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Abstract

Advancements in data mining have increased interest in sparse high-dimensional models in fields of statistics,

biology, and economics. However, conventional hypothesis testing methods often do not work when the number

of covariates exceeds the number of observations. As an alternative testing method, Ning and Liu (2017)

introduce the decorrelated score (DScore) test for generic penalized M-estimators. This thesis investigates the

performance of this DScore test in two types of linear models: linear regressions and generalized linear models

(GLMs). Extending the framework of Ning and Liu (2017), we also consider multiple testing, as it is often not

pre-specified which covariates are of interest. For the performance evaluation of the DScore test, this thesis

simulates its Type I errors, power, and false discovery rates (FDRs) and then applies the test on two real-world

data sets. The main findings of this thesis are that, in general, the DScore test in linear regression models

yields accurate Type I errors and high power. Conversely, this performance is less reliable in GLMs with a small

sample size. Moreover, the DScore test fails to consistently control the FDRs, even after applying conventional

FDR adjustment methods to its p-values.
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1 Introduction

Advancements in data mining have led to a spike of interest in statistical models that deal with

high dimensionality (Van de Geer et al., 2014). In these high-dimensional models, the number of

covariates, d, is often larger than the number of observations, n, invalidating inference in many

existing statistical models. Consider a standard linear regression, for example:

Y = Qβββ∗ + εεε, (1.1)

where Y = (Y1, ..., Yn)T ∈ Rn contains the dependent variables, Q = (Q1, ...,Qn)T ∈ Rn×d is the

regressor matrix, βββ∗ = (β∗1 , ..., β
∗
d)T ∈ Rd is the coefficient vector, and εεε = (ε1, ..., εn)T ∈ Rn are the

error terms. If d > n, standard ordinary least squares (OLS) faces the problem of multicollinearity

as rank(Q) < d and QQT is a singular matrix (Heij et al., 2004). As an alternative method, Ning

and Liu (2017) use penalized M-estimators for estimating the high-dimensional parameter βββ∗:

β̂ββ = argmin
βββ∈Ω

`(βββ) + Pλ(βββ), (1.2)

where Ω is the parameter space, `(βββ) is a loss function (e.g., the negative log-likelihood) and Pλ(βββ)

is a penalty function with tuning parameter λ. The penalty function ensures the sparsity of the

model by allowing for a limited number of nonzero estimates.

Most studies on high-dimensional models, such as Fonti and Belitser (2017), focus solely on these

nonzero estimates and omit discussion about the statistical significance of these estimates. In many

applications, however, it is of interest to test this significance. Hence, we consider the partition

βββ∗ = (θ∗, γγγ∗T )T and denote the null hypothesis as H0 : θ∗ = 0, in which θ∗ is the true parameter

of interest. With hypothesis tests, a second problem arises, as many widely-used test statistics do

not work in sparse high-dimensional models when d > n. Rao’s score test statistic of Rao (1948),

for example, is no longer asymptotically normally distributed under H0 (Ning and Liu, 2017).

Therefore, Ning and Liu (2017) propose a decorrelated score (DScore) test statistic for penalized

M-estimators, which is an extension of Rao’s score test statistic that asymptotically follows the

normal distribution under H0. According to Ning and Liu (2017), the DScore test is applicable to

a variety of models, including linear regressions, logistic regressions, Poisson regressions, Gaussian

graphical models, and additive hazard models. Specifically, this thesis focuses on two types of linear

models: linear regressions and a class of GLMs that includes logistic and Poisson regressions.

This research replicates some derivations of Ning and Liu (2017) concerning the DScore test and

its asymptotic properties with additional details. Moreover, we aim to investigate whether these
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asymptotic properties hold in finite samples before applying the test to real-world data. Therefore,

the first research question of this thesis is as follows:

RQ1: How is the finite sample performance of the DScore test in linear models?

This thesis attempts to answer this question by performing simulations of the Type I errors and

power of the DScore test in linear regressions and two GLM specifications: logistic regressions and

Poisson regressions. Here, we consider a smaller sample size and find that the DScore test still

performs well in linear regression models. Conversely, the test seems to have a less reliable small

sample performance in the GLMs.

Furthermore, researchers may want to test multiple hypotheses, as they often do not know

beforehand which covariates are of interest. This thesis denotes these hypotheses as H0,j : β∗j = 0

for j = 1, . . . ,m. Multiple testing is useful in many statistical applications, such as feature selection

with a large set of features, and it poses additional challenges compared to single hypothesis testing.

A naive approach is to test the m hypotheses and reject them if their corresponding p-value is

lower than some pre-specified significance level. However, when performing 10,000 tests with a

5% significance level, the expected number of false rejections1 of the null hypotheses is already

500. Benjamini and Hochberg (1995) define the false discovery rate (FDR) as the expected number

of false rejections out of all rejections, and they created the Benjamini-Hochberg (BH) procedure,

which remains a widely-used method to control the FDR. Because Ning and Liu (2017) omit multiple

testing from their discussion, this thesis expands on their work by evaluating the performance of

the DScore test after applying one of four multiple testing correction methods, including the BH

procedure.

To our current knowledge, this is the first study that investigates the multiple testing ability of

the DScore test. We attempt to fill this gap in the literature by attempting to answer the second

research question:

RQ2: How can we control the FDRs in linear models when testing multiple hypotheses

with the DScore test?

In this case, we simulate the FDRs of the DScore test under the same conditions as the Type I

errors. Our results indicate that the DScore test does not consistently control the FDRs in small

samples, even after applying our proposed FDR control techniques.

1False rejections are Type I errors: erroneously rejecting true null hypotheses. Other terms for false rejections are

‘false discoveries’ and ‘false positives’.
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After performing the simulations, this thesis shows two real-world data multiple testing appli-

cations of the DScore test. The first is a macro-economic application on the Freddie Mac House

Price Index, which uses the linear regression specification, and the second an application in genetics

with data from Singh et al. (2002) on prostate cancer gene expressions, for which this thesis uses

the logistic regression specification.

1.1 Related work

The previously-mentioned penalized M-estimators work with a great variety of penalty functions.

These penalty functions can either be convex or non-convex. A popular example of a convex penalty

is the Lasso penalty that was introduced by Tibshirani (1996):

Pλ(βββ) = λ ‖βββ‖1 , (1.3)

which restricts the L1-norm of βββ to be less than some tuning parameter λ ∈ R. Examples of other

penalties are the L2 penalty, also called the ridge penalty, and non-convex penalties like the SCAD

penalty of Fan and Li (2001) and the MCP penalty of Zhang (2010).

Other than Ning and Liu (2017), several studies proposed other hypothesis testing methods for

sparse high-dimensional models in the last decade. Specifically for estimators that use the Lasso

penalty, Javanmard and Montanari (2014) and Van de Geer et al. (2014) propose debiasing and

desparsifying correction methods for (generalized) linear models. Another debiasing method is the

ridge projection method of Bühlmann (2013), which works with estimations via the ridge penalty

instead of the Lasso. Another popular approach is sample splitting (Shah and Samworth, 2013),

but Neykov et al. (2018) argue that such methods face an inevitable efficiency loss.

Furthermore, a related concept to the FDR is the familywise error rate (FWER), which is

the probability of making any Type I error. The FWER concept predates the FDR and equals

the FDR when all null hypotheses are true. The most popular method for FWER control is

the Bonferroni correction (Bonferroni, 1936). Another example is the Holm FWER correction

procedure, which Van de Geer et al. (2014) use in their high-dimensional inference study (Holm,

1979). However, Benjamini and Hochberg (1995) note that FWER correction techniques yield a

lower power compared to FDR correction techniques, such as the BH procedure. Although this thesis

focuses on FDRs rather than FWERs, it also evaluates the FDR control ability of the Bonferroni

and Holm procedures.
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1.2 Outline of this thesis

The remainder of this thesis is structured as follows. First, Section 2 contains an elaborate discussion

on the DScore test with descriptions of the models and some necessary derivations. Section 3 starts

with the set-up of the simulation study and follows with the simulation results. Next, Section 4

includes the applications of the DScore test on the house price index and prostate cancer data-sets.

Section 5 concludes.

2 Methodology

Section 2.1 contains the derivation of the general test statistic and its asymptotic properties. Next,

Section 2.2 and 2.3 discuss the linear regression case and the GLM case, respectively. Last, Sec-

tion 2.4 introduces four p-value adjustment techniques for FDR control. This thesis follows the

notation and general framework of Ning and Liu (2017). Appendix A contains an overview of the

mathematical notation and abbreviations used in this thesis.

2.1 General test statistic

Ning and Liu (2017) propose the DScore function that forms the basis of the hypothesis tests:

S(θ,γγγ) = ∇θ` (θ,γγγ)−wT∇γγγ` (θ,γγγ) with wT = IθγγγI
−1
γγγγγγ , (2.1)

where Iθγγγ and Iγγγγγγ are partitions of the Fischer information matrix I:

I =

Iθθ Iθγγγ

Iγγγθ Iγγγγγγ

 := E
(
∇2`(βββ)

)
. (2.2)

Furthermore, this thesis uses Algorithm 1 for the estimation of Ŝ(θ, γ̂γγ), which closely resembles2

the algorithm of Ning and Liu (2017).

2 Apart from the penalized M-estimator approach that Algorithm 1 uses in step 2, Ning and Liu (2017) propose

the Dantzig estimator w̃ as an alternative estimator for w with tuning parameter λ′:

w̃ = argmin ‖w‖1 s.t.
∥∥∥∇2

θγγγ`(β̂ββ)−wT∇2
γγγγγγ`(β̂ββ)

∥∥∥
∞
≤ λ′.
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Algorithm 1 DScore function estimation.
Input: Loss function `(θ,γγγ), penalty function P (·) and tuning parameters λ and λ′ .

1. Estimate β̂ββ = (θ̂, γ̂γγ) with Eq. (1.2).

2. Estimate w with the penalized M-estimator ŵ with penalty function Qλ′(w):

ŵ = argmin
w

1

2n

n∑
i=1

{
wT∇2

γγγγγγ`i(β̂ββ)w − 2wT∇2
γγγθ`i(β̂ββ)

}
+Qλ′(w). (2.3)

3. Calculate the estimated DScore function:

Ŝ(θ, γ̂γγ) = ∇θ`(θ, γ̂γγ)− ŵT∇γγγ`(θ, γ̂γγ). (2.4)

return Ŝ(θ, γ̂γγ)

The name ‘decorrelated score function’ comes from the notion that S(θ,γγγ) is uncorrelated with

the nuisance gradient ∇γγγ`(θ,γγγ). This decorrelation is achieved by wT∇γγγ` (θ,γγγ), which is the sparse

projection of ∇θ` (θ,γγγ) on the nuisance score space N = span{∇γγγ` (θ,γγγ)}. To illustrate the im-

portance of this decorrelation, we compare the DScore function with Rao’s score function ∇θ`(θ,γγγ)

(Rao, 1948). For Rao’s score function, it holds that n1/2∇θ`(0, γ̃γγ) N(0, σ) when d << n for some

estimator γ̃γγ of γγγ∗. The first-order Taylor expansion under H0 : θ∗ = 0 shows that this asymptotic

normality does not hold when d > n and βββ∗ = (θ∗, γγγ∗T )T is sparse:

n1/2∇θ`(0, γ̃γγ) = n1/2∇θ` (0, γγγ∗)︸ ︷︷ ︸
T1

+n1/2∇2
θγγγ` (0, γγγ∗) (γ̃γγ − γγγ∗)︸ ︷︷ ︸

T2

+Rem, (2.5)

where Rem is the remainder of the Taylor expansion. While T1 is asymptotically normally dis-

tributed, this is not always the case for T2 and Rem due to the sparsity of βββ∗ (Ning and Liu, 2017).

For the DScore function under H0, the first order Taylor expansion becomes

n1/2S(0, γ̃γγ) = n1/2S (0, γγγ∗) + n1/2∇γγγS (0, γγγ∗) (γ̃γγ − γγγ∗) +Rem

= n1/2S (0, γγγ∗) + n1/2∇γγγ
{
∇θ` (0, γγγ∗)−wT∇γγγ` (0, γγγ∗)

}
(γ̃γγ − γγγ∗) +Rem

= n1/2S (0, γγγ∗) + n1/2
{
∇2
θγγγ` (0, γγγ∗)− IθγγγI

−1
γγγγγγ∇2

γγγγγγ` (0, γγγ∗)
}

(γ̃γγ − γγγ∗) +Rem

= n1/2S (0, γγγ∗)︸ ︷︷ ︸
T1

+

n1/2
{
∇2
θγγγ` (0, γγγ∗)− E[∇2

θγγγ`(θ,γγγ)]E[∇2
γγγγγγ`(θ,γγγ)]−1∇2

γγγγγγ` (0, γγγ∗)
}

(γ̃γγ − γγγ∗)︸ ︷︷ ︸
T2

+Rem.

(2.6)

From the last line of this equation, we can see that the middle term of T2 converges to 0. Generalizing

this finding for Rem removes the asymptotic distribution problems of Rao’s score function.
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Using the estimated DScore function, the test statistic under H0 is as follows:

Ûn = n1/2Ŝ(0, γ̂γγ)/
√
σ̂S . (2.7)

Here, σ̂S is a consistent estimator of σ∗S = (1,−w∗T )ΣΣΣ∗(1,−w∗T )T with ΣΣΣ∗ = limn→∞Var(n1/2∇`(βββ∗)).

For the derivation of the asymptotic distribution of Ûn, Ning and Liu (2017) make four general

assumptions that models must validate. Appendix B.1 shows these assumptions (Assumptions

B.1-B.4). Subsequently, Ning and Liu (2017) derive Theorem 2.1, which shows the asymptotic

normality of Ûn. Appendix C.1 contains an elaborate version of their proof of this theorem. Using

Theorem 2.1, we can reject H0 : θ∗ = 0 when n is sufficiently large and

∣∣∣Ûn∣∣∣ > Φ−1(1− α/2), (2.8)

where α ∈ [0, 1] is the significance level.

Theorem 2.1. Let η1(n) and η2(n) be sequences that converge to 0 when n→∞. If Assumptions

B.1-B.4 hold and (η1(n) + η1(n))
√

log d = o(1), then

n1/2Ŝ(0, γ̂γγ)σ
∗−1/2
S  N(0, 1), (2.9)

and for any t ∈ R,

lim
n→∞

∣∣∣P(Ûn ≤ t)− Φ(t)
∣∣∣ = 0. (2.10)

2.2 Linear regression case

Consider a linear regression in the form

Yi = βββTQi + εi

= θZi + γγγTXi + εi,
(2.11)

where Qi = (Zi,X
T
i )T ∈ Rd and βββ = (θ,γγγT )T ∈ Rd for i = 1, ..., n. This thesis assumes that the

error terms εi satisfy E(εi) = 0 and E(ε2
i ) = σ2. Also, we assume for the first part of the derivation

that σ2 > 0 is known. Besides, Appendix B.2 shows an additional assumption that Ning and Liu

(2017) make for the derivations of the DScore test statistic in the linear regression case.

6



Like Ning and Liu (2017), this thesis uses the negative Gaussian quasi-log-likelihood as the loss

function `(·) for linear regressions:

` (θ,γγγ) = (2nσ2)−1
n∑
i=1

(
Yi − θZi − γγγTXi

)2
. (2.12)

Appendix C.2 shows the formulae and derivations of the partial first and second order gradients of

this loss function. The resulting formula for the DScore function for linear regressions is as follows:

S(θ,γγγ) = ∇θ` (θ,γγγ)−wT∇γγγ` (θ,γγγ)

= − 1

σ2n

n∑
i=1

(
Yi − θZi − γγγTXi

) (
Zi −wTXi

)
with

(2.13)

w = I−1
γγγγγγ Iγγγθ = E

(
XiX

T
i

)−1 E (ZiXi) . (2.14)

Under H0 : θ∗ = 0, the estimated DScore function becomes

Ŝ(0, γ̂γγ) = − 1

σ2n

n∑
i=1

(
Yi − γ̂γγTXi

) (
Zi − ŵTXi

)
, (2.15)

in which γ̂γγ is the nuisance component of β̂ββ, and this thesis estimates ŵ with the Lasso penalty:

ŵ = argmin
w

{
1

2n

n∑
i=1

(
Zi −wTXi

)2
+ λ′‖w‖1

}
. (2.16)

Furthermore, Appendix C.3 contains the derivations of the (partial) Fisher information matrices

I∗ and I∗θ|γγγ , which we estimate as

Î =
1

σ2n

n∑
i=1

QiQ
T
i , and (2.17)

Îθ|γγγ =
1

σ2

{
1

n

n∑
i=1

Z2
i − ŵT

(
1

n

n∑
i=1

XiZi

)}
. (2.18)

Finally, note that the information identity ΣΣΣ∗ = I∗ holds for negative log-likelihoods (Mykland,

1999). Following this identity, we derive that σ∗S = I∗θ|γγγ in Appendix C.4.

Using Eqs. (2.15) and (2.18), the resulting test statistic under the null hypothesis is

Ûn = n1/2Ŝ(0, γ̂γγ)Î
−1/2
θ|γγγ

= − 1

σn1/2

n∑
i=1

(
Yi − γ̂γγTXi

) (
Zi − ŵTXi

) (
HZ − ŵTHXZ

)−1/2
,

(2.19)
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where HZ = 1
n

∑n
i=1 Z

2
i and HXZ = 1

n

∑n
i=1 ZiXi. Moreover, Ning and Liu (2017) show that

Corollary 2.1.1 follows from Theorem 2.1 and that Ûn is, thus, asymptotically normally distributed

under H0 : θ∗ = 0 for the linear regression case.

Corollary 2.1.1. Let S = supp (βββ∗) and S′ = supp (w∗) satisfy |S| = s∗ and |S′| = s′. If

Assumption B.5 holds, n−1/2 max(s′, s∗) log d = o(1) and λ � λ′ �
√

log d
n , then under H0 : θ∗ = 0,

lim
n→∞

∣∣∣P(Ûn ≤ t)− Φ(t)
∣∣∣ = 0 for any t ∈ R. (2.20)

As σ2 is often unknown in practice, this research uses the consistent estimator σ̂2 = 1
n

∑n
i=1(Yi−

β̂ββ
T
Qi)

2 to estimate σ2. Ning and Liu (2017) show that Corollary 2.1.1 still holds if σ2 ≥ C for some

C, after replacing σ with σ̂ in Eq. (2.19).

2.3 Generalized linear model (GLM) case

This thesis considers the class of generalized linear models (GLMs) with negative log-likelihoods in

the following form

`(θ, γ) = − 1

n

n∑
i=1

1

a(φ)

{
Yi
(
θZi + γγγTXi

)
− b

(
θZi + γγγTXi

)}
, (2.21)

where a(·) and b(·) are two known functions. Appendix C.5 is a supplement to Eq. (2.21) with

derivations of all relevant (partial) gradients, and Appendix C.6 shows the derivations of the theo-

retical quantities I∗ and I∗θ|γγγ . Like Ning and Liu (2017), this thesis assumes a(φ) = 1 in the following

derivations. Using this assumption, the negative log-likelihood in Eq. (2.21) leads to the DScore

function for GLMs:

S(θ,γγγ) = ∇θ` (θ,γγγ)−wT∇γγγ` (θ,γγγ)

= − 1

n

n∑
i=1

(
Yi − b′

(
θZi + γγγTXi

)) (
Zi −wTXi

)
.

(2.22)

Furthermore, the formula for w is

w = I−1
γγγγγγ Iγγγθ = E(b′′(βββTQi)XiX

T
i )−1E(b′′(βββTQi)XiZi), (2.23)

which we estimate with

ŵ = argmin
w

{
1

2n

n∑
i=1

b′′(β̂ββ
T
Qi)

(
Zi −wTXi

)2
+ λ′‖w‖1

}
. (2.24)
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Similar as in the linear regression case, this thesis estimates the DScore funcion and information

matrices under H0 : θ∗ = 0 as

Ŝ(0, γ̂γγ) = − 1

n

n∑
i=1

(
Yi − b′

(
γ̂γγTXi

)) (
Zi − ŵTXi

)
, (2.25)

Î =
1

n

n∑
i=1

b′′
(
β̂ββ
T
Qi

)
QiQ

T
i , and (2.26)

Îθ|γγγ =
1

n

n∑
i=1

b′′
(
β̂ββ
T
Qi

)
Z2
i − ŵT

(
1

n

n∑
i=1

b′′
(
β̂ββ
T
Qi

)
XiZi

)
. (2.27)

For σ∗S in the GLM case, the same derivation holds as in the linear regression case (Ap-

pendix C.4). Thus, again we have σ∗S = I∗θ|γγγ and we can estimate the test statistic with

Ûn = n1/2Ŝ(0, γ̂γγ)Î
−1/2
θ|γγγ . (2.28)

Appendix B.3 contains an additional assumption for GLMs, which ensures that Theorem 2.1 holds

for all GLMs that validate this assumption. The corresponding corollary for the GLM case is

Corollary 2.1.2. Two examples of GLMs that validate the assumptions of Corollary 2.1.2 are logistic

regressions and Poisson regressions (Ning and Liu, 2017). Table 1 shows the specifications of these

GLMs.

Corollary 2.1.2. If Assumption B.6 holds, n−1/2 max(s′, s∗) log d = o(1) and λ � λ′ �
√

log d
n ,

then under H0 : θ∗ = 0 for each t ∈ R,

lim
n→∞

∣∣∣P(Ûn ≤ t)− Φ(t)
∣∣∣ = 0. (2.29)

Table 1: GLM function specifications of logistic regressions and Poisson regressions.

Regression Type a(φ) b (x) b′ (x) b′′ (x)

Logistic 1 log (1 + exp (x)) exp(x)
1+exp(x)

exp(x)

[1+exp(x)]2

Poisson 1 exp (x) exp (x) exp (x)
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2.4 False discovery rate (FDR) control

To the extent of our knowledge, this thesis is the first study that evaluates the multiple testing

performance of the DScore test. Specifically, we test H0,j : β∗j = 0 for j ∈ supp(β̂ββ), such that each

test corresponds to a covariate with a nonzero parameter estimate: | supp(β̂ββ)| = m. Similar to

Fang et al. (2020), this thesis defines the false discovery proportion (FDP) as the fraction of false

rejections out of the total number of rejections for some pre-defined significance level α ∈ [0, 1]:

FDP(α) =

∑
j∈(supp(β̂ββ)\supp(βββ∗))

1 (pj ≤ α)

max
{∑

j∈supp(β̂ββ)
1 (pj ≤ α) , 1

} , (2.30)

of which the expected value is the false discovery rate (FDR):

FDR(α) = E[FDP(α)]. (2.31)

Furthermore, this thesis defines FDR control as controlling the FDRs to be lower than α, which is

also referred to as the nominal FDR.

We consider four classic methods for adjusting the p-values for FDR control: (1) Bonferroni,

(2) Holm, (3) Benjamini-Hochberg, and (4) Benjamini-Yekutieli (Bonferroni, 1936; Holm, 1979;

Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). Algorithm 2 shows the procedure

for calculating the adjusted p-values and rejecting the null hypotheses.

Algorithm 2 FDR control procedure.
Input: p-values (p1, ..., pm), significance level α (=nominal FDR).

1. Sort the p-values such that p(1) ≤ ... ≤ p(m).

2. Apply one of the following p-value adjustment methods3:

• Bonferroni: For all i ∈ {1, ...,m} calculate pB(i) = min
(
mp(i), 1

)
.

• Holm: For all i ∈ {1, ...,m} calculate pH(i) = min
((

maxj≤i(m− j + 1)p(j)
)
, 1
)
.

• Benjamini-Hochberg (BH): For all i ∈ {1, ...,m} calculate pBH
(i) = min

((
minj≥i

m
j
p(j)

)
, 1
)

.

• Benjamini-Yekutieli (BY): For all i ∈ {1, ...,m} calculate pBY
(i) = min

((
minj≥i

m x(m)
j

p(j)

)
, 1
)

with

x(m) =
∑m
i=1 1/i.

3. Reject hypothesis H(i) corresponding to p(i) if pt(i) < α for t ∈ {B,H,BH,BY }.

As discussed in Section 1.1, the Bonferroni and Holm methods are FWER correction techniques.

Therefore, we can expect that these methods are conservative when it comes to controlling the

3The study of Yekutieli and Benjamini (1999) contains an overview of the p-value adjustment formulae of the

Bonferroni, Holm, and BH methods. The formula of the BY method follows from the BH formula.
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FDRs. The BH method is the original FDR correction method, which is more powerful than classic

FWER correction methods according to Benjamini and Hochberg (1995) and is still widely used.

The BY procedure is an extension of the BH method. Narum (2006) scrutinized the performance

of the Bonferroni, BH, and BY methods. He finds that the BY method yields more power than the

Bonferroni method but less power than the BH method. On the other hand, he finds that the BY

method is better at controlling Type I errors than the BH method. Although FDR control methods,

such as BH and BY, assume independence of the individual tests, Yekutieli and Benjamini (1999)

state that most of these methods control the FDR in cases of dependency with some efficiency loss.

3 Simulation study

3.1 Set-up

The simulation set-up of this thesis is similar to the one of Ning and Liu (2017). This thesis

performs 1000 simulations to assess the performance of the DScore test in linear regressions and

GLMs. We believe this number of simulations is sufficiently large to approximate the distribution

of the simulated Type I errors, power, and FDRs with the normal distribution via the central limit

theorem. This assumption allows us to create confidence bands for the power plots and to perform

two-tailed and right-tailed Z-tests to evaluate the empirical Type I errors and FDRs, respectively4.

For both models, this thesis assumes a sample size of n = 50 and d ∈ {25, 50, 100} covariates.

This set-up differs from Ning and Liu (2017), as they use a larger sample size of n = 200. The

smaller sample size allows us to see whether smaller samples can reflect the asymptotic properties

of the test statistics. Furthermore, we select the tuning parameters λ and λ′ of Algorithm 1 using

5-fold cross-validations and assume a 5% significance level. This thesis uses RStudio version 4.0.3

for the programming in R. Particularly, we use the R-package glmnet of Hastie and Qian (2016) for

the estimation of Eqs. (1.2) and (2.3) with the Lasso penalty. The author of this thesis can supply

the full programming codes of the simulations and real-world data applications upon request.

4For some significance level α ∈ [0, 1], this thesis considers the empirical Type I errors and FDRs to be accurate

if we cannot reject the null-hypotheses H0,1 : P(TI) = α, where P(TI) denotes the probability of a Type I error,

and H0,2 : FDR ≤ α, respectively. Here, we choose to refrain from any multiple testing adjustments, as this would

artificially increase the number of non-rejections.
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3.1.1 Linear regression set-up

For a linear regression in the form Yi = βββ∗TQi + εi, the simulations generate εi ∼ N(0, 1) and

Qi ∼ Nd(0,ΣQ), such that ΣQ,jk = ρ|j−k| with Toeplitz parameter ρ. Like Ning and Liu (2017),

the simulations consider ρ ∈ {0.25, 0.4, 0.6, 0.75}, and supp(γγγ∗) = s ∈ {2, 3}. The two settings for

generating the nonzero elements of γγγ∗ are:

1. Dirac setting: all nonzero elements are set to 1.

2. Uniform setting: all nonzero elements are independently drawn from the uniform distribution

on the interval [0, 2].

Without loss of generality, we set β∗1 = θ∗ = 0 and test H0 : β∗1 = 0 for the Type I error

simulation. Next, this research compares the simulated Type I errors of the DScore test with the

simulation results of two other testing methods5. The first is the debiasing method (SSLasso) of

Javanmard and Montanari (2014) and the second is the ridge projection method (Ridge-Pro) of

Bühlmann (2013). The test statistics corresponding to these methods asymptotically follow the

normal distribution. For the computation of the SSLasso test statistic, we use the publicly available

code6 of Javanmard and Montanari (2014) and the hdi-package in R of Dezeure et al. (2015) for

the Ridge-Pro test statistic.

Next, this thesis compares the power of the three methods by regenerating β∗1 on the interval

[0, 1]. Due to time constraints, we only consider the setting with d = 25, ρ = 0.25 and the Dirac

approach for generating nonzero elements of γγγ∗.

Last, this research performs FDR simulations of the DScore test following the same settings as

the Type I error simulations. Here, we assume that each of the hypotheses concerns a covariate with

a nonzero parameter estimate. Per iteration, the number of tests, thus, equals the number of nonzero

estimates. The simulations compute the empirical FDRs for the raw p-values and the p-values after

applying one of the four methods in Section 2.4. This thesis uses the build-in stats-package in R

for the implementation of the p-value adjustment methods (R Core Team, 2020).

3.1.2 GLM set-up

In the GLM case, this research simulates logistic regressions and Poisson regressions. The generative

processes of the covariates Qi and the nonzero elements of γγγ∗ are the same as in the linear regression

5For accurate comparisons, the simulations generate paired data, on which the three tests are applied.
6The SSLasso code is available at https://web.stanford.edu/~montanar/sslasso/code.html. Last accessed on

July 4, 2021.
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case. For the dependent variables Yi, the generative processes are as follows:

• Logistic regression: Yi ∼ Binom(1, p) with p = 1
1+exp(−βββ∗TQi)

.

• Poisson regression: Yi ∼ Poisson(µ) with µ = exp(βββ∗TQi).

Furthermore, the simulations of the Type I errors and empirical FDRs follow the same setting as

in the linear regression case. The power simulations use β∗1 ∈ [0, 2] for the logistic and Poisson

regressions and compare them with the power of the linear regression over the same interval of β∗1 .

3.2 Simulation results

3.2.1 Linear regression results

Table 2 displays the simulated Type I errors of the three methods in the linear regression set-up.

The results indicate that the Type I errors of the DScore test do not significantly differ from the

significance level α = 5% in all cases, excluding five slightly larger Type I errors when d = 100.

Exceptions aside, the SSLasso method generates Type I errors that are larger than the significance

level when d ∈ {50, 100}. For this method, the Type I errors only seem close to 5% for s = 2 and

d = 25. These results differ from the findings of Ning and Liu (2017), as they found accurate Type

I errors of the SSLasso method in all cases. Therefore, the smaller sample size used in our approach

Figure 1: Power of the test corresponding to H0 : θ∗ = 0 in the linear regression case.
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(b) s = 3.

Notes: DScore=Decorrelated Score method, SSlasso=Debiasing method, Ridge-Pro=Ridge projection method. The

simulations assume d = 25, ρ = 0.25, and θ∗ ∈ [0, 1]. The shaded areas around the curves indicate 95% confidence

bands (based on a normal distribution approximation).
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Table 2: Average simulated Type I errors (%) for the linear regression case.

ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.75

s d Dirac Unif Dirac Unif Dirac Unif Dirac Unif

D
S
co

re

2 25 4.6 4.5 4.9 4.9 5.2 4.4 5.5 5.3

2 50 5.8 6.1 6.1 5.3 4.0 3.9 4.9 4.6

2 100 4.8 5.0 6.7 7.1 7.0 6.3 6.9 6.8

3 25 5.0 4.7 5.5 5.3 4.6 4.7 5.7 5.1

3 50 5.3 5.2 6.1 6.2 4.5 4.7 5.1 4.7

3 100 4.8 5.0 6.2 6.0 6.3 6.1 6.5 6.5

S
S
L

a
ss

o

2 25 4.1 3.9 3.8 4.3 3.4 4.5 4.7 5.0

2 50 6.9 7.0 8.2 7.8 6.8 6.5 9.9 8.7

2 100 7.7 7.4 10.2 9.4 12.5 12.2 14.5 13.4

3 25 3.4 3.0 2.9 3.8 3.2 3.8 3.3 4.1

3 50 6.4 6.8 8.2 7.8 7.0 6.5 10.3 9.3

3 100 7.0 6.8 10.0 9.1 12.3 11.8 14.0 13.0

R
id

g
e-

P
ro

2 25 3.4 3.6 3.1 3.8 4.5 3.7 3.5 4.2

2 50 2.9 2.5 2.3 3.5 3.2 2.7 4.8 4.3

2 100 0.8 1.2 1.7 0.8 2.0 1.9 1.8 2.1

3 25 3.6 3.4 3.1 3.4 4.4 2.3 3.9 3.7

3 50 3.3 2.6 2.7 4.0 3.0 4.6 4.6 5.4

3 100 0.8 0.5 1.5 0.4 1.5 1.7 1.6 2.6

Notes: Underlined values indicate that we cannot reject that the Type I error equals 5% using a two-tailed Z-test

with a 5% significance level. We generate nonzero parameters to be equal to 1 (Dirac) or draw them uniformly on

the interval [0,2] (Unif). Parameters: d=number of covariates, s = supp(γγγ∗), and ρ =Toeplitz parameter for the

covariance matrix of the covariates. Tests: Decorrelated score test (DScore), Debiasing method (SSLasso), Ridge

projection method (Ridge-Pro).

seems to less accurately reflect the asymptotic properties of this test statistic. Lastly, the Ridge-Pro

method generates lower Type I errors than the significance level in almost all cases.

Fig. 1 shows two plots of the power of the three tests for d = 25 and s ∈ {2, 3}. In line with

the findings of Ning and Liu (2017), the DScore test is the most powerful out of the three tests.

Furthermore, inspections of the confidence bands of the SSLasso and Ridge-Pro methods indicate

no significant difference in power when θ∗ is small. For larger values of θ∗, the SSLasso method

yields the lowest power. Note that the power curves corresponding to the Ridge-Pro method start

at a lower rejection rate than the other two methods. This notion is as expected based on the Type

I error results in Table 2. However, as the power curves of the Ridge-Pro method lie well outside

the confidence bands of the DScore method, we believe the conclusion of a larger power for the
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latter method to hold.

Next, Table 3 shows the empirical FDRs of the linear regression simulations. Although all FDR

correction methods decrease the empirical FDRs, the results indicate that none of the proposed

FDR adjustment methods consistently control the FDRs when applied to the DScore test, especially

when ρ ∈ {0.25, 0.4}. Nevertheless, the Bonferroni and BY methods cause the greatest empirical

FDR reduction, followed by the Holm method. The BH method consistently causes the lowest

FDR reduction, which is in line with the findings of Narum (2006). Furthermore, the larger FDR

reduction of the Bonferroni and Holm methods compared to the BH method is as expected, as these

two methods were designed to control the FWER, a more stringent condition than FDR control.

3.2.2 GLM results

Table 4 contains the average Type I errors for the GLM simulations of the logistic and Poisson

regressions7. Although they do not differ significantly from 5% in most cases, the DScore method

produces reliable errors less often in the two GLMs than in the linear regression case. Again, this

result differs from Ning and Liu (2017), likely due to the smaller sample size.

Furthermore, Fig. 2 shows the power curves based on the simulations of the two GLMs and the

linear regression. The DScore test statistic noticeably has a lower power in the logistic regression

case than the other two models. The power curve of the Poisson regression case closely resembles

the linear regression case, only with a slightly higher power when θ∗ is small.

Finally, Appendix D contains the results of the FDR simulations in the logistic regression case

and the Poisson regression case. These results are similar to the results in the linear regression case

and draw the same conclusions.

7The Lasso method in the glmnet-package returns an empty model when the tuning parameters do not converge

in the cross-validation stage. Due to the frequent occurrence of these convergence issues for logistic and Poisson

regressions, this thesis re-simulates each of the instances that do not lead to converging tuning parameters. Hence,

the number of simulations for these models still equals 1000 at the expense of longer runtimes. Also, this may cause

potential violations of the independence of the simulated data if (some of) the convergence issues are related to specific

groups of data.
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Table 3: Empirical FDRs (%) of the DScore test for the linear regression case with a 5% nominal FDR.

ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.75

s d Adjustment Dirac Unif Dirac Unif Dirac Unif Dirac Unif

2 25 Raw 26.6 28.1 21.9 23.6 17.8 19.2 15.3 17.7

2 25 Bonferroni 6.0 7.9 4.9 6.1 3.6 4.8 3.4 3.9

2 25 Holm 9.8 11.5 8.1 8.8 5.9 6.7 5.7 5.7

2 25 BH 16.4 17.8 12.8 14.4 9.4 10.1 8.3 8.2

2 25 BY 7.3 8.9 5.9 6.4 4.2 4.8 3.7 3.8

2 50 Raw 37.8 39.0 32.5 33.7 23.2 26.4 17.6 20.8

2 50 Bonferroni 8.3 11.2 7.0 8.8 4.1 5.8 3.3 4.4

2 50 Holm 13.4 15.3 12.0 13.4 8.1 8.5 5.0 5.9

2 50 BH 23.3 23.5 19.9 20.2 12.9 12.8 8.1 9.1

2 50 BY 10.1 12.2 8.7 9.6 5.4 5.5 3.8 4.2

2 100 Raw 47.4 47.9 39.2 40.7 29.5 31.5 20.4 23.1

2 100 Bonferroni 13.1 16.5 9.7 11.5 6.0 7.5 3.8 4.1

2 100 Holm 20.0 21.1 16.2 16.3 10.1 10.8 5.9 6.1

2 100 BH 32.2 31.9 25.6 25.4 17.0 16.3 10.3 10.3

2 100 BY 16.7 18.3 12.5 13.2 7.6 7.8 4.3 4.1

3 25 Raw 20.9 22.7 17.8 19.4 13.5 15.4 11.7 13.8

3 25 Bonferroni 3.9 5.8 3.2 4.2 2.1 3.4 2.4 3.1

3 25 Holm 6.7 8.1 5.6 6.8 4.1 5.2 4.1 4.7

3 25 BH 13.2 14.3 10.9 11.5 7.4 8.3 6.9 7.6

3 25 BY 5.4 6.6 4.5 4.9 3.1 3.9 3.3 3.6

3 50 Raw 31.6 33.4 26.5 28.8 18.6 21.0 13.8 16.9

3 50 Bonferroni 5.2 7.7 4.2 5.7 2.6 3.6 2.1 2.9

3 50 Holm 9.5 12.0 7.9 9.3 5.0 6.0 3.7 4.2

3 50 BH 19.2 21.2 15.4 17.2 9.9 10.8 7.0 7.1

3 50 BY 8.0 9.7 6.0 7.3 3.8 4.2 2.8 3.1

3 100 Raw 41.5 43.9 34.2 36.7 23.1 25.8 16.0 18.9

3 100 Bonferroni 8.2 11.8 6.1 7.9 3.3 4.5 2.5 3.1

3 100 Holm 13.5 16.5 10.8 12.6 7.1 7.6 4.6 5.1

3 100 BH 27.3 28.9 21.7 22.0 13.1 14.5 8.3 8.7

3 100 BY 11.8 14.7 9.1 10.2 5.3 5.5 3.5 3.6

Notes: Underlined values indicate that we cannot reject that the FDR is lower than 5% using a right-tailed Z-test

with a 5% significance level. We generate nonzero parameters to be equal to 1 (Dirac) or draw them uniformly

in the interval [0,2] (Unif). Parameters: d=number of covariates, s = supp(γγγ∗), and ρ =Toeplitz parameter for

the covariance matrix of the covariates. Adjustment methods: unadjusted p-values (Raw), Bonferroni, Holm,

Benjamini-Hochberg (BH), and Benjamini-Yekutieli (BY).
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Table 4: Average simulated Type I errors (%) for the GLM case (logistic regression and Poisson regression).

ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.75

s d Dirac Unif Dirac Unif Dirac Unif Dirac Unif

L
o
g
is

ti
c

2 25 4.4 3.9 6.2 4.4 6.2 6.1 7.7 7.4

2 50 4.4 3.3 5.1 3.7 5.2 4.6 6.4 5.4

2 100 3.4 2.8 3.5 3.3 5.2 4.7 5.1 4.3

3 25 4.6 4.6 6.3 4.6 5.7 4.8 5.6 5.0

3 50 3.6 2.5 4.6 3.3 4.5 3.8 6.6 5.1

3 100 1.9 2.8 3.0 3.0 3.5 3.5 4.6 4.3

P
o
is

so
n

2 25 4.6 5.6 4.8 4.6 5.4 4.4 5.6 3.7

2 50 3.3 4.2 3.8 3.2 4.1 3.9 4.8 3.5

2 100 2.2 2.5 2.5 3.8 2.8 3.6 4.5 4.4

3 25 5.2 6.2 5.9 5.6 7.3 5.1 4.2 3.9

3 50 4.6 4.0 3.4 4.5 4.4 4.0 4.6 4.2

3 100 2.1 2.7 2.7 5.0 4.2 4.6 4.4 5.7

Notes: Underlined values indicate that we cannot reject that the Type I error equals 5% using a two-tailed Z-test

with a 5% significance level. We generate nonzero parameters to be equal to 1 (Dirac) or draw them uniformly on

the interval [0,2] (Unif). Parameters: d=number of covariates, s = supp(γγγ∗), and ρ =Toeplitz parameter for the

covariance matrix of the covariates.

Figure 2: Power of the test corresponding to H0 : θ∗ = 0 in the linear, logistic and Poisson regression

simulations.
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(b) s = 3.

Notes: The simulations assume d = 25, ρ = 0.25, and θ∗ ∈ [0, 2]. The shaded areas around the curves indicate 95%

confidence bands (based on a normal distribution approximation).
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4 Real-world applications

4.1 Linear regression application: Freddie Mac House Price Index

The first real-world data application of the DScore test relates to the macro-economy. Specifically,

this thesis performs a linear regression using monthly seasonally-adjusted house price index (HPI)

data of Freddie Mac (2021). This thesis investigates four sample periods:

1. January 1975 to December 1990: 16 years (192 observations).

2. January 1975 to December 2000: 26 years (312 observations).

3. January 1975 to December 2010: 36 years (432 observations).

4. January 1975 to December 2020: 46 years (552 observations).

Furthermore, we take the log-difference of the HPIs to measure the relative change in house prices.

The regression equation is as follows:

HPIUS,t =
382∑
i=1

βiHPIMSA,i,t + εt for t ∈ {1, ..., T − 1}, (4.1)

where HPIUS,t is the log-differenced US HPI, HPIMSA,i,t is the log-differenced HPI corresponding

to one of 382 metropolitan statistical areas (MSAs) in the US, and T is the sample size. Again,

we use the Lasso penalty in Eq. (1.2) to estimate the coefficients. Next, this thesis tests the null

hypotheses H0,j : βj = 0 for j ∈ supp(β̂ββ), such that supp(β̂ββ) is the set of nonzero estimates.

Afterward, this thesis uses the four methods of Section 2.4 to correct for the FDRs.

Fig. 3 shows plots of the ordered p-values of the four samples before and after the adjustment

with one of the FDR control methods. These plots show a consistent order of the adjustment

methods over the four samples: the Bonferroni method is the most conservative, followed by the

Holm method and the BY method. In line with our simulation results, the BH method decreases

the number of significant p-values the least. For additional information, Appendix E contains an

overview of the MSAs that correspond to these significant p-values in the four samples.

4.2 GLM application: Prostate cancer study of Singh et al. (2002)

Next, this thesis presents an application of the DScore test for a logistic regression in the field of

genetics. In particular, we use the same gene expression data-set as Fonti and Belitser (2017), who

investigated feature selection in high-dimensional GLMs using the Lasso estimator. The data-set

originates from the study of Singh et al. (2002) and is available in the sda-package in R (Ahdesmäki
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Figure 3: The ordered p-values of the house price index application.
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(a) January 1975-December 1990 (16 years).
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(b) January 1975-December 2000 (26 years).
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(c) January 1975-December 2010 (36 years).
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(d) January 1975-December 2020 (46 years).

Notes: The plots include the raw p-values and the p-values after adjustment with the FDR correction methods of (1)

Bonferroni, (2) Holm, (3) Benjamini-Hochberg (BH), and (4) Benjamini-Yekutieli (BY). The horizontal black dotted

line corresponds with a 5% significance level.

and Strimmer, 2010). It consists of 102 samples with gene expression data of 6033 genes. Of

these 102 samples, 52 are from individuals diagnozed with prostate cancer and 50 from healthy

individuals. Hence, we define the dependent variable of the logistic regression as

Yi =


1, if individual i has prostate cancer.

0, if individual i is healthy.

(4.2)

After regressing the dependent variable on the 6033 gene expressions, this thesis performs the

DScore test over all coefficients with nonzero estimates. We find that the only gene expressions to

be significant on a 5% level correspond to genes 610 and 914. Fonti and Belitser (2017) find a set

of 10 relevant features (here: gene expressions), which includes these two genes. However, we must

note that Fonti and Belitser (2017) do not perform significance tests and instead determine whether
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features are relevant by checking if their estimates are nonzero.

Figure 4: The ordered p-values of the prostate cancer gene expression application.
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Notes: The plot includes the raw p-values and the p-values after adjustment with the Holm and Benjamini-Hochberg

(BH) corrections. The horizontal black dotted line corresponds with a 5% significance level.

Applying each of the four FDR control methods yields no results that are significant on a 5%

level. Similar to the HPI application example, Fig. 4 shows the ordered p-values before and after

applying the FDR correction methods. We omit the Bonferroni and BY adjustments from this plot

as they closely overlap with the adjusted p-values of the Holm method. A possible explanation of

the findings of only two significant features before and no significant after FDR correction is the

lower power of the DScore test for logistic regressions (see Fig. 2).

5 Discussion

5.1 Conclusion

This thesis investigates the DScore test of Ning and Liu (2017) in linear regressions and GLMs.

In particular, we assess the small sample performance of the test and evaluate its multiple testing

ability, which we believe has not been done before. Recall the research questions of this thesis:

RQ1: How is the finite sample performance of the DScore test in linear models?

RQ2: How can we control the FDRs in linear models when testing multiple hypotheses

with the DScore test?

Concerning RQ1, this thesis finds that the DScore test generally has consistent Type I errors

and more power than the Ridge-Pro and SSLasso methods when applied to linear regression models.
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Conversely, the DScore test in GLMs with a small number of observations is less reliable than in

linear regressions due to less consistent Type I errors and a lower power in logistic regressions. This

finding differs from Ning and Liu (2017), who find a good performance for logistic regressions and

Poisson regressions in a setting with more observations.

Regarding RQ2, this research finds that none of the four classic multiple testing correction

methods consistently control the FDRs of the DScore test in linear regressions and GLMs. However,

they still cause a substantial decrease in the empirical FDRs. Of the methods that this thesis

investigates, the p-value adjustments of the Bonferroni and BY methods are the most conservative,

while the BH method is the least conservative.

The findings of this thesis implicate that the DScore test is, in general, an efficient and powerful

method for testing single hypotheses in sparse high-dimensional linear regression models. However,

applying the DScore test in GLMs is not guaranteed to produce accurate results in small samples.

Moreover, the test may not accurately control the FDRs when conducting multiple tests even after

correction with conventional FDR control methods. Therefore, we believe that researchers who

want to perform multiple testing with the DScore test should interpret the resulting p-values with

caution.

5.2 Limitations and research recommendations

A limitation of this thesis relates to the simulated power curves of different tests. Because their

power simulations do not always correspond to the same empirical Type I errors, this thesis cannot

make any bold claims about differences in power of tests with roughly similar power curves. Also,

we only consider two cases due to time constraints. Asserting whether one method consistently

has a high power requires power analysis of other cases, such as the 48 cases considered for the

simulations of the empirical Type I errors and FDRs.

Furthermore, the GLM simulations in this research re-simulate the data of iterations, in which

the tuning parameters do not converge in the cross-validation stage. As inspections of potential

relations between the data corresponding to these issues are costly, this thesis omits them from the

analysis. This creates the problem of potential dependency structures in the simulated data, which

can influence the results.

Several interesting avenues for future research exist. First, one can perform our simulation study

for a range of sample sizes. Doing this for the same GLMs as in our study or others, like exponential

regressions, may add additional support to our finding of a less reliable small sample performance
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of the DScore test in GLMs.

Also, it may be interesting to consider alternative FDR control methods. For example, the study

of Fang et al. (2020) uses the FDR correction method of Storey (2002), which is more powerful than

the BH method. It may be interesting to see whether this approach leads to less conservative results

in the simulations and real-world data applications of our research.
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Dezeure, R., Bühlmann, P., Meier, L., and Meinshausen, N. (2015). High-dimensional inference:

confidence intervals, p-values and R-software hdi. Statistical Science, pages 533–558.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American Statistical Association, 96(456):1348–1360.

Fang, E. X., Ning, Y., Li, R., et al. (2020). Test of significance for high-dimensional longitudinal

data. Annals of Statistics, 48(5):2622–2645.

Fonti, V. and Belitser, E. (2017). Feature selection using lasso. VU Amsterdam Research Paper in

Business Analytics, 30:1–25.

Freddie Mac (2021). Freddie Mac House Price Index. Data retrieved from http://www.freddiemac

.com/research/indices/house-price-index.page on June 12, 2021.

Hastie, T. and Qian, J. (2016). Glmnet vignette. Retrieved from https://mran.microsoft

.com/snapshot/2018-04-27/web/packages/glmnet/vignettes/glmnet beta.pdf on June

18, 2021.

Heij, C., Heij, C., de Boer, P., Franses, P. H., Kloek, T., van Dijk, H. K., et al. (2004). Econometric

methods with applications in business and economics. Oxford University Press.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of

Statistics, pages 65–70.

Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-

dimensional regression. The Journal of Machine Learning Research, 15(1):2869–2909.

23

http://www.freddiemac.com/research/indices/house-price-index.page
http://www.freddiemac.com/research/indices/house-price-index.page
https://mran.microsoft.com/snapshot/2018-04-27/web/packages/glmnet/vignettes/glmnet_beta.pdf
https://mran.microsoft.com/snapshot/2018-04-27/web/packages/glmnet/vignettes/glmnet_beta.pdf


Mykland, P. A. (1999). Bartlett identities and large deviations in likelihood theory. The Annals of

Statistics, 27(3):1105–1117.

Narum, S. R. (2006). Beyond Bonferroni: Less conservative analyses for conservation genetics.

Conservation Genetics, 7(5):783–787.

Neykov, M., Ning, Y., Liu, J. S., and Liu, H. (2018). A unified theory of confidence regions and

testing for high-dimensional estimating equations. Statistical Science, 33(3):427–443.

Ning, Y. and Liu, H. (2017). A general theory of hypothesis tests and confidence regions for sparse

high dimensional models. The Annals of statistics, 45(1):158–195.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria. Stats package information available at https://

prs.ism.ac.jp/~nakama/Rjp/stats-manual.pdf (Last accessed: July 4, 2021).

Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters

with applications to problems of estimation. In Mathematical Proceedings of the Cambridge

Philosophical Society, volume 44, pages 50–57. Cambridge University Press.

Shah, R. D. and Samworth, R. J. (2013). Variable selection with error control: Another look at

stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

75(1):55–80.

Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., Tamayo, P., Renshaw,

A. A., D’Amico, A. V., Richie, J. P., et al. (2002). Gene expression correlates of clinical

prostate cancer behavior. Cancer Cell, 1(2):203–209.

Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 64(3):479–498.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288.
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Appendix A Glossary of the notation and abbreviations

This thesis follows the mathematical notation of Ning and Liu (2017). We denote vectors in bold

italics and matrices in bold roman, e.g., X denotes a vector and X a matrix. Furthermore, Tables

A.1 and A.2 contain an overview of respectively the mathematical symbols and operators and the

abbreviations that this thesis uses.

Table A.1: Mathematical symbols and operators used in this thesis with their definitions.

Notation Definition

supp(·) Set containing the nonzero elements of a vector: supp(v) = {j : vj 6= 0}

‖v‖q , 1 ≤ q ≤ ∞ The Lq-norm of v: ‖v‖q =
(∑d

i=1 |vi|
q
)1/q

an=o(bn) limn→∞
an
bn

= 0

an=O(bn) an ≤ Cbn for some C > 0 and n sufficiently large

Xn=oP(bn) limn→∞
Xn
bn

= 0

Xn=OP(bn) For any ε > 0, we have P (Xn ≤ Cbn) ≥ 1− ε) for some C > 0 and n sufficiently large

an � bn C ≤ an
bn
≤ C′ for some C,C′ > 0

an . bn an ≤ Cbn for some C > 0

λmin(M) and λmax(M) The minimum and maximum eigenvalue of M

∇f(·) Gradient of f(·)

∇Sf(·) Gradient of f(·) with respect to S

Xn  X Xn converges weakly to X

‖Y ‖ψ2 The sub-Gaussian norm of Y: supp≥1 p
−1/2 (E|Y |p)1/p

Notes: The vector v is defined as v = (v1, ..., vd)
T ∈ Rd. M ∈ Rn×d is a matrix. an and bn are positive sequences.

Xn is a sequence of random numbers. Y is a random variable.
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Table A.2: Abbreviations used in this thesis with their descriptions.

Abbreviation Description

BH Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995)

BY Benjamini-Yekutieli procedure (Benjamini and Yekutieli, 2001)

DScore Decorrelated score test (Ning and Liu, 2017)

FDP False discovery proportion

FDR False discovery rate

FWER Family-wise error rate

GLM Generalized linear model

HPI House price index

MSA Metropolitan statistical area

Ridge-Pro Ridge projection test (Bühlmann, 2013)

SSLasso Debiasing test (Javanmard and Montanari, 2014)
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Appendix B Assumptions

B.1 General assumptions

Ning and Liu (2017) make Assumptions B.1-B.4 that loss functions must validate before Theorem 2.1

can hold.

Assumption B.1 (Consistency conditions for initial parameter estimation). For some sequences

η1(n) and η2(n) that converge to 0 when n→∞, it holds that

lim
n→∞

P
(∥∥∥β̂ββ − βββ∗∥∥∥

1
. η1(n)

)
= 1 and lim

n→∞
P (‖ŵ −w∗‖1 . η2(n)) = 1. (B.1)

Intuition: β̂ββ and ŵ are consistent estimators of βββ∗ and w∗.

Assumption B.2 (Concentration of the gradient and Hessian). For v∗ = (1,−w∗T )T , we assume

‖∇` (β∗)‖∞ = OP(
√

log d/n), and∥∥v∗T∇2` (βββ∗)− Eβ∗
(
v∗T∇2` (βββ∗)

)∥∥
∞ = OP(

√
log d/n).

(B.2)

Assumption B.3 (Local smoothness on the loss function). Let β̂ββ0 = (0, γ̂γγT )T , v̂ = (1,−ŵT )T ,

and v∗ = (1,−w∗T )T . For β̌ββ = β̂ββ0 and β̌ββ = β̂ββ, we assume

v∗T
{
∇`(β̌ββ)−∇`(βββ∗)−∇2`(βββ∗)(β̌ββ − βββ∗)

}
= oP

(
n−1/2

)
, and

(v̂ − v∗)T (∇`(β̌ββ)−∇`(βββ∗)) = oP

(
n−1/2

)
.

(B.3)

Assumption B.4 (Central limit theorem for the score function). Assume that

√
nv∗T∇`(βββ∗)/

√
σ∗S  N(0, 1), (B.4)

where σ∗S = v∗TΣΣΣ∗v∗ and σ∗S ≥ C for some constant C > 0.

B.2 Additional assumption for linear regressions

Ning and Liu (2017) make Assumption B.5 for the derivation of the DScore test statistic in the

linear regression case.
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Assumption B.5 (Additional assumption for linear regressions). Ning and Liu (2017) assume the

following for the derivation of the linear regression DScore test statistic:

1. ‖εi‖ψ2 ≤ C for some constant C.

2. 2κ ≤ λmin(E(QiQ
T
i )) ≤ λmax(E(QiQ

T
i )) ≤ 2/κ for some constant κ.

3. Qi is a sub-Gaussian vector.8

B.3 Additional assumption for GLMs

Ning and Liu (2017) make Assumption B.6 for the derivation of the DScore test statistic in the

GLM case.

Assumption B.6 (Additional assumption for GLMs). Ning and Liu (2017) assume the following

five conditions for the derivation of DScore test statistic for GLMs:

1. λmin (I∗) > κ2 for some constant κ > 0.

2. S = supp (βββ∗) and S′ = supp (w∗) satisfy |S| = s∗ and |S′| = s′.

3. ‖Qi‖∞ 6 K,
∣∣w∗TXi

∣∣ 6 K, for some constant K, and
∣∣Yi − b′ (QT

i βββ
∗)∣∣ is sub-exponential.9

4. QT
i βββ
∗ ∈ [K1,K2] for K2 > K1 and K1,K2 ∈ R.

5. ∀t ∈ [K1 − ε,K2 + ε] with some constant ε > 0 and a sequence t1 satisfying |t1 − t| = o(1), it

holds that 0 < b′′(t) 6 C and |b′′ (t1)− b′′(t)| 6 C |t1 − t| b′′(t) for some constant C > 0.

8A random variable v is sub-Gaussian if P(|v| > t) ≤ exp(1− t2/K2) for some K > 0 and for all t.
9A random variable v is sub-exponential if P(|v| > t) ≤ exp(1− t/K) for some K > 0 and for all t.
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Appendix C Additional proofs and derivations

This section contains additional proofs and derivations of the parts that the DScore function cal-

culations require or aid in the derivation of the asymptotic properties of the test statistic.

C.1 Proof of Theorem 2.1

This subsection shows an elaborate version of the proof of Theorem 2.1 from Ning and Liu (2017).

Proof. Let β̂ββ0 = (0, γ̂γγT )T , v̂ = (1,−ŵT )T , and v∗ = (1,−w∗T )T .The following holds:

n1/2
∣∣∣Ŝ(β̂ββ0)− S (βββ∗)

∣∣∣ = n1/2
∣∣∣v̂T∇`(β̂ββ0

)
− v∗T∇` (βββ∗)

∣∣∣
= n1/2

∣∣∣v̂T∇`(β̂ββ0

)
− v∗T∇` (βββ∗) + v∗T∇`

(
β̂ββ0

)
− v∗T∇`

(
β̂ββ0

)∣∣∣
≤ n1/2

∣∣∣v∗T {∇`(β̂ββ0

)
−∇` (βββ∗)

}∣∣∣+ n1/2
∣∣∣(v̂ − v∗)T ∇`

(
β̂ββ0

)∣∣∣
:= I1 + I2.

(C.1)

From Assumption B.3, we know that

|I1| = n1/2
∣∣∣v∗T {∇`(β̂ββ0

)
−∇` (βββ∗)

}∣∣∣
≤ n1/2

∣∣∣v∗T∇2` (βββ∗)
(
β̂ββ0 − βββ∗

)∣∣∣+ oP(1)

≤ n1/2
∥∥∥β̂ββ0 − βββ∗

∥∥∥
1

∥∥∇2
θγγγ` (βββ∗)−w∗T∇2

γγγγγγ` (βββ∗)
∥∥
∞ + oP(1), and that

(C.2)

|I2| ≤ n1/2
∣∣∣(v̂ − v∗)T ∇` (βββ∗)

∣∣∣+ oP(1)

≤ n1/2 ‖v̂ − v∗‖1 ‖∇` (βββ∗)‖∞ + oP(1).

(C.3)

Furthermore, Assumptions B.1 and B.2 show that
|I1| . η1(n)

√
log d+ oP(1) = oP(1), and

|I2| . η2(n)
√

log d+ oP(1) = oP(1).

(C.4)

Combining the bounds of I1 and I2 with Eq. (C.1), we get

n1/2
∣∣∣Ŝ(β̂ββ0)− S(βββ∗)

∣∣∣ = oP(1). (C.5)

The final step is combining Eq. (C.5) with the notion that n1/2S (βββ∗)σ
∗−1/2
s  N(0, 1) with σ∗S ≥ C

(Assumption B.4) into

n1/2
∣∣∣Ŝ(0, γ̂γγ)σ∗−1/2

s − S (0, γγγ∗)σ∗−1/2
s

∣∣∣ = oP(1). (C.6)

Now, applying Slutsky’s theorem achieves the desired result.
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C.2 Supplement to Eq. (2.12)

Eq. (C.7) shows the derivations of respectively ∇θ` (θ,γγγ) and ∇γγγ` (θ,γγγ), which are inputs for the

DScore function of the linear regression case.

∇θ` (θ,γγγ) = ∇θ

[
(2nσ2)−1

n∑
i=1

(
Yi − θZi − γγγTXi

)2]

= (2nσ2)−1
n∑
i=1

∇θ
(
Yi − θZi − γγγTXi

)2
= (2nσ2)−1

n∑
i=1

2
(
Yi − θZi − γγγTXi

)
(−Zi)

= − 1

nσ2

n∑
i=1

(
Yi − θZi − γγγTXi

)
Zi, and

∇γγγ` (θ,γγγ) = ∇γγγ

[
(2nσ2)−1

n∑
i=1

(
Yi − θZi − γγγTXi

)2]

= (2nσ2)−1
n∑
i=1

∇γγγ
(
Yi − θZi − γγγTXi

)2
= (2nσ2)−1

n∑
i=1

2
(
Yi − θZi − γγγTXi

)
(−Xi)

= − 1

nσ2

n∑
i=1

(
Yi − θZi − γγγTXi

)
Xi.

(C.7)

In addition, Eq. (C.8) derives the partial second-order gradients, which the formula of w requires,

for example.

∇2
γγγθ` (θ,γγγ) = ∇θ[∇γγγ` (θ,γγγ)]

= ∇θ[−
1

nσ2

n∑
i=1

(
Yi − θZi − γγγTXi

)
Xi]

=
1

nσ2

n∑
i=1

ZiXi, and

∇2
γγγγγγ` (θ,γγγ) = ∇γγγ [∇γγγ` (θ,γγγ)]

= ∇θ[−
1

nσ2

n∑
i=1

(
Yi − θZi − γγγTXi

)
Xi]

=
1

nσ2

n∑
i=1

XiX
T
i .

(C.8)
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C.3 Derivations of (partial) information matrices I∗ and I∗θ|γγγ in the linear regres-

sion case

Eq. (C.9) shows the Fischer information matrix I∗ and partial Fischer information matrix I∗θ|γγγ for

the linear regression case.

I∗ = E
(
∇2` (βββ∗)

)
= E

(
∇

[
− 1

nσ2

n∑
i=1

(
Yi − βββTQi

)
QT
i

])

= E

(
1

σ2n

n∑
i=1

QiQ
T
i

)

=
1

σ2n

n∑
i=1

E
(
QiQ

T
i

)
=

1

σ2
E
(
QiQ

T
i

)
, and

I∗θ|γγγ = I∗θθ − I∗θγγγI
∗−1
γγγγγγ I∗γγγθ

= E
(
∇2
θθ` (βββ∗)

)
− E

(
∇2
θγγγ` (βββ∗)

)
E
(
∇2
γγγγγγ` (βββ∗)

)−1 E
(
∇2
γγγθ` (βββ∗)

)
=

1

σ2

{
E
(
Z2
i

)
− E

(
ZiX

T
i

)
E
(
XiX

T
i

)−1 E (XiZi)
}

=
1

σ2

{
E
(
Z2
i

)
−wTE (XiZi)

}
.

(C.9)

C.4 Derivation of σ∗S in linear regressions and GLMs

Using the identity Σ∗ = I∗ of Mykland (1999), we derive σ∗S of Eq. (2.7) as

σ∗S = v∗TΣΣΣ∗v∗

= (1,−I∗θγγγI
∗
γγγγγγ
−1)I∗(1,−I∗θγγγI

∗
γγγγγγ)T

= (1,−I∗θγγγI
∗
γγγγγγ
−1)

I∗θθ I∗θγγγ

I∗γγγθ I∗γγγγγγ

 1

−I∗γγγγγγ
−1I∗γγγθ


= (I∗θθ − I∗θγγγI

∗
γγγγγγ
−1I∗γγγθ,0

T )

 1

−I∗γγγγγγ
−1I∗γγγθ


= I∗θθ − I∗θγγγI

∗
γγγγγγ
−1I∗γγγθ := I∗θ|γγγ .

(C.10)

C.5 Supplement to Eq. (2.21)

Eqs. (C.11) and (C.12) show the first and second order gradients of the loglikelihood function in

Eq. (2.21).
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∇θ`(θ,γγγ) = ∇θ[−
1

n

n∑
i=1

{
Yi
(
θZi + γγγTXi

)
− b

(
θZi + γγγTXi

)}
]

= − 1

n

n∑
i=1

{
YiZi − b′(θZi + γγγTXi)Zi

}
.

∇γγγ`(θ,γγγ) = ∇γγγ [− 1

n

n∑
i=1

{
Yi
(
θZi + γγγTXi

)
− b

(
θZi + γγγTXi

)}
]

= − 1

n

n∑
i=1

{
YiXi − b′(θZi + γγγTXi)Xi

}
,

(C.11)

∇2
γγγθ`(θ,γγγ) = ∇θ[−

1

n

n∑
i=1

{
YiXi − b′(θZi + γγγTXi)Xi

}
]

=
1

n

n∑
i=1

b′′(θZi + γγγTXi)ZiXi,

∇2
γγγγγγ`(θ,γγγ) = ∇γγγ [− 1

n

n∑
i=1

{
YiXi − b′(θZi + γγγTXi)Xi

}
]

=
1

n

n∑
i=1

b′′(θZi + γγγTXi)XiX
T
i ,

(C.12)

C.6 Derivations of (partial) information matrices I∗ and I∗θ|γγγ in the GLM case

Eq. (C.13) shows the derivations of the true Fisher information and partial information matrices

(I∗ and I∗θ|γγγ) in the GLM case.

I∗ = E
(
∇2` (βββ∗)

)
= E

(
∇

[
− 1

n

n∑
i=1

(
YiQi − b′(βββTQi

)
Qi

])

= E

(
1

n

n∑
i=1

b′′(βββTQi)QiQ
T
i

)

= E
(
b′′(βββTQi)QiQ

T
i

)
, and

I∗θ|γγγ = I∗θθ − I∗θγγγI
∗−1
γγγγγγ I∗γγγθ

= E
(
∇2
θθ` (βββ∗)

)
− E

(
∇2
θγγγ` (βββ∗)

)
E
(
∇2
γγγγγγ` (βββ∗)

)−1 E
(
∇2
γγγθ` (βββ∗)

)
= E

(
b′′(θZi + γγγTXi)Z

2
i

)
− {E

(
ZiX

T
i b
′′(θZi + γγγTXi)

)
E
(
b′′(θZi + γγγTXi)XiX

T
i

)−1 E
(
b′′(θZi + γγγTXi)XiZi

)
}

= E
(
b′′(θZi + γγγTXi)Z

2
i

)
−wTE

(
b′′(θZi + γγγTXi)XiZi

)
.

(C.13)
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Appendix D Empirical FDR simulations in the GLM case

Tables D.1 and D.2 display the empirical FDRs of the logistic regression and the Poisson regression

simulations respectively (on the next page).
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Table D.1: Empirical FDRs (%) of the DScore test for the logistic regression case with a 5% nominal FDR.

ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.75

s d Adjustment Dirac Unif Dirac Unif Dirac Unif Dirac Unif

2 25 Raw 50.1 48.7 28.6 34.6 22.8 24.2 19.6 23.9

2 25 Bonferroni 17.0 16.7 9.1 13.5 8.8 8.8 9.2 10.0

2 25 Holm 18.1 17.8 10.0 15.0 9.3 9.5 9.6 10.6

2 25 BH 25.0 25.4 14.3 18.5 11.1 12.2 11.2 12.5

2 25 BY 13.2 13.7 6.9 11.0 6.4 7.6 6.7 7.2

2 50 Raw 63.1 60.6 42.0 41.7 25.5 26.7 22.5 23.9

2 50 Bonferroni 20.8 19.4 12.7 10.6 7.6 7.8 8.1 8.0

2 50 Holm 21.4 20.7 13.8 12.2 8.5 8.8 8.3 8.4

2 50 BH 28.3 28.7 18.4 17.8 10.6 10.5 9.7 10.0

2 50 BY 15.1 15.0 9.5 9.3 5.4 6.1 5.9 6.1

2 100 Raw 72.9 70.8 51.4 52.2 30.8 33.8 24.7 25.9

2 100 Bonferroni 25.1 19.8 12.8 16.2 6.4 9.0 6.0 6.4

2 100 Holm 25.8 21.1 13.8 18.1 7.2 10.0 6.3 6.7

2 100 BH 37.0 32.1 20.4 25.3 9.3 13.4 8.1 7.8

2 100 BY 15.5 14.5 8.3 13.0 4.8 6.5 3.8 3.5

3 25 Raw 46.8 43.1 29.7 27.6 18.2 16.2 16.7 14.6

3 25 Bonferroni 16.8 14.4 9.5 8.6 6.5 6.2 6.2 4.7

3 25 Holm 17.3 15.0 10.2 9.5 7.0 6.8 6.2 5.1

3 25 BH 21.5 20.4 13.5 13.4 8.9 8.2 7.7 6.5

3 25 BY 12.6 12.0 7.3 7.2 5.3 5.2 5.4 4.5

3 50 Raw 60.1 57.3 37.5 36.7 20.2 18.9 15.4 16.9

3 50 Bonferroni 19.5 14.9 11.1 9.0 5.9 5.3 4.5 5.7

3 50 Holm 19.9 15.7 11.6 9.9 6.4 5.9 4.8 6.3

3 50 BH 25.6 22.6 15.1 14.9 8.4 7.8 5.2 7.3

3 50 BY 12.6 11.8 8.2 6.4 4.0 4.0 2.8 4.1

3 100 Raw 70.6 65.9 47.1 48.2 21.9 23.1 16.3 16.5

3 100 Bonferroni 20.1 14.4 10.8 9.8 4.0 4.9 4.0 4.5

3 100 Holm 20.4 15.1 11.5 10.8 4.6 5.4 4.1 4.7

3 100 BH 27.5 24.9 16.3 16.9 6.4 8.3 4.9 5.9

3 100 BY 13.3 10.2 7.4 6.9 2.9 3.5 3.2 3.3

Notes: Underlined values indicate that we cannot reject that the FDR is lower than 5% using a right-tailed Z-test

with a 5% significance level. We generate nonzero parameters to be equal to 1 (Dirac) or draw them uniformly

in the interval [0,2] (Unif). Parameters: d=number of covariates, s = supp(γγγ∗), and ρ =Toeplitz parameter for

the covariance matrix of the covariates. Adjustment methods: unadjusted p-values (Raw), Bonferroni, Holm,

Benjamini-Hochberg (BH), and Benjamini-Yekutieli (BY).
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Table D.2: Empirical FDRs (%) of the DScore test for the Poisson regression case with a 5% nominal FDR.

ρ = 0.25 ρ = 0.4 ρ = 0.6 ρ = 0.75

s d Adjustment Dirac Unif Dirac Unif Dirac Unif Dirac Unif

2 25 Raw 43.1 40.0 30.8 29.8 18.0 19.2 13.0 15.7

2 25 Bonferroni 12.3 11.4 8.1 9.1 5.1 6.2 4.1 4.9

2 25 Holm 13.3 12.7 9.5 10.4 6.2 7.5 4.5 5.3

2 25 BH 21.3 19.3 15.5 14.7 9.5 9.3 6.6 6.8

2 25 BY 11.8 10.8 8.0 8.6 4.7 5.3 4.1 3.5

2 50 Raw 57.9 51.3 41.0 38.3 21.5 21.4 12.1 13.3

2 50 Bonferroni 18.2 15.8 12.2 11.8 4.6 5.4 2.8 3.7

2 50 Holm 19.5 17.2 12.9 12.7 5.6 6.4 3.3 4.3

2 50 BH 30.3 26.3 19.4 18.6 8.4 8.5 4.8 5.3

2 50 BY 17.0 15.3 11.3 10.9 4.6 4.7 2.7 2.7

2 100 Raw 64.6 57.0 45.8 41.9 20.0 20.8 9.3 12.9

2 100 Bonferroni 16.2 15.7 9.9 10.5 3.2 4.4 1.7 3.1

2 100 Holm 17.1 16.6 10.9 11.3 4.0 5.4 2.2 3.6

2 100 BH 29.2 28.3 17.8 17.8 7.0 7.1 3.3 5.0

2 100 BY 13.6 13.8 8.5 8.5 2.8 3.6 1.6 2.3

3 25 Raw 40.2 38.2 27.9 26.0 14.6 14.7 9.0 10.7

3 25 Bonferroni 15.3 13.4 10.1 9.4 5.0 5.1 3.9 3.7

3 25 Holm 16.6 14.5 11.2 10.2 6.2 6.0 4.3 4.1

3 25 BH 25.3 22.9 17.0 15.2 8.9 8.3 6.0 5.7

3 25 BY 16.4 14.0 10.8 9.5 5.7 5.2 3.9 3.4

3 50 Raw 54.7 51.9 38.5 36.2 16.7 16.9 8.4 9.5

3 50 Bonferroni 20.6 20.8 12.9 12.3 4.7 4.2 2.2 2.7

3 50 Holm 21.3 21.6 14.0 13.3 5.4 4.8 2.5 3.2

3 50 BH 33.0 31.6 20.8 19.9 8.6 8.0 4.1 4.2

3 50 BY 21.3 20.7 13.4 12.0 4.9 4.0 1.9 2.4

3 100 Raw 58.6 55.1 38.8 37.3 12.8 15.2 4.7 7.4

3 100 Bonferroni 19.2 21.2 9.9 13.4 2.9 4.4 1.4 2.2

3 100 Holm 20.0 22.2 10.7 14.5 3.5 5.0 1.9 2.7

3 100 BH 32.8 33.6 19.6 20.4 6.3 7.6 3.0 3.4

3 100 BY 19.4 21.4 10.3 13.7 3.3 4.3 1.6 2.3

Notes: Underlined values indicate that we cannot reject that the FDR is lower than 5% using a right-tailed Z-test

with a 5% significance level. We generate nonzero parameters to be equal to 1 (Dirac) or draw them uniformly

in the interval [0,2] (Unif). Parameters: d=number of covariates, s = supp(γγγ∗), and ρ =Toeplitz parameter for

the covariance matrix of the covariates. Adjustment methods: unadjusted p-values (Raw), Bonferroni, Holm,

Benjamini-Hochberg (BH), and Benjamini-Yekutieli (BY).
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Appendix E Additional HPI application results

Table E.1 shows the MSAs with raw p-values that are significant on a 5%-level. The superscripts

in this table indicate whether the MSA still has a significant p-value after FDR control.

Table E.1: Additional house price index results: MSAs with significant raw p-values in the four different

samples.

16-year sample

Alexandria, LA Rochester, NY

Charlotte-Concord-Gastonia, NC-SC Salinas, CAcd

Chicago-Naperville-Elgin, IL-IN-WI San Francisco-Oakland-Hayward, CA

Lewiston, ID-WA Seattle-Tacoma-Bellevue, WAc

Napa, CAabcd Texarkana, TX-ARabcd

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD The Villages, FLabcd

Prescott, AZabcd Washington-Arlington-Alexandria, DC-VA-MD-WVabcd

26-year sample

Alexandria, LAabcd Napa, CAc

Atlanta-Sandy Springs-Roswell, GAc Orlando-Kissimmee-Sanford, FLc

Boston-Cambridge-Newton, MA-NHabcd Philadelphia-Camden-Wilmington, PA-NJ-DE-MDabcd

Charlotte-Concord-Gastonia, NC-SCc Prescott, AZ

Chicago-Naperville-Elgin, IL-IN-WIcd Salisbury, MD-DEcd

Cincinnati, OH-KY-INc Santa Cruz-Watsonville, CAabcd

Decatur, ALc Santa Maria-Santa Barbara, CAabcd

Indianapolis-Carmel-Anderson, IN Seattle-Tacoma-Bellevue, WAabcd

Lewiston, ID-WAabcd Springfield, MAc

Los Angeles-Long Beach-Anaheim, CAabcd Syracuse, NYc

Madera, CAc Texarkana, TX-ARabcd

Madison, WIc The Villages, FLabcd

Minneapolis-St. Paul-Bloomington, MN-WI Vineland-Bridgeton, NJc

Missoula, MTc Waco, TX

36-year sample

Alexandria, LAcd Orlando-Kissimmee-Sanford, FLc

Asheville, NC Philadelphia-Camden-Wilmington, PA-NJ-DE-MDabcd

Boston-Cambridge-Newton, MA-NHabcd Portland-Vancouver-Hillsboro, OR-WAabcd

Chattanooga, TN-GAcd Riverside-San Bernardino-Ontario, CAabcd

Chicago-Naperville-Elgin, IL-IN-WIabcd Salisbury, MD-DEc

Colorado Springs, COcd San Francisco-Oakland-Hayward, CAabcd

Des Moines-West Des Moines, IAc Santa Cruz-Watsonville, CA

Greenville, NCc Seattle-Tacoma-Bellevue, WAabcd
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Las Vegas-Henderson-Paradise, NVcd South Bend-Mishawaka, IN-MI

Lewiston, ID-WAc Syracuse, NYc

Los Angeles-Long Beach-Anaheim, CAabcd Texarkana, TX-ARabcd

Madera, CAabcd Tucson, AZabcd

Miami-Fort Lauderdale-West Palm Beach, FL Vallejo-Fairfield, CAc

New York-Newark-Jersey City, NY-NJ-PAcd Vineland-Bridgeton, NJc

North Port-Sarasota-Bradenton, FLc Wichita Falls, TXc

46-year sample

Alexandria, LA Naples-Immokalee-Marco Island, FL

Allentown-Bethlehem-Easton, PA-NJ Oxnard-Thousand Oaks-Ventura, CAc

Charlottesville, VA Portland-Vancouver-Hillsboro, OR-WA

Chico, CAabcd Redding, CAc

Denver-Aurora-Lakewood, COabcd Riverside-San Bernardino-Ontario, CA

Detroit-Warren-Dearborn, MI St. Joseph, MO-KS

Fayetteville-Springdale-Rogers, AR-MO Salinas, CAc

Grand Rapids-Wyoming, MI Seattle-Tacoma-Bellevue, WA

Gulfport-Biloxi-Pascagoula, MS Sebring, FL

Lancaster, PA Texarkana, TX-AR

Lawton, OK Vallejo-Fairfield, CAabcd

Los Angeles-Long Beach-Anaheim, CA Vineland-Bridgeton, NJ

Minneapolis-St. Paul-Bloomington, MN-WI Youngstown-Warren-Boardman, OH-PA

Note: The superscripts indicate 5%-significance after applying correction methods of a= Bonferroni, b=Holm,

c=Benjamini-Hochberg, d=Benjamini-Yekutieli.
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