffient of Dantzig Selector. Other reference R packages are "MASS”¢,

»'7

"nevreg””, and " fastclime”®. The detailed tutorial is explained in the Appendix.

2The details of this process is introduces in Section Methodology

3¢v.glmnet, R: https://cran.r-project.org/web/packages/glmnet /glmnet.pdf
“cv-gds, R: https://cran.r-project.org/web/packages/hdme/hdme.pdf

®gds, R: https://cran.r-project.org/web/packages/hdme/hdme.pdf

SR, https://cran.r-project.org/web/packages/MASS/MASS.pdf
"R,https://cran.r-project.org/web/packages /ncvreg/nevreg.pdf
8R,https://cran.r-project.org/web/packages/fastclime /fastclime.pdf
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Assessment and comparison

Once all simulation estimates are completed, I will evaluate the decorrelated score methods with
the linear regression model, logistics regression model, and Poisson regression through coverage rate
and power of statistics. For each type of model, a confidence interval of coverage is estimated to
find whether (1-«) significance level. Due to the fixed simulation times, random and independent
generation, and binary outcomes, binomial proportion confidence interval is employed to construct
a reasonable region for the coverage proportions p. Based on the central limit theorem, I approx-
imated p to the coverage probability, which approximately follows a normal distribution Wallis
(2013). Clopper-Pearson exact method is exploited to obtain a relatively accurate confidence
interval. For the power of a statistical test, this paper will test whether rejection rates of null

hypothesis will converge to 1 as the local alternative hypothesis 81 increases.

3 Results

In this section, to explore the applicability and generalization of general theories to the interest
model, I present the findings of simulation results and real-world applications with decorrelated
score methods via the statistical tests and confidence intervals (CI) of coverage. For simulation
results, this paper first presents the estimated coverage rates for interest models and corresponding
Cls with different p and different penalties in Tables 1-2. Afterward, I consider the case of d>>n, and
the corresponding simulation is set to d=200,500>n=100 to study the performance of decorrelated
score functions with interest models under high-dimensional data sets. The simulation results for
the case d with lasso penalty are exhibited in Table 3-4. The abnormal results are marked in bold
font. In addition, a noteworthy but normal value is marked in red. Figures 1-4 reveal the power of
the given interest models with lasso and SCAP. Moreover, two databases applied in the real world

are to find confidence regions of target parameters and give hypothesis tests in practice.

Findings for coverage of confidence interval with decorrelated score methods

Following the proposed procedure, the estimated coverage rates and corresponding confidence inter-
vals are shown with interest models. Due to the insufficiency of normal approximation, especially
for a large estimated coverage p, Clopper-Pearson exact CI is employed to obtain more accurate

and credible ranges of coverage rates.
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Table 1: Coverage of CI with the decorrelated score method with Lasso Penalty and d=100 for the
linear regression, logistics regression, and Poisson regression at 5% significance level

p =025 p =04 p=06 p =075

Linear Regression

Coverage at 95% significant level 0.9400 0.9520 0.9480 0.9600
CI of Coverage via Clopper-Pearson exact | [0.9155,0.9592] [0.9294,0.9690] [0.9247,0.9658] [0.9389,0.9754]

Logistics Regression

Coverage at 95% significant level 0.9540 0.9620 0.9560 0.9660
CI of Coverage via Clopper-Pearson exact | [0.9318,0.9706] [0.9413,0.9770] [0.9341,0.9722] [0.9461,0.9801]

Poisson Regression

Coverage at 95% significant level 0.9360 0.9320 0.9300 0.9400
CI of Coverage via Clopper-Pearson exact | [0.9108,0.9558] [0.9063,0.9525] [0.9040,0.9508] [0.9155,0.9592]

Table 2: Coverage of CI with the decorrelated score method with SCAP Penalty and d=100 for
the linear regression, logistics regression, and Poisson regression at 5% significance level

p=0.25 p=04 p=20.6 p=20.75

Linear Regression

Coverage of 95% significant level 0.9320 0.9380 0.9400 0.9300
CI of Coverage via Clopper-Pearson exact | [0.9063,0.9525] [0.9133,0.9560]  [0.9155,0.9592]  [0.9040,0.9508]

Logistics Regression

Coverage of 95% significant level 0.9620 0.9680 0.9720 0.9500
CI of Coverage via Clopper-Pearson exact | [0.9413,0.9770] [0.9486,0.9816] [0.9535,0.9846] [0.9271,0.9674]

Poisson Regression

Coverage of 95% significant level 0.9380 0.9360 0.9320 0.9340
CI of Coverage via Clopper-Pearson exact | [0.9133,0.9560] [0.9108,0.9558]  [0.9065,0.9509]  [0.9088,0.9526]

For the three interest models, with the Lasso penalty, the estimation consequences with various
simulation settings p are presented in Table 1. Likewise, the results with the SCAP penalty and
the same simulation settings are shown in Table 2. The estimated coverage rates with linear
regression and Poisson regression are all around 95%, and their confidence intervals all contain 95%.
Undoubtedly, linear regression and Poisson regression with penalties perform well as expected when
n=d. Thus, it shows that decorrelated score functions have strong applicability in linear regression
and Poisson regression.

Moreover, it implies that these results demonstrate the versatility and generalization with
penalty items. Both Lasso (convex penalty) and SCAP (non-convex penalty) can be applied to this
case and obtain reliable simulation results. The left boundary of the confidence interval for cover-
age with p = 0.6 and SAPC penalty is larger than 0.95. The abnormal confidence interval raises

questions about the general applicability of decorrelated score function. This result shows that a
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theoretically expected value of 95% coverage is far lower than the actual value of 95%. Although
the excessively high real coverage value violates the expectation of the theoretical value, the overly
high coverage rate is still a safe and effective embodiment. It implies that this model that deviates
from the theoretical expectations still has a certain degree of feasibility and credibility. Decorre-
lated score methods are described as a general framework to solve high-dimensional problems, such
as exploring the limiting distribution in a specific condition of a sample. It is highlighted that
this ”general form” is not only feasible for regression models but also for various collinearity and
penalty terms. However, the selection of penalties will affect the performance of decorrelated score
methods based on Tables 1-2. LASSO penalty is considered a relatively better choice with n=d.
But this advantage is not apparent enough. In other words, the research limit is not enough to

completely negate the non-convex penalty. Section 4 elaborates on the limitations of the study.

Table 3: Coverage of CI with the decorrelated score method with Lasso Penalty and d=200 for the
linear regression, logistics regression, and Poisson regression at 5% significance level

p =025 p =04 p =06 p=0.75

Linear Regression

Coverage of 95% significant level 0.9380 0.9580 0.9360 0.9580
CI of Coverage via Clopper-Pearson exact | [0.9131,0.9575] [0.9365,0.9738]  [0.9108,0.9558] [0.9365,0.9738]

Logistics Regression

Coverage of 95% significant level 0.9500 0.9640 0.9680 0.9620
CI of Coverage via Clopper-Pearson exact | [0.9271,0.9674]  [0.437,0.9785] [0.9486,0.9816] [0.9413,0.9770]

Poisson Regression

Coverage of 95% significant level 0.9480 0.9300 0.9280 0.9260
CI of Coverage via Clopper-Pearson exact | [0.9247,0.9658] [0.9040,0.9508] [0.9017,0.9491] [0.8994,0.9474]

The consequences from Tables 3-4 reveal an interesting phenomenon. The coverage rate ob-
tained by linear regression and logistic regression with decorrelated score functions is normal. More-
over, the corresponding Cls contain 95%, which means that with higher dimensions, decorrelated
score methods are still suitable for linear regression and logistic regression from the perspective of

coverage.

13



Table 4: Coverage of CI with the decorrelated score method with Lasso Penalty and d=500 for the
linear regression, logistics regression, and Poisson regression at 5% significance level

p=0.25 p=04 0 =06 p =075

Linear Regression

Coverage of 95% significant level 0.9340 0.9460 0.9360 0.9460
CI of Coverage via Clopper-Pearson exact | [0.9086,0.9541]  [0.9224,0.9641] [0.9108,0.9558]  [0.9224,0.9641]

Logistics Regression

Coverage of 95% significant level 0.9680 0.9620 0.9660 0.9520
CI of Coverage via Clopper-Pearson exact | [0.9486,0.9816]  [0.9413,0.9770] [0.9461,0.9801]  [0.9294,0.9690]

Poisson Regression

Coverage of 95% significant level 0.9320 0.9280 0.9260 0.9300
CI of Coverage via Clopper-Pearson exact | [0.9063,0.9525] [0.9017,0.9491] [0.8994,0.9474] [0.9040,0.9508]

However, some coverage rates corresponding to Poisson regression are in irregular confidence
intervals, especially when ps tend to be large. The right boundary of this abnormal confidence
interval was less than 95%. Wrong and unreasonable confidence intervals negate the applicability
of decorrelated score functions in Poisson regression to a certain extent. Regardless of case d=200
or d=500, decorrelated score methods cannot be fully applied to Poisson regression. Nevertheless,
slight collinearity (when p=0.25) does not seem to affect the coverage negatively. However, there is
a doubt here that when d = 500 and p = 0.75, the coverage of CI with decorrelated score method is
at a normal level, which is expected to be abnormal. In section 4, I will discuss this phenomenon.

Power of the decorrelated score test for the linear regression with d=100.5=3  py,yqr of the decorrelated score test for the logistics regression with d=100,s=3 Power of the decorrelated score test for the poisson regression with d=1005=3
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Figure 1: Power of the decorrelated score test for the linear regression (left panel), logistic regression (middle
panel), and Poisson regression (right panel) with LASSO Penalty, n = 100, d = 100, s = 3
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Figure 2: Power of the decorrelated score test for the linear regression (left panel), logistic regression (middle
panel), and Poisson regression (right panel) with SCAP Penalty, n = 100, d = 100, s = 3
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Figures 1-4 reveal the statistical power of the hypothesis test. Under the assumption of the
true alternative hypothesis, the rejection rate of the null hypothesis is calculated to obtain statis-
tical power. It is highlighted that with the increase of the local alternative hypothesis from 0 to
0.55, the probability of accepting the null hypothesis of § = 0 reduces for all the cases. Besides,
multicollinearity negatively affects the rejection rates of the null hypothesis. p here represents
the magnitude of the multicollinearity of the simulated data set and positive correlation. Strict
multicollinearity (large p) restricts rejection rates.

On the contrary, weak collinearity promotes rejection rates of the null hypothesis to converge
to 1. In Figure 1-2, rejection rates of interest models with different penalties present the same
convergence trend, which shows that different types of penalty items have the approximately same
impact on statistical power. Similarly, the performance of the interest model with high-dimensional
data set in rejection rates displays the same convergence as in Figure 1-2. It is worth noting that
the curve of logistic regression with decorrelated score methods shows lower rejection rates of the
null hypothesis. A low statistical power implies a high risk of committing Type II errors.

The rejection rate of logistic regression with decorrelated score methods and high dimensional
data sets is relatively insensitive to signals’ increase. In summary, the application of decorrelated
score functions in three interest models seems general and reliable and has good applicability and
practicality if the dimension does not high.

Power of the decorrelated score test for the linear regression with n=100,d=200,s=3  Power of the decorrelated score test for the logistic regression with n=100,d=200.5=3  power of the decorrelated score test for the Poisson regression with n=100,d=200,5=3
10
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Figure 3: Power of the decorrelated score test for the linear regression (left panel), logistic regression (middle
panel), and Poisson regression (right panel) with LASSO Penalty, n = 100, d = 200, s = 3

Power of the decorrelated score test for the linear regression with n=100.d=500.5=3  poyer of the decorrelated score test for the logistic regression with n=100,d=500,s=3 Power of the decorrelated score test for the Poisson regression with n=100,d=500.5=3
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Figure 4: Power of the decorrelated score test for the linear regression (left panel), logistic regression (middle
panel), and Poisson regression (right panel) with LASSO Penalty, n = 100, d = 500, s = 3

15



Real-World Data

The application with decorrelated score functions is divided into two parts regarding the real-
number data sets and count data sets, which are investigated separately via linear and Poisson

regression.

Application 1: Investment Portfolios

The first application is to use linear regression with a high-dimensional database. I consider high-
dimensional investment portfolios formed on size (market equity) and investment. This data set
is made available by “Portfolios of Investment” (2021). The data set is collected from Dec, 08,
2020 - Apr, 30, 2021 and contains n = 100 samples and d = 100 covariates corresponding to
100 investment portfolios. These portfolios for the given periods include all NYSE, AMEX, and
NASDAQ stocks. The dependent variable R;; — 7r; is a time series of Apple Inc. (AAPL) stock
returns at time t (“Apple Inc.” (2021)) minus risk-free rate of return rp;. The linear regression

model is as the below, where «; is a constant item and &;; is the error item.
Riy —rpt = o; + T7X + ey (12)

Portfolio ”SMALL LoBM?” in this study is the interest covariate. In this application, I make a null
hypothesis that the ?SMALL LoBM” parameter is equal to zero versus an alternative hypothesis
of the wrong null. T" is first estimated via equation 1. As the variance of residuals &;+ is unknown,
this paper first calculates the estimated variance 6 and plugin this estimator to obtain U, by
equation 7. Next, I estimate the partial Fisher information via equation 5. The final step is to
find the confident interval with decorrelated score methods. The result is that |U,| = | — 0.384] <
1.96, where confidence interval : [—0.216,0.114] with 5% significance level. It implies that interest
covariate "SMALL LoBM?” is not significant from zero. Besides, zero is contained in the estimated

confidence interval, which gives the above hypothesis verification a verification.

Application 2: The number of Died Drivers in UK

As the second application, I consider a portfolios formed on size and operating data set from “Port-
folios of Operating Profitability” (1972), which contains n = 100 samples and d = 100 covariates
regarding to the intersections of size (market equity) and profitability. Dependent variable Y in

this case is the number of death of drivers applied in U.K. from 01/1969 to 12/1972 (Harvey and
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Durbin (1986)). A Poisson regression model is constructed with Y and the given covariates. Port-
folio ”"ME1 OP2” is considered as interest explanatory variables. The null hypothesis is that the
parameter of "SMALL LoBM?” is equal to zero. By equation 10, 11, and confident interval formula
4, |Upn] = | —0.42| < 1.96, which means the interest parameter is not significant from zero. Besides,

the confident interval of interest parameter is that [—0.113,0.291] with 5% significance level.

4 Conclusion

I first elaborated on some concerns combined with simulation results and econometric theory.
Subsequently, a summary of the simulation results was drawn to solve the research problem of this
paper, that is, to explore the applicability of the general theory of decorrelated score methods in
the interest model. Moreover, this paper discusses some shortcomings, constraints, and unresolved
research problems. Finally, I introduced future research to further explore the general theory of
decorrelated score methods and give a general calculation algorithm for double-dimensional interest

parameters with decorrelated score methods.

Discussion

e Concern 1: Limiting distribution of U,,. Ning, Liu, et al. (2017a) illustrates an approx-
imate normal distribution for the statistics test U of decorrelated score functions. However,
in the actual case, the test statistic generated U, by the simulation occasionally has ex-
treme values, which causes the tails to be fatter in the sample distribution. Heavy tails lead

theoretically approximated normal distribution closer to t-distribution.

e Concern 2: Abnormal simulation results of coverage. In Section 3, some abnormal
simulation results have raised questions about the applicability of decorrelated score methods
and the exploration of factors that affect generalization. One speculation about the influencing
factors is that too high a dimension may increase abnormal simulation coverage. A consistency
condition about the parameter estimation introduced in Ning, Liu, et al. (2017a) is that
18 - B* = @p(s*\/@), where s* = ||5*|lo, @p(n) is a sequence converging to 0 with
n — oo. However, with the increase of d and fixed n, the value of || — 8*| increase as
the grow of magnitude @p. It implies that there is an obvious bias with the extremely high
dimension. Likewise, the consistency of Dantzig selector has a identical magnitude. That is,

I

| — w*||1 = Op(||supp(w™) log%). The bias of @ is also positive affected by dimension.
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This explains that too high dimensionality may cause too high bias, which may restrict the

applicability of decorrelated score methods.

Concern 3: Selection of penalty items. Convex and nonconvex penalties lead to distinct

(de)biases of the penalized M-estimator 6. One-step estimator 6 is bias to some extent. 0 is

difference of 6 and % Based on theorem 3.2 in Ning, Liu, et al. (2017a), it can infer that
0]y

S(5*) = o(1), where S(B8*) approximately follows normal distribution with the mean of 0.

Thus, there is not evidence to show E(#) = 0 under the simulation settings.

Concern 4: Uniformly weak convergence. In result 3, linear regression with decorrelated
score method presents simulation results as the theoretical expectations. Besides, uniform
convergence in Corollary 4.1 holds with Theorem A.1 Ning, Liu, et al. (2017b). However,
no proof to show logistic regression and Poisson regression follow uniform weak convergence.
Perhaps it is one of the reasons that simulation results of linear regression perform better

than others if the two models did not satisfy uniform weak convergence.

Concern 5: Confusing simulation results marked in red. In Table 4, the result is
marked in red give a confusing conclusion. Coverage ”0.93” denotes 35 times that true value
is not contained in the estimated confident interval. This simulation result seems acceptable
at a 95% significance level. However, if there are 36 times for abnormal situations, I will draw
a different conclusion. Insufficient simulation times may cause inaccurate conclusions at some

boundary points.

Summary of this study

The decorrelation score method is a new solution for the issues in high-dimensional models. Classi-

cal Rao’s score methods with the Lasso penalty pose a challenge in untractable limiting distribution

due to bias and sparsity. This newly proposed method presents its general application in estimation

approaches and limiting behavior to solve the above problems. This study discusses the general

application of the high-dimensional sparse model with decorrelated score functions and compares

the performance of distinct penalty functions and various simulation settings. Linear regression,

logistic regression, and Poisson regression are applied to test the applicability and generalization

of decorrelated score methods. Coverage rates of confidence regions with the decorrelated score

function and power of statistic test in section 3 show that this new method has extremely high ap-

plicability in linear regression, regardless of the degree of collinearity, selection of penalty functions,
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or the dimensionality of the data set. However, the applicability of decorrelation score methods
in other models is limited. Logistic regression with decorrelated score methods is used in various
simulation settings, but strict multicollinearity dramatically increases the risk of committing Type
IT errors in terms of power. Moreover, decorrelated score methods are restricted by some factors
in the application of Poisson regression. Studies have shown that higher dimensions, such as d =
200 and 500, and multicollinearity may cause poor performance of decorrelated score methods in
coverage rates for Poisson regression. It is undeniable that the general form of decorrelation score
methods solves the regression problem of interest models in high-dimensional data sets but needs to
avoid multicollinearity or too high dimensions, especially for Poisson regression. Besides, the choice
of penalty functions also plays a significant role in model performance. In this study, two selected
penalty functions have little impact on statistical power, but there is a difference in coverage rates,
which may violate the expectations of statistical theory. The pointwise weak convergence is the
core asymptotical standard for the limiting behavior of the new sore function, which requires all
cases to satisfy its assumptions.

To sum up, in lower dimensions, such as d = n, three interest models usually perform well.
However, in the high dimension, d > n, the decorrelated score method seems not to achieve high
applicability in logistic regression and Poisson regression. In general, decorrelated score methods
are widely applicable to convex penalty terms and non-convex penalty terms, as well as a variety
of regression models, under the assumption of pointwise weak convergence but is restricted with

too high dimension and strict multicollinearity.

Limitations

In this study, the simulation setting restricts the conclusions of this study: Five hundred times of
replications of simulation may result in a puzzled simulation result. Concern 5 in subsection Dis-
cussion provides a corresponding example. Simulation replication times are a compromise between
calculation time and simulation accuracy. Besides, there are still some questions that remained.
First, can the general framework of decorrelated score functions be fully approved only by coverage
and statistical power? Statistical power is usually related to the sample sizes, which is little related
to test model performance. Hence, the test of the applicability is questioned by trying the above
two statistical methods. Second, is the weak sparse matrix model applicable for this general the-
ory? There is no reference to verify it. Dantzig Selector parameter w depends on 3, but how much

influence does this dependency have on this research? Third, is there a specific penalty function
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to significantly reduce the bias of estimated parameters, especially for the one-step estimator and

decorrelated score functions?

Future Research

Future research here is further to explore the applicability and improvement of decorrelated score
methods. One such point is that I can study whether uniform weak convergence, a more robust
gradual theory, will improve the performance of the usual forms of decorrelation score methods.
Previous theories have proved that this kind of convergence is applicable in the linear regression
model, so if we are more stringent on the assumptions, the performance of Poisson regression may
meet the theoretical expectations. In addition, another direction is to test the performance of
decorrelated score methods to the multi-dimensional case.

Based on Ning, Liu, et al. (2017b), I can get an initial inference of the two-dimensional interest
parameters with decorrelated score methods. Likewise, I assume there is a § = (61,62), and ~
here is the nuisance parameter whose dimension is diy = d — 2. The null hypothesis here become
Hg : 0* = (0,0). In this study, negative log-likelihood is still an estimation approach to simply
formula inference. The general score function is similar to equation 2. The new score function is

as the below:

S@,’y) = V01(97’Y) - WT V’Y l<07 ’7)

where W1 = IGVI;'yl € R2¥d=2. Apnd W = (Wl,Wg). W is estimated by the formula W; =
argmin||w|1, ¢ = 1,2. Similar to equation 2, W; is estimated as the same approach as the case
with a univariate interest parameter. U2 = n[S (O,w)]TIA;Ii [5(0,4)], which approximately follows
X3, based on the theorem 3.1 and pointwise weak convergence in Ning, Liu, et al. (2017a). The
partial Fisher Information is that Irg, = V2ol B)—wT vig 1(3). Finally, the confidence interval of
one-step estimator 6 is given by [é—n_l/%(l—a/2)(cTIA9hc)_l/2, «§+n_1/2¢(1—a/Z)(cTIAGWC)_l/Q],

where c¢ is constant vector.
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A Appendix: Tutorial of R code

# This is a tutorial for the simulation process.
#It is a general form and we can adjust some settings
#to get the coverage and the power of statistical test.
# d = 200 Poisson regression for rho = 0.25/0.4/0.6/0.75
print("start the code")
result = array(0, dim = c(500,1))
result_stat = array(0, dim = c(500, 1))
result_005 = array(0, dim = c(500, 1))
result_010 = array(0, dim = c(500, 1))
result_015 = array(0, dim = c(500, 1))
result_020 = array(0, dim = c(500, 1))
result_025 = array(0, dim = c(500, 1))
result_030 = array(0, dim = c(500, 1))
result_035 = array(0, dim = c(500, 1))
result_040 = array(0, dim = c(500, 1))
result_045 = array(0, dim = c(500, 1))
result_050 = array(0, dim = c(500, 1))
result_055 = array(0, dim = c(500, 1))
result_center = array(0, dim = c(500,1))
result_left = array(0, dim = c(500, 1))
result_right = array(0, dim = c(500, 1))
for (m in 1:500){
d = 100 # 200, 500

Sigma <- array(l,dim = c(d, d))
rho_1 = 0.256 # 0.4 0.6 0.75
# Generate Sigma
for (i in 1:d){
for (j in 1:d){

Sigmali,jl=rho_1"(abs(i-j))

}
library (MASS)

mean_<- array(0, dim = c(d,1))

n = 100
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X = mvrnorm(n,mean_,Sigma) # DGP
# Generate Y and beta

beta <- array(0, dim = c(d,1))

betal[2] = 1
betal[3] =1
betal4] = 1

#Linear regression
#y = x J*% beta
#Poisson regression
# y <- rpois(n, exp(x %*J, beta))
#Logistic regression
y <= rbinom(n, 2, (1 + exp(-x %*% beta)) (-1))
library(glmnet)
library(ncvreg)
# You can choose "glmnet" for lasso or "ncvreg" for SCAD.
# You can choose a family type to make lienar, logistic, and Poisson regression
fitcv<-cv.glmnet(x, y, family="binomial", alpha=1)
beta_est = coef(fitcv, fitcv$lambda.min)
#Poisson regression with lasso or SCAD
# You can choose a family type to make lienar, logistic, and Poisson regression
#fitcv<-cv.ncvreg(x, y, penalty='SCAD',family="poisson" )
#fitcv<-ncvreg(x, y, penalty='SCAD',family="poisson")
#beta_est = coef(fitcv, fitcv$lambda.min)
library (hdme)
¢ = array(0, dim = c(500, 1))
# This part is to estimate a Dantzig Selector.
# For linear regression, we do not need to calculate x_,z_
#x_,z_ are to calculate the Dantzig Selector.
# For Poisson regression, x_,zZ_ is set based on partial Fisher information
for (i in 1:n ) {
c[i,1] = sqrt(exp( x[i, 1:d]%x)beta_est[2:(d+1) ] )
/ (1 + exp( x[i, 1:d]%*%beta_est[2:(d+1) 1 ) ))

}
c_ = sqrt(c)
X_ =X

for (i in n){

25



x_[i, 1:d] = x_[i,1:d]*c[i,1]

}
z_ =x[1:n,1]
x_ = x[1:n, 2:d]

# Cross-validation

cv_fit <- cv_gds(x_, z_, family = "gaussian", no_lambda = 50, n_folds = 10)
fit_gds = gds(x_, z_, family = "gaussian", lambda = cv_fit$lambda_min)
gamma = coef (fit_gds)

#calculate sum of score

score=0
score_005 =
score_010 =
score_015 =
score_020 =
score_025 =
score_030 =
score_035 =
score_040 =
score_045 =

score_050 =

O O O O O O o o o o o

score_055 =
score_interval = 0
I=0
for (j_2 in (1:n)){
#calculate wx
wx=0
for(j_3 in 1:dim(gamma) [1]){
wx = wx + x_[j_2, gamma[j_3,1]]*gammal[(j_3),2]
#print (x[j_2, gammal[j_3,1]])
#print (gammal[j_3, 21)
}
if (dim(gamma) [1] == 0 ){

score_interval = score_interval + (y[j_2] - (exp(x[j_2, 1:d]l%x¥%beta_est[2:(d+1) 1)
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/(1+exp(beta_est[1]+ x[j_2, 1:d]%x*V%beta_est[2:(d+1)1)) ) Jd*x(x[j_2, 1]-wx)

score=score+ (y[j_2] - (exp(x[j_2, 2:d]l%x%beta_est[3:(d+1)])

/(1+exp( x[j_2, 2:d]%*%beta_est[3:
score_005 = score_005 + (y[j_2] -
/(1+exp( x[j_2, 2:d]%*/beta_est[3:
score_010 = score_010 + (y[j_2] -
/(1+exp( x[j_2, 2:d]%*)beta_est[3:
score_015 = score_015 + (y[j_2] -
/(1+exp( x[j_2, 2:d]%x*/beta_est[3:
score_020 = score_020 + (y[j_2] -
/(1+exp( x[j_2, 2:d]%*)beta_est[3:
score_025 = score_025 + (y[j_2] -
/(1+exp( x[j_2, 2:d]1%*V%beta_est[3:
score_030 = score_030 + (y[j_2] -
/(1+exp( x[j_2, 2:d]1%*V%beta_est[3:
score_035 = score_035 + (y[j_2] -
/(1+exp( x[j_2, 2:d]1%*V%beta_est[3:
score_040 = score_040 + (y[j_2] -
/(1+exp( x[j_2, 2:d]%*%beta_est[3:
score_045
/(1+exp( x[j_2, 2:d]%*)beta_est[3:
score_050 = score_050 + (y[j_2] -
/(1+exp( x[j_2, 2:d]%*/beta_est[3:
score_055 = score_055 + (y[j_2] -
/(1+exp( x[j_2, 2:d]%*)beta_est[3:

# Partial Fisher Information

I =

score_045 + (y[j_2] -

(d+1)1)) ) I*(x[j_2, 11-wx)

(exp(x[j_2, 2:d]1%*%beta_est[3:

(d+1)] + 0.05*x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]1%*%beta_est[3:

(d+1)] + 0.10*x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]1%*%beta_est[3:

(d+1)] + 0.15%x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]%x*)beta_est[3:

(d+1)] + 0.20*x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]1%*%beta_est[3:

(d+1)] + 0.25*%x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]1%*%beta_est[3:

(d+1)1 + 0.30%x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]%x*%beta_est[3:

(d+1)] + 0.35*x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]%*)beta_est[3:

(d+1)] + 0.40*x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]%x*%beta_est[3:

(d+1)] + 0.45*x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]%*%beta_est[3:

(d+1)] + 0.50*x[j_2, 11 ) ) )

(exp(x[j_2, 2:d]%x*)beta_est[3:

(d+1)] + 0.55*x[j_2, 11 ) ) )

I + (exp(x[j_2, 1:d]lVx*%beta_est[2:(d+1)])

(d+1)] + 0.05 * x[j_2,
Yx(x[j_2, 1]-wx)
(d+1)] + 0.10 * x[j_2,
Yx(x[j_2, 1]-wx)
(@+1)]1 + 0.15 * x[j_2,
Yx(x[j_2, 1]1-wx)
(a+1)] + 0.20 * x[j_2,
Yx(x[j_2, 1]-wx)
(a+1)]1 + 0.25 * x[j_2,
Yx(x[j_2, 1]1-wx)
(a+1)]1 + 0.30 * x[j_2,
Yx(x[j_2, 11-wx)
(d+1)] + 0.35 * x[j_2,
Yx(x[j_2, 1]1-wx)
(a+1)]1 + 0.40 * x[j_2,
Yx(x[j_2, 1]-wx)
(d+1)]1 + 0.45 * x[j_2,
Yx(x[j_2, 1]-wx)
(a+1)]1 + 0.50 * x[j_2,
Yx(x[j_2, 11-wx)
(d+1)] + 0.55 * x[j_2,
Yx(x[j_2, 1]-wx)

/ (L+exp(x[j_2, 1:d]%*%beta_est[2:(d+1)]) )"2) *x[j_2,11*(x[j_2,1] - wx)

+
I

Score

= abs(I)/n

(-1/n)*score

score_interval = score_interval*(-1/n)

U = sqrt(n)*scorexI~(-0.5)

U_005
U_010
U_015

sqrt (n) *score_005%abs(I) " (-0.5)*(-1/n)
sqrt (n)*score_010%abs(I)~(-0.5)*(-1/n)
sqrt (n)*score_015*abs(I)~(-0.5)*(-1/n)
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U_020 = sqrt(n)*score_020*abs(I)~(-0.5)*(-1/n)
U_025 = sqrt(n)*score_025%abs(I)~(-0.5)*(-1/n)
U_030 = sqrt(n)*score_030*abs(I)~(-0.5)*(-1/n)
U_035 = sqrt(n)*score_035%abs(I)~(-0.5)*(-1/n)
U_040 = sqrt(n)*score_040*abs(I)"~(-0.5)*(-1/n)
U_045 = sqrt(n)*score_045%abs(I)~(-0.5)*(-1/n)
U_050 = sqrt(n)*score_050%abs(I)~(-0.5)*(-1/n)
U_055 = sqrt(n)*score_055*abs(I)"~(-0.5)*(-1/n)

result[m,1] = U

result_005[m, 1] U_005
result_010[m,1] = U_010
result_015[m,1] = U_015
result_020[m,1] = U_020
result_025[m,1] = U_025
result_030[m,1] = U_030
result_035[m,1] = U_035
result_040[m,1] = U_040
result_045[m,1] = U_045
result_050[m,1] = U_050
result_055[m,1] = U_055
#0ne-step estimator
theta_center = beta_est[2,1] + score_interval / I
print(sqrt(1/n)*1.96+1"(-0.5))
result_center[m,1] = theta_center
result_left[m,1] = theta_center - sqrt(1/n)*1.96%I"(-0.5)
result_right[m,1]= theta_center + sqrt(1/n)*1.96*I"(-0.5)
}
# Coverage rates
time = 0
for (i in 1:500){
if (result_left[i,1] > O || result_right[i,1] < 0){

time = time + 1

3
# The following part is to calculate the power

num_1 =0
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for (i in 1:500){
if( (abs(result_[i])) > 1.96){

num_1 = num_1 + 1

}
num_005 = 0
for (i in 1:500){
if ( abs(result_005_[1]) > 1.96 ){
num_005 = num_005 + 1

}
num_010 = 0
for (i in 1:500){
if ( abs(result_010[i]) > 1.96 ){
num_010 = num_010 + 1

}
num_015 = 0
for (i in 1:500){
if ( abs(result_015[i]) > 1.96 ){
num_015 = num_015 + 1

}
num_020 = 0
for (i in 1:500){
if ( abs(result_020[i]) > 1.96 ){
num_020 = num_020 + 1

}
num_025 = 0
for (i in 1:500){
if ( abs(result_025[i]) > 1.96 ){
num_025 = num_025 + 1

num_030 = 0
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for (i in 1:500){
if ( abs(result_030[i]) > 1.96 ){
num_030 = num_030 + 1

}
num_035 = 0
for (i in 1:500){
if ( abs(result_35) > 1.96 ){
num_035 = num_035 + 1

}
num_040 = 0
for (i in 1:500){
if ( abs(result_040[i])> 1.96 ){

num_040 = num_040 + 1

}
num_045 = 0
for (i in 1:500){
if ( abs(result_045[i]) > 1.96 ){
num_045 = num_045 + 1

}
num_050 = 0
for (i in 1:500){
if ( abs(result_050[i]) > 1.96 ){
num_050 = num_050 + 1

}
num_055 = 0
for (i in 1:500){
if ( abs(result_055[i]) > 1.96 ){

num_055 = num_055 + 1
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B Appendix: A Code for Plotting

# This part is to show how to draw a power plotting

import numpy as np

import matplotlib.pyplot as plt

from scipy.ndimage import gaussian_filterld

#coverage 0.25 16 0.40 19 0.60 17 0.75 24

x=np.array([0.05, 0.1, 0.15, 0.20, 0.25

, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55])

y_25=np.array([19/500, 22/500, 27/500,

43/500, 61/500, 89/500, 115/500, 154/500, 189/500, 232/500, 271/500 1)
y_40=np.array([15/500, 17/500, 20/500,

23/500, 37/500, 54/500, 65/500, 80/500,

110/500, 143/500, 172/500 1)

y_60=np.array([14/500, 15/500, 18/500,

20/500, 26/500, 31/500, 47/500, 70/500, 84/500, 113/500, 146/500 1)
y_75=np.array([10/500, 18/500, 21/500,

23/500, 25/500, 35/500, 40/500, 56/500, 69/500, 81/500, 92/500 1 )
y_smoothed_1 = gaussian_filter1d(y_25, sigma=0.9)

y_smoothed_2 = gaussian_filter1d(y_40, sigma=0.9)

y_smoothed_4 = gaussian_filter1d(y_60, sigma=0.9)

y_smoothed_75 = gaussian_filter1d(y_75, sigma=0.9)

"rho = 0.25" )

plt.plot(x, y_smoothed_1, label

plt.plot(x, y_smoothed_2, label = "rho = 0.40" )

plt.plot(x, y_smoothed_4, label = "rho = 0.60" )

plt.plot(x, y_smoothed_75, label = "rho = 0.75")

plt.legend ()

plt.title("Power of the decorrelated score test for the logistic regression with n=100,d=500,s=3")
plt.xlabel("Signal")

plt.ylabel("Rejection Rate")

plt.show()
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