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Abstract

The field of spare part demand forecasting focuses on methods that offer the optimal combination
of reduced downtime and cost efficiency in a setting where demand may not be constant or stable.
As newly developed methods enter the field, their ease of implementation and understanding
needs to be put to the test. To check whether several methods would deserve more attention, this
paper compares newer and well known spare parts demand forecasting methods on industrial
and simulated data sets. The data sets are classified based on underlying data characteristics
and the performance of each method is evaluated on forecasting accuracy and inventory control
performance. The methods that are compared in this paper are Croston’s method, Simple
Exponential Smoothing (SES), the Syntetos-Boylan approximation (SBA), the Teunter-Syntetos-
Babai method (TSB), Willemain’s bootstrapping method, a machine learning method in the form
of a Multi-Layer-Perceptron (MLP) and an approach based on the LightGBM Algorithm. SBA
was the overall best performing method based on forecasting accuracy and the Willemain method
was the overall best on inventory performance. The MLP and LightGBM methods were superior
when extreme intermittency was present based on inventory performance, but their forecasting
accuracy was lacking overall. These results were compared to existing literature and were found
to be comparable. The main findings of this research indicate that the pre-processing of the data,
the type of performance measure used and the type of data the method is applied to all appear to
influence the performance of a method.
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Chapter 1

Introduction and literature review

Keywords: Spare parts demand | Forecasting | Benchmarking | Industrial data vs. Simulated data
| Intermittent demand | Inventory control | Programming in R

1.1 Introduction

Spare parts are essential in keeping machinery up and running when failure requires the re-
placement of vital components. Predictive and corrective maintenance complement these so
called after-sales service replacements and further increase the importance of spare parts (Fortuin
and Martin, 1999). This is why companies often keep stock of the most important spare parts
to ensure that any downtime can be dealt with swiftly, because downtime is costly. However,
keeping stock is also costly. Inventory holding costs can range from 5 - 45 percent of the cost
price of the inventory per year, with an often used average of 25 percent (Durlinger and Paul,
2012). Not only are these holding costs of inventory relevant, component devaluation costs,
price protection costs, product return costs and obsolescence costs may also be relevant (Callioni
et al., 2005). This is why forecasting the demand is not only rather difficult, but also vital for
correctly managing inventory (Willemain et al., 2004, Syntetos et al., 2015). The field of spare
part demand forecasting focuses on methods that offer the optimal combination of reduced
downtime and cost efficiency. Methods have also been devised to manage the uncertainty of
demand in manufacturing (Bartezzaghi et al., 1999). As computing power has been steadily
increasing over recent years and more attention has gone into spare part demand forecasting,
newer methods have surfaced which may prove to be more suitable in certain situations. This
leads to the main questions of this research:

Which type of method is best for which type of data?

and
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Does the performance of the method depend on the performance measure used or on the

data set to which it is applied?

In this paper several spare parts demand forecasting methods will be benchmarked on
industrial and simulated data sets to layout their pros and cons. This will be done in five steps,
where the first step will be familiarisation and implementation of all relevant published spare
parts demand forecasting methods. After that, the industrial data sets used to evaluate the relevant
methods will be gathered and made accessible through the use of Github. The next step will
be to characterise these data sets and to subsequently generate simulated data sets with several
common patterns that can be found in the industrial data sets. The forecasting methods gathered
in step two will be evaluated on these data sets and then as the final step, the differences between
the industrial and the simulated data sets will be identified and then related to the performances
of the gathered forecasting methods.

1.2 Recent literature on spare part demand forecasting.

The literature of spare part demand forecasting can be divided into three main approaches,
which each branch into several approaches: Time series methods, contextual methods and then
studies which compare several methods, similar to this study. The framework for this substantive
literature review is adapted from Pinçe et al. (2021). Time series methods are methods which use
data from previous periods to forecast future data and they can be classified as either a parametric
or non-parametric approach, based on whether the data is assumed to follow a known probability
distribution (parametric) or if the distribution is assumed based on the data distribution (non-
parametric).

Parametric methods are classified as either a modification of Croston’s method, as an incorpo-
ration of demand obsolescence, as statistical bootstrapping, or as an approach that is not one of
the previously mentioned ones but which is based on a parametric approach (Croston, 1972). On
the side of the non-parametric approaches, the methods are classified as bootstrapping methods,
the empirical method by Porras and Dekker (2008) and variations on the empirical method, and
lastly neural network models. The third branch of time series methods focuses on improving the
quality of forecasts through either classifying demand based on characteristics to categorize data
or aggregating data to reduce demand variability and these two approaches are also referred to as
forecast improvement strategies.

The collective of contextual methods can be divided into two distinct branches: Installed
base forecasting and judgmental forecasting. Installed base forecasting investigates whether
circumstances such as maintenance planning, the age of the equipment and other operating
conditions influence the spare parts demand. Judgmental forecasting focuses on the opinion of
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experts on the effectiveness of forecasting strategies.

Subsequently, the third and for this paper most relevant category is the comparative studies
category. These studies have provided comparisons between the most relevant methods for spare
part demand forecasting at the time of their publication. Different studies have each used one or
multiple industrial or simulated data sets to measure the performance of forecasting methods
on different performance metrics. The most common performance metrics used are forecasting
accuracy or inventory performance. This is why for this (comparative) paper, several spare parts
demand forecasting methods will be benchmarked based on several industrial and simulated
data sets. With the data sets, results and an overview of all the methods used available online,
the results will be reproducible when newer methods are introduced into the field of spare part
demand forecasting.

As an addition to the three main branches of the spare part demand forecasting literature, the
M4 and M5 forecasting competitions and their main findings will be discussed (Makridakis et al.,
2018, 2020a, Petropoulos and Makridakis, 2020, Makridakis et al., 2020b). This international
forecasting competition puts competitors to the test on a uniform task meant to test their
forecasting method on equal parameters and performance metrics. The aim of the competition is
to advance the field of forecasting and look for new ways to apply known or newly developed
techniques.

1.2.1 An overview of time series methods

Parametric approaches

The first set of time series forecasting methods are the parametric approaches, where one as-
sumes that demand can be explained because it follows a certain distribution. The aim of these
approaches is to gather information on the historical mean and variance of demand and use this
to predict future demand. However, in a situation where demand is very low or zero for extended
time periods, predictions often result in inaccurate estimates. Especially classical techniques such
as Simple Exponential Smoothing (SES) fall short in predicting demand in these situations (Pinçe
et al., 2021). This type of inconsistent demand can also be called intermittent or erratic demand.
Croston (1972) was the first to notice this and in his 1972 paper he developed a new method,
now referred to as Croston’s method or Croston. Croston figured out how to solve the problems
that SES has with intermittent demand. His method split the demand estimate into two parts: the
inter-demand time and the demand size. These separate parts are forecast individually using SES,
resulting in more accurate and smoother estimates. Croston has since it’s development been used
as a performance benchmark, because of it’s smooth estimates with less error variation than SES.
The result is that Croston provides the same service level at lower safety stocks. Lower safety
stocks mean a lower average stock value, resulting in lower average inventory holding costs.
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Next to intermittent demand, obsolescence is also an issue. Obsolescence refers to when the
demand of an item reduces (potentially to zero) over time. When demand is intermittent, obso-
lescence may not be detected because zero demand periods are common and thus do not stand out.

Syntetos and Boylan (2005) developed a method which is similar to Croston because it also
splits the demand and this method is called the Syntetos-Boylan Approximation (SBA). In their
variation of Croston’s method, a bias correction coefficient is introduced. This bias correction
means that SBA provides more accurate results for intermittent demand. This is why SBA is
often used alongside Croston as a benchmark (Syntetos and Boylan, 2006, Teunter et al., 2011,
Zhu et al., 2017, Babai et al., 2019). In general, Croston outperforms SBA in terms of service
level and SBA outperforms Croston in terms of forecasting accuracy and the differences depend
on the demand patterns (Pinçe et al., 2021). These differences will be empirically tested on
simulated and industrial data sets later in this paper. As mentioned earlier, when obsolescence
or gradually decreasing demand is present, SES, Croston and SBA may under-perform. For
these specific demand patterns, TSB was developed by Teunter et al. (2011). This new method
also uses the demand size forecast, but TSB combines this forecast with the demand probability
forecast instead of the inter-demand interval forecast. This method also updates the demand size
when demand does not occurs. This means that a forecast is adjusted downward when there
is no demand, decreasing the time needed to spot obsolescence. Initially TSB was shown to
have better accuracy than SES, Croston and SBA, but when empirically tested by Babai et al.
(2014), the performance was not considerably better than the other methods. Because of these
results, Babai et al. (2019) propose a new method, called modified SBA. This method can be
seen as a mixture of the positives of SBA and TSB, where the forecast updates are more towards
TSB when the risk of obsolescence increases. Then lastly, Hyperbolic Exponential Smooth-
ing (HES) is introduced by Prestwich et al. (2014). HES also decays forecasts when demand
is not present, but hyperbolically instead of exponentially like with TSB. They showed that
TSB is more accurate in estimating, but that HES is more straightforward in practical applications.

Lastly, some dynamic time-series methods have been developed. First, Pennings et al. (2017)
introduce a method which aims to anticipate incoming spare parts demand by incorporating
positive cross-correlation between inter-arrival times and demand sizes. This proposed method
outperforms SES, Croston, SBA, TSB and Willemain et al’s method when the demand size and
the inter-arrival time are strongly positively cross-correlated. Subsequently, Snyder et al. (2012)
introduce a method which incorporates possible random shifts in the demand distribution mean
by smoothing the previous period’s mean and demand realizations through the use of Poisson,
negative binomial and hurdle shifted Poisson distributions. The results show considerable
accuracy gains, however, their complexity means that they require more advanced knowledge
to perform and provide less intuitive conclusions. Then finally, Jiang et al. (2020) propose a
method aimed at reflecting the changes in the underlying demand process with a mixed zero-
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truncated Poisson hurdle model. The proposed method showed interesting results on electric
power company data, however, as with the method by Snyder et al. (2012), this method needs
additional performance assessment on both industrial and simulated data sets.

Parametric, nonparametric and smooth bootstrapping

When a data set lacks data or shows patterns which are hard to incorporate in a parametric
approach, bootstrapping may be an option. Bootstrapping can be described as simulating data by
looking at the available data and then filling in the gaps, providing the researcher with a larger
body of data with more predictable parameters. This was first introduced by Efron (1979). The
generation of data is repeated multiple times to simulate a usable distribution within the data.
Because the necessary data or data structure to test whether a method works may not always
be available in real life, this additional data creation or adaptation allows the researcher to test
their method on situations which may prove difficult when encountered in real life situations.
Unfortunately, the demand is not always distributed parametrically. If the lead-time demand
can not be described clearly by a parametric distribution, parametric methods may not perform
well. This is why other methods have been developed that take a nonparametric approach. These
methods try to figure out empirically how the lead-time demand can be described and thus how
it can be forecast. According to Smith and Babai (2011) this means that nonparametric methods
can be applied to a greater variety of data than parametric methods, such as data with highly
erratic demand. Bookbinder and Lordahl (1989) and Hasni et al. (2019) agree that using a
nonparametric approach also removes the possibility to assume the incorrect distribution, which
could result in incorrect estimates.

The current body of literature on bootstrapping methods for forecasting spare parts demand
has different approaches. There are parametric, nonparametric and smooth bootstrapping meth-
ods. Smooth methods are different in that they add a random amount from typically the uniform
or normal distribution to each sampled data point, in order to provide a discrete empirical
function when the actual distribution appears to be continuous (Hasni et al., 2019). The first set
of parametric methods are Snyder’s parametric bootstrapping methods. Snyder (2002) adapted
Croston’s method and SES to integrate demand forecasting with inventory control and these
methods are referred to as the log-space adaptation (LOG) and the adaptive variance version
(AVAR). For a more in-depth explanations of these and all of the following bootstrapping meth-
ods, consult the overview in Hasni et al. (2019). One of the initial parametric bootstrapping
methods is from Bookbinder and Lordahl (1989). Their method performs best when the lead-time
demand distribution is assumed to be neither normal or lognormal, because then other parametric
bootstrapping methods are superior. Their method can be seen as an extension of Efron’s classical
introduction of bootstrapping with two extra steps: The mean and the standard deviation of the
lead-time demand values from the bootstrap are calculated and a theoretical density function is
obtained based on the empirical mean and standard deviation of the lead-time demand values.
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This adaptation means that this method performs well on service levels and lowers costs when
the lead-time demand distribution assumption holds (Hasni et al., 2019).

The next and probably most used bootstrapping approach is the one by Willemain et al.
(2004), also referred to as WSS. Their method can be considered as both a smooth bootstrap
because they used a jittering process on their demand predictions and as a parametric bootstrap
because this jittering process assumes a normal distribution (Hasni et al., 2019). The main
problems that WSS aims to solve are: autocorrelation, frequent repeated values and relatively
short series. The method uses a Markov model to generate zero and non-zero values over the
forecast horizon based on historical demand, after which every non-zero state marker is replaced
at random by a randomly sampled demand size from historical demand sizes. After this, the
jittering process is initiated, which creates demand size values which are not observed historically
and thus intend to decrease lumpiness in the data. A generalisation of WSS was made by Kocer
(2013) by introducing higher order Markov chains.

The next nonparametric bootstrapping methods are those by Wang and Rao (1992) and
Viswanathan and Zhou (2008). Wang and Rao apply Efron’s bootstrap twice to create an
inventory system focused on the reorder point to estimate the lead-time demand distribution
and estimate the reorder point. The approach of Viswanathan and Zhou, also referred to as
VZ, constructs the lead-time demand distribution by using bootstrapping to create the demand
intervals and use sampling to generate demand sizes. A slightly different method is the empirical
method of Porras and Dekker (2008). This nonparametric method is simpler because is does
not require sampling and the lead-time demand data is generated from the data by evaluating
historical demand based on blocks equal to the length of the lead time. Several followup studies
have been done to assess whether changes to this method provide better results. Boylan and Babai
(2016) found that instead of assessing the lead time blocks separately, they should be analysed
with overlap, especially when lead times are longer. Van Wingerden et al. (2014) extended Porras
and Dekker’s method by randomizing the lead time and found that their proposed adaptation
performed better on certain performance metrics. Similarly, Zhu et al. (2017) found that including
extreme value theory to assist in predicting possible extreme values improves the method and
could lead to higher service levels, but that this adaptation performs poorly when there are few
demand points over many periods (a high degree of intermittency).

Neural network methods

The following set of methods apply a form of machine learning in their approach, usually in
the form of a neural network algorithm application. The machine learning methods used for
forecasting spare parts demand can be classified as supervised learning methods, as the variable
of interest is known and the methods simply aim to unearth the underlying dependencies within
the demand data and use these to predict future values (Molnar, 2020). In other applications,
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neural networks are often criticised because the interpretibility of the underlying dependencies
becomes less clear than with other methods, but since spare parts demand forecasting focuses on
results (forecasting accuracy or inventory performance), neural networks seem to suffer less from
this drawback. Gutierrez et al. (2008) were one of the first to apply a neural network approach to
the field of spare parts demand forecasting, comparing their method to SES, Croston and SBA.
The results showed that forecasting accuracy was relatively good, but that sufficient data has to
be present to train the neural network. An adapted version of their method was introduced by
Mukhopadhyay et al. (2012) which outperforms the traditional methods in their comparison and a
generalisation by Kourentzes (2013) showed that neural network methods are worse at predicting
than traditional methods, but offer a superior service level. Lolli et al. (2017) introduce another
neural network approach and compare it to all three of these methods and find that their method
works faster and easier, but that the methods by Gutierrez et al. (2008) and Mukhopadhyay et al.
(2012) perform better in general. Lastly, Guo et al. (2017) created an ensemble, combining a
neural network, exponential smoothing and hierarchical forecasting to create a combination that
is superior at forecasting compared to applying the methods individually.

Forecast improvement strategies

Forecast improvement strategies comprise the last set of time series methods, with the methods
being either a form of demand classification or data aggregation. With demand classification, the
researcher attempts to classify the demand based on distinct characteristics in order to match
those characteristics to the approach that they intend to use. Williams (1984) was one of the
initial articles on demand classification and demand is categorized based on the pattern and
then the categories are matched to a distribution that fits the specific pattern for each demand
period. Johnston and Boylan (1996) provide support for a theory by Willemain et al. (1994) that
SES should be superior to Croston for data with very high or low intermittency and introduce
a method that uses the variability of the demand size and the average inter-demand interval to
forecast expected demand which supports this theory. In their article they identify a demand
classification parameter in the average inter-demand interval (p). Syntetos and Boylan (2005)
suggest that the squared coefficient of variation of demand (CV 2) should also be considered as a
demand classification parameter and they find cutoff values through an analytical comparison to
be used in their demand classification scheme. These cutoff values are criticised by Kostenko
and Hyndman (2006) and they propose different cutoff values for (p) and (CV 2).

To elaborate on the earlier works, Boylan et al. (2008) investigate the stock-keeping ca-
pabilities of the demand classification scheme and find that the amount of periods with zero
demand can be a demand classification parameter. This line of thought is further elaborated
upon by Syntetos et al. (2011) by recommending heuristic rules which can be used to pick
a theoretical demand distribution that is best for inventory control. An extensive empirical
analysis on different issues regarding demand classification is introduced by Lengu et al. (2014)
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and they develop a demand classification scheme based on order size. Using the Kolmogorov
Smirnov (K–S) goodness-of-fit test, Turrini and Meissner (2019) attempt to find the best fitting
distribution for their data and provide thoughts on how the goodness-of-fit relates to inventory
performance for demand classification schemes. Focusing on the determinants of forecasting
accuracy, Petropoulos et al. (2014) shed light on how researchers should determine their fore-
casting method. They find that forecasting accuracy is mainly influenced by the cycle and the
randomness of demand and that accuracy decreases when the forecasting horizon is increased
for fast-moving data and by the inter-demand interval for intermittent data. They also find that
increasing the length of a series slightly increases forecasting accuracy for all types of data.

Data aggregation is another form of improving forecasting accuracy, this time through the
aggregation of data based on similarity in demand pattern. For example, Willemain et al. (1994)
showed that examining data on a weekly basis instead of a daily basis already increases accuracy
when using Croston to forecast. Nikolopoulos et al. (2011) attempt to further narrow down
an optimal aggregation level and empirically investigate how aggregating demand equal to the
lead-time length could increase forecasting accuracy. Their results show that forecasting accuracy
may be increased and forecasting variance may be decreased through data aggregation, specifi-
cally using their Aggregate-Disaggregate Intermittent Demand Approach (ADIDA). Babai et al.
(2012) elaborate on the ADIDA method by validating it’s inventory performance in combination
with Croston, SBA and SES and the results show that ADIDA improves service levels across all
methods. Mohammadipour and Boylan (2012) show that aggregation provides more accurate
forecasts when applying their temporal aggregation scheme, they do however indicate that the
effects of aggregation on inventory performance has yet to be investigated. Petropoulos et al.
(2016b) provide an alternative look on ADIDA and introduce a new framework called iADIDA
(inverse ADIDA). They empirically test forecasting accuracy and stock-control and find that their
approach works specifically well for the sections of time series data with the highest data-volume
variance and they argue that for the other sections of data the forecasting method should be
chosen according to the findings of Petropoulos et al. (2014), which would be SBA or TSB
in most cases. Boylan and Babai (2016) assess whether the temporal aggregation needs to be
done with or without overlapping the time buckets and they found that overlapping generally
outperforms the non-overlapping approach. These results are in line with their opinion on how
the overlapping of time buckets when using the empirical method by Porras and Dekker (2008)
increases forecasting accuracy.

Temporal aggregation is not the only form of data aggregation. Data can also be aggregated
based on other characteristics to form groups of items. Moon et al. (2012) show that grouping
items may reduce forecasting error and decrease inventory costs. Li and Lim (2018) introduce
a method called greedy aggregation–decomposition (GAD) which uses both top and bottom
aggregation levels in a hierarchical forecasting framework. The method shows superiority to the
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methods it is tested against, such as SBA, Croston, TSB and other data aggregation methods.
Other forecast improvement strategies include combining forecasts derived from alternative
methods (Petropoulos and Kourentzes, 2015) or improving outlier detection (Zhu et al., 2017,
Romeijnders et al., 2012). However, Pinçe et al. (2021) argue that demand spikes should simply
be treated as outliers and should not be included in the forecasting, as they indicate predictive
maintenance, which can be anticipated and acted accordingly upon.

Conclusion time series methods

Overall it can be concluded that time series methods comprise of many different approaches
and methods, all using their own approach to capture the variability of spare parts demand
forecasting. Often Croston, SBA and other traditional methods are used as a benchmark because
of their generally solid performance. Balancing between forecasting accuracy and inventory
performance, obsolescence of items, finding the right distribution (if any) of the lead-time
demand and also being able to perform on both industrial and simulated data sets are all problems
these methods face and attempt to overcome in their own way. It is then also unsurprising that
results appear to be dependent on the data and the method used and that performance might be
severely influenced by the performance measure used. The general conclusion from the literature
thus far seems to be that each method has it’s own perks, performing specifically well in very
specific situations. This line of thought leads to the idea that a combination of methods that
could capture the superiority of each method while still attempting to keep implementation costs
low could result in a generally superior approach.

1.2.2 An overview of contextual methods

All of the previously discussed approaches used historical data to attempt to predict the lead-time
demand, but this means that adapting to significant underlying changes might be slow. Other
shortcomings of time series methods are that historical data needs to be sufficiently present to be
able to make accurate predictions about the lead-time demand and that changes in maintenance
schemes are passively understood instead of proactively accounted for (Wang and Syntetos,
2011). This is especially unfortunate when the researcher actually has knowledge on the nature
of the data and how it is likely to change in the future, meaning that a forecasting approach could
likely be improved by the researcher’s contextual knowledge. If the researcher already has this
knowledge ahead of demand, this can be referred to as advance demand information (ADI) (Zhu
et al., 2020). This is why in practice, statistical methods are often guided by the knowledge and
judgement of the researcher (Sanders and Ritzman, 1992). A practical example can be seen in
the fashion industry, where the knowledge of customer taste and upcoming trends is vital for
accurately predicting new product success (Seifert et al., 2015). The application to spare parts
demand forecasting is however not as subjective, but rather about understanding how far along
the items or groups of items are in the life-cycle of the equipment the spare parts are installed in,
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which may be clear from information outside of historical data. An example could be that the
manufacturer of the original equipment is promoting a newer version of their product, which may
result in spare part obsolescence for the older version. To ensure that the contextual information
is somehow incorporated in the forecasting method, contextual approaches were developed and
these methods have gained more attention from researchers in past years. Contextual methods
are divided into judgemental forecasting and installed base forecasting approaches.

Judgemental forecasting

It is widely understood and observed in practice that researchers make judgemental adjustments to
statistical forecasts by making use of managerial knowledge (Klassen and Flores, 2001, Goodwin,
2002, McCarthy et al., 2006, Fildes and Goodwin, 2007, Makridakis et al., 2008, Boylan and
Syntetos, 2010) and while some empirical studies have shown that the effects of these adjustments
may improve statistical forecasts (Turner, 1990, Mathews and Diamantopoulos, 1986, 1992),
other studies suggest that this may vary (O’Connor et al., 1993, Sanders and Ritzman, 2001,
Sanders and Manrodt, 2003, Franses and Legerstee, 2010, Petropoulos et al., 2016a). Research
has however been limited on the integration of judgement in spare parts demand forecasting, and
even more so for intermittent demand specifically (Pinçe et al., 2021). Syntetos et al. (2009)
investigate this integration through an empirical analysis of a pharmaceutical company’s demand
forecasts. The pharmaceutical company uses common statistical software to predict demand
and then uses managerial insight to adjust the predicted demand. Syntetos et al. (2009) find
that negative adjustments are more effective in resulting in accurate predictions than positive
adjustments and that larger negative adjustments perform particularly well. They also suggest
that the relatively poor performance of positive adjustments may be because the forecaster
was biased by managerial pressure, an optimism bias or by the intention to be favoured by
suppliers. Another look on the integration of expert opinion in forecasting for spare parts demand
is provided by Boutselis and McNaught (2019). They specifically analyse military operations
spare parts forecasting in the final period of a military operation. In these situations, predicting
how much demand is required for the final period accurately may result in significant logistical
advantages. Their findings suggest that expert adjustment is often made in the wrong direction
and that a SES forecast without expert judgement was getting better results. Their proposed
Bayesian Network (BN), particularly the version integrated with machine learning, was showed
to outperform forecasts with expert adjustment and a logistic regression. Besides these papers,
judgemental adjusting is more commonly researched in a supply chain management setting,
which is why it will not be investigated further for the purpose of this paper.

Installed base forecasting

As previously mentioned, making adjustments to statistical forecasts is common in practice.
The type of information that the researcher uses to adjust the forecast may however also be
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intrinsic to the spare part and it’s installation environment instead of judgemental or managerial
knowledge. This type of information can be referred to as installed base information (Borchers
and Karandikar, 2006, Dekker et al., 2013) and the installed base has several interpretations in
the literature, such as the total amount of customers using a specific part or the total amount of
units in use of a specific part (Borchers and Karandikar, 2006). Commonly tracked characteristics
include spare part location, current owner and user, the application, the operating environment,
product status and service history (Ala-Risku et al., 2009). Installed base methods make use
of the installed base information to aid in predicting spare part failure and increase forecasting
accuracy (Pinçe et al., 2021). The added value of this information has been investigated by
Jalil et al. (2011) in the planning of spare parts demand and they find that there are potential
gains in using installed base information. In order to maximise those gains, they suggest that the
researcher should aim to understand how data errors may occur in practice and align the business
environment with installed base data usage.

Dekker et al. (2013) provide a review on the utilisation of installed base information in
industry practice. They found that installed base information usage in forecasting was already
being mentioned in the forecasting of new product adoption by Brockhoff and Rao (1993), that
Cohen et al. (1990) theoretically mentioned the application to spare parts and that Auramo and
Ala-Risku (2005) discussed installed base information for service logistics. Dekker et al. (2013)
conclude that installed base data can be used to improve forecasting accuracy, even when the
quality of the data may not be optimal, compared to only using historic demand for forecasting.
But these and other early papers such as Petrović and Petrović (1992), Ghobbar and Friend
(2002) and Aronis et al. (2004) do not benchmark their proposed installed base methods against
the traditional or other spare parts demand forecasting methods, with Hua et al. (2007) being one
of the first to do so (Pinçe et al., 2021). Their developed approach takes plant and equipment
overhaul situations as explanatory variables for the prediction of the lead-time demand through
regression and they compare their method to SES, Croston and an adaptation of Willemain’s
bootstrap, resulting in their method outperforming the traditional methods. Similarly, Wang
and Syntetos (2011) compare a maintenance driven approach integrating failure timing to the
SBA approach. Their results show more accurate forecasts in almost all cases. Similar results
are produced by Romeijnders et al. (2012), who show that the forecasting error can be reduced
significantly if planned maintenance schemes are taken into account when forecasting. In a
more recent study by Zhu et al. (2020) an approach combining forecasting aided by maintenance
planning and an inventory control method based on the forecasts. They find that major inventory
cost savings can be attained when the method is compared to the traditional time series forecasting
methods. Another major advantage of their method is the limited data requirement compared to
time series methods.
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Conclusion contextual methods

Contextual methods use knowledge outside of historical data to improve forecasting accuracy.
Managerial knowledge and judgement are used in judgemental forecasting and installed base
forecasting makes use of known product or maintenance characteristics known as installed base
information to more accurately predict spare part demand. Overall contextual methods appear to
positively influence forecasting accuracy, as long as the influence of the contextual knowledge is
based on data or set information, as acting based on intuition generally influences the forecasting
negatively. Other advantages of using contextual methods over time series methods are the lesser
need for extensive historical data and the more proactive nature of the approaches.

1.2.3 An overview of performance comparisons

There have been several papers like this one that intend to compare forecasting methods or a
specific subset of these methods used in practice. In order to objectively compare the proposed
methods, performance benchmarks are used. For the field of spare parts demand forecasting,
the most important performance benchmarks are either based on the predictive accuracy of the
method or the method’s inventory control performance (Pinçe et al., 2021). When the predictive
accuracy is the main focus, the performance benchmark indicates how close the predictions
made by a proposed approach are to the known demand, often tested by splitting the data into a
test and training data set. If the difference is large, the method will score poorly on the forecast
accuracy performance benchmark. For the inventory performance benchmarks, objectives such
as inventory holding costs, service levels, reducing stockouts and reducing the overall on-hand
inventory relate to a method’s performance. After reviewing the most common performance
benchmarks, some recent comparative papers will be discussed.

Forecasting accuracy

As the accuracy of a prediction determines it’s usefulness, determining the accuracy objectively
requires a forecasting accuracy measure that is universally applicable and that does not benefit
one of the benchmarked methods more than another. There are two main types of forecasting
accuracy measures, relative and absolute forecasting accuracy measures. Relative accuracy
measures compare a method to another method or to a baseline accuracy, while absolute accuracy
measures give an indication of the forecasting error (Syntetos and Boylan, 2005). This forecasting
error can be interpreted as an indication of the deviation of the predicted demand from the actual
demand. Next to the relative and absolute accuracy measures, there are also studies using a
simpler comparison in which they measure the amount of times a method performs better or best
when compared to the other methods in an empirical setting. Lastly, there are measures developed
specifically for a method or application, such as the forecasting accuracy measures introduced
by Willemain et al. (2004), Hua et al. (2007) and Kim et al. (2017). In their broad comparison,
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Pinçe et al. (2021) find that the most commonly used forecasting accuracy measures are absolute
accuracy measures and the authors attribute this to their simplicity in use and interpretation.

Inventory control

Although accurate forecasts may lead to correctly predicting the demand, they may not always
lead to a desirable inventory performance. Because of this, Syntetos and Boylan (2006) state that
a forecasting method should be judged based on the inventory performance in order to measure
it’s effectiveness. Similarly, Teunter and Duncan (2009) find that forecasting accuracy measures
are ineffective when applied to intermittent data and instead suggest comparing the methods
based on inventory management implications and service level. Syntetos et al. (2010) further
elaborate on Syntetos and Boylan (2006) with an empirical experiment and find that very minor
changes in forecasting accuracy may have major implications on stock management. Including
both in a comparison could thus result in major cost implications compared to only using forecast
accuracy as a performance metric. Pinçe et al. (2021) find that the most used inventory control
performance measures in recent spare parts demand forecasting literature are the service level
and tradeoff curves. They also find that most studies use a combination of inventory performance
measures to more elaborately assess the performance of an approach.

An insight into comparative papers

As the spare parts forecasting methods have developed, papers comparing their performance
have also surfaced more frequently. One of the first comparative papers by Willemain et al.
(1994) compares Croston and SES. In their comparison they used data that was simulated in such
a way that it violates the normality and independence assumptions from Croston (1972). Even
in these less than ideal situations, Croston outperformed SES both on this simulated data and
later on industrial data. Another study by Sani and Kingsman (1997) compared the performance
of five approaches. They found that a simple moving average is best, followed by Croston, and
that both are superior to SES in terms of inventory performance for intermittent or low demand.
Syntetos and Boylan (2006) also find that moving average performs well overall, but in their
comparison paper SBA outperforms moving average in terms of inventory performance. Another
broad comparison of thirteen methods is performed by Ghobbar and Friend (2003), using the
Mean Absolute Percentage Error (MAPE) as the performance indicator. In their comparison,
weighted moving average is the superior method. However, Teunter and Duncan (2009) critically
observe that choosing the performance measure greatly influences the success of each approach.
Through an empirical example they show that forecasting zero demand in each period leads to
a better performance compared to the traditional methods when the standard forecast accuracy
measures are used. Forecasting zero demand would of course result in very poor inventory
performance, showing the ineffectiveness of using the wrong performance metric. Using inven-
tory performance, they also find that SES and moving average are consistently outperformed
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by Croston, SBA and a parametric bootstrapping method. Pinçe et al. (2021) find that most
comparative papers do not include bootstrapping methods and that Syntetos et al. (2015) and
do Rego and De Mesquita (2015) are some of the few that do. Syntetos et al. (2015) find that
the bootstrapping method by Willemain et al. (2004) does outperform the traditional methods in
most situations, but that the traditional methods are simpler in use and interpretation. do Rego
and De Mesquita (2015) find that the bootstrapping approach by Zhou and Viswanathan (2011)
is best for lumpy demand and that SBA is best for erratic demand.

To synthesize the spare parts demand forecasting research, Pinçe et al. (2021) perform a
quantitative literature analysis on 53 papers reporting method comparisons. They compare the
methods used in each paper by counting the amount of times each method outperforms the
other methods, resulting in better performance scores. These better performance scores are
then later divided by the total number of comparisons to give a percentage better score, which
indicates how often the method was superior. This score is then averaged to give an overall
performance indicator for each method, which is called the Average Percentage Better (APB)
score. They find that Croston is outperformed by SBA in 85,7% of the papers in which they are
compared when it comes to forecast accuracy measures. On inventory measures, the results are
less clear, but the conclusion is that Croston generally outperforms SBA for intermittent or erratic
demand and that Croston offers slightly better service levels. They also provide an extensive
comparison of performance results for traditional methods, newer parametric and nonparametric
approaches, bootstrapping methods and approaches including contextual information or data
aggregation. Their main conclusions are that inventory performance should be focused on more
than forecasting accuracy due to practical relevance, that judgemental adjustments seem to
always positively influence forecasts and that data-intensive methods such as neural networks
show great potential, if implementation costs can be minimised. A limitation of this research is
that they did not apply any of the methods themselves.

Performance comparison conclusions

Comparing methods’ performance is nothing new. Usually a comparison is made with one of
the standard spare parts demand forecasting methods, such as SES, Croston and SBA because
of their applicability to intermittent demand. Recent studies also showcase the importance
of choosing the correct performance metric between the available forecasting accuracy and
inventory performance measures. Overall the consensus seems to be that there is not one
particular performance measure that is suitable for every method and every type of data. This
is especially apparent in the difference in performance on industrial and simulated data sets.
A relevant and feasible performance measure should be chosen based on the variability of the
demand sizes and the intermittency of demand.
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1.2.4 The M competitions

To advance the theory of forecasting and provide an equal testing ground for forecasting meth-
ods, the M competitions were initiated by S. Makridakis and colleagues, with the first (M1-
competition) being held in 1982 (Makridakis et al., 1982). As the most recent two M competitions
showed some promising approaches for the field of spare parts demand forecasting, the M4 and
M5 competitions and their methods will be reviewed in this section. As the implications and
results of the first three M competitions were used and incorporated in the approaches in the
M4 and M5 competitions, these will not be reviewed separately. For details on the first three M
competitions, see Makridakis et al. (1982), Makridakis et al. (1993) and Makridakis and Hibon
(2000).

The M4 competition (2018)

In the M4 competition participants were challenged to predict 100.000 series and 100.000
Prediction Intervals (PIs) (Makridakis et al., 2018). As with all of the M competitions, the aim
of the M4 was to further the field of forecasting, but this version also focused on three things:
Increasing the number of series compared to the previous editions, not only assessing the point
forecasts but also the PIs and to include machine learning approaches. As the predictions made
by participants have to be benchmarked against a method, ten standard methods were introduced,
of which Comb had been chosen. Comb is described as a combination approach in which the
arithmetic average of the Simple, Holt and Damped exponential smoothing models is calculated.
Comb showed to be simple and easy to implement and it showed the highest accuracy based
on the Symmetric Mean Absolute Percentage Error (sMAPE), one of the forecasting accuracy
performance measures used. The main performance measure used for deciding the winner is the
Overall Weighted Average (OWA) of the sMAPE and the Mean Absolute Scaled Error (MASE).
On the OWA, 17 methods showed an improved forecasting result compared to Comb. The M4
did not consider inventory performance.

One initial interesting result is that the approaches applying only a machine learning method
introduced in the M4 did not perform particularly well, with all of them performing worse than
the Comb benchmark. Makridakis et al. (2018) contribute this to the fact that the application
of machine learning to forecasting was still in its infancy and that the methods also require a
lot of computational power. This could have meant that machine learning methods were not
able to finish their submission in time for the submission deadline set by the M4 competition.
The method that performed the best overall did however incorporate a recurrent neural network
(RNN) model in the approach, which is a form of machine learning. The method can be described
as a hybrid approach because it mixes the aforementioned RNN with exponential smoothing
formulas. Another innovative aspect of the winning method was that it not only used the whole
data set, but also used the individual series for the predictions, making the method significantly
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more accurate. Overall, the main takeaway for forecasting from the M4 competition is clear.
Approaches utilizing the best of different methods to combine them into one better method show
promising results, especially when the weights of the different methods are determined through
machine learning.

The M5 competition (2020)

Following the M4 competition, several adjustments were suggested by various commenters and
the design of the M5 competition was aimed at addressing these issues (Makridakis et al., 2020b).
Some important adjustments were made compared to the M4. The initial change was that the
competition was hosted by Kaggle on this occasion. Kaggle is an online platform where data
scientists, practitioners of machine learning and other data enthusiasts share different methods
and challenges to learn more about all the various aspects of data science, including forecasting
(Kaggle, 2020). This meant that competing was easier, resulting in more submissions. Another
big change was the addition of contextual variables, which could be used to improve the accuracy
of the forecasts. These contextual variables were special events and holidays, selling prices and
the presence of special promotions aimed at lower income families as a binary variable. The third
change was the structure of the data. This time the data more closely resembled real-life data
because the time series were grouped and correlated and they were organized in a cross-sectional
structure. This new data also displayed intermittency, which makes the results of the M5 com-
petition more relevant to spare parts demand forecasting than the previous M competitions. In
total, the data consisted of unit sales at Walmart over the course of approximately five and a half
years, across various locations and product categories. This variation of dimensions provides the
competitors with various ways to group the unit sales.

The performance measure used for the M5 competition was also slightly different compared
to the previous iteration, but the MASE was again used to produce the final forecasting accuracy
performance measure. The variant used in the M5 competition is the Root Mean Squared Scaled
Error (RMSSE), which is more suitable for the intermittent data. After calculating the RMSSE,
the average of all of the RMSSE results across all series are weighted and this Weighted RMSSE
(WRMSSE) is the final overall accuracy measure. In the M5 competition, special attention was
also given to the benchmarks against which the methods would be measured. The benchmarks
were selected based on several factors such as popularity and computational requirements (Makri-
dakis et al., 2020b).

The results of the M5 competition showed much larger improvements compared to the
best benchmark method than the earlier competitions, with five methods showing an improved
forecasting accuracy of more than 20%. The improvement of the winning method was 22.4%.
These improvements were however not equal amongst different aggregation levels, which ranged
from the total amount of observations as one level all the way down to every observation. For
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the M5 data set this meant that aggregation levels 2-5 were aggregated unit sales per category,
State, store or department for all products combined, and lower aggregation levels continue to
increase the size of the amount of series. For example, the winning method performed best
at four aggregation levels, namely 3, 7, 8 and 9, but did not win any of the other eight. The
other aggregation levels were won by other methods and the winning method won on having
the lowest overall WRMSSE. This suggests that in practice, finding the best forecasting method
may also require investigating which aggregation level to choose, as this influences the accuracy.
Amongst the top five methods, four used a variation of LightGBM, which is a machine learning
algorithm. This algorithm can be used to develop an approach fairly easily, as the algorithm is
very forgiving in the required input, is low on computing power and requires little optimization
of features and data, although the customization is near limitless. LightGBM was also used in
multiple other forecasting competitions and the winners of those competitions also based their
approaches on LightGBM (Makridakis et al., 2020b).

Overall, the M5 competition provides the field of forecasting with several findings. Firstly,
machine learning methods have evolved to be potentially superior to simpler methods. In the
M4 competition, the machine learning methods were flawed in that they required a lot of data
cleaning, pre-processing and computational power. In the M5 competition however, all of the top
five methods used a form of machine learning, suggesting machine learning may now be better
than statistical benchmarks and the simpler methods that could compete in previous competitions.
The second main finding is that an approach based on a combination of methods is, similarly
to the M4 competition winner, seems to be the superior option. This takes advantage of all
the positives from each method to create an approach that is better than when the methods are
applied individually. The third finding was caused by the way the data was provided to the
participants in this version of the competition. Because the series were correlated this time and
could be chronologically aligned, cross-learning was not only part of all the top methods, it made
computing power requirements lower and allowed the methods to learn from all the information
that the data set had to offer. Furthermore, the M5 competition showed that effective cross-
validation, adjusting the forecasts based on prior knowledge and using the available contextual
variables to aid in the forecasting all helped in creating more effective forecasting methods. All
of these findings suggest that machine learning approaches tailored to the aggregation level and
data set may be the best way forward for forecasting in practice (Makridakis et al., 2020b).

M competitions conclusions

The M competitions provide an equal testing ground for the most advanced methods in forecasting.
By analysing what each method does well, the field of forecasting and forecasting in practice
can be improved upon. The M4 competition showed that machine learning was on the rise,
but that there were still flaws that made a combination of statistical methods better. In the
M5 competition the machine learning methods improved so much compared to the M4 that
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almost all of the top methods applied a form of machine learning in their combined approach.
Especially the LightGBM algorithm showed promising results for many of the competitors. As
the M competitions focus on forecasting in general and not on spare parts demand forecasting,
the takeaways for this paper come mainly from the M5 competition, as the data set used in
that competition showed intermittency. Because the machine learning methods showed such
superiority in this competition, to evaluate the applicability to spare parts demand forecasting,
a machine learning method applying the LightGBM algorithm will be compared with some of
the parametric and nonparametric methods highlighted earlier in the literature review and the
methodology applied for the comparison will be elaborated on in the next section of this paper.
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Chapter 2

Methodology

To clearly show the process of this paper, in this section first the experimental design will be
graphically shown, then the selected methods will be introduced and technically described,
followed by an elaboration on the used forecasting accuracy measures and inventory control
measures. After that the demand classification methodology based on the four categories from
Boylan et al. (2008) will be elaborated on.

2.1 Experimental design

The experimental design is based on the research questions introduced in the introduction of
this paper, which revolve around the different results one may encounter when applying spare
parts demand forecasting methods to different (types of) data sets. The experimental design
is graphically represented in 2.1. First both the industrial and simulated data sets have been
gathered. Some data wrangling is required for the industrial data sets and then both the industrial
and simulated data sets are further explored and the demand is classified in the data section of
this paper. After the classification, the selected methods will be applied, after which the methods
are compared based on forecasting accuracy, inventory control measures and the differences
between the results caused by the difference in the data sets is discussed.

2.2 Selected methods for the comparison

As one the initial methods introduced in the field of spare parts demand forecasting and because
it is commonly used as a benchmark, the first method to be considered in the comparison is
Croston’s method. Predictions made by Croston are based on two separate components, the
demand size zt (which has to be non-zero) and the inter-demand interval pt . zt has to be non-zero
in at least two periods because the predictions are updated only when demand occurs. The

23



2.2. Selected methods for the comparison

Fig. 2.1 The flow of the experimental design.

predictions from Croston are given by the formula

ŷt =
ẑt

p̂t
. (2.1)

The initial observation of the series is used as the initial value for the predictions and both
zt and pt are predicted using SES with a smoothing parameter optimized by a cost function, as
advised by Kourentzes (2014). The final output from Croston is the average estimated demand
for each time period in the forecasting horizon.

For Croston and the following three methods (SES, SBA and TSB), the "tsintermittent"
R-package by Kourentzes (2014) was used. This package requires the selection of several
parameters, one of which is a cost function, to optimize the methods. All of the parameters are
discussed extensively by Kourentzes (2014) and the options for the cost function are the mean
squared error (MSE), the mean absolute error (MAE), the mean squared rate (MSR) and the
mean absolute rate (MAR). The conclusion from their empirical research is that the MAR cost
function is superior for every method apart from TSB. The cost function they find most suitable
for TSB is the MSR cost function. The cost functions used in this paper are therefore according
to their findings: the MAR cost function for Croston, SES and SBA and the MSR cost function
for TSB.
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The next method, which will be used mainly as another benchmark, is Simple Exponential
Smoothing (SES). As Croston was aimed at outperforming SES for intermittent demand, it can
be expected that the performance of SES may be less than Croston in terms of forecasting, but
that SES can outperform Croston in terms of service level, which is why this method is included.
Another reason is that SES is commonly used in practice (Gardner Jr, 2006, Rostami-Tabar et al.,
2013). The weighted average predictions from SES decrease over time and are smoothed by the
smoothing parameter a, which is constructed by the cost function. This smoothing parameter is
usually set somewhere between 0.1 and 0.3 in a setting with intermittent demand (Syntetos and
Boylan, 2005). The formula for SES is

ŷt = ayt +(1−a)ŷt−1. (2.2)

As Syntetos and Boylan (2005) showed that Croston’s method is biased, their method (SBA)
is also included. In their approximation they introduced a smoothing parameter a that attempts
to reduce the bias and it is aimed at smoothing the inter-demand interval pt . SBA’s formula is

ŷt = (1− a
2
)

ẑt

p̂t
. (2.3)

Similarly to Croston, the first observation provides the initial values of zt and pt and the
smoothing parameter a is set to 0.1.

The next method is TSB, introduced by Teunter et al. (2011). Their method criticized Cros-
ton’s method on it’s poor performance on obsolescence, which is mainly caused by the relatively
slow updating, happening only when sales occur. In intermittent demand with obsolescence,
this may cause the obsolescence to be caught onto very late. This is why TSB modifies Croston
by replacing the inter-demand interval pt with the dt , the demand probability. dt is 1 when
demand does occur and otherwise it is 0. The forecast for TSB is again done through SES. The
predictions by TSB are given by the formula

ŷt = d̂t ẑt . (2.4)

As Willemain et al. (2004) showed empirically that their method outperformed SES and
Croston, their bootstrapping method is also included in the comparison. Their bootstrapping
method consists of seven steps, starting with step 1, estimating the transition probabilities for the
two-state Markov model from historical demand. The next step (2) is to use the Markov model to
generate zero and nonzero values over the specified forecast horizon, based on the last observed
demand. The following step (3) is to replace the nonzero demands with a random demand value,
with replacement, from the already known set of nonzero demands. Because this causes the
resulting values to only show the same values that are already present in the data set, their next
step (4) is to jitter the values of the nonzero demands, meaning a value close to the randomly
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selected demand value is selected to simulate a more natural variation in demand sizes. After the
jittering process, the predicted values are summed over the forecast horizon (step 5), resulting in
one prediction of the lead-time demand (LTD). Steps 2-5 are repeated many times to result in
many LTD values, which are then sorted and the resulting distribution of the LTD can then be
used.

As the M4 competition and the interpretation of the results by Makridakis et al. (2018,
2020a) showed that machine learning could provide the field of forecasting with interesting new
methods, a simple neural network method following the methodology of Spiliotis et al. (2020) is
constructed to evaluate the performance of a simple machine learning method and to compare it
against the more well known methods. Spiliotis et al. (2020) construct a Multi-Layer Perceptron
(MLP), which can also be referred to as a single hidden layer neural network. In order to train
the model, the standard approach by Smyl (2020) was used, where a rolling input and output
window and constant size are adopted. This means that a set amount of data points are used to
predict future data and then once a future data point has been predicted, this will be added to
the set amount of data points used to predict the following data point, while the very first data
point in the set is dropped to make space for the newer data point. The data have to be scaled
when the MLP is applied because the MLP applies a nonlinear activation function. This is done
because the nonlinear activation function may encounter computational problems otherwise and
because this increases the learning speed (Zhang et al., 1998). The data is linearly transformed
to be scaled between 0 and 1 according to

y,t =
yt − ymin

ymax − ymin
(2.5)

and this scaling is reversed after the predictions have been made to obtain the final predictions
and evaluate the forecasting accuracy. To construct the MLP, the R-package RSNNS will be used
(Bergmeir et al., 2012).

The last method used is based on the LightGBM algorithm and the code for constructing
the predictive model is adapted from Kailex (2020), which was created as an entry to the M5
competition. The main reason for adding this model to the comparison is to see whether the
introduction of intermittent data in the M5 competition results in approaches which are suitable
for spare parts demand forecasting. Other reasons for including this specific method are that
LightGBM was the base for many of the top methods introduced in the M5 competition and
the availability of the code, as not all top methods have shared their code or made it available
in R (Makridakis et al., 2020b). As with the MLP method described above, a rolling input and
output window are used and lag variables are constructed which are later used for the forecasts.
The model is trained according to a Poisson loss and the hyper parameters for the LightGbm
algorithm were adapted from Kailex (2020). The model is then trained and the training iterations
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are evaluated based on the Root Mean Squared Error (RMSE) at every 400 iterations. The
training stops once the optimal RMSE has been found. The next step is to predict, where the lag
variables are used to predict one day ahead at a time. For more information on the inner workings
of LightGBM and the R implementation, please refer to the documentation by Microsoft (2021).

2.3 Selected forecasting accuracy measures

To verify whether the predictions made by the different methods are accurate compared to the
actual values, several forecasting accuracy measures are taken into account, as is done in most
comparative papers according to (Pinçe et al., 2021). Pinçe et al. (2021) also find that the most
common forecasting accuracy measures used in recent spare parts demand literature are the
absolute accuracy measures. For this paper, the absolute accuracy measures Mean Squared Error
(MSEt) and Mean Absolute Scaled Error (MASEt) will be used, which are all functions of the
forecast errors es = Ys − Ŷs. MSEt is defined as

MSEt =
1
t ∑

t
s=1 e2

s (2.6)

and MASEt is defined as

MASEt =
1
t ∑

t
s=1

|es|
1

t−1 ∑
t
i=2 |Yi −Yi−1|

. (2.7)

Derived from the M5 forecasting accuracy competition and originally proposed by Hyn-
dman and Koehler (2006), the Root Mean Squared Scaled Error (RMSSEt) will also be used
(Makridakis et al., 2020b). The RMSSEt is defined as

RMSSE =

√√√√ 1
h ∑

n+h
t=n+1(yt − ŷt)2

1
n−1 ∑

n
t−2(yt − yt−1)2

(2.8)

where h is defined as the forecasting horizon (which is set to the length of the test data set), yt

and ŷt the actual and the predicted values of the time series at point t in time respectively and n

as the amount of observations in the training sample.

After all of the previous accuracy measures have been obtained, the relative accuracy measure
Percentage Better will be used to determine which method performed better than which other
method on which data set and on which accuracy measure (Pinçe et al., 2021). Percentage Better

is defined as the amount of times a method outperforms another method divided by the total
amount of times the methods were applied simultaneously.
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2.4 Selected inventory control measures

As the field of spare parts demand forecasting is not only guided by the need for accurate
forecasting but also by the goal of keeping inventory costs low and achieving high service levels,
two inventory control measures were included. As Van Wingerden et al. (2014) found, comparing
methods solely on forecasting performance may overshoot their practical relevance and that is
why service levels and tradeoff curves are identified as practically relevant inventory control
measures. Pinçe et al. (2021) also identify tradeoff curves and service levels as the most used
inventory control measures in recent spare parts demand literature. As the service level measure,
fill rate will be used. More specifically, the item fill rate and not the order fill rate, as done by
Van Wingerden et al. (2014). For the tradeoff curves, the tradeoff between the achieved fill rate
and the holding costs will be used as the measures. Holding costs are defined as 25 percent of
the price per year (Durlinger and Paul, 2012). To measure the achieved fill rate, first an inventory
policy has to be determined. For this paper, the approach by Van Wingerden et al. (2014) was
adapted, where a base stock level R is determined by evaluating past demand. The Inventory
Position (IP) is updated each period, where back ordering is allowed. The IP is defined as

IP = stock on hand + outstanding orders − back orders. (2.9)

The Inventory Level (IL) could also be defined as

IL = stock on hand − back orders. (2.10)

If IP falls below R, an amount is ordered such that IP is equal to R. Van Wingerden et al.
(2014) also indicate that a minimum order quantity may be a factor, but for simplicity this is not
included in the approach in this paper. An example calculation for the Part Fill Rate (PFR) is
as follows: if the demand size is 10 and the IP is 5, the achieved PFR will then be 50% at that
demand moment. This is averaged across all demand moments for each series to determine the
achieved Fill Rate for each method.

To generate the tradeoff curves, first a target fill rate will be set. Then the corresponding
base stock level R will be computed according to the forecast method. The fill rate targets used
for this paper will be 75%, 80%, 85%, 90%, 95%, 99% and 99,9999%, where the final fill rate
target is interpreted as 100%. Next, the fill rate performance of the method will be evaluated
compared to the target fill rate and the holding costs associated with each fill rate. These steps
will be repeated for every forecasting method to generate the tradeoff curves.
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2.5. Demand classification and training and test splits

2.5 Demand classification and training and test splits

As demand may show different characteristics and these differences in characteristics may
improve a method’s performance, Boylan et al. (2008) provide a framework to classify de-
mand in four distinct groups based on the mean inter-demand interval p and CV 2, which is the
squared coefficient of variation of the demand sizes. These two indicate whether the demand
of an item can be classified as either Erratic (p < 1.32 and CV 2 >= 0.49), Lumpy (p >= 1.32
and CV 2 >= 0.49), Smooth (p < 1.32 and CV 2 < 0.49) and Intermittent (p >= 1.32 and
CV 2 < 0.49). Erratic demand items are further defined to have highly variable demand sizes,
Intermittent demand items show very infrequent demand occurrences of mainly the same values,
Lumpy demand items are intermittent demand items with highly variable demand sizes and
Smooth demand has frequent demand with low demand size variability (Boylan et al., 2008).

The calculation of p for each individual item is

p =
Total number o f time periods

Count o f the non zero demands
(2.11)

and the calculation of CV for each individual item is

CV =
Standard deviation o f the non zero demands

Mean o f the non zero demands
(2.12)

after which CV 2 can be obtained by squaring the result of equation 2.13. After obtaining the
results, each individual item can be labeled as either erratic, lumpy, smooth or intermittent. To
investigate whether the data that will be used for this paper show the aforementioned characteris-
tics, in the next chapter the data sets will be classified according to the classification scheme by
Boylan et al. (2008).

To be able to apply the performance measures mentioned above, each data set is split into
a training and a test data set. The first 70% of the original data set will be used as the training
data set for the forecasting methods. The last 30% of the data set will be used to compare the
predictions of the forecasting method with, which will be referred to as the test data set.
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Chapter 3

Data description and classification

As the experimental design is now clear, this section will outline the main characteristics of
the data sets to which each method will be applied. Also, the origin of the data and all of the
changes made to them will be explained. As this paper uses both industrial and simulated data
and their initial set-up and origin slightly differs, the sections are split up into industrial data sets
and simulated data sets. In order to improve reproducibility, all of the data sets will be available
(in both their unaltered and altered form) on the dedicated GitHub page by de Haan (2021).

3.1 Industrial data sets

Four industrial data sets will be used for this paper. The first data set contains sales of 3451
items from a manufacturing company based in the Netherlands. The data was gathered over a
period of 150 weeks, starting at the first week of 2012 and ending on the 46th week of 2014.
The data set contains prices, inventory costs (set to 20% of the product cost), lead time, demand
frequency and demand size data, amongst other variables such as a minimum order quantity and
fixed order costs. The second data set is from the British Royal Air Force, containing sales of
5000 aircraft spare parts over the course of seven years (1996-2002). Again, prices, demand
size and frequency and lead time are all available, but inventory costs are not determined. This
data set was previously used by Teunter and Duncan (2009). The third industrial data set is from
the automotive industry, with sales on 3000 items over the course of two years. This data set is
the same data set used by Syntetos and Boylan (2005) and does not contain price or lead time
information. The fourth and final industrial data set is sales data on 14523 spare parts for an oil
refinery. The data sets contains monthly sales for each item for the period from January 1997 up
to August 2001, thus spanning 56 months. This is the same data set that was used by Porras and
Dekker (2008). Prices and lead times are available and this data set also provides insight into the
current stock policy, with the minimum and maximum stock amounts shown for each item and
the data set also indicates whether the system in which an item is installed in is considered low,
medium or highly critical to operations. In order to distinguish the data sets, they will be named
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3.1. Industrial data sets

Table 3.1 Descriptive statistics for the MAN, BRAF, AUTO and OIL data sets.

Data Monthly item sales Product price

min mean max SD min mean max SD

MAN 0 10,39 4599,65 92,05 C 0,03 C 35,96 C 2669,70 C 101,81

BRAF 0,04 1,44 65,08 3,63 £ 0,001 £ 102,32 £ 9131,99 £ 373,29

AUTO 0,54 4,45 129,17 7,57 C 26,82* C 778,54* C 6396,01* C 1126,58*

OIL -182 1,00 180,46 6,13 C 0,01 C 450,34 C 82562,59 C 1453,91

*Added by using the RPS and RMS calculations described in section 3.1.

MAN, BRAF, AUTO and OIL respectively for the purposes of this paper. Table 3.1 gives an
insight into the differences and basic statistics of the industrial data sets. As the MAN data set
shows weekly sales, a 4-week period was used as the monthly sales number. As side notes: the
negative minimum of the monthly item sales for the OIL data set are caused by returns and the
minimum price of £ 0,001 for the BRAF data set is explained by minimum buying quantities,
where a number of the same product are sold at a low price, thus causing the actual price to be
below one cent.

In order to add pricing data to the AUTO data set, the relationship between pricing and
monthly order frequency in the other data sets was examined. This was done in order to be able
to calculate the inventory control performance of the methods on this data set. The way the
relationship was examined is by looking at the ratio RPS (Ratio Price and Sales) between the
average product price and monthly sales for each data set. The calculation of the RPS for each
data set can be denoted as

RPS =
Average item price

Average monthly item sales
. (3.1)

Although this method does not consider that the automotive industry spare parts might be
differently priced relative to the other industries, this at least provides the data set with a price
to order frequency ratio. The ratios of the MAN, BRAF and OIL data sets and the set ratio
for the AUTO data set can be found in table 3.2. The RPS for the AUTO data set was set to
the average RPS, which is 174.952. By multiplying the monthly sales by the RPS, the average
product price was calculated for the AUTO data set. The mean product price for the AUTO
data set turned out very high, which is likely due to the fact that while the average monthly item
sales are relatively low, the data set also contains a portion of higher frequency items, which
greatly affect the average product price. To determine the individual product prices and thus also
establish a standard deviation for the AUTO data set, simply multiplying the individual monthly
item sales with the RPS would result in high frequency items being extremely expensive. From
examining the other data sets, it is clear that high frequency items are generally lower priced
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3.2. Simulated data sets

Table 3.2 Ratio between price and monthly sales for the MAN, BRAF, OIL and AUTO data sets.

Data set RPS

MAN 3.461
BRAF 71.056
OIL 450.340

AUTO (set to) 174.952

items. In order to correctly attribute the individual item prices, this inverse relationship between
product price and frequency needs to be respected. This is done by calculating the ratio RMS

(Ratio Monthly Sales) between the monthly item sales for each individual item and the mean
monthly item sales of the data set and dividing the average product price by the resulting number.
The RMS can be calculated for each item through the formula

RMS =
Average monthly individual item sales

Average monthly item sales
(3.2)

after which the individual item price can be calculated through the formula

Individual item price =
Average item price

RMS
(3.3)

So in the example of the AUTO data set, if a product is sold an average of two times every
month, the RMS can be calculated as RMS = 2

4,45 ≈ 0.449. The average price for the AUTO
data set is C 778,54, so dividing C 778,54 by 0.449 would result in an individual product price
of C 1733,94. This makes sense, as the product is sold more than twice as little as the average
product in the data set, which indicates that the product is likely more expensive than the average
product in the data set. Using this methodology, the AUTO data set was filled with individual
prices for each individual item. Finally, the standard deviation was derived from these prices.

3.2 Simulated data sets

In order to assess whether the type of data influences the forecasting accuracy or inventory
control performance of the forecasting methods, simulated data sets were also created. The
creation of simulated data allows for the addition of more specific characteristics in the data, to
test whether these characteristics influence the performance. In the case of spare parts demand
forecasting, these characteristics include the presence of intermittent, lumpy, smooth or erratic
demand. To make the four simulated data sets used in this paper, the R package ’tsintermittent’
was used. To create a data set with this package, there are several required input arguments.
Firstly, the number of time series needs to be determined. The average amount of time series in
the industrial data sets was 6493,5, so for the simulated data sets n will be set to 6500 so that the
simulated data sets resemble the size of the industrial data sets. Next, the number of observations
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3.3. Classifying the data sets

Table 3.3 Settings for the simulated data sets.

Data set Intended demand pattern CV 2 p
Monthly demand Product price*

mean SD mean SD

SIM1 Erratic 0.75 1.00 10,01 1,12 C 1751,27 C 202,28

SIM2 Lumpy 0.80 1.50 6,66 1.12 C 1165,18 C 209,51

SIM3 Smooth 0.30 1.05 9,50 0,74 C 1662,04 C 130,97

SIM4 Intermittent 0.25 1.45 6,90 0,81 C 1207,17 C 148,38

*Added by using the RPS and RMS calculations described in section 3.1.

for each series has to be set, which translates to the amount of periods in the industrial data
sets. The data will be set up as if monthly sales data and the amount of periods will be set to 60
months (five years).

Now that the size of the data sets is clear, the average demand size and the squared coefficient
of variation CV 2 and average interval of the non-zero demands p in the data sets need to be
chosen. As these parameters are used to classify the data sets in the next section, these are set as
such so that the four simulated data sets will be classified in each of the four distinct categories,
as described in section 2.5. The average demand size is set to the arbitrary number of 10 for
all of the simulated data sets. The data sets are labeled as SIM1, SIM2, SIM3 and SIM4 and
their settings can be found in table 3.3. The influence of the zero demands are visible, as the
mean monthly demand is lower when the inter-demand interval p is higher than 1. As with
the industrial data sets, the average RPS of 174.952 was used to determine the average product
price, after which the individual product prices were determined through the process described in
section 3.1. As mentioned in the documentation for the package and in the accompanying article
by Petropoulos et al. (2014), the simulator assumes a Bernoulli distribution for the non-zero
demand occurrences and a negative binomial distribution for the non-zero demands.

3.3 Classifying the data sets

In order to classify the industrial and simulated data sets, the classification scheme by Boylan
et al. (2008) was used, which is based on the demand-based classification by Syntetos et al.
(2005). They classify each item based on the squared coefficient of variation CV 2 and average
interval of the non-zero demands p into erratic, lumpy, smooth or intermittent items. A visual
representation containing the cut-off points of 0.49 and 1.32 respectively can be seen in figure
3.1. After calculating the CV 2 and p for each individual item (the AUTO data set already had
this information available), each item was classified.
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3.3. Classifying the data sets

Fig. 3.1 Demand-based categorization scheme for forecasting by Boylan et al. (2008).

Table 3.4 Data set classifications.

Data set CV 2 p Erratic items Lumpy items Smooth items Intermittent items

MAN 0.71 40.99 23 879 1 1038

BRAF 0.63 11.14 0 2095 0 2905

AUTO 0.44 1.30 441 314 1271 974

OIL 0.56 25.75 0 4402 0 9475

SIM1 0.75 1.00 6198 0 302 0

SIM2 0.80 1.50 410 5614 25 451

SIM3 0.30 1.05 36 0 6464 0

SIM4 0.25 1.45 1 7 786 5706

The results from the classification can be seen in table 3.4. The inter-demand interval for the
industrial data sets is significantly higher than those of the simulated data sets, which indicates a
higher degree of intermittency in the demand occurrences. The industrial data sets also contain
very little erratic or smooth items, except for the AUTO data set. The AUTO data set also has the
largest spread across all of the categories, with most of the demand patterns being smooth, which
is also reflected in the relatively low inter-demand interval of 1.30. A side note on the results for
the OIL and MAN data is that the total amount of classified items does not match with the total
amount of items in the data sets. This is due to the presence of items with zero demand for all of
the periods mentioned in the data sets, which results in the inability to classify them. The RAF
and AUTO data sets do not contain items with zero demand for every period.

For the simulated data sets, it can be seen that the intended demand patterns as mentioned in
table 3.3 have been correctly simulated. SIM1 generally contains erratic items, SIM2 mostly
has lumpy items, SIM3 contains smooth items and SIM4 intermittent items. The other demand
patterns are also present in some of the simulated data sets, which happens due to the scattering
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3.3. Classifying the data sets

nature of the simulation procedure which may result in items being classified differently than
the mainly intended classification. Applying the different methods to each data set will show
which methods work best on which types of data and if the methods are vulnerable to items with
different demand patterns than the one they are intended to deal with. In the following chapter of
this paper, the application and results of the methods will be presented.

Similarly to Willemain et al. (2004), although negative values (interpreted as returns) can
be accommodated by the aforementioned methods, the negative values have been coerced to
zeroes for this paper when applying the methods. Their reasoning for this coercion is that returns
should in theory be driven to zero in the long term and the replacement of negative values with
zeroes serves as a conservative alternative, because otherwise the returns would be regarded as a
stock replenishment. Also, all methods require at the least two demand occurrences to calculate
the forecasts. Therefore, 6847 items were dropped from the training and test data sets for the
OIL data set and 2059 items were dropped for the MAN data set. The other industrial data sets
did not need items removed. Similarly, although the lead times are available for some of the
industrial data sets, the lead time is set to 1 for the purpose of this paper. This is done to simplify
the forecasting accuracy and inventory control performance assessment of each method.
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Chapter 4

Results

4.1 Example of each forecasting method

In order to show how each method works, this section will show step-by-step how each method
processes and learns from the input data and how the forecasts are then produced. This section
will also show how any available parameters that apply to each method were chosen or adapted.
To be able to see how the methods differ in the way they process the same input data, a random
series from the SIM4 data set serves as the input data for this entire section. The series used is
ts.3 and the characteristics for ts.3 can be seen in Table 4.1 and the first twenty data points can
be seen in Table 4.2. As ts.3 is from one of the simulated data sets, it contains demand data for
60 periods. For all of the methods, the data is split into a training and test data set with a 70/30
ratio. This means that the forecasting horizon will be set to the length of the test split, which
now contains 18 periods.

4.1.1 Croston, SES, SBA and TSB

For Croston, the input data starts with the 42 values in the training data. Croston requires the
input of the forecast horizon, smoothing parameters, the initial values for demand and interval
size and which cost function should be used for the optimization. The forecast horizon is set to 1
(the lead time), making the forecasts lead-time demand (LTD) forecasts, while the smoothing
parameters are optimised by the cost function, which is the Mean Absolute Rate (MAR), as this
was found to be the optimal cost function for Croston by Kourentzes (2014). This means that the

Table 4.1 The characteristics of ts.3 from the SIM4 data set.

Name CV 2 p
Demand Price Classification

Minimum Median Maximum Average

ts.3 0.22 1.58 0 6.5 23 10,29 C 809,51 Intermittent*

* CV 2 is less than 0.49 and p is more than 1.32.
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4.1. Example of each forecasting method

Table 4.2 The first twenty ts.3 data points for the first twenty periods.

ts.3 Period

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Demand 0 8 7 7 0 0 18 6 11 6 0 4 9 23 0 13 0 0 0 0

smoothing parameters are set to such values that the lowest possible MAR is achieved. The first
non-zero demand was used as the initial demand and the initial interval is set to the first interval.
As Croston, SES, SBA and TSB are similar in their approach and simplicity, the process and
settings are exactly the same, with the only difference that for TSB, the Mean Squared Rate
(MSR) was used as the cost function. After a prediction has been made by the methods, the
predicted demand value is added to the training data and the process starts again, until all 18
values have been forecast.

4.1.2 Willemain

For the Willemain bootstrapping method by Willemain et al. (2004), the process starts with
converting the training data to zeroes and ones, the periods with zero demand are a zero and the
periods with a positive demand are a 1. Then the transition probability matrix can be determined.
This contains the conditional probability of the series whether the next period will have a demand
or not depending on the previous period. For ts.3 the transition probabilities are as follows: if
the previous demand was a zero, then the next demand has a 35,7% chance to be another zero
demand period, and a 64,3% chance to be a positive demand. If the previous demand was a
positive demand, then the next demand has a 29,6% chance to be a period without demand and a
70,4% chance to be another positive demand.

Once the transition matrix is determined, this can be used to generate a series of zeroes
and non zeroes over the forecast horizon, which is set to the lead time. This means that the
forecast from Willemain bootstrapping is again the lead-time demand (LTD). The last value in
the training data set for ts.3 is 8, which is a positive demand. The method will then predict what
will follow based on this positive demand 1000 times. From the transition matrix we can see that
of these 1000 predictions, it is likely that around 30% will be a zero and around 70% will be a
one (a positive demand). Next, all of the positive demands are replaced with a random positive
demand value from the training data. From looking at Table 4.2 again, we can see what some of
these values will be.

The next step is to jitter these values, which means that an 8 may now be transformed into
for example a 9, a 7 or a 10. This is done to simulate a natural demand size variation. All of the
predicted and jittered values are summed over the forecast horizon, resulting in one LTD value.
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4.1. Example of each forecasting method

In this special case where the lead time is 1, the predicted and jittered values already are the LTD
predictions. From these LTD values, the mean and standard deviation can be derived. For ts.3,
the resulting mean and standard deviation from applying Willemain bootstrapping for the first
forecast are 8.34 and 7.32 respectively. Note that the results may slightly differ each application
due to the randomness of the jittering process, unless the amount of predicted LTD values is very
large. After the forecast is obtained, the predicted value is added to the training data, classified
as either a demand or zero demand again and the process starts anew.

4.1.3 Multi-Layer Perceptron (MLP)

For the neural network method, first the data is normalized to a scale of 0-1. This will be reverted
after the predictions are made to end up with the final predictions. After the normalization, a
rolling window is applied to the training data. 5 periods are taken for the input window, as this
number is sufficient for the machine learning methods to learn the underlying dependencies, but
small enough to provide the methods with enough data for the industrial data sets where series
are short. If the window would be larger, it may mean that too few data points are available to
learn from and that the methods are under trained. This means that the first 5 periods in the
training data are saved as input data, with the 6th period as the first output data. The output
window is not only 1 because it is equal to the lead time, but also in order to compare the MLP
method with the statistical methods more fairly. Next, the window moves up one period, with
periods 2-6 as the input data and period 7 as the output data. This process is repeated until no
more input data is available, resulting in a new data set for each item where the first 5 columns
represent the input data and the 6th column is the corresponding output. The first 10 rows of this
new data set for ts.3 can be seen in Table 4.3. The final 5 rows have missing values, as no output
is available for the input data. These rows are removed from the data set.

The next step is to train the neural network with the newly made data set. The neural network
will learn the underlying relationships within the data and train itself based on those findings. The
neural network offers a lot of options to adapt based on the data. For this paper, the maximum
amount of iterations was found to be optimal at 200 and the size (amount of nodes) in the hidden
layer at 6. The other hyperparameters used in the training of the model are set to the defaults, as
suggested by Bergmeir et al. (2012). When the model is trained it can be used to predict the next
demand value based on the last 5 periods. Therefore the last 5 periods from the training data set
are used as input for the MLP and the next period is predicted. After this new prediction has
been attained, the prediction is added to the 5 input periods and the first period in the input data
is removed in order to be at 5 input periods again. These next period predictions are done until
the end of the forecasting horizon is reached. As mentioned earlier, these predictions have to be
denormalized again in order to represent demand values.
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Table 4.3 Normalized rolling input and output data set for the MLP constructed for ts.3.

Input 1 Input 2 Input 3 Input 4 Input 5 Output

1 0.00 0.3478261 0.3043478 0.3043478 0.00 0.00

2 0.3478261 0.3043478 0.3043478 0.00 0.00 0.7826087

3 0.3043478 0.3043478 0.00 0.00 0.7826087 0.2608696

4 0.3043478 0.00 0.00 0.7826087 0.2608696 0.4782609

5 0.00 0.00 0.7826087 0.2608696 0.4782609 0.2608696

6 0.00 0.7826087 0.2608696 0.4782609 0.2608696 0.00

7 0.7826087 0.2608696 0.4782609 0.2608696 0.00 0.1739130

8 0.2608696 0.4782609 0.2608696 0.00 0.1739130 0.3913043

9 0.4782609 0.2608696 0.00 0.1739130 0.3913043 1.00

10 0.2608696 0.00 0.1739130 0.3913043 1.00 0.00

4.1.4 LightGBM method

For the LightGBM method, the input data is the same as the MLP input data in Table 4.3. The
algorithm learns from the first 5 columns and column 6 serves as the output corresponding to
those input values. For the LightGBM algorithm, several hyper parameters need to be setup. For
this paper, the hyper parameter setup by Kailex (2020) is used. The algorithm, once initiated,
goes through training rounds and stops when the method attains the lowest RMSE. Similar to the
MLP, once the model is trained, it can be used to predict the next period based on the previous 5
periods. The last 5 periods from the training data set are therefore again used as input and the
next period predictions are again done until the end of the forecasting horizon is reached. Once
the predictions have been denormalized, the 18 predicted demand values are obtained for ts.3.

4.2 Examples of the accuracy measures

When all methods are applied to ts.3, the result is 18 predictions corresponding to the length of
the forecast horizon. The original 18 data points in the test set for ts.3 and the predictions made
by the forecasting methods can be seen in Table 4.4.

4.2.1 Forecasting accuracy

In order to compare the methods’ accuracy, the forecasting accuracy measures MSE, MASE
and RMSSE are then applied. The results can be seen in Table 4.5. For all of these metrics a
lower value represents a better performance. The best performing method is highlighted for each
metric. For this specific item, the LightGBM method outperforms the others in terms of MSE
and RMSSE and Croston has the lowest MASE.
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4.2. Examples of the accuracy measures

Table 4.4 Test set data and predictions by each method for ts.3.

Data Period

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ts.3 0 0 0 0 0 12 0 7 7 12 0 8 8 8 0 9 6 10

Croston 6.70 6.60 6.84 6.79 7.13 7.16 7.20 7.20 7.22 7.21 7.22 7.22 7.22 7.23 7.23 7.23 7.23 7.23

SES 7.40 7.40 7.40 7.40 7.37 7.40 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.38 7.38 7.38

SBA 6.48 6.34 6.20 6.09 6.04 6.03 6.31 6.59 6.74 6.82 6.86 6.94 7.01 7.01 7.01 7.00 6.98 6.96

TSB 7.56 7.64 7.62 7.66 7.68 7.72 7.73 7.74 7.74 7.73 7.73 7.73 7.73 7.73 7.72 7.71 7.70 7.70

Willemain 8.34 8.35 8.26 8.47 8.95 9.01 8.87 9.26 9.05 9.02 9.40 9.06 9.23 9.67 9.50 9.48 9.53 9.59

MLP Method 6.69 6.69 6.79 6.74 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71

LightGBM 4.56 7.42 4.25 5.93 3.85 5.84 3.33 3.91 3.56 4.26 4.11 6.94 6.78 5.94 4.24 6.36 2.79 3.97

Results rounded to two decimals.

Table 4.5 The forecasting accuracy of all methods on item ts.3 predictions.

Method MSE MASE RMSSE

Croston 24.942 0.567 1.856

SES 27.331 0.588 1.943

SBA 26.134 0.579 1.900

TSB 28.791 0.595 1.994

Willemain 36.786 0.682 2.254

MLP Method 23.745 0.576 1.811

LightGBM 20.535 0.571 1.684

Results rounded to three decimals.
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4.3. Overall results

Fig. 4.1 Tradeoff curves for the inventory control measures on ts.3 predictions by Croston, SES,
SBA and TSB

4.2.2 Inventory control performance

Subsequently, the inventory control performance of each method is assessed. First the base stock
levels R for each target fill rate are determined according to the predictions made by each method.
Next the holding costs and the achieved fill rates associated with those base stock levels can be
calculated. Figure 4.1 shows the results for each target fill rate on the predictions made for ts.3.
While these tradeoff curves are normally more gradual in their appearance when they are applied
to a larger data set and then averaged, for a single item the results may vary. For this specific
item, it can be seen that the achieved fill rate is very high compared to the target fill rate for
all methods except for the LightGBM method and that the inventory costs required to obtain a
100% fill rate are to the lower side of the graph. This suggests that the test data for this item has
a substantially lower demand than the training data, which results in the relatively high part fill
rate. A more practical interpretation is that the methods overestimate the amount of demand that
is expected.

4.3 Overall results

After all of the methods have been applied to the full data sets in the manner described above, the
overall results are obtained. In order to also compare the methods on their ease of implementation
in practice, the total and per item run time for each method was recorded. The results can be
seen in Table 4.6. These run times and the ease of implementation in general will be further
discussed in Chapter 5.
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4.3. Overall results

Table 4.6 Total run time and run time per item for each method (in R).

Method Total run time Average run time per item*

Croston 311 min 0,433 s
SES 309 min 0,430 s
SBA 309 min 0,430 s
TSB 48 min 0,067 s
Willemain 1198 min 1,669 s
MLP 175 min 0,243 s
LightGBM 240 min 0,334 s

Total 2590 min = 42.2 hours

*Calculated over all 43068 items.

4.3.1 Forecasting accuracy

Similarly to the example shown previously on the ts.3 series, first each method is assessed based
on the forecasting accuracy. The forecasting accuracy of each method on each data set can be
seen in Table 4.7. To show how the methods rank comparatively for each data set, the Percentage
Better results can be found in Table 4.8. This shows how often a method outperformed another
method as a percentage of the total amount of comparisons.

The results show that there there was not a single method that outperformed the others on
every data set based on forecasting accuracy. Every method except for the LightGBM method
scores best on some measure on some data set. Surprisingly, the LightGBM method did not
perform as well as it did in the example and it also performed the worst overall. What also stands
out is that the MLP method performed well on the simulated data sets, which may be accredited
to the way the data was pre-processed and the application of the method to aggregated data. This
also explains why the MLP method does not perform well on the industrial data, since the data
varies much more in terms of demand size and intermittency. This inhibits the learning for the
method and makes the results more generalised, resulting in poorer results. For the industrial
data sets, the parametric methods perform the best, with Willemain performing best on one
metric on the MAN data set. This is again mainly caused by the approach before applying the
method. For these methods, the approach was to input a single series and expand on this series
with the predicted demands. This approach seems to work particularly well for industrial data.
The performance of Willemain on the MAN data set may be due to the extremely high average
time between demands that the data set showed. This makes all of the methods perform poorly
on forecasting accuracy as they all overestimate the future demand occurrences even though the
forecast demand amounts may be more accurate. This is again a problem that arises from the
way the data is processed before applying the methods.

Looking into the Percentage Better results based on the forecasting accuracy we can see from
the last column in Table 4.8, the average Percentage Better score, how each method performs
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Table 4.7 The forecasting accuracy of all methods on each data set.

Method Measure Data set

SIM1 SIM2 SIM3 SIM4 MAN BRAF AUTO OIL

Croston MSE 79.257 79.277 34.633 40.698 13146.96 207.470 86.095 860.847
MASE 0.670 1.014 0.486 0.780 2.372 2.123 0.783 8.107

RMSSE 2.727 3.353 1.876 2.417 5.464 3.423 1.731 14.747

SES MSE 79.273 79.852 34.919 40.907 12975.757 198.206 85.181 899.428
MASE 0.670 1.020 0.487 0.783 2.165 1.881 0.787 7.865

RMSSE 2.727 3.366 1.883 2.423 5.243 3.296 1.734 14.693

SBA MSE 78.960 79.350 34.723 40.876 13126.803 202.178 84.768 871.933
MASE 0.659 0.997 0.483 0.780 2.111 1.8404 0.777 7.829

RMSSE 2.718 3.349 1.877 2.421 5.370 3.345 1.722 14.702

TSB MSE 79.763 79.936 35.011 41.057 13088.866 199.555 86.031 929.241
MASE 0.672 1.023 0.488 0.783 1.948 1.766 0.790 7.802

RMSSE 2.735 3.369 1.885 2.427 5.247 3.301 1.739 14.685

Willemain MSE 78.226 80.300 35.135 42.033 12955.828 212.609 84.851 901.377
MASE 0.690 1.076 0.500 0.796 2.689 2.654 0.945 7.773

RMSSE 2.721 3.395 1.893 2.457 5.390 3.579 1.921 14.729

MLP MSE 78.569 78.686 35.336 39.996 23009.153 201.105 86.010 994.130
MASE 0.681 1.060 0.498 0.779 49.619 2.304 0.860 21.988

RMSSE 2.716 3.348 1.892 2.396 19.389 3.352 1.796 19.791

LightGBM MSE 96.932 98.591 42.152 49.867 47578.854 239.699 125.430 1211.790
MASE 0.747 1.132 0.537 0.847 75.672 2.301 0.965 22.226

RMSSE 3.017 3.743 2.069 2.667 32.012 3.743 2.091 21.948

Results rounded to three decimals. The best accuracy is highlighted for each data set and measure.

compared to the rest. The percentages are calculated column-wise, where each method is
measured against every other method based on the achieved forecasting accuracy in Table 4.7.
So the first value in the table (66.67%), shows that Croston was better in 66.67% of the cases
when compared to each of the other methods when they were applied to the SIM1 data and their
forecasting accuracy was measured with MSE. In the last column, the percentage better scores
are averaged for each method and accuracy measure across all data sets. These results show that
SBA is on average the best performing method relative to the methods it is compared against on
each of the metrics. Again, it is clear that the LightGBM method is the worst overall.

A revised approach for the pre-processing of the data.

As the results from both Table 4.7 and 4.8 indicate that the methods are struggling with the
way the data is provided to them, a second application of each method was performed. In this
revised approach, the training data is no longer updated with the values forecast by each method
after each period. Instead, the real values from the test data sets are added to the training data
sets. This is not possible in practice when one would like to predict more than one lead-time
demand ahead, but this approach creates a setting where after each predicted period the training
data is updated in order to use the most recent data for the forecasts. So although the initial
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Table 4.8 Percentage better comparison on forecasting accuracy of all methods on each data set.

Method Measure Data set Average
SIM1 SIM2 SIM3 SIM4 MAN BRAF AUTO OIL

Croston MSE 66.67% 83.33% 100% 83.33% 33.33% 33.33% 16.67% 100% 64.58%
MASE 66.67% 83.33% 83.33% 66.67% 50% 50% 83.33% 33.33% 64.58%

RMSSE 33.33% 66.67% 100% 83.33% 33.33% 33.33% 83.33% 33.33% 58.33%

SES MSE 33.33% 50% 66.67% 50% 83.33% 100% 66.67% 66.67% 64.58%
MASE 66.67% 66.67% 66.67% 33.33% 66.67% 66.67% 66.67% 50% 60.42%

RMSSE 28.57% 50% 66.67% 50% 100% 100% 66.67% 83.33% 68.16%

SBA MSE 66.67% 66.67% 83.33% 66.67% 50% 50% 100% 83.33% 70.83%
MASE 100% 100% 100% 66.67% 83.33% 66.67% 100% 66.67% 85.42%

RMSSE 83.33% 83.33% 83.33% 83.33% 66.67% 83.33% 100% 66.67% 81.25%

TSB MSE 16.67% 33.33% 50% 33.33% 66.67% 83.33% 33.33% 33.33% 43.75%
MASE 50% 50% 50% 33.33% 100% 100% 50% 83.33% 64.58%

RMSSE 16.67% 33.33% 50% 33.33% 83.33% 83.33% 50% 100% 56.25%

Willemain MSE 100% 16.67% 33.33% 16.67% 100% 16.67% 83.33% 50% 54.17%
MASE 16.67% 16.67% 16.67% 16.67% 33.33% 0% 16.67% 100% 27.09%

RMSSE 66.67% 16.67% 16.67% 16.67% 33.33% 16.67% 16.67% 50% 29.17%

MLP Method MSE 83.33% 100% 16.67% 100% 16.67% 66.67% 33.33% 16.67% 54.17%
MASE 33.33% 33.33% 33.33% 100% 16.67% 16.67% 33.33% 16.67% 35.42%

RMSSE 100% 100% 33.33% 100% 16.67% 50% 33.33% 16.67% 54.17%

LightGBM MSE 0% 0% 0% 0% 0% 0% 0% 0% 0%
MASE 0% 0% 0% 0% 0% 33.33% 0% 0% 4.17%

RMSSE 0% 0% 0% 0% 0% 0% 0% 0% 0%

Results rounded to two decimals. The highest average Percentage Better for each method is highlighted.
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approach has a more straightforward application in practice, this revised approach provides the
methods with the actual data. As lead times are not always equal to the 1 that it was set to
in this paper in practice, this revised approach is more straightforward when lead times are longer.

The results from the second application of each method can be found in Tables 4.9 and 4.10.
These revised results are in italics when the result is an improvement compared to the initial
application and again the best performances are highlighted. Although again each method except
for the LightGBM method performed best on some metric and data set, the SBA method has the
best performance in by far the most instances. This is not only the case for the simulated data
sets but also for the industrial data sets. Also, not every method shows improved results with
the revised approach, although every method has an improved result on some metric on some
data set. This suggests that any overestimating that happened in the initial application may have
caused the results to be better than they should have been and that this approach more truthfully
measures the method’s performance on a lead-time demand prediction, but that that is not the
case for every series. The over-estimations that happened earlier for the Willemain, MLP and
LightGBM methods are now also less extreme, which can be seen by the lesser MSE values,
which indicates closer estimates on average. The method that showed the least improvements is
the TSB method, for which the earlier over-estimations seemed to have improved the method’s
accuracy, indicating that TSB may be constantly underestimating the actual demand. This will
be checked later when the trade-off curves are examined, as TSB should then show signs of
underestimating the required stock. The overall implications and findings are further discussed
in the next section.

4.3.2 Inventory performance and overall assessment

Next, the inventory performance is assessed and is related to the performance of the methods
based on the results from the forecasting accuracy section. The trade-off curves are set up
separately for each data set, as seen in Figures 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9. For every
data set, a trade-off curve is made to assess the trade-off between the fill rate that was achieved
by the method and the associated holding costs, labeled with an (a). Achieving a higher fill rate
always leads to higher holding costs, with the figures maxing out at the 99.9999% fill rate level,
which is the approximation of a 100% fill rate for this paper and where the achieved fill rate
cannot realistically increase any further without extreme increases in holding costs. The other
trade-off curve shows the trade-off between the achieved fill rate and the target fill rate that had
been set, labeled with a (b). These curves will show a gradual increase of the achieved fill rate
until the target fill rate reaches the 99.9999% level again. The achieved fill rate will not always
reach the 100% approximation in every graph, as high demand occurrences prohibit this. This is
the case for the MAN, BRAF and OIL data sets. The trade-off curves are analysed separately in
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Table 4.9 The forecasting accuracy of all methods on each data set with the revised pre-processing.

Method Measure Data set

SIM1 SIM2 SIM3 SIM4 MAN BRAF AUTO OIL

Croston MSE 79.202 79.138 34.730 40.519 12940.104 199.690 86.344 708.262
MASE 0.673 1.027 0.487 0.780 2.499 2.080 0.788 8.331

RMSSE 2.722 3.346 1.878 2.412 5.329 3.300 1.721 12.515

SES MSE 79.212 79.806 34.916 40.938 13327.738 201.190 84.445 701.551
MASE 0.673 1.028 0.488 0.783 2.335 1.996 0.780 8.283

RMSSE 2.722 3.358 1.883 2.424 5.215 3.283 1.710 12.471

SBA MSE 78.623 78.834 34.620 40.435 12921.667 199.807 83.089 690.445
MASE 0.664 1.012 0.484 0.778 2.439 2.001 0.777 8.013

RMSSE 2.712 3.337 1.874 2.409 5.304 3.289 1.710 12.429

TSB MSE 79.759 79.966 35.091 41.149 13293.605 200.945 90.061 706.219
MASE 0.675 1.032 0.490 0.785 2.321 1.955 0.792 8.013

RMSSE 2.731 3.363 1.887 2.430 5.223 3.287 1.728 12.482

Willemain MSE 78.231 78.746 34.960 40.752 13288.562 200.354 84.622 695.419
MASE 0.690 1.043 0.498 0.783 2.539 2.309 0.906 7.042

RMSSE 2.721 3.353 1.889 2.420 5.321 3.381 1.874 12.634

MLP MSE 78.500 77.511 34.736 39.747 14472.538 202.271 84.849 776.300
MASE 0.687 1.032 0.491 0.776 20.673 2.340 0.836 22.465

RMSSE 2.716 3.319 1.879 2.389 10.585 3.369 1.756 18.249

LightGBM MSE 98.352 97.244 43.316 49.567 14672.193 207.561 115.453 811.872
MASE 0.758 1.141 0.547 0.849 29.394 2.354 0.940 21.675

RMSSE 3.040 3.720 2.095 2.660 14.727 3.413 2.070 18.899

Results rounded to three decimals. The best accuracy is highlighted for each data set and measure.
The result is in italics if it was an improvement over the first application.
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Table 4.10 Percentage better comparison on forecasting accuracy of all methods on each data set
with the revised pre-processing.

Method Measure Data set Average
SIM1 SIM2 SIM3 SIM4 MAN BRAF AUTO OIL

Croston MSE 50% 50% 83.33% 83.33% 66.67% 100% 33.33% 33.33% 62.50%
MASE 66.67% 83.33% 83.33% 66.67% 50% 50% 66.67% 33.33% 63.49%

RMSSE 33.33% 66.67% 83.33% 66.67% 33.33% 50% 66.67% 50% 56.24%

SES MSE 33.33% 33.33% 50% 33.33% 33.33% 33.33% 83.33% 66.67% 45.83%
MASE 66.67% 66.67% 66.67% 33.33% 83.33% 83.33% 83.33% 50% 66.66%

RMSSE 33.33% 33.33% 50% 33.33% 100% 100% 100% 83.33% 66.67%

SBA MSE 66.67% 66.67% 100% 83.33% 100% 83.33% 100% 100% 87.50%
MASE 100% 100% 100% 83.33% 66.67% 66.67% 100% 66.67% 85.42%

RMSSE 100% 83.33% 100% 83.33% 66.67% 66.67% 100% 100% 87.50%

TSB MSE 16.67% 16.67% 16.67% 16.67% 50% 50% 16.67% 50% 29.17%
MASE 50% 33.33% 50% 16.67% 100% 100% 50% 66.67% 58.33%

RMSSE 16.67% 16.67% 33.33% 16.67% 83.33% 83.33% 50% 66.67% 45.83%

Willemain MSE 100% 83.33% 33.33% 50% 66.67% 66.67% 66.67% 83.33% 68.75%
MASE 16.67% 16.67% 16.67% 33.33% 33.33% 33.33% 16.67% 100% 33.33%

RMSSE 66.67% 50% 16.67% 50% 50% 16.67% 16.67% 33.33% 35.42%

MLP Method MSE 83.33% 100% 66.67% 100% 16.67% 16.67% 50% 16.67% 56.25%
MASE 33.33% 33.33% 33.33% 100% 16.67% 16.67% 33.33% 0% 33.33%

RMSSE 83.33% 100% 66.67% 100% 16.67% 33.33% 33.33% 16.67% 56.25%

LightGBM MSE 0% 0% 0% 0% 0% 0% 0% 0% 0%
MASE 0% 0% 0% 0% 0% 0% 0% 16.67% 2.08%

RMSSE 0% 0% 0% 0% 0% 0% 0% 0% 0%

Results rounded to two decimals. The highest average Percentage Better for each method is highlighted.
The average Percentage Better is in italics if it was an improvement over the first application.
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(a) (b)

Fig. 4.2 Tradeoff curves for the inventory control measures on SIM1 predictions by every method.

order to assess the performance of the used forecasting methods in the context of the inherent
characteristics of each data set. When the results are related to the forecasting accuracy, the
results from the revised approach are used in the assessment.

SIM1 inventory performance

The SIM1 data set was classified as a data set with erratic demand, meaning low intermittency
but a highly variable demand size. The low intermittency means that the methods all achieve
very similar results on the inventory holding costs assessment, as the predictions made by each
methods are similar and stable. Therefore, no clearly superior method can be deducted visually
from Figure 4.2a. However, when inspecting Figure 4.2b, there is a slight difference in the
achieved fill rate of each method. The Willemain method achieves the best fill rate on every
target fill rate leading up to the highest level, with the rest of the methods very close together.
SBA performs worst on this assessment. The implication of the difference in achieved fill rate
is that a slightly higher achieved fill rate does not equate to a significant increase in holding
costs, as was seen from Figure 4.2a. This means that Willemain is the superior method for this
application and this data set when these measures are used. This also shows how the forecasting
accuracy assessment should not be the only metric, as SBA performed best on forecasting the
SIM1 data set based on the MASE and RMSSE, but performs worst on the inventory control
assessment. Willemain also performed best on forecasting the SIM1 data set based on MSE,
which is now further supported based on the inventory control measures.

SIM2 inventory performance

Figure 4.3a shows a clearer separation. The blue line displaying the SES method is located above
all of the other methods in the graph, indicating that for every achieved fill rate, higher holding
costs are associated. Figure 4.3b also shows the lacking performance of SES, as the achieved fill
rate is the lowest for every target fill rate. The rest of the methods are close together, similarly to
the SIM1 trade-off curves, with Willemain being the superior method again by a small margin.
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(a) (b)

Fig. 4.3 Tradeoff curves for the inventory control measures on SIM2 predictions by every method.

Surprisingly, the lacking performance of SES cannot be related to it’s forecasting accuracy
performance on the SIM2 data set, as it’s performance there did not show lacking results. As
the SIM2 data set was classified as mainly lumpy with some erratic and intermittent items, it
mainly shows items with longer demand intervals. The addition of zeroes and the higher demand
variability compared to the SIM1 data seems to have caused the SES method to underestimate
the lead-time demand across all target fill rates, likely due to the averaging nature of the method.
The superior forecasting accuracy portrayed by the SBA and MLP methods on the SIM2 data set
does not appear to relate to a superior inventory control performance in this case.

SIM3 inventory performance

The trade-off curves for the SIM3 data set in Figure 4.4 show similar results to the trade-off
curves for the SIM1 data set. 4.4a shows each method relatively close in terms of the trade-off
between holding costs and achieved fill rate, and 4.4b shows Willemain being the superior
method in terms of achieving a higher fill rate. This time, the TSB and Croston methods are
second and third and the rest of the methods are clumped together slightly lower than those
two. Overall, especially Willemain, but also TSB and Croston are slightly better in achieving
a slightly better fill rate with similar inventory holding costs. The SIM3 data set is classified
as smooth, which means that demand variability is minimal and intermittency is also low. The
similarity with the SIM1 results seems to suggests that the variability of demand size influences
the results to a lesser extent than the variability of the average inter-demand interval, which was
fairly similar in the SIM1 and SIM3 data sets (1.00 and 1.05 respectively), while the average
variation in demand size did differ (0.75 and 0.30 respectively). Also, the absolute superiority
of SBA on forecasting accuracy on the SIM3 data set predictions does again not relate to good
inventory control performance, further suggesting that the two measures are separately important
to anyone deciding which method best suits their application.
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(a) (b)

Fig. 4.4 Tradeoff curves for the inventory control measures on SIM3 predictions by every method.

(a) (b)

Fig. 4.5 Tradeoff curves for the inventory control measures on SIM4 predictions by every method.

SIM4 inventory performance

Similar to the similarity between the SIM1 and SIM3 results, the SIM4 results shown in Figure
4.5 resemble the results for the SIM2 data set. SES performs the poorest out of all of the
methods, with higher inventory holding costs associated with each achieved fill rate and a lower
achieved fill rate associated with each target fill rate. Also, the Willemain method is again the
superior method in terms of both trade-offs. The similarity with the SIM2 results can this time
be accredited to the other associated classification metric, the demand variability. Again the high
demand variability seems to make the SES method perform poorly, with the rest of the methods
clumped together and the Willemain method as the overall winner. For this data set, the MLP
method was superior on all forecasting accuracy metrics, but this result does not relate to the
inventory control performance in this case, as the method performs average relative to the other
methods.

MAN inventory performance

Transitioning to the industrial data sets, the trade-off curves for the MAN data set in Figure
4.6 show a different result than the simulated data sets showed. In Figure 4.6a the MLP and
LightGBM methods are to the lower left side of the graph compared to the other methods,
indicating that they achieve lower inventory holding costs with the same achieved fill rate. This
result is also reflected in Figure 4.6b, where the two methods achieve a lower fill rate for each
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(a) (b)

Fig. 4.6 Tradeoff curves for the inventory control measures on MAN predictions by every method.

target fill rate. This can be interpreted as a lesser extent to which the methods overestimate
the required stock levels compared to the other methods. These lower stock levels then relate
clearly to the lower associated holding costs. These results are perhaps unexpected due to the
poor performance of both of these methods in terms of forecasting accuracy on the MAN data
set predictions, but are inherent to the way these methods work. The learning nature of both of
these methods means that the predictions made by these methods are an attempt at recreating the
patterns that the methods have understood from the data supplied to them. Those predictions may
not, as was seen from the forecasting accuracy measures, necessarily be as accurate as the more
straightforward methods, but may contain greater understanding of the underlying dependencies
within the supplied data. With the MAN data mainly consisting of lumpy and intermittent items
and the variability in the average inter-demand interval being extremely high (40.99), the other
methods overestimate the overall required demand more than the MLP and LightGBM methods
do. Overall, no clear winner can be deducted from the trade-off curves, meaning both methods
are considered as superior for this assessment.

BRAF inventory performance

Figure 4.7 shows the result for the BRAF data set. Being classified as lumpy and intermittent,
items show a high average inter-demand interval (11.14) and both items with both highly and
slightly variable demand sizes. Visually, the curves resemble those of the SIM1 and SIM3 data
sets. This is unusual, as the classifications of the SIM1 and SIM3 data sets were mainly erratic
and smooth respectively. This means they showed a lower average inter-demand interval for all
of the items. The similarity between the BRAF results and the SIM1 and SIM3 results suggests
that demand variability does therefore not greatly influence the inventory control performance
of the methods, providing further support for the same line of thought presented in the analysis
of the SIM3 inventory control assessment, as this was the main difference between the BRAF,
SIM1 and SIM3 data set characteristics. The overall superior method for this data set is again
the Willemain method and all of the other methods perform very similarly. When the results
are related to the forecasting accuracy results, no clear explanation for the superiority of the
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(a) (b)

Fig. 4.7 Tradeoff curves for the inventory control measures on BRAF predictions by every
method.

(a) (b)

Fig. 4.8 Tradeoff curves for the inventory control measures on AUTO predictions by every
method.

Willemain method seems apparent, even though based on the MSE the method performed third
best.

AUTO inventory performance

With the AUTO data set being the most diverse in terms of classification, it’s trade-off curves
also show the most diversity in their results. The AUTO data set was classified as mostly smooth
and intermittent, but also contained a portion of erratic and lumpy items. Figure 4.8a shows
firstly that SES performs worst overall based on the holding costs and the achieved fill rate. This
may be again accredited to the presence of erratic and lumpy items with high demand variability.
The best performing methods based on the holding costs associated with the achieved fill rate
are TSB and Willemain, but Willemain does achieve a significantly higher fill rate for the same
target fill rate. The MLP method also achieves the second best fill rates, but seems to score
average based on the associated holding costs, only performing best on the right-most portion
of Figure 4.8a. This means that at a very high fill rate, the method achieves the lowest holding
costs. Overall Willemain seems to be superior again, but the result based on holding costs is less
clear, which may be due to the great variability in item classifications in this data set.
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(a) (b)

Fig. 4.9 Tradeoff curves for the inventory control measures on OIL predictions by every method.

OIL inventory performance

Then finally the OIL data set, which was classified as having around 30% lumpy and around 70%
intermittent items, meaning a high average inter-demand interval for all of the items (25.75).
Figure 4.9 shows similarities to the results from the MAN data set trade-off curves, with the MLP
and LightGBM methods being superior. In this case, the LightGBM method also outperforms the
MLP method in every instance, achieving a higher fill rate at each target fill rate and achieving
lower inventory holding costs at each achieved fill rate. The achieved fill rate for the Willemain
method is lowest for every target fill rate in this application, but this results in the third best
performance based on the inventory holding costs. This means that although the MLP and
LightGBM methods are still overall superior to the Willemain method for this data set, the
Willemain method does achieve lower inventory holding costs than all of the other methods at
the same achieved fill rate. The superiority of the learning methods again shows that for data
with extremely high intermittency, the understanding of the underlying dependencies seems to
be superior to the more straightforward estimation of the other methods.
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Chapter 5

Findings, literature comparison,
conclusion & discussion

In order to structure the results from the forecasting accuracy and inventory control assessments,
several findings will be presented and subsequently elaborated upon. A comparison with the
results from existing literature then concludes the findings. After all of the findings have
been presented, the findings will be related to the initial research questions as proposed in the
introduction of this paper. After attempting to answer the research questions, a conclusion with
remarks on this paper and suggestions for further research are presented.

5.1 Findings

Finding 1: The pre-processing of the data may influence the forecasting accuracy perfor-
mance of spare parts demand forecasting methods.

Although the focus of this paper is on comparing spare parts demand forecasting methods,
preparing the data sets for use in forecasting and the inventory control assessment requires data
wrangling. In the case of this paper, this proved to matter, where the first approach attempted to
recreate a practical application where the training data is updated using the forecasts made by the
methods. This is simple to implement in practice, but the results showed that the results for some
methods may improve by instead updating the training data with the real demand values. In
practice, this would imply that Lead-time demand forecasts beyond the lead time are not possible
with this type of updating. The way the data is prepared may also influence the calculation time
of forecasting methods. Overall, Finding 1 suggests that the way data is prepared may be of
importance.
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Finding 2: The ease of implementation for the assessed methods differs in terms of total
run time and required knowledge.

The total run time and average run time per item were presented in 4.6 in Chapter 4. TSB showed
the lowest run time, which can be accredited to the different cost function used compared to the
similar Croston, SES and SBA methods. The Willemain method had the longest run time, which
is due to the repeating nature of a bootstrapping method. In this paper, the bootstrapping was
done 1000 times for every application, but the run time would be even longer if the amount of
bootstraps would be increased. The rest of the methods are all fairly reasonable in the total run
time, with all of them being done in six hours or less. In terms of ease of implementation, the
differences are larger. The Croston, SES, SBA, TSB and MLP methods are highly documented
and straightforward in their application, although the MLP method offers more configurability
through it’s hyper parameters. This means that the method is easy to implement, yet hard to
perfect. The Willemain method, although well documented by it’s creator, requires knowledge
of certain mathematical principles such as transition matrices and Markov chains that may not
be familiar with intended users of this method. Combined with the long total run time, this
decreased the ease of implementation in this paper. Lastly, the LightGBM method, which may
suffer slightly from it’s newness. Due to the high complexity and the extent to which the method
can be adapted and configured, combined with less implementation examples than the other
methods, was the most difficult to implement out of all the included methods. Overall, Finding 2
suggests that the decision to select a method should also be influenced by it’s run time and ease
of implementation.

Finding 3: Based on the Percentage Better comparison, SBA performed the best overall
with both the initial and revised approach and LightGBM the worst.

With the highest average Percentage Better scores in both Table 4.7 and Table 4.9, SBA performed
the best based on forecasting accuracy for both the industrial and simulated data sets. With the
method also being easy to implement and average in total run time compared to the other methods,
SBA could be a great overall method for practical applications when forecasting accuracy is
the required metric. The results did not carry over to the inventory control assessment, which
suggests that the method may overestimate the required demand, resulting in average or below-
average inventory control performance. The LightGBM method performed worst overall in both
approaches, suggesting that the method is inferior when an accurate forecast is desired, with the
current setup of the hyper parameters. If forecasting accuracy is the only important metric, the
method could likely be adapted to suit those needs more so than in the application in this paper.
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Finding 4: Based on the inventory control assessment of the SIM1, SIM3 and BRAF data
sets, demand size variability seems to influence the inventory control performance of all
methods to a lesser extent than the average inter-demand interval.

As three data sets with differing demand variability metrics showed similar results, their dif-
ference did not seem to influence the results. This may suggest that for the methods used in
this comparison, the average inter-demand interval is a more important metric to assess whether
method performance based on inventory control will be influenced for a particular data set.

Finding 5: The inventory control performance of the SES method is negatively influenced
by items with highly variable demand sizes.

The assessment on inventory control for the SIM2, SIM4 and AUTO data sets suggests that the
performance of the SES method is negatively influenced by the presence of lumpy and erratic
items, thus being sensitive to highly variable demand sizes. As mentioned earlier, this may be
accredited to the averaging nature of the method, which is influenced by great differences in
demand size more than the other methods.

Finding 6: Based on inventory control performance, Willemain performs the best, except
for data with extremely high intermittency.

With the Willemain method performing the best on 6 out of 8 data sets, it’s inventory control
performance is considered the best overall. The superiority of the method on inventory control
may be accredited to it’s inner workings. The method first establishes whether the next demand
occurrence is likely to be positive or zero, and in doing so it in a way learns from the data,
similarly to the MLP and LightGBM methods. The expectation of the following period(s) is
unique to this method only, and using this method’s approach in combination with a more
accurate forecasting method for establishing the expected demand sizes may be an interesting
new research direction. This would also decrease the method’s high total run time as the jittering
would no longer be required, which takes up most of the run time.

Finding 7: For data with extremely high intermittency, the MLP and LightGBM methods
perform the best based on the applied inventory control measures.

For the MAN and OIL data sets, the MLP and LightGBM methods proved to be superior in
terms of inventory control. As explained earlier, the way these methods learn from underlying
dependencies makes their predictions less accurate when put alongside the real values compared
to the other methods, but this may make them more similar to the real underlying patterns of the
data, resulting in a better inventory control performance in the case of this paper.
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5.2 Comparison with the results from existing literature.

Comparison with Pinçe et al. (2021).

As the literature review in this paper was built upon the framework by Pinçe et al. (2021), a
comparison with the results from their work and this paper seems fitting. In their work they did a
quantitative literature analysis, meaning they did not apply any of the methods they reviewed
themselves, but reviewed the results of other papers and quantified the results of those papers. In
their comparison of 53 papers they first started with a comparison between Croston and SBA,
where SBA performed better than Croston in 85.7% of the 20 comparisons based on forecasting
accuracy measures. In this paper, out of 24 comparisons, Croston only performed better once,
resulting in an even greater 95,83%. Pinçe et al. (2021) mentioned in their comparison that their
only occurrence of Croston outperforming SBA was when applied to a fashion sector data set.
This could be the reason why the percentage is even greater in this paper’s comparison, as only
spare parts data was used.

When compared on inventory control measures, Pinçe et al. (2021) indicate that Croston
seems to outperform SBA more often, with 45% and 21% respectively. However, they mention
that the results are inconclusive in 34.1% of the comparisons. When the trade-off curves and
inventory performance results in the Appendix are examined for Croston and SBA, Croston
does achieve lower fill rates for every target fill rate, but the differences are so minimal that one
could also interpret these results as inconclusive. However, the fact that SBA did not outperform
Croston once does suggest Croston is slightly more favoured when it comes to inventory control.
Pinçe et al. (2021) accredit this to the slight positive bias in the Croston method, leading to
higher inventory levels, which explains the slightly higher achieved fill rates.

The next comparison done by Pinçe et al. (2021) was between the performance of Croston
and SBA and the "traditional methods", under which they understand methods such as SES,
Naïve and zero-forecasting. As only SES was incorporated in this paper, no real comparison of
their results to those of this paper can be made here, as their results were aggregated for all of
the traditional methods. The same aggregation of comparative results is done for the group of
"newer methods", under which TSB, a modified version of Croston and others are understood,
and for the non-parametric methods, under which the Willemain method used in this paper falls.
Therefore, no further comparison with the quantitative results from Pinçe et al. (2021) is possible.

Comparison with Spiliotis et al. (2020).

Another paper with a comparable setup was the one by Spiliotis et al. (2020), specifically because
the MLP approach incorporated in their paper was very similar to the one in this paper. They also
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incorporated SES, Croston, SBA and TSB. Another interesting method is the Gradient Boosting
Trees (GBT) method they incorporated, as the LightGBM method used in this paper functions
on the same principles. One of their forecasting accuracy measures was the RMSSE, which is
also used in this paper. All of these similarities make the comparison of their results with those
of this paper more approachable. The two major differences are that they applied the methods to
only one data set and that they did not consider inventory control performance. The data set they
used contains data about sales of various consumption goods, which consists of mostly smooth
and erratic items according to their classification. This means the AUTO, SIM1 and SIM3 data
sets are most similar to their data out of all the data sets used in this paper.

The findings presented by Spiliotis et al. (2020) show that the four best performing methods
(on forecasting accuracy) are machine learning methods. The GBT method used in their compar-
ison was one of those four. This suggests that the line of thought that is presented throughout this
paper that these advanced methods require advanced knowledge on how to configure their hyper
parameters but that they show great potential when understood, may indeed be a realistic assess-
ment. However, similarly to this paper, they found that the MLP approach was outperformed by
the statistical methods on forecasting accuracy, measured by the RMSSE. This is remarkable, as
they applied the MLP in a series-by-series fashion, which could be expected to show improved
results compared to the aggregated input approach used in this paper. Also, SBA was found by
Spiliotis et al. (2020) to be the most accurate amongst the statistical methods when forecasting
accuracy is concerned, similarly to the results of this paper, where SBA was consistently one of
the top performing methods on forecasting accuracy.

5.3 Conclusion

The implications of the findings will now be discussed in relation to the initial questions posed
by this paper in the introduction, the first of which was: Which type of method is best for which

type of data?

Based on the findings and the literature review, selecting the appropriate type of method
for the type of data will differ. In this research several types of methods have been assessed,
such as parametric methods, a bootstrapping method and machine learning methods. The results
showed that none of these methods performed best across both forecasting accuracy and inventory
control and that the parametric method SBA proved to be the best overall in terms of forecasting
accuracy and the Willemain method in terms of inventory control. When extreme intermittency
was present, the MLP and LightGBM methods performed best in terms of inventory control
performance.
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The second question of importance to this research was: Does the performance of the method

depend on the performance measure used or on the data set to which it is applied?

In determining whether the performance depends on the measure or the type of data set,
another factor of importance was discovered during the process of this paper. As the data needs
to be pre-processed before the methods are applied, this may influence the results, as the revision
of the approaches showed. Next to that, the performance of a method does depend also on the
measure used, as there was no clearly superior method for some of the forecasting accuracy
performance measures and inventory control measures. Similarly, there was no clearly superior
method based on the data sets they were applied to, which suggests that the data does indeed
influence the performance of each method. The severity of this influence is however not part of
the scope of this research.

5.4 Discussion

As the process of this research showed through the revision of the approaches that the field of
forecasting (spare parts demand) is a field of trial and error, there are always more options and
approaches to be discovered. As some decisions made in this research have pushed the results
and findings in a certain direction, so too would the implementation of more methods, different
data or a different scope. In order to establish what this research suggests as further research
possibilities and what was left out of the scope of this research, some possibilities will now be
discussed.

As the data sets, specifically the industrial data sets, contained highly variable demand sizes
and pricing, one of the initial lines of thought is to further investigate whether a weight based
on price would be beneficial. A measure similar to the WRMSSE, used in the M5 competition
by Makridakis et al. (2020b), would elaborate on the performance of a method when pricing
differs greatly, as was the case for the industrial data sets. However, since the inventory control
measures applied in this paper already incorporate inventory holding costs, this was not done for
this paper.

Also, some choices regarding the pre-processing of the data could have been made differently
and might be made differently for future research in order to investigate the implications. The
main change that would be logical is to incorporate the actual lead times instead of setting the
lead time to 1. Some more of these may include, but are not limited to; removing any demand
occurrences which can be attributed to planned maintenance or which can be marked as extreme
outliers, splitting the data based on classification, involving installed base forecasting, looking at
demand patterns such as seasonality or heavily increasing or decreasing trends or evaluating the
methods’ performance on items that become obsolete. Similarly, the simulated data sets could
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be simulated with more extreme inter-demand intervals and a larger variation in demand size, as
the industrial data sets showed that this may influence method performance.

Another possible direction for further research would be to elaborate on the hyper parameters
of the MLP and LightGBM methods used in this paper and to establish whether the setting of
these parameters could be automated or optimised in a way that would make the methods simple
in their use. The potential that both methods showed in this paper could be further investigated if
the method would be more easily approachable by those who require their methods to be easily
implemented.
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Appendix A

Table A.1 Inventory performance measures for the SIM1 data set.

Achieved fill rate Inventory holding costs Target fill rate Method
0.9423585 44694652 0.7500000 Croston

0.9536177 48733699 0.8000000 Croston

0.9638693 53441702 0.8500000 Croston

0.9734651 59365445 0.9000000 Croston

0.9829830 68145324 0.9500000 Croston

0.9923018 84614916 0.9900000 Croston

0.9994298 143269791 0.9999999 Croston

0.9423605 44695137 0.7500000 SES

0.9536194 48734184 0.8000000 SES

0.9638708 53442187 0.8500000 SES

0.9734658 59365930 0.9000000 SES

0.9829838 68145809 0.9500000 SES

0.9923022 84615401 0.9900000 SES

0.9994298 143270276 0.9999999 SES

0.9391145 43888680 0.7500000 SBA

0.9509275 47927727 0.8000000 SBA

0.9616884 52635730 0.8500000 SBA

0.9717933 58559472 0.9000000 SBA

0.9818950 67339351 0.9500000 SBA

0.9917740 83808943 0.9900000 SBA

0.9993818 142463818 0.9999999 SBA

0.9424799 44702360 0.7500000 TSB

0.9537281 48741407 0.8000000 TSB

0.9639666 53449410 0.8500000 TSB

0.9735429 59373152 0.9000000 TSB

Continued on next page
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Table A.1 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9830374 68153031 0.9500000 TSB

0.9923294 84622624 0.9900000 TSB

0.9994307 143277498 0.9999999 TSB

0.9428531 46346369 0.7500000 MLP

0.9537746 50385416 0.8000000 MLP

0.9638207 55093419 0.8500000 MLP

0.9732898 61017161 0.9000000 MLP

0.9828143 69797040 0.9500000 MLP

0.9923465 86266632 0.9900000 MLP

0.9996179 144921507 0.9999999 MLP

0.9411354 45499589 0.7500000 LightGBM

0.9524274 49538636 0.8000000 LightGBM

0.9627800 54246639 0.8500000 LightGBM

0.9725491 60170382 0.9000000 LightGBM

0.9823092 68950261 0.9500000 LightGBM

0.9920430 85419853 0.9900000 LightGBM

0.9995110 144074728 0.9999999 LightGBM

0.9481764 47663854 0.7500000 Willemain

0.9579242 51702901 0.8000000 Willemain

0.9669104 56410904 0.8500000 Willemain

0.9753960 62334647 0.9000000 Willemain

0.9839539 71114525 0.9500000 Willemain

0.9925306 87584118 0.9900000 Willemain

0.9994058 146238992 0.9999999 Willemain

Table A.2 Inventory performance measures for the SIM2 data set.

Achieved fill rate Inventory holding costs Target fill rate Method
0.9335466 15738399 0.7500000 Croston

0.9462346 17526649 0.8000000 Croston

0.9577866 19611074 0.8500000 Croston

0.9686105 22233755 0.9000000 Croston

0.9794861 26120965 0.9500000 Croston

0.9904060 33412723 0.9900000 Croston

Continued on next page
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Table A.2 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9991610 59381621 0.9999999 Croston

0.8985701 15579080 0.7500000 SES

0.9181696 17367330 0.8000000 SES

0.9359649 19451755 0.8500000 SES

0.9525734 22074436 0.9000000 SES

0.9692254 25961646 0.9500000 SES

0.9857250 33253404 0.9900000 SES

0.9987953 59222302 0.9999999 SES

0.9294388 15287381 0.7500000 SBA

0.9429361 17075631 0.8000000 SBA

0.9551942 19160055 0.8500000 SBA

0.9667105 21782737 0.9000000 SBA

0.9782731 25669946 0.9500000 SBA

0.9898503 32961705 0.9900000 SBA

0.9991142 58930603 0.9999999 SBA

0.9339912 15717537 0.7500000 TSB

0.9466470 17505788 0.8000000 TSB

0.9581647 19590212 0.8500000 TSB

0.9689514 22212894 0.9000000 TSB

0.9797794 26100103 0.9500000 TSB

0.9905895 33391861 0.9900000 TSB

0.9991832 59360760 0.9999999 TSB

0.9314509 15943684 0.7500000 MLP

0.9443465 17731934 0.8000000 MLP

0.9561724 19816358 0.8500000 MLP

0.9673409 22439040 0.9000000 MLP

0.9786498 26326250 0.9500000 MLP

0.9901615 33618008 0.9900000 MLP

0.9993525 59586906 0.9999999 MLP

0.9312231 15885510 0.7500000 LightGBM

0.9442420 17673760 0.8000000 LightGBM

0.9560656 19758184 0.8500000 LightGBM

0.9672674 22380866 0.9000000 LightGBM

0.9785850 26268075 0.9500000 LightGBM

0.9900684 33559834 0.9900000 LightGBM

Continued on next page
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Table A.2 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9992793 59528732 0.9999999 LightGBM

0.9361381 16454177 0.7500000 Willemain

0.9479614 18242427 0.8000000 Willemain

0.9588437 20326851 0.8500000 Willemain

0.9691346 22949533 0.9000000 Willemain

0.9795904 26836743 0.9500000 Willemain

0.9902523 34128501 0.9900000 Willemain

0.9991153 60097399 0.9999999 Willemain

Table A.3 Inventory performance measures for the SIM3 data set.

Achieved fill rate Inventory holding costs Target fill rate Method
0.9529304 34546140 0.7500000 Croston

0.9635260 36992170 0.8000000 Croston

0.9729595 39843317 0.8500000 Croston

0.9815065 43430710 0.9000000 Croston

0.9895083 48747768 0.9500000 Croston

0.9964036 58721684 0.9900000 Croston

0.9999114 94242828 0.9999999 Croston

0.9489077 34251478 0.7500000 SES

0.9604439 36697508 0.8000000 SES

0.9706760 39548655 0.8500000 SES

0.9799463 43136048 0.9000000 SES

0.9886540 48453106 0.9500000 SES

0.9961223 58427022 0.9900000 SES

0.9999036 93948167 0.9999999 SES

0.9491452 33901847 0.7500000 SBA

0.9604985 36347877 0.8000000 SBA

0.9706288 39199024 0.8500000 SBA

0.9798348 42786417 0.9000000 SBA

0.9885058 48103475 0.9500000 SBA

0.9960173 58077391 0.9900000 SBA

0.9999017 93598536 0.9999999 SBA

0.9531562 34551798 0.7500000 TSB

Continued on next page
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Table A.3 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9637397 36997828 0.8000000 TSB

0.9731461 39848975 0.8500000 TSB

0.9816550 43436368 0.9000000 TSB

0.9896148 48753426 0.9500000 TSB

0.9964527 58727341 0.9900000 TSB

0.9999123 94248486 0.9999999 TSB

0.9489333 34525830 0.7500000 MLP

0.9601106 36971860 0.8000000 MLP

0.9702430 39823006 0.8500000 MLP

0.9795480 43410400 0.9000000 MLP

0.9884127 48727457 0.9500000 MLP

0.9963046 58701373 0.9900000 MLP

0.9999668 94222518 0.9999999 MLP

0.9500425 34541002 0.7500000 LightGBM

0.9610274 36987032 0.8000000 LightGBM

0.9709546 39838179 0.8500000 LightGBM

0.9800337 43425572 0.9000000 LightGBM

0.9886376 48742630 0.9500000 LightGBM

0.9961741 58716546 0.9900000 LightGBM

0.9999437 94237691 0.9999999 LightGBM

0.9604739 36753963 0.7500000 Willemain

0.9692217 39199993 0.8000000 Willemain

0.9770527 42051140 0.8500000 Willemain

0.9841753 45638534 0.9000000 Willemain

0.9908997 50955591 0.9500000 Willemain

0.9967847 60929507 0.9900000 Willemain

0.9999188 96450652 0.9999999 Willemain

Table A.4 Inventory performance measures for the SIM4 data set.

Achieved fill rate Inventory holding costs Target fill rate Method
0.9405261 15089715 0.7500000 Croston

0.9556926 16485397 0.8000000 Croston

0.9688045 18112235 0.8500000 Croston

Continued on next page
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Table A.4 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9801479 20159168 0.9000000 Croston

0.9900675 23193032 0.9500000 Croston

0.9974096 28884056 0.9900000 Croston

0.9999881 49152091 0.9999999 Croston

0.9109691 14993343 0.7500000 SES

0.9338213 16389025 0.8000000 SES

0.9535180 18015863 0.8500000 SES

0.9705558 20062796 0.9000000 SES

0.9853563 23096660 0.9500000 SES

0.9962302 28787683 0.9900000 SES

0.9999816 49055719 0.9999999 SES

0.9351092 14685051 0.7500000 SBA

0.9515103 16080733 0.8000000 SBA

0.9657588 17707570 0.8500000 SBA

0.9781383 19754504 0.9000000 SBA

0.9889960 22788367 0.9500000 SBA

0.9971155 28479391 0.9900000 SBA

0.9999856 48747426 0.9999999 SBA

0.9409140 15064568 0.7500000 TSB

0.9560939 16460250 0.8000000 TSB

0.9691693 18087088 0.8500000 TSB

0.9804654 20134021 0.9000000 TSB

0.9902873 23167885 0.9500000 TSB

0.9974912 28858908 0.9900000 TSB

0.9999878 49126944 0.9999999 TSB

0.9391769 15254805 0.7500000 MLP

0.9543532 16650487 0.8000000 MLP

0.9676849 18277325 0.8500000 MLP

0.9793722 20324258 0.9000000 MLP

0.9897091 23358122 0.9500000 MLP

0.9976600 29049146 0.9900000 MLP

0.9999982 49317181 0.9999999 MLP

0.9372906 15061501 0.7500000 LightGBM

0.9530006 16457183 0.8000000 LightGBM

0.9667508 18084021 0.8500000 LightGBM

Continued on next page
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Table A.4 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9787789 20130954 0.9000000 LightGBM

0.9893262 23164818 0.9500000 LightGBM

0.9973403 28855842 0.9900000 LightGBM

0.9999952 49123877 0.9999999 LightGBM

0.9471384 15897659 0.7500000 Willemain

0.9604547 17293341 0.8000000 Willemain

0.9720097 18920178 0.8500000 Willemain

0.9820799 20967112 0.9000000 Willemain

0.9908928 24000975 0.9500000 Willemain

0.9975670 29691999 0.9900000 Willemain

0.9999877 49960034 0.9999999 Willemain

Table A.5 Inventory performance measures for the MAN data set.

Achieved fill rate Inventory holding costs Target fill rate Method
0.9540260 178090.9 0.7500000 Croston

0.9597055 204826.8 0.8000000 Croston

0.9651039 235990.9 0.8500000 Croston

0.9705284 275202.4 0.9000000 Croston

0.9765834 333319.7 0.9500000 Croston

0.9841197 442338.2 0.9900000 Croston

0.9944322 830596.9 0.9999999 Croston

0.9541098 173629.6 0.7500000 SES

0.9597806 200365.6 0.8000000 SES

0.9651952 231529.6 0.8500000 SES

0.9706384 270741.1 0.9000000 SES

0.9766585 328858.4 0.9500000 SES

0.9841634 437876.9 0.9900000 SES

0.9944388 826135.6 0.9999999 SES

0.9534522 175222.9 0.7500000 SBA

0.9592366 201958.9 0.8000000 SBA

0.9647304 233122.9 0.8500000 SBA

0.9702344 272334.4 0.9000000 SBA

0.9763753 330451.7 0.9500000 SBA

Continued on next page
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Table A.5 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9839944 439470.2 0.9900000 SBA

0.9944038 827728.9 0.9999999 SBA

0.9539155 173596.0 0.7500000 TSB

0.9595782 200332.0 0.8000000 TSB

0.9650056 231496.0 0.8500000 TSB

0.9704527 270707.5 0.9000000 TSB

0.9765093 328824.8 0.9500000 TSB

0.9840406 437843.3 0.9900000 TSB

0.9943942 826102.1 0.9999999 TSB

0.9412888 112282.1 0.7500000 MLP

0.9498840 139018.1 0.8000000 MLP

0.9577393 170182.1 0.8500000 MLP

0.9654068 209393.6 0.9000000 MLP

0.9736056 267510.9 0.9500000 MLP

0.9830865 376529.4 0.9900000 MLP

0.9946689 764788.2 0.9999999 MLP

0.9416146 112653.2 0.7500000 LightGBM

0.9501792 139389.2 0.8000000 LightGBM

0.9579536 170553.2 0.8500000 LightGBM

0.9655950 209764.7 0.9000000 LightGBM

0.9737475 267882.0 0.9500000 LightGBM

0.9831610 376900.5 0.9900000 LightGBM

0.9946815 765159.3 0.9999999 LightGBM

0.9548907 174486.9 0.7500000 Willemain

0.9603536 201222.8 0.8000000 Willemain

0.9655914 232386.9 0.8500000 Willemain

0.9708487 271598.4 0.9000000 Willemain

0.9767714 329715.7 0.9500000 Willemain

0.9841342 438734.2 0.9900000 Willemain

0.9943699 826992.9 0.9999999 Willemain
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Table A.6 Inventory performance measures for the BRAF data set.

Achieved fill rate Inventory holding costs Target fill rate Method
0.9540260 178090.9 0.7500000 Croston

0.9597055 204826.8 0.8000000 Croston

0.9651039 235990.9 0.8500000 Croston

0.9705284 275202.4 0.9000000 Croston

0.9765834 333319.7 0.9500000 Croston

0.9841197 442338.2 0.9900000 Croston

0.9944322 830596.9 0.9999999 Croston

0.9541098 173629.6 0.7500000 SES

0.9597806 200365.6 0.8000000 SES

0.9651952 231529.6 0.8500000 SES

0.9706384 270741.1 0.9000000 SES

0.9766585 328858.4 0.9500000 SES

0.9841634 437876.9 0.9900000 SES

0.9944388 826135.6 0.9999999 SES

0.9534522 175222.9 0.7500000 SBA

0.9592366 201958.9 0.8000000 SBA

0.9647304 233122.9 0.8500000 SBA

0.9702344 272334.4 0.9000000 SBA

0.9763753 330451.7 0.9500000 SBA

0.9839944 439470.2 0.9900000 SBA

0.9944038 827728.9 0.9999999 SBA

0.9539155 173596.0 0.7500000 TSB

0.9595782 200332.0 0.8000000 TSB

0.9650056 231496.0 0.8500000 TSB

0.9704527 270707.5 0.9000000 TSB

0.9765093 328824.8 0.9500000 TSB

0.9840406 437843.3 0.9900000 TSB

0.9943942 826102.1 0.9999999 TSB

0.9412888 112282.1 0.7500000 MLP

0.9498840 139018.1 0.8000000 MLP

0.9577393 170182.1 0.8500000 MLP

0.9654068 209393.6 0.9000000 MLP

0.9736056 267510.9 0.9500000 MLP

0.9830865 376529.4 0.9900000 MLP

Continued on next page
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Table A.6 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9946689 764788.2 0.9999999 MLP

0.9416146 112653.2 0.7500000 LightGBM

0.9501792 139389.2 0.8000000 LightGBM

0.9579536 170553.2 0.8500000 LightGBM

0.9655950 209764.7 0.9000000 LightGBM

0.9737475 267882.0 0.9500000 LightGBM

0.9831610 376900.5 0.9900000 LightGBM

0.9946815 765159.3 0.9999999 LightGBM

0.9548907 174486.9 0.7500000 Willemain

0.9603536 201222.8 0.8000000 Willemain

0.9655914 232386.9 0.8500000 Willemain

0.9708487 271598.4 0.9000000 Willemain

0.9767714 329715.7 0.9500000 Willemain

0.9841342 438734.2 0.9900000 Willemain

0.9943699 826992.9 0.9999999 Willemain

Table A.7 Inventory performance measures for the AUTO data set.

Achieved fill rate Inventory holding costs Target fill rate Method
0.9412320 4229905 0.7500000 Croston

0.9527760 4619348 0.8000000 Croston

0.9632684 5073292 0.8500000 Croston

0.9730921 5644457 0.9000000 Croston

0.9828719 6491010 0.9500000 Croston

0.9921214 8079001 0.9900000 Croston

0.9989867 13734482 0.9999999 Croston

0.9163144 4155608 0.7500000 SES

0.9329021 4545051 0.8000000 SES

0.9480452 4998995 0.8500000 SES

0.9619873 5570160 0.9000000 SES

0.9757491 6416713 0.9500000 SES

0.9887970 8004705 0.9900000 SES

0.9985519 13660185 0.9999999 SES

0.9347902 4087026 0.7500000 SBA

Continued on next page
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Table A.7 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9474310 4476469 0.8000000 SBA

0.9590509 4930413 0.8500000 SBA

0.9699490 5501578 0.9000000 SBA

0.9808249 6348131 0.9500000 SBA

0.9912250 7936122 0.9900000 SBA

0.9989223 13591603 0.9999999 SBA

0.9419404 4224320 0.7500000 TSB

0.9533812 4613763 0.8000000 TSB

0.9638368 5067707 0.8500000 TSB

0.9735881 5638872 0.9000000 TSB

0.9832381 6485425 0.9500000 TSB

0.9923281 8073416 0.9900000 TSB

0.9990240 13728897 0.9999999 TSB

0.9455854 4582935 0.7500000 MLP

0.9564843 4972378 0.8000000 MLP

0.9664777 5426322 0.8500000 MLP

0.9757082 5997487 0.9000000 MLP

0.9852330 6844040 0.9500000 MLP

0.9944402 8432031 0.9900000 MLP

0.9995498 14087512 0.9999999 MLP

0.9349677 4370576 0.7500000 LightGBM

0.9474101 4760020 0.8000000 LightGBM

0.9587865 5213963 0.8500000 LightGBM

0.9695329 5785128 0.9000000 LightGBM

0.9806376 6631681 0.9500000 LightGBM

0.9918921 8219673 0.9900000 LightGBM

0.9992376 13875153 0.9999999 LightGBM

0.9599948 5139719 0.7500000 Willemain

0.9673563 5529163 0.8000000 Willemain

0.9741062 5983106 0.8500000 Willemain

0.9805733 6554271 0.9000000 Willemain

0.9871818 7400824 0.9500000 Willemain

0.9936691 8988816 0.9900000 Willemain

0.9989963 14644296 0.9999999 Willemain
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Table A.8 Inventory performance measures for the OIL data set.

Achieved fill rate Inventory holding costs Target fill rate Method
0.9588103 2354818 0.7500000 Croston

0.9630705 2672656 0.8000000 Croston

0.9675253 3043136 0.8500000 Croston

0.9724465 3509283 0.9000000 Croston

0.9783135 4200185 0.9500000 Croston

0.9858017 5496201 0.9900000 Croston

0.9925227 10111838 0.9999999 Croston

0.9572204 2172833 0.7500000 SES

0.9616155 2490672 0.8000000 SES

0.9662596 2861151 0.8500000 SES

0.9713785 3327299 0.9000000 SES

0.9775097 4018201 0.9500000 SES

0.9854209 5314217 0.9900000 SES

0.9925342 9929854 0.9999999 SES

0.9572476 2281640 0.7500000 SBA

0.9615865 2599479 0.8000000 SBA

0.9661366 2969958 0.8500000 SBA

0.9711613 3436106 0.9000000 SBA

0.9772356 4127008 0.9500000 SBA

0.9851333 5423024 0.9900000 SBA

0.9924466 10038661 0.9999999 SBA

0.9570306 2147208 0.7500000 TSB

0.9614194 2465047 0.8000000 TSB

0.9660555 2835526 0.8500000 TSB

0.9711670 3301674 0.9000000 TSB

0.9773034 3992576 0.9500000 TSB

0.9852362 5288592 0.9900000 TSB

0.9924460 9904229 0.9999999 TSB

0.9615377 1593010 0.7500000 MLP

0.9655428 1910848 0.8000000 MLP

0.9697012 2281328 0.8500000 MLP

0.9742502 2747475 0.9000000 MLP

0.9797175 3438377 0.9500000 MLP

0.9864952 4734393 0.9900000 MLP

Continued on next page
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Table A.8 – continued from previous page
Achieved fill rate Inventory holding costs Target fill rate Method

0.9927557 9350030 0.9999999 MLP

0.9626769 1605204 0.7500000 LightGBM

0.9666015 1923043 0.8000000 LightGBM

0.9706708 2293522 0.8500000 LightGBM

0.9750957 2759670 0.9000000 LightGBM

0.9803812 3450572 0.9500000 LightGBM

0.9868413 4746588 0.9900000 LightGBM

0.9927780 9362225 0.9999999 LightGBM

0.9519112 1617924 0.7500000 Willemain

0.9568539 1935762 0.8000000 Willemain

0.9619998 2306242 0.8500000 Willemain

0.9676803 2772390 0.9000000 Willemain

0.9745522 3463291 0.9500000 Willemain

0.9834925 4759308 0.9900000 Willemain

0.9921160 9374945 0.9999999 Willemain
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