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Abstract: 

This study aims to evaluate the effects of environmental policy on innovation and productivity growth 

in the European Union, over the period 2008 to 2017. During this period, the third phase of the EU 

Emissions Trading Scheme has come into effect. The starting point in this study is the Porter 

hypothesis on environmental regulations (Porter, 1991). The general idea of this hypothesis, related 

to the argumentation of Hicks (1932), is that increasing costs accompanying the environmental 

regulations will spur innovation activity towards economizing and improving the production 

processes. Hence, the Porter hypothesis suggests that environmental regulations stimulate 

productivity growth through increasing innovation, induced by the regulations. First, this paper uses 

a regular OLS-estimation panel regression to study this Porter hypothesis for the mining and 

manufacturing industries in the EU. Moreover, this study recognizes the accompanying endogeneity 

issues and adopts an instrumental variable approach to overcome biased estimates. Innovation activity 

is proxied by R&D expenditures and the measure of productivity growth is TFP growth. This study 

finds some evidence supporting a positive impact of environmental regulations in the EU on industry-

level R&D expenditures but finds no evidence for a productivity growth effect through R&D activity 

induced by the regulations.  
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1     Introduction 
 

With the 2030 Climate Target Plan, the European Union has set important goals to cut 

greenhouse gas emissions by 55 percent below 1990 levels before the year 2030. This is an 

appropriate and much-needed plan when looking at the raging floods and astonishing heat 

records that we have seen in 2021. Since January 2021, phase four of the EU Emissions Trading 

System (EU ETS) has launched in order to achieve these ambitious 2030 targets. The EU ETS 

is the cornerstone of the environmental policy in the European Union, aiming at fighting climate 

change and reducing greenhouse gas emissions cost-effectively. Under the so-called ‘cap and 

trade’ system, installations buy or receive a number of allowances for their greenhouse gas 

emissions, which are tradable on a carbon market. The cap of emission allowances has been 

reduced over the years, through the different phases of the system, to lower the overall 

emissions (European Commission, 2015). As the number of emission allowances is limited in 

supply and decreasing over the years, we have seen that by the end of August 2021 the EU 

carbon price has reached a new record by jumping above 60 euros per tonne carbon dioxide 

(Hook, 2021). The prices have surged significantly, setting record after record, as it is expected 

that the supply of carbon allowances will further decrease over the coming years to meet the 

ambitious climate targets of 2030.  

These increasing carbon prices represent the increasing levels of stringency of the 

environmental policy in the European Union. Changes in the stringency of EU’s environmental 

regulations are subject to research and debate regarding the impact of the regulations on 

economic performance. The head of the International Energy Agency finds the increasing 

carbon price an excellent development that will stimulate a rapid transition towards clean 

energy and technologies, as companies are incentivized to invest in innovation (Sheppard & 

Hodgson, 2021). On the other hand, industry associations of pollution intensive industries are 

less optimistic towards the recent developments and raise concerns regarding the 

competitiveness of companies under the EU ETS, referring to global competitors that are 

subject to less stringent environmental regulations (Sheppard & Hodgson, 2021). The debate 

surrounding the economic effects of EU’s environmental policy is important looking at the 

recent surge in the carbon price. Although the primary objective of EU’s carbon market 

program is to reduce the greenhouse gas emissions, it is from an economic perspective crucial 

that the environmental policy provides incentives for technological change and innovation, 

since this leads to productivity growth and reduces the long-run costs of pollution control (Calel 

& Dechezleprêtre, 2016; Acemoglu et al., 2012). The ability of an environmental policy to 
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stimulate innovation, through which productivity growth can be reached, is an important 

criterion on which to judge its success (Calel and Dechezleprêtre, 2016).  

The economic outcomes of environmental policies have been studied extensively since 

the first major environmental regulations in the 1970s (Dechezlepretre & Sato, 2017). The 

literature can be distinguished between two different theories: the pollution haven hypothesis 

and the Porter hypothesis. The pollution haven hypothesis suggests that due to asymmetries in 

the stringency of environmental regulations a competitive disadvantage will arise in the global 

market, as pollution-intensive firms in countries with strict regulations face larger costs. 

(Dechezleprêtre and Sato, 2017). Therefore, enterprises will shift production towards the 

pollution havens with less stringent environmental regulations. This concept is called carbon 

leakage. The Porter hypothesis, first established by Porter in 1991 and further specified in Porter 

and Van der Linde (1995), relates back to the argumentation of Hicks (1932), suggesting that 

strict environmental policies will spur innovation activity directed towards clean technologies 

and cost-cutting efficiency improvements, that will overcome the additional cost-burden 

accompanying the environmental regulations. Through this induced innovation, productivity 

growth will arise. The Porter hypothesis is the starting point of this study in aiming to 

investigate the effects of environmental regulations in the European Union on industry-level 

economic performance outcomes, measured by innovation activity and productivity growth. 

We measure innovation activity by the country-sector level research and development (R&D) 

expenditures, and productivity growth by country-sector level annual TFP growth ratios. The 

research question is the following:  

 

Does environmental policy in the European Union induce industry-level investment in research 

and development and consequently increase productivity growth of the mining and 

manufacturing sectors in the European Union over the period 2008 to 2017? 

 

The Porter hypothesis has been studied extensively in the United States, but empirical literature 

is relatively scarce for the European Union. For the United States, Jaffe and Palmer (1997) finds 

a small positive effect of environmental policies on industry-level R&D expenditures, and 

Barbera and McConnell (1990) finds a negative effect on productivity growth. Hamamoto 

(2006) finds a positive relationship between environmental policy and R&D expenditures. For 

European manufacturing industries, Rubashkina et al. (2015) finds no significant relationship 

between environmental regulations and R&D expenditures or productivity growth.  
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We investigate the Porter hypothesis using a cross-country sector-level panel data set 

containing 14 mining and manufacturing industries for 18 countries in the European Union over 

the period 2008 to 2017. The activities in these sectors, and the accompanying emissions, are 

all subject to EU’s environmental regulations. Evaluating the economic effects of 

environmental regulations requires a proper measure for the stringency of the regulatory 

measures. Although the market-based carbon price follows the stringency of the environmental 

regulations in the European Union accurately, these price levels are the same for all countries 

and industries, providing only time-variant variation in the data. Therefore, this study uses 

country-sector level environmental protection expenditures aimed at pollution control as a 

proxy for the stringency of the environmental policy in the European Union. The assumption is 

that larger environmental protection expenditures are induced by more stringent environmental 

regulations (Koźluk & Zipperer, 2015). However, this measure for the stringency of EU’s 

environmental policy may be subject to reverse causality bias and other endogeneity issues. In 

line with De Vries and Withagen (2005), Rubashkina et al. (2015) and Hille and Möbius (2019), 

this study recognizes these endogeneity issues, by adopting an instrumental variable approach. 

The pollution control environmental protection expenditures (EPE) are instrumented by the 

average share of pollution control expenditures over value added of the industry’s adjacent 

sectors, excluding the industry itself: 
𝐸𝑃𝐸

𝑉𝐴 −𝑗
.  We argue that industries with similar pollutive 

behavior have strongly correlated environmental protection expenditures as a response of more 

stringent environmental policy. Therefore, the EPE-intensity of the industry’s adjacent sectors 

with similar pollution ratios serves as a good predictor of the EPE-intensity of the industry 

under consideration. Only a few papers have recognized these endogeneity issues properly. Not 

accounting for the endogeneity of the environmental protection expenditures leads to biased 

estimates of the innovation and productivity effects (Hille & Möbius, 2019).  

This study is subdivided into the innovation effect and the productivity effect. We find 

evidence for a positive impact of environmental regulations in the EU on industry-level R&D 

expenditures, when using our IV-approach, supporting a positive innovation effect. The impact 

on productivity growth is more complex. We find an indication for a negative direct effect of 

EU’s environmental regulations on TFP growth. Furthermore, we cannot support the presence 

of a positive impact of innovation, induced by environmental regulations, on productivity 

growth, as suggested by the strong version of the Porter hypothesis.  

As this paper provides evidence on the effects of environmental regulations in the 

European Union during the period of the second and third phase of the EU ETS, the results will 
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strengthen and complement discussions regarding the economic outcomes of the current surge 

of the EU ETS carbon price in the fourth phase. Moreover, we contribute to the literature by 

providing a comprehensive overview of both the innovation and productivity effect of the 

environmental regulations in the EU for the more recent years.  

 

The paper proceeds as follows. Chapter 2 discusses the theoretical framework, including a brief 

description of the EU ETS, a theoretical background and the empirical findings in previous 

literature on the innovation and productivity effects of environmental regulations. In 

respectively chapter 3 and 4, this paper presents the methodology and data of the empirical 

estimation. Chapter 5 evaluates the results subdivided into the innovation effect and 

productivity effect. Chapter 6 concludes, mentions some important limitations to the study and 

provides further research avenues.  
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2     Theoretical Framework 
 

2.1 – Climate action 
 

2.1.1 – Climate change 
Article 1 of the United Nations Framework Convention on Climate Change (UNFCCC) defines 

climate change as ‘a change of climate which is attributed directly or indirectly to human 

activity that alters the composition of the global atmosphere and which is in addition to natural 

climate variability observed over comparable time periods’ (United Nations, 1992). This 

definition distinguishes between climate change attributable to human activities and climate 

variability attributable to natural causes (UNFCCC, 2011). 

The Intergovernmental Panel on Climate Change (IPCC)1 states that the CO2 

concentrations in the atmosphere of 2019 were higher than at any time in at least the last 2 

million years (IPCC, 2021). Global warming, originated from the greenhouse gas emissions 

from human activities, has large effects on the weather, food production and human health 

(IPCC, 2021). The average temperatures are rising and in 2021 only, we have seen raging floods 

and astonishing heath records that have destroyed lives (Mellen, 2021). Many changes in the 

global sea, ocean and icesheet levels are irreversible for centuries to millennia due to past and 

future greenhouse gas emissions (IPCC, 2021). Solving these climate change problems requires 

strong action on a global scale (UNFCCC, 2010).   

Countries have acknowledged the climate change issues in the Kyoto Protocol, which 

was adopted in 1997. The Kyoto Protocol operationalizes the United Nations Framework 

Convention on Climate Change by committing industrialized countries and economies in 

transition to limit and reduce the greenhouse gas emissions and environmental pollution ratios 

(United Nations, 1997). The Kyoto Protocol has set multiple different national environmental 

regulations into operation and the signing countries of the convention have increased their 

national expenditures on environmental protection.  

 

2.1.2 – The EU Emissions Trading System 
Through national and harmonized environmental regulations, the European Union is striving to 

make Europe the first climate-neutral continent (European Commission, 2019). The EU 

Emissions Trading Scheme was introduced in 2005. Ever since, the EU ETS has undergone 

 
1 The IPCC is created in 1988 by the World Meteorological Organization (WMO) and the United Nations 

Environment Programme (UNEP) with the objective to provide governments and institutions with scientific 

information that can be used to develop climate policies (IPCC, 2021).  
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several changes in the stringency of the regulations and is the world’s largest and longest 

running international system for trading emissions allowances (European Commission, 2015). 

The first phase ran from 2005 to 2007, following with the second phase from 2008 to 2012. The 

third phase began in 2013 and was followed by the fourth phase since 2021. The EU ETS is a 

‘cap and trade’ system. A specific cap is set on the total amount of greenhouse gas emissions 

allowed for a specific installation. Within this cap, enterprises buy or receive allowances for 

their emissions, which are tradable on the carbon market against a carbon price. The cap has 

reduced over the years, through the different phases of the system, to lower the overall 

emissions (European Commission, 2015). As the number of emission allowances is limited in 

supply and decreasing over the years, the carbon price has shown a surge in the last years (Hook, 

2021). This ‘cap and trade’ system provides market-based flexibility which ensures that overall 

emissions are cut where it costs least to do so (European Comission, 2015). The increasing 

prices on the carbon market in turn provide a representation of the changes in the stringency of 

the environmental policy. Figure 1 provides an overview on how the EU ETS operates. 

Policymakers have envisioned that the market-scheme will be a driving force of innovation and 

economic growth (Calel & Dechezleprêtre, 2016). 

 

 

 

 

Figure 1: the EU Emissions Trading Scheme (European Commission, 2015) 
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2.2 – Theoretical background  
 

2.2.1 – The role of environmental policy on international competitiveness  
Since the first major environmental policies were established in the 1970s, a large debate has 

arisen regarding the potential competitiveness concerns of regulations directed towards 

environmental objectives. These concerns originate from the fact that there are large 

asymmetries worldwide in the stringency of such environmental regulations. Over the years, 

two main theories have evolved: the pollution haven hypothesis and the hypothesis of Porter. 

The theories do not have to rule each other out and can be complimentary, as they are both 

based on different definitions of an economy’s international competitiveness.  

First, the pollution haven hypothesis is based on trade theory. International 

competitiveness that relies on the Ricardian trade theory, is defined as a country’s comparative 

advantage over other countries. The real effective exchange rate (REER) can serve as an 

indicator for this widely applied definition of international competitiveness. The REER 

compares the value of a nation’s currency against a weighted average of currencies of a 

country’s major trading partners. An increase in a nation’s REER indicates that the exports 

become more expensive in relation to the country’s imports, which in turn implies a loss in 

international competitiveness. In a world that is increasingly characterized by the integration of 

trade and capital flows, industries and policymakers foresee that environmental policy 

asymmetries could potentially shift production of pollution-intensive enterprises towards 

countries with less stringent regulations (Dechezlepretre & Sato, 2017). The increasing costs 

from complying with environmental policies, such as environmental taxes and prices on carbon 

emissions, create a comparative disadvantage for firms in comparison to their foreign rivals that 

are not bounded to these regulations. This can induce pollution-intensive firms to shift 

production towards low-cost regions (Naegele & Zaklan, 2019). The low-cost regions become 

pollution havens where enterprises can pollute freely since no additional costs are enforced.   

The pollution haven hypothesis foresees a negative impact of environmental regulations 

on both the climate and an economy’s international competitiveness. First, the shift of 

production only moves carbon leakage elsewhere which ultimately offsets the initial abatement 

efforts of lowering global levels of CO2 pollution. Second, environmental regulations cause 

changes in a country’s market-share in pollution-intensive industries. The domestic firms lose 

their market-share to unregulated foreign competitors, who do not have to bear the additional 

cost burden of strict environmental regulations (Naegele & Zaklan, 2019). The (neo-)classical 

Ricardian trade theory argument behind the pollution haven hypothesis argues that countries 
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loose comparative advantage in pollution intensive industries by enforcing environmental 

regulations. Following this theory, the REER increases due to environmental regulations, as the 

domestic production costs increase, and hence the exports become more expensive in 

comparison to the imports.  

The hypothesis of Porter (Porter, 1991; Porter and Van der Linde, 1995) is based on the 

definition of international competitiveness as the productivity level that companies located in 

the country can achieve (Ketels, 2006). Porter suggests that stricter environmental regulations 

and constraints promote cost-cutting efficiency improvements and induce firms to invest in 

innovation and clean technologies, increasing overall productivity. In this study, the Porter 

hypothesis serves as the starting point. Therefore, the next section will dive deeper into the 

formulation and theory behind this hypothesis. 

 

2.2.2 – The Porter Hypothesis  
Michael E. Porter is a professor in business strategy economics at Harvard Business School. In 

1991, thirty years ago, he established a conventional theory on the impact of environmental 

policy. He states the following:  

 

“The conflict between environmental protection and economic competitiveness is a false 

dichotomy. Strict environmental regulations do no inevitably hinder competitive advantage 

against foreign rivals; indeed, they often enhance it. However, properly constructed 

regulatory standards, which aim at outcomes and not methods, will encourage companies to 

re-engineer their technology. The result in many cases is a process that not only pollutes less 

but lowers costs or improves quality” (Porter, 1991).  

 

While the pollution haven, market-share-based, hypothesis defines competitiveness as the 

ability to sell on international markets and is fundamentally concerned with the sustainability 

of an economy’s overall external balance, Porter defines the competitiveness of a location as 

the productivity level that companies located there can achieve (Ketels, 2006). It is important 

to emphasize that it is a false dichotomy to always see both hypotheses as opposing theories.  

Porter’s initial line of thinking is based on anecdotical evidence. During the 80s and 90s, 

both Germany and Japan had tough environmental regulations, while both countries continued 

to surpass the United States in GDP and productivity growth. Furthermore, Porter saw that 

Japan had become a world-leader in developing more efficient processes (Porter, 1991). He 

found that the “Chicken-Little” mind-set and lobbying gibberish, that environmental regulation 
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inevitably leads to costs, must be discarded. Porter argues that environmental regulations can 

be a win-win strategy: stimulating better environmental quality and creating higher overall firm 

productivity (Ambec et al., 2013). The general idea behind this hypothesis is related to the 

argumentation of Hicks (1932), which suggests that a change in the relative prices of the factors 

of production will spur innovation directed to economizing the use of this relatively expensive 

factor. In the context of environmental regulations, Porter (1991) and Acemoglu et al. (2012) 

have restated this theorem by Hicks (1932), suggesting that when regulated firms face higher 

costs on emissions relative to other production factors, they are inclined to invest in reducing 

the emission intensity of their output and part of this new investment will be directed towards 

developing and commercializing new emissions-reducing technologies (Calel and 

Dechezleprêtre, 2016).  

Following the framework of Acemoglu (2002), technical change is in most situations 

not neutral: ‘technological change benefits some factors of production, while directly or 

indirectly reducing the compensation of others’ (Acemoglu, 2007). The direction of technical 

change is determined by the relative profitability of the different types of technologies 

(Acemoglu, 2002). The presumption is that the same profit incentives that affect the amount of 

technical change will also shape the direction of this technical change, and therefore determine 

the equilibrium bias of technology (Acemoglu, 2002). Innovation-induced technological 

change is one of the most common approaches used to endogenize technological change (Popp 

et al., 2010). Two competing forces dictate the relative profitability of innovation: the price 

effect and the market-size effect. Following the price effect, firms are encouraged to innovate 

in technologies directed at the more expensive, scarce factors (Acemoglu, 2002). The market-

size effect incentivizes firms to invest in technologies that use the more abundant factor 

(Acemoglu, 2002). The framework of Acemoglu (2002) shows that the elasticity of substitution 

of the factors of production determines the relative strengths of both effects. Therefore, 

factoring in directed technical change implies that, when inputs are sufficiently substitutable, 

firms can be nudged and directed towards innovation of a certain factor through temporary 

policy intervention (Acemoglu et al., 2012). Regarding the environmental context, policy 

stimulates cost-cutting efficiency improvements and fosters innovation in new technologies, 

that may reduce or even offset the costs accompanying the environmental regulations 

(Dechezlepretre & Sato, 2017). Also, evidence in the environmental context suggests that 

technology is directed towards the activities with greater profitability (Acemoglu et al. 2012). 

Newell, Jaffe and Stavins (1999) find that increasing energy prices encourage the direction of 
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technological change in air conditioning and Popp (2002) relates energy prices and innovation 

directed towards energy saving.  

Hence, Porter’s hypothesis suggests that environmental regulations stimulate and foster 

innovation directed at clean energy and production, which in turn may reduce or even offset the 

costs of compliance (Porter, 1991). The assumption is that there are certain profitable 

opportunities for improvement that firms do not fully make use of already. The implementation 

of new environmental policies provides firms the push to do so. (Koźluk & Zipperer, 2015). A 

clear-cut question in this case is why policymakers can better understand where certain win-

win areas lie than firms themselves. After all, if there are certain profitable opportunities, profit 

maximizing firms would already have adopted them (Ambec et al., 2013). Porter and Van der 

Linde (1995) argues that due to the existence of market failures, such as information 

asymmetries and imperfect competition, enterprises see no reason to or are unable to start a 

risky process, even though there are net expected gains. This is also related to the question of 

factoring in state and path dependency in the model of directed technical change. Past 

innovations complementing an ‘environmental dirty’ production factor make current 

innovations directed at that factor the cheaper choice (Acemoglu et al, 2012). In other words, 

the direction of technical change is dependent on the path firms are following. Enterprises that 

have innovated in dirty technologies in the past, see more profitability in innovating in these 

dirty technologies in the future (Calel and Dechezleprêtre, 2016). Acemoglu et al. (2012) shows 

that path dependency in combination with the environmental externality, if firms do not take in 

account a potential loss in aggregate productivity or consumer utility induced by environmental 

degradation, will lead to a laissez-faire economy where enterprises will innovate too much in 

dirty technologies in comparison to the social optimum (Aghion et al., 2016). Therefore, 

government intervention through environmental regulations is needed to redirect the technical 

change, provided that the factors are substitutable (Acemoglu et al., 2012). Another argument 

in favor of Porter’s hypothesis is that managers are risk averse, myopic or rationally bounded 

to react on profitable opportunities and need a push from policy makers to redirect technical 

change (Koźluk & Zipperer, 2015). Effective policies, such as a carbon tax, R&D subsidy or 

tradable emissions, can help reinforce the growth of clean innovation (Acemoglu et al. 2012; 

Aghion et al., 2016). The objective of environmental policy is to reduce carbon emissions, but 

seen from an economic perspective, it is crucial that policy also provides incentives for 

technological change, since this may reduce the long-run costs of abatement (Calel & 

Dechezleprêtre, 2016).  
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The Porter hypothesis can be subdivided into three versions, first differentiated by Jaffe 

and Palmer (1997): the weak, strong and narrow version. The weak version argues that there is 

a positive effect of environmental regulations on innovation, even though the opportunity costs 

might initially exceed the benefits of innovation (Rubashkina et al., 2015). Profit maximizing 

firms will find the most cost-effective alternatives to comply with the new established 

regulations, by investing in innovative activities. Secondly, the strong version postulates the 

idea that environmental policy will lead to increasing productivity, through channels of 

increasing innovation activity. Environmental regulations stimulate firms to rethink their 

production processes, leading to improvements that offset the regulatory costs from compliance 

(Koźluk & Zipperer, 2015). The third, most narrow hypothesis focuses on the type of policy, 

stating that environmental policy that is designed to target the environmental outcome rather 

than the type of production processes, is expected to better stimulate innovation and economic 

performance. Hence, according to the narrow hypothesis, market-based and flexible 

instruments of environmental policy, are more likely to stimulate innovation and productivity 

growth in comparison to command-and-control regulations (Hille & Möbius, 2019; Koźluk & 

Zipperer, 2015). As we do not explicitly distinguish between different type of policies, this 

study will only investigate the weak and strong version of Porter’s hypothesis: the innovation 

effect and the productivity effect. 

 

2.2.3 – The Determinants of Economic Performance   
Porter defines international competitiveness by an economy’s productivity level. Productivity 

was one of the key pillars in the agenda of the European Union for 2020 (NIESR, 2016). This 

is not different for 2021 or the upcoming years as productivity is widely recognized as a key 

mechanism for increasing living standards. Productivity is the quantity of output that can be 

produced using a certain level of input factors (Hall, 2011). There is renewed interest in 

understanding why some nations are leading the race on productivity growth against countries 

with otherwise similar levels of economic development (NIESR, 2016).  

Government programs and policies affect productivity growth, i.e. higher taxes reduce 

productivity growth of industries, through increased costs (Eichler et al., 2006). The traditional 

view of environmental policy suggests a direct negative impact on productivity growth, through 

increased production costs. Moreover, indirect negative effects may arise, through increased 

input prices resulting from changes in the stringency of environmental policies (Barbera & 

McConnell, 1990). As an example, the EU ETS imposes an additional production related cost-

burden for an initially free product, which in turn decreases productivity growth. However, 
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another key determinant of productivity growth is innovation. Through innovation, 

environmental regulations can have a positive indirect effect on productivity growth. 

Innovation induced productivity growth, originated from environmental policy, is the concept 

on which Porter primarily relies in his hypothesis.  

The relationship between innovation and productivity has always been a predominant 

aspect of economic growth literature. Schumpeter (1942) characterizes innovation as the engine 

of productivity growth. The OECD and Eurostat define innovation, in the notorious Oslo 

Manual for innovation, as follows:  

 

“Innovation is the implementation of a new or significantly improved product or process (or 

combination thereof), that differs significantly from the unit’s previous products or processes 

and that has been made available to potential users (product) or brought into use by the unit 

(process).” (Oslo Manual (OECD/Eurostat 2018) - 4th edition, p. 20) 

 

This definition suggests that innovation can be both product- and process-based. The 

implementation of new products in the market will create new sources of demand, which can 

influence rising economies of scale in the production (Mohnen & Hall, 2013). Moreover, new 

implemented products might require lower amount of production inputs. This implicitly 

indicates that implementing new products improves the production process, providing a clear-

cut connection with process innovation. Innovating and renewing processes is often undertaken 

to reduce production costs by saving on the more costly inputs (Mohnen & Hall, 2013). 

Empirical findings over the past 20 years confirm a positive impact of both product and process 

innovation on productivity growth (Hall, 2011; Mohnen & Hall, 2013). Griffith et al. (2006) 

find a positive role for innovation in affecting productivity growth for European countries.  

 It is hard to get a good grasp on measuring innovation perfectly, but it can be proxied 

among others by R&D expenditures and patent applications. Both measures do not fully 

represent the definition of innovation as stated by the Oslo Manual, as they ignore the 

importance of the fact that R&D expenditures and patents need to be exploited well to be 

qualified as innovation. However, as no perfect measures exist, this study uses the sectoral R&D 

expenditures to proxy for innovation. R&D expenditures are well known to have two faces: 

stimulating innovation and enhancing technology transfers (Griffith et al., 2004). R&D can 

directly increase productivity growth through development of new products and more efficient 

production processes, but larger R&D expenditures may also boost productivity growth 

indirectly, as R&D enhances the assimilation of technologies from foreign economies (Jacobs 
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et al., 2002). Assuming all else equal, if environmental policy such as the EU ETS stimulates 

R&D expenditures, it can have a positive impact on productivity growth, through innovation 

and technology spillovers. Finally, there are of course other important key determinants of 

productivity growth, such as trade, human capital and sustainable management, which the 

Porter hypothesis does not directly account for.  

 

To estimate the effect of environmental policy on productivity growth, this paper uses total 

factor productivity (TFP) growth. TFP growth is the fraction of production output growth that 

cannot be attributed to the primary input factors of production and their respective nominal 

shares (Stehrer et al., 2019). Let the production function be given by: 

𝑌𝑗𝑡 =  𝑓𝑗𝑡 (𝐼𝑗𝑡 , 𝐿𝑗𝑡 , 𝐾𝑗𝑡 , 𝑇𝑗𝑡) 

where Yjt denotes the production output of sector j at time t. This output is equal to the function 

(fjt) of the input factors: intermediate input (Ijt), labor (Ljt) and capital (Kjt). Moreover, Tjt 

represents the (unobserved) level of technology (Stehrer et al., 2019). The production function 

assumes constant returns to scale with respect to the primary and intermediate inputs (Jacobs et 

al., 2002). Furthermore, the function displays a competitive product and factor market with full 

input utilization (Stehrer et al., 2019). TFP growth is described as the output growth due to 

technological innovation growth (Schumpeter, 1942). Using a log transformation, similar as in 

Stehrer et al. (2019), it can be derived as: 

Δ ln 𝑇𝐹𝑃𝑗𝑡 =  Δ ln 𝑌𝑗𝑡 −  𝜗𝐼,𝑗𝑡 Δ ln 𝐼𝑗𝑡 −  𝜗𝐿,𝑗𝑡 Δ ln 𝐿𝑗𝑡 − 𝜗𝐾,𝑗𝑡 Δ ln 𝐾𝑗𝑡 

where Δ ln 𝑇𝐹𝑃𝑗𝑡 denotes the TFP growth and Δ ln 𝑌𝑗𝑡 equals ln 𝑌𝑗𝑡 − ln 𝑌𝑗𝑡−1 (similar for the 

inputs I, L and K). The nominal shares of the input factors in gross output are denoted by 𝜗𝑗𝑡.2 

In this study however, TFP growth is defined as the fraction of value-added growth that 

cannot be attributed to the primary input factors of production and their respective nominal 

shares. In line with the forementioned total output function, a production function using value 

added has the following form, where a separability assumption between the intermediate inputs 

and primary inputs is required:  

𝑌𝑗𝑡 =  𝑓𝑗𝑡  (𝐼𝑗𝑡 , 𝑔𝑗𝑡 (𝐿𝑗𝑡 , 𝐾𝑗𝑡 , 𝑇𝑗𝑡)) 

 
2 We use the Divisia Index, 𝜗 𝑗𝑡 =  

𝑓𝑝𝑗𝑡𝐹𝑗𝑡

𝑃𝑗𝑡𝑌𝑗𝑡
 , where Fjt equals the input factors I, L and K. The gross output price 

index is denoted by Pjt, while the production factor input prices are denoted by 𝑓𝑝𝑗𝑡 . Due to the assumption of 

constant returns to scale the sum of all factors’ nominal shares are equal to 1 (Stehrer et al., 2019). 
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In this function, output (Yjt) is equal to the function (fjt) of the intermediate input (Ijt) and the 

function (gjt) of the primary inputs and technology (Ljt, Kjt, Tjt). The second function (gjt) 

represents value-added production, which equals:  

𝑉𝐴𝑗𝑡 =  𝑔𝑗𝑡  (𝐿𝑗𝑡 , 𝐾𝑗𝑡 , 𝑇𝑗𝑡) 

Following this, TFP growth can be derived as follows.3  

Δ ln 𝑇𝐹𝑃𝑗𝑡 =  Δ ln 𝑉𝐴𝑗𝑡 − 𝜗𝐿,𝑗𝑡 Δ ln 𝐿𝑗𝑡 − 𝜗𝐾,𝑗𝑡 Δ ln 𝐾𝑗𝑡    

where Δ ln 𝑇𝐹𝑃𝑗𝑡 denotes the TFP growth and Δ ln 𝑉𝐴𝑗𝑡 equals ln 𝑉𝐴𝑗𝑡 −  ln 𝑉𝐴𝑗𝑡−1 (similar for 

the inputs L and K). The nominal shares of the input factors are denoted by 𝜗𝑗𝑡. According to 

the above established conceptual framework of productivity growth, TFP growth captures 

technological change. However, in practice, TFP also expresses efficiency change, economies 

of scale, variations in capacity utilization and measurement errors (Rubashkina et al., 2015). 

 

2.2.4 – The measures of environmental policy stringency  
This study investigates the innovation- and productivity growth impact of EU’s environmental 

policy on regulated sectors. Unfortunately, we do not have data of a fictional control group that 

captures what would happen if the regulated sectors would not be regulated, all else equal 

(Dechezlepretre & Sato, 2017). This is called the fundamental problem of causal inference. 

Therefore, we require a proxy for the stringency of the environmental policy to identify the 

effects of changes in the stringency on economic outcomes (Kozluk & Zipperer, 2014). These 

measures of environmental stringency provide a convenient source of variation in comparison 

to country-industry-invariant carbon prices (Dechezlepretre & Sato, 2017). However, finding 

an appropriate measure for the stringency of environmental policies is difficult and has played 

a prominent role in environmental research over the past twenty years (Brunel & Levinson, 

2013). Although there are various approaches to measure the stringency of environmental 

policy, all are likely to be fraught with measurement errors (Dechezlepretre & Sato, 2017). The 

challenges of finding an appropriate measure relate not solely to data collection and the scarcity 

of adequate resources but derive from a much deeper set of conceptual econometric problems, 

such as multidimensionality and simultaneity (Brunel & Levinson, 2016).  

A variety of approaches have been used to measure the stringency of environmental 

policy. Continuous efforts are being undertaken by the OECD to help with the further 

development of environmental policy indicators (OECD, 2005). A common source is the 

 
3 This study uses the annual TFP growth contributions to value added growth in percentages to measure the 

economic outcomes of environmental regulations. 
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OECD Environmental Policy Stringency index (Botta & Koźluk, 2014). Unfortunately, these 

data are only available until 2014. Also, the shadow prices of energy have been interpreted as 

a measure of the stringency of both environmental (Van Soest et al., 2006) and climate policy 

(Hille 2018). Khademvatani and Gordon (2013) defines the shadow price of energy as the price 

reflecting the willingness to pay for one more unit of energy input. As environmental 

regulations have a direct and indirect effect on the price of emissions-relevant energies, shadow 

prices reflect the stringency of the regulations (Hille & Möbius, 2019). The advantage of using 

the shadow price of energy is that it converts a muldimensional environmental policy into a 

single measure of costs (Brunel & Levinson, 2016). However, shadow prices can also reflect 

changes in the stringency of other non-environmental policies that influence the price of the 

polluting input energy (Althammer and Hille, 2016). Shadow prices are not necessarily the 

result of regulatory stringency (Brunel & Levinson, 2016). Alternative studies have used 

environmental performance data, such as energy-intensity (Harris et al., 2003) or pollution 

intensity rates (Brunel & Levinson, 2013), as proxy for environmental stringency. Lanoie et al. 

(2011) uses data on the perception of firms regarding environmental stringency. Alternatively, 

studies using difference in difference estimations use a more event-study based approach to 

measure the effects of an environmental policy (Van der Vlist et al., 2007). Some studies use 

even the voting-records of state representatives in congress regarding pro-environmental topics 

as proxy for environmental stringency (Gray, 1997), while some other empirical papers look at 

the frequency of environmental related inspections (Brunnermeier & Cohen, 2003). All 

different methods have certain drawbacks and research on finding the appropriate measure is 

still present. 

This study applies the measure of environmental policy stringency that has been 

predominantly adopted in empirical literature: the pollution abatement and control expenditures 

(PACE). Sectoral pollution abatement and control expenditures in principle measure the 

compliance costs of sectors following the environmental regulation. The earliest and most 

comprehensive PACE data origins from the US Census Bureau survey, that was annually 

conducted since the 1970s (Brunel & Levinson, 2013). Many researchers have used this survey 

to construct a proxy for environmental policy stringency. In Europe and Asia-Pacific similar 

surveys have been conducted since the 1990s (Dechezlepretre & Sato, 2017). For the European 

Union, we use industry-level data on environmental protection expenditures, which are defined 

by the OECD as ‘the expenditures on purposeful activities aimed directly at the prevention, 

reduction and elimination of pollution arising as a residual of production processes’ (OECD, 

2005). These expenditures are interpreted as being induced by the environmental regulations 



 17 

and hence destined to proxy for the stringency of the regulations (Koźluk & Zipperer, 2015). 

The country-sector level variability of these data makes it a good proxy for this study. The 

assumption is that more stringent regulations, including the stringency of the EU ETS over the 

years, force firms to increase their pollution control expenditures. Unfortunately, this proxy 

goes hand in hand with certain econometric drawbacks, such as poor comparability over time, 

the self-reporting nature, and problems with defining what part of the expenditures are induced 

by the environmental policy (Koźluk & Zipperer, 2015). Higher pollution control expenditures 

may arise predominantly from older firms, instead of from the stricter policies (Ambec et al., 

2013). Moreover, the issue of simultaneity comes to place with using this measure of 

environmental policy stringency. We try to address these endogeneity issues by adopting an 

instrumental variable approach.  

 

2.3 – Empirical findings  
The economic effects of environmental policy have gained the interest of environmental 

economists over the past thirty years, due to the worldwide adoption of different environmental 

regulations. This resulted in a vast literature on the Porter hypothesis. This study emphasizes 

on both the weak and the strong version of the Porter hypothesis. Therefore, we divided this 

section into the ‘innovation effect’ (weak Porter hypothesis) and the ‘productivity effect’ 

(strong Porter hypothesis). Respectively appendix 2A and 2B present an overview of the 

important empirical findings in table form. Based on these findings and all theory discussed 

above, we construct our hypotheses for the innovation and productivity effects of EU’s 

environmental policy.  

 

2.3.1 – Environmental regulations and innovation  
The literature on the innovation effect, dating back to Hicks (1932), is vast and most of the 

empirical findings are in line with the weak hypothesis of Porter. The ability of an 

environmental policy to direct technological change towards clean energy is one of the most 

substantial criteria on which to judge the success of the regulations (Calel & Dechezleprêtre, 

2016; Acemoglu et al., 2012). For this reason, many empirical studies have investigated the 

capacity of environmental regulations to encourage innovation. Research and development 

expenditures and patent applications provide the straightforward proxies for innovation activity 

in most studies. 

A first descriptive analysis study using a simple time-series correlation by Lanjouw and 

Mody (1996) finds that the increasing interest in environmental protection over the 1970s and 
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1980s has led to the development of new pollution control technologies and innovation, 

measured by patents and R&D spending, in Japan, Germany and the United States. Moreover, 

the study by Jaffe and Palmer (1997) is an important forerunner of the innovation effect. They 

adopt a panel regression study using industry-specific fixed effects, whereby PACE data of U.S. 

manufacturing industries serves as the measure of environmental policy stringency. Jaffe and 

Palmer (1997) finds a significant positive relationship between the regulatory compliance 

expenditures and R&D, but the magnitude of the effect is small. However, the study finds no 

significant effect when proxying innovation by the amount of patent applications in the U.S. 

The results of Jaffe and Palmer (1997) are consistent, although limited, with Porter’s weak 

hypothesis and suggest that environmental policy stimulates certain forms of innovation. In line 

with Jaffe and Palmer (1997), Brunnermeier and Cohen (2003) used PACE data to proxy for 

environmental stringency and found a positive effect on environmental innovation measured 

by the number of successful environmental patent applications granted. However, the 

magnitude of the effect is relatively small, with a 0.04 percentage increase in the number of 

patents per one-million-dollar additional pollution abatement expenditures (Brunnermeier & 

Cohen, 2003). Moreover, the study finds no evidence for increasing monitoring and 

enforcement activities being an incentive to conduct in innovative activities. The internationally 

competitive industries were the most eager to adopt environmental innovation, according to 

Brunnermeier and Cohen (2003). For Japan’s five most pollution intensive industries, 

Hamamoto (2006) finds a positive relationship between pollution control expenditures and 

R&D expenditures. Popp (2002)4 and Newell et al. (1999) relate innovation activity to changes 

in energy prices and find evidence for the fact that innovation increases in the period following 

a duration of high energy prices. This empirical evidence indicates that changes in the relative 

price of energy impact the direction of technical change (Acemoglu et al., 2012). Moreover, the 

results suggest that innovation is a response of environmental concerns (Newell et al., 1999). A 

similar positive relationship is found between environmental taxes and R&D expenditures 

(Lanoie et al., 2011; Johnstone & Labonne, 2006). Furthermore, Arimura et al. (2007) 

contributes to the empirical literature on the innovation effect by providing evidence for a 

positive impact of survey data, that measures the perception of environmental stringency, on 

environmental R&D expenditures.  

 
4 Popp (2002) emphasizes on the necessity of including the knowledge quality of firms to avoid biased results, as 

new innovations build on past achievements, which is the reason for including our knowledge stock variable into 

our regression. 
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For the European Union, empirical literature is more scarce. Rubashkina et al. (2015) 

investigates the weak and strong version of the Porter hypothesis for a panel of European 

manufacturing industries between 1997 and 2009, using an instrumental variable approach to 

account for potential endogeneity of the PACE variable. The explanatory variable, 

environmental policy stringency, is instrumented by the average share of PACE intensity of 

adjacent industries within the same country, excluding the measured sector: PACE/VA-j 

(Rubashkina et al., 2015). The paper argues that there is a strong correlation between 

environmental regulations applied to different sectors within the same country, suggesting that 

therefore the PACE intensity of adjacent sectors is strongly correlated with the measured 

sector’s PACE intensity (Rubashkina et al., 2015). Additionally, this instrument (PACE/VA-j) 

is interacted with pre-sample sectoral energy intensity, since within the countries the 

environmental regulations of energy-intensive sectors might differ from those of less energy-

intensive sectors, according to Rubashkina et al. (2015). All in all, the idea is that these 

instruments are strong predictors of the sectoral PACE variable, but are not directly correlated 

with unobserved factors impacting innovation, and therefore help avoiding biased results 

caused by the endogeneity issues surrounding the PACE variable (Rubashkina et al., 2015). 

The postestimation IV-tests confirm the relevance and validity of the instruments. We discuss 

this approach in more detail in the methodology section, as our instrument follows a similar 

approach. The results of this paper by Rubashkina et al. (2015) indicate that environmental 

policy induces innovation, when measured by patent applications. However, the authors find 

no significant effect when measuring innovation by R&D expenditures. Xing and Kolstad 

(2002) also adopted an instrumental variable approach in their estimation on the relationship 

between FDI in the U.S. and environmental regulations of foreign countries. Their instrument 

consists of all the exogenous variables and two external exogenous variables: infant mortality 

and population density. The infant mortality variable serves as an indicator for social 

consciousness, which is likely to influence the stringency of environmental regulations (Xing 

& Kolstad, 2002). The more conscious a country is towards social issues, the stricter the 

environmental regulations will be. Population density serves as an indicator of congestion and 

the ability of pollutants to naturally disperse away from population centers (Xing & Kolstad, 

2002; De Vries & Withagen, 2005). The idea is that when the population density is high, stricter 

environmental regulations are needed. De Vries and Withagen (2005) adopts a similar approach 

as Xing and Kolstad (2002) to investigate the weak Poter hypothesis for 18 OECD countries 

and finds a significant and large positive effect of environmental regulations on environmental 

patents. Unfortunately, both studies fail to provide details and arguments on the validity of their 
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instrument (Koźluk & Zipperer, 2015). Finally, Kneller & Manderson (2012) finds evidence 

for a positive relationship between environmental protection expenditures and environmental 

R&D, for manufacturing industries in the United Kingdom. However, a similar relationship 

was not found for total R&D spending.  

 Although Rubashkina et al. (2015) and Kneller and Manderson (2012) find no effect 

when proxying innovation with overall R&D spending, all other empirical findings discussed 

above and the theoretical background has led us to the following hypothesis on the innovation 

effect of EU’s environmental policy:  

 

Hypothesis 1: 

Environmental policy in the European Union, including the major flexible market-based EU 

Emissions Trading Scheme, has a positive impact on industry-level innovation activity 

proxied by total R&D expenditures for the period 2008 to 2017, consistent with the weak 

hypothesis of Porter. 

 

 

 

2.3.2 – Environmental regulations and productivity  
Productivity effects can originate from changes in stringency of environmental regulations both 

through a direct and indirect effect (Barbera & McConnell, 1990). Although environmental 

policy may positively impact the long-term sustainability of our economies, traditional views 

tend to see the regulations as an extra cost-burden that negatively impacts the short and 

medium-term productivity (Koźluk & Zipperer, 2015). On the other hand, theory argues in 

favor of innovation induced economic growth, through directed technical change encouraged 

by environmental regulations (Porter, 1991; Acemoglu et al., 2012).  

With regards to the direct effect, the study by Gray (1987) tried to find a relationship 

between the U.S. productivity slowdown of the 70s and environmental regulations. Gray (1987) 

found a strong negative correlation between productivity and pollution abatement and control 

expenditures for 450 U.S. manufacturing industries, but these findings disappeared upon the 

inclusion of relevant controls or the elimination of outliers (Gray, 1987; Koźluk & Zipperer, 

2015). Barbera and McConnell (1990) and Dufour et al. (1998) found a similar negative 

relationship between environmental regulations and productivity, but these studies are suffering 

from serious identification issues. Barbera and McConnell (1990) studied the cost elastictity of 

pollution abatement requirements and found that these environmental abatement requirements 

lower productivity in the five most pollution-intensive industries, accounting for 10 to 30 
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percent of the decline in productivity. However, the study lacked to control for industry fixed 

characteristics. Furthermore, Dufour et al. (1998) found that environmental regulation has led 

to a reduction in productivity growth, but used a very small sample of the Quebec (Canada) 

manufacturing industry. At the firm and plant level the effects of environmental policy on TFP 

growth are either negative but small (for the Canadian brewing industry: Smith & Sims, 1985) 

or positive but insignificant (for oil refineries: Berman & Bui, 2001). Furthermore, Conrad and 

Wastl (1995) found pollution abatement costs to reduce the level of total factor productivity for 

ten pollution intensive German industries, when looking at the effect in terms of cost 

diminution. 

 In Lanoie et al. (2008), the stringency of environmental policy in Canada is measured 

by the ratio of pollution-control investment to total costs. The panel regression results show a 

negative effect of this ratio on total factor productivity (Lanoie et al., 2008). Interestingly, the 

study finds the negative effect of investment in pollution control equipment on TFP growth to 

disappear after three years. This suggests that productivity effects may arise with some delay 

and are characterized by an dynamic aspect. Yang et al. (2012) finds even a positive direct 

effect of PACE on TFP after the second year for Taiwanese manufacturing industries. However, 

it is important to emphasize that using a lag structure can introduce all kinds of problems and 

biases. A lag-structure is almost never the solution to endogeneity issues, but merely moves the 

channel through which endogeneity biases arise (Bellemare et al., 2017; Reed, 2015). The 

conditions for achieving a causal identification, while using lagged explantory variables, are 

that there is serial correlation in the endogenous independent variable, but no serial correlation 

among the unobserved variables (Bellemare et al., 2017). Hence, the identification assumption 

purely shifts from “selection on observables” to “no dynamics among the unobservables” 

(Bellemare et al., 2017). Therefore, it is hard to capture the real long-term dynamic effects of 

environmental policy (Koźluk & Zipperer, 2015). 

 Based on all of the above our hypothesis for the direct productivity effect is:  

 

Hypothesis 2A: 

Environmental policy in the European Union, including the major flexible market-based EU 

Emissions Trading Scheme, has a negative direct effect on industry-level productivity growth 

through the added cost-burden accompanying compliance with the policy.  
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However, empirical literature also investigated the strong Porter hypothesis, related to the 

question if innovation, induced by environmental regulations, can more than fully offset the 

costs of compliance and enhance productivity (Calel & Dechezleprêtre, 2016). Although the 

literature does suggest that the costs of environmental regulations are smaller than anticipated, 

due to induced innovation (Calel & Dechezleprêtre, 2016; Acemoglu et al., 2012), the empirical 

findings are not conclusive with regards to this strong version of the Porter hypothesis. 

Many researchers have investigated innovation-induced productivity growth by 

estimating the effects of R&D spending, induced by environmental policy, on TFP growth. 

Using the fitted values of the estimated results of the innovation effect, Hamamoto (2006) finds 

empirical evidence for the fact that increases in R&D expenditures stimulated by regulatory 

stringency (measured by pollution control expenditures) have a significant positive effect on 

the TFP growth rate. This implies that the burden of environmental compliance gives firms an 

incentive to innovate directed towards cleaner production technologies, which improves overall 

productivity (Hamamoto, 2006). Additionally, through a fixed-effect panel regression, Yang et 

al. (2012) finds a positive effect of induced R&D on productivity levels. On the other hand, 

however, Lanoie et al. (2011) finds no support for the strong version of the Porter hypothesis. 

The authors argue that the direct negative effect of environmental stringency on economic 

performance is greater in size than the indirect positive effect through channels of innovation 

(Lanoie et al., 2011). Also, the more recent paper by Hille and Möbius from 2019 finds no 

support for a R&D-induced positive productivity effect of environmental regulations, measured 

by the shadow prices of energy. This study emphasizes that disregarding endogeneity concerns 

will significantly alter the productivity growth effects of environmental regulations, leading to 

biased estimates (Hille and Möbius, 2019). First, the fixed-effects estimates show a 

significantly positive effect of changes in the environmental policy stringency on productivity 

growth, but after taking simultaneity issues in account, using a dynamic panel generalized 

method of moments (GMM) estimator, the coefficient estimates are shown to be insignificant 

and partly negative (Hille and Möbius, 2019). Furthermore, Rubashkina et al. (2015) finds no 

evidence for the strong Porter hypothesis. As discussed in the previous section, Rubashkina et 

al. (2015) adopts an instrumental variable approach and in line with Hille and Möbius (2019), 

the study argues that not controlling for endogeneity of the environmental policy stringency 

measure delivers biased results. Alternatively, using the OECD environmental policy 

stringency index, Martínez-Zarzoso et al. (2019) finds evidence for a positive impact of 

environmental stringency on productivity growth in the long-term. 

 



 23 

As shown, the empirical findings are inconclusive. In line with the theoretical 

hypothesis that innovation, induced and directed by environmental regulations, can more than 

fully offset the costs of compliance and enhance productivity, we adopt the following 

hypothesis:   

 

Hypothesis 2B: 

Environmental policy in the European Union, including the major flexible market-based EU 

Emissions Trading Scheme, has a positive impact on industry-level productivity growth 

through channels of R&D expenditures induced by environmental policy, for the period 2008 

to 2017, which is consistent with the strong hypothesis of Porter 
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3     Methodology 
 

In this paper, we empirically investigate the weak and strong version of the Porter Hypothesis 

for the manufacturing and mining sectors in 18 countries of the European Union. The 

manufacturing and mining industries are direct and/or indirectly affected by EU’s 

environmental regulations, as a transformation of the industrial sector is required to reach the 

climate targets of the European Union. The EU ETS covers the CO2-pollution of energy-

intensive industry sectors, including oil refineries, steel works, and production of iron, 

aluminum, metals, cement, lime, glass, ceramics, pulp, paper, cardboard, acids and bulk organic 

chemicals (European Commission, 2015).5 This includes most of the mining and manufacturing 

sectors within our sample. Moreover, the greenhouse gas emissions associated with combustion 

activities in the food and drink sector are covered by the EU ETS (European Commission, 

2015). In 2021, the food, drink and tobacco sector is the fifth largest greenhouse gas emitter in 

the manufacturing industry (Cameron et al., 2021). Additionally, energy efficiency and CO2 

reduction, in relation with the EU ETS, are of critical importance for the textile and clothing 

industry (European Commission, 2015). The level of aggregation of the sectors, following the 

NACE revision 2 industry classification, is based on data availability of the TFP growth ratios 

and the environmental policy stringency variable. Appendix 1A and 1B provide a compact 

overview of the countries and sectors within the sample.  

 

The first estimation component within this study investigates the effect of environmental policy 

on innovation activity, measured by industry-level R&D expenditures. The second component 

estimates both the direct effect of environmental regulations on industry-level productivity 

growth and the indirect, innovation induced productivity growth effect.  

Both components rely primarily on finding an appropriate measure that determines the 

stringency of environmental policy across countries within the European Union over the period 

2008 to 2017. The complexity of measuring environmental stringency is one of the main 

challenges in empirical research on the competitiveness effects of environmental policies (Botta 

& Koźluk, 2014). We use data on Environmental Protection Expenditures (EPE), in empirical 

research commonly defined as Pollution Abatement and Control Expenditures (PACE), at the 

country-sector level, to proxy for the stringency of environmental regulations in the EU. The 

 
5 The Annual European Union greenhouse gas inventory 1990-2018 and inventory report 2020 presents the 

activities covered by the EU ETS summarised for the different sectors. This contains an elaborate greenhouse 

gas inventory report by the European Environmental Agency (EEA).  
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EPE variable is defined as expenditures directly aimed at the prevention, reduction and 

elimination of pollution, arising as a residual of production processes or the consumption of 

goods and services (OECD, 2005). The idea is that these expenditures reflect the changes in the 

stringency of environmental regulations. The more stringent the regulations, the higher the 

environmental protection expenditures. Through this expenditures variable we identify the 

effects of environmental stringency changes on innovation activity and productivity growth. 

Although this measure is not the ideal proxy for environmental stringency, alternative measures 

all have significant shortcomings (Brunel & Levinson, , 2013). Moreover, the EPE variable fits 

the research question due to its cross-country sector-level variation. In aggregate terms at the 

sector-level, the environmental protection expenditures vary over time and across sectors and 

countries in ways that are consistent with intuition (Brunel & Levinson, 2016). Finally, the data 

are predominantly available for all countries and sectors within the sample. However, we do 

address some econometric drawbacks in section 3.3.  

The OECD’s data on environmental protection expenditures can be subdivided into 

investment in plant and equipment for pollution control and investment in plant and equipment 

linked to cleaner technology. Instead of using the aggregate level of the environmental 

protection expenditures, the EPE variable in the regressions solely consists of the pollution 

control expenditures, as measure for the stringency of EU’s environmental policy (Hamamato, 

2006). We do include in the regressions a variable containing industry-level investment in 

cleaner technology to control for its effect on R&D spending and productivity growth. Larger 

investment in already existing cleaner technology will probably lower the R&D expenditures 

directed towards developing new clean technologies.  

The remainder of this chapter will discuss the baseline specification for estimating the 

innovation effect and the productivity effect in respectively section 3.1 and 3.2. Section 3.3 

describes the identification assumptions and endogeneity problems related to the EPE variable. 

We use an instrumental variable approach to overcome these endogeneity issues. 

 

 

3.1 – The innovation effect  
The ‘weak’ hypothesis of Porter suggests that stricter environmental regulations enhance and 

stimulate innovation. To investigate this first component of Porter’s hypothesis, we conduct a 

panel data regression, using a log-log structure to reduce skewness in the data, as adopted 

originally by Jaffe and Palmer in 1997. Ever since, this log-log structure is used in most 
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empirical studies (Brunnermeir & Cohen, 2003; Hammamoto, 2006; Rubashkina et al., 2015). 

Therefore, the baseline specification has the following expression: 

 

ln 𝑅&𝐷𝑖𝑗𝑡 = 𝑐𝑜𝑛𝑠𝑡 + 𝛼𝑖𝑗 + 𝜇𝑡 +  𝛽 ln 𝐸𝑃𝐸𝑖𝑗𝑡 +  𝜑 ln 𝐾𝑆𝑖𝑗𝑡 +  𝛾 ln 𝑋𝑖𝑗𝑡 +  휀𝑖𝑗𝑡            (1) 

where ln R&Dijt denotes the log of the R&D expenditures of country i, in industry j at period t, 

with t in years since the dataset consists of annual data. The R&D expenditures serve as a proxy 

for cross-country sector-level innovation activity. The variable const denotes the regression 

constant, whereas 𝛼ij and 𝜇t represent respectively country-sector- and year fixed effects. The 

main variable of interest is the log of environmental protection expenditures directed at 

pollution control, indicated by ln EPEijt, as proxy for the stringency of EU’s environmental 

regulations. We also include the log of KSijt that represents the country-sector level knowledge 

stock, capturing the previous innovation activity. Popp (2002) argues that including such a 

knowledge quality variable is necessary to avoid biased results. Additionally, this study 

includes a vector of country- and industry specific control variables, denoted by Xijt. All main- 

and control variables that are in euro’s have been adjusted to dollars with OECD’s purchasing 

power parities to correct for inflation and exchange rate variation across the countries within 

the sample (European Union & OECD, 2012). Purchasing power parities (PPPs) are currency 

conversion rates that equalize the level of purchasing power between countries, by eliminating 

the differences in price levels (European Union & OECD, 2012) and are measured in terms of 

Euro per US dollar.6 Finally, all regressions use heteroskedasticity robust standard errors.  

When estimating the innovation effect, an important role is played by industry-specific 

technology levels from the past, the so-called technology push factors or knowledge spillovers 

(Rubashkina et al., 2015; Horbach et al., 2012). As Caballero and Jaffe phrase it in 1993: 

‘innovators rely and build on the insights embodied in previous ideas; they achieve their success 

by standing upon the shoulders of giants’. Therefore, when estimating the effect of 

environmental policy on innovation, it is important to include a knowledge stock variable, 

capturing previous R&D expenditures. The underlying assumption here is that R&D 

expenditures create an industry-level stock of knowledge that has a positive impact on future 

innovative practices. The knowledge stock variable is constructed by using the workhorse of 

R&D capital estimation, the perpetual inventory method: 

𝐾𝑆ijt =  (1 − 𝛿)𝐾𝑆ijt−1 +  𝑅&𝐷𝑖𝑗𝑡            (2) 

 
6 In the euro area, the price levels differ significantly. Therefore, PPP adjustments are still necessary to revalue 

the expenditures at a uniform price level. (European Union & OECD, 2012) 
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where KS denotes the knowledge stock and δ is a suitable chosen depreciation rate. The 

knowledge stock of industry j, in country i, at time t, consists of the previous year’s knowledge 

stock (times (1 − 𝛿)) plus the current R&D expenditures. This means that each year’s 

knowledge stock is dependent on the knowledge stock of previous years. For this reason, we 

need an initial benchmark knowledge stock to start off from. We set the benchmark year to be 

2007, the year before the estimation period (2008-2017), and the initial benchmark knowledge 

stock is calculated as follows: 

𝐾𝑆𝑖𝑗𝑡0 =  
𝑅&𝐷𝑖𝑗𝑡0

𝛿 + 𝑔𝑖𝑗
            (3) 

where t0 represents the benchmark year 2007 and gij is the sector-country specific average R&D 

expenditures growth rate of the three years preceding the benchmark (2004 to 2006). After 

constructing the sector-country specific knowledge stock benchmark through equation (3), we 

have determined the sector-country level knowledge stocks for the years 2008 to 2017 by using 

equation (2). Finally, choosing the suitable depreciation rate plays a prominent role in empirical 

research on innovation.7 The depreciation rate represents the rate at which the private returns 

to past R&D investments decline if no further R&D is undertaken (Hall & Rosenberg, 2010). 

Several empirical papers find depreciation rates for R&D capital to lie between 10% and 30% 

(Nadiri & Prucha, 1996; Bosworth, 1978; Hall, 2005; Pakes & Schankerman, 1984). Therefore, 

to empirically assess the relationship between environmental policy and innovation, this study 

conducts estimations with the 20 percent depreciation rate knowledge stock variable but checks 

for robustness of the results against using 10% and 30% levels of depreciation, in section 5.3. 

 

Furthermore, the baseline specification consists of a vector of control variables, which includes 

gross value added (VA) as scaling variable; the cross-country sector-level birth- and death rate; 

the country-sector level export intensity and import intensity rates; and country-specific 

government budget allocation for R&D targeting the socio-economic objective of the 

environment. First, to control for variation in the industry size, the variable value added is 

included, which measures the contribution of sector j to overall GDP of country i. It is important 

to control for the industry size, as larger industries are likely to have the resources necessary to 

bear the risks involved with investment in innovative activities (Rubashkina et al., 2015). As 

 
7 Determining the exact depreciation rate is demanding and nearly impossible, as the industry-level depreciation 

rate is endogenous to enterprises’ behaviour and dependent on the progress of public research and science, 

generating the question if it is constant over time and across industries (Hall & Rosenberg, 2010). Moreover, 

identifying this depreciation rate separate from the return on R&D requires establishes a lag structure of R&D in 

generating returns (Hall & Rosenberg, 2010; Hall, Griliches, & Hausman, 1986). 
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pointed out by Jaffe and Palmer (1997), value added is the appropriate size-scaling variable in 

this model, because the R&D-to-sales ratios across sectors are distorted by the industries' 

positions in the value-added chain at the country level.  

Second, we include country-sector level industry birth and death rates to control for 

structural changes (affected by environmental policy) that influence the industry’s innovation 

activity. The birth rate is defined as the number of new enterprises over the total of active 

enterprises at time t, for industry j in country i. The death rate represents the opposite: the 

number of enterprises that had to shut down their operations divided by the sector’s total active 

enterprises. The number of structural changes in an industry, measured by firm entry and 

survival rates, represent the stability of an industry. Following Schumpeter’s patterns of 

innovation, innovative activities are characterized by high degrees of concentration and stability 

(Malerba & Orsenigo, 1995). Hence, economic theory suggests that high birth- and death rates 

imply a high rate of turbulence and low stability, which negatively impacts total industry-level 

R&D (Malerba & Orsenigo, 1995). The survival rate of firms might also affect our EPE 

variable. When the enterprises most burdened by stricter environmental policy shut down or 

relocate their operations, the industry-level environmental protection expenditures are likely to 

decrease (Rubashkina et al., 2015).  

Third, the model includes both country-sector level import and export intensity rates at 

the European level, that measure respectively an industry’s external competition and 

participation in European trade. Additionally, these variables capture market concentration and 

competition intensity. The variables are defined as the number of importing respectively 

exporting enterprises over the number of active enterprises (including non-traders). The 

Schumpeterian hypothesis postulates a positive effect of market concentration on innovation, 

as a more concentrated market is more stable and contains of larger enterprises with less 

uncertainty, which in turn stimulates innovation (Schumpeter, 1942). On the other hand, Levin 

et al. (1985) suggests that a concentrated market lacks competitiveness which does not stimulate 

investment in renewed processes and innovation. Furthermore, Porter and Van der Linde (1995) 

argues that enterprises within international competitive industries have more incentives to 

invest in innovative activity as a response of stricter environmental regulations, since world 

demand and enterprise valuation shift towards pollution-clean processes and products. Hence, 

enterprises in internationally competitive industries stand to benefit more from investment in 

innovation. Furthermore, Brunnermeier and Cohen (2003) suggests that foreign competition 

spurs innovation. Overall, it is difficult to predict the sign of the coefficients accompanying the 
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import and export intensity variables. However, we do expect the innovation activity effects to 

be larger for the international competitive industries. 

Finally, the vector of controls includes government budget allocation expenditures that 

target the environmental issues to control for the impact of government R&D spending on 

private industry-level R&D. Government support and stimulation of research and development 

has shown to have a positive impact on industry-level R&D adoption and speeds up the 

adoption of foreign technologies through R&D spillovers (Jacobs et al., 2002).  

 

Besides controlling for observed heterogeneity by including a vector of control variables, this 

paper adopts a panel data fixed effects (FE) estimation technique to account for unobserved 

heterogeneity across countries and sectors. The fixed effects control for country-industry 

specific time-invariant characteristics that affect R&D. Additionally, we include year-specific 

dummies to control for time fixed effects. In this way, we control for certain year-specific 

shocks and characteristics that affect overall innovation activity in the EU. Not including 

country-sector fixed effects and year fixed effects creates biased estimates as the unobserved 

variables affecting R&D are not accounted for (Hille & Möbius, 2019).  

Finally, the baseline specification in equation (1) is not in the form of a one-year lagged 

structure as originally suggested by Jaffe and Palmer (1997), since more recent literature argues 

that changes in the stringency of environmental regulations instantaneously induce innovation 

effects, when proxied by R&D expenditures (Rubashkina et al., 2015; Brunnermeier & Cohen, 

2003). However, the analysis does control for a potential dynamic effect in section 5.1.2 using 

a one-year lagged structure of equation (1). It is important to note that including a lagged 

structure provides a new set of econometric issues and biases.  

 

3.2 – The productivity effect  
First, we study the direct effect of environmental regulations on annual TFP growth without 

including a potential innovation-induced indirect effect. The baseline specification for the direct 

effect has the following expression:  

𝑇𝐹𝑃𝑔𝑟𝑜𝑤𝑡ℎ𝑖𝑗𝑡

=  𝑐𝑜𝑛𝑠𝑡 + 𝛼𝑖𝑗 + 𝜇𝑡 +  𝛽 ln 𝐸𝑃𝐸𝑖𝑗𝑡 + 𝜑 𝑇𝐹𝑃𝐺𝑙𝑒𝑎𝑑𝑒𝑟𝑗𝑡 + θ ln 𝑇𝐹𝑃𝑔𝑎𝑝𝑖𝑗𝑡 +  𝛾 ln 𝑋𝑖𝑗𝑡 

+ 휀𝑖𝑗𝑡                                                                                                                                           (4) 

 

where TFPgrowthijt denotes the annual total factor productivity growth rates based on value 

added, as conceptually defined in section 2.2.3, for industry j, in country i at time t. 

Furthermore, this specification uses a constant (const), country-sector fixed effects (𝛼𝑖𝑗), time-
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fixed effects (𝜇𝑡), and ln EPEijt to proxy for the stringency of environmental regulations in the 

EU. TFPGleaderijt denotes the TFP growth rate of the ‘leading country’, the country with the 

highest TFP-level in industry j at time t. TFPgapijt denotes the difference between the TFP-

level of country i and the ‘leading country’ in industry j at time t. Similar as for the innovation 

effect, a vector of control variables (𝑙𝑛 𝑋𝑖𝑗𝑡) is included. Moreover, all estimations are 

conducted using robust standard-errors and all variables in euro’s have been PPP-adjusted.  

In empirical literature, the TFPG-leader and TFP-gap variables are identified as 

important determinants of industry-level productivity growth. The technological frontier 

country is defined as the country within our sample with the highest level of TFP within industry 

j at time t. Theory argues that production efficiency of this country stimulates the productivity 

growth in other countries through productivity spillovers, with the frontier country setting an 

example for the “catching-up” countries (Griffith et al., 2004). Evidence suggests that 

productivity spillovers and the adoption of foreign technologies from the most advanced 

country, influence productivity growth levels of other countries within the same industry 

(Griffith et al., 2004). With including the TFPG-frontier variable, we capture the effect of such 

efficient technology transfers from the frontier country to country i. Moreover, the TFP-gap 

variable controls for the difference between the TFP-level of country i and the technological 

leader. Economic theory suggests that the potential gains from productivity spillovers are larger 

when the country is further behind the frontier country in terms of TFP, inducing higher 

productivity growth levels (Rubashkina et al., 2015). Moreover, Griffith et al. (2004) find 

evidence that the further a country lies behind the technological frontier the greater the potential 

innovation induced TFP growth.   

The vector of control variables does not include gross value-added as scaling variable, 

as the industry-level value added is already incorporated into the construction of the TFP growth 

rates. Therefore, 𝑙𝑛 𝑋𝑖𝑗𝑡 includes only the country-sector level birth- and death rate and the 

export intensity and import intensity rates. Industry structural changes including enterprise 

creation and exits, measured by the birth- and death rates of firms, influence sectoral 

productivity. A high birth rate represents the entry of new entrepreneurs which increases 

competition and incentivizes firms to increase productivity, while a low birth rate helps 

shielding the position of unproductive firms. Holtz-Eakin and Kao (2015) find evidence for the 

fact that government policies, such as environmental regulations, increase the entry of new 

firms, which in turn leads to higher productivity levels. On the other hand, additional 

environmental costs might discourage entering a certain market, reducing the industry’s market 
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competition, which in turn helps shielding and protecting the position of unproductive firms, 

leading to lower productivity growth levels (Mohr & Saha, 2008). Furthermore, environmental 

costs, associated with more stringent policies force less productive firms to exit the market, 

which likely increases aggregate industry level productivity (Koźluk & Zipperer, 2015). 

Finally, firm entry and exit represent and amplify the productivity effects of aggregate shocks 

(Clementi & Palazzo, 2016).  

We add industry-level export intensity rates because the learning by exporting 

hypothesis suggests that enterprises participating in foreign trade have larger productivity 

growth (Crespi et al., 2008). The import intensity rates reflect industry-level external 

competition, which stimulates productivity growth as firms need to continuously improve to 

compete with international competitors. Empirical evidence proofs that productivity effects are 

particularly stronger in internationally competitive industries (Lanoie et al., 2008; Koźluk & 

Zipperer, 2015). Besides, potential technology spillovers, that increase productivity, may arise 

from the reversed engineering of imported products (Griffith et al., 2004).  

 

Second, we study Porter’s strong hypothesis, suggesting that innovation activity induced by 

environmental policy drives productivity growth. We incorporate the log of R&D and the 

interaction term of the log of EPE and the log of R&D for country i, in sector j at time t into 

equation (4) to obtain equation (5). 

ln 𝑇𝐹𝑃𝑔𝑟𝑜𝑤𝑡ℎ𝑖𝑗𝑡

=  𝑐𝑜𝑛𝑠𝑡 + 𝛼𝑖𝑗 + 𝜇𝑡

+  𝛽 ln 𝐸𝑃𝐸𝑖𝑗𝑡 + η ln 𝑅&𝐷𝑖𝑗𝑡 + λ (ln 𝐸𝑃𝐸𝑖𝑗𝑡 ∗ ln 𝑅&𝐷𝑖𝑗𝑡) + 𝜑 𝑇𝐹𝑃𝐺𝑙𝑒𝑎𝑑𝑒𝑟𝑗𝑡

+ θ ln 𝑇𝐹𝑃𝑔𝑎𝑝𝑖𝑗𝑡 +  𝛾 ln 𝑋𝑖𝑗𝑡 

+ 휀𝑖𝑗𝑡                                                                                                                                             (5) 

 

The interaction term represents the indirect productivity effects of environmental policy driven 

by R&D. In some of the models all independent variables are lagged using a one-year lagged 

structure, as some empirical findings argue that R&D induced productivity growth effects have 

shown to come with a lag of one year (Koźluk & Zipperer, 2015; Ambec et al., 2013; 

Rubashkina et al., 2015). However, this lagged structure is associated with additional 

endogeneity issues and biases, which makes a causal relationship in these regressions difficult 

to identify. 

 Besides using equation (5), we adopt a two-stage least squares instrumental variable 

approach to estimate the innovation induced productivity effects of environmental policy. We 

instrument the R&D expenditures with the EPE variable to make the R&D variable more 
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exogenous, allowing for a more causal interpretation. During the first stage, the effect of 

environmental policy stringency on R&D expenditures is estimated, whereas the second stage 

uses the fitted values of the first stage to estimate the effect of R&D expenditures, induced by 

the environmental policy, on TFP growth. However, we do not perform the estimation in two 

stages because the second stage will in that case yield the wrong residuals (Woolridge, 2015). 

This paper uses the direct two-stage instrumental variable regression8, providing the following 

expression.  

ln 𝑇𝐹𝑃𝑔𝑟𝑜𝑤𝑡ℎ𝑖𝑗𝑡

=  𝑐𝑜𝑛𝑠𝑡 + 𝛼𝑖𝑗 + 𝜇𝑡 +  𝛽 ln 𝑅&𝐷𝑖𝑗𝑡 + 𝜑 𝑇𝐹𝑃𝐺𝑙𝑒𝑎𝑑𝑒𝑟𝑗𝑡 + θ ln 𝑇𝐹𝑃𝑔𝑎𝑝𝑖𝑗𝑡 +  𝛾 ln 𝑋𝑖𝑗𝑡 

+ 휀𝑖𝑗𝑡                                                                                                                                              (6) 

 

where 𝑙𝑛 𝑅&𝐷𝑖𝑗𝑡 is instrumented by the environmental protection expenditures, identifying the 

effect of R&D spending, induced by environmental policy stringency, on productivity growth. 

All other variables are the same as in equation (4) and (5). 

 

Finally, we incorporate sector-country fixed effects and time-fixed effects into model (4), (5) 

and (6) to control for unobserved heterogeneity. Ignoring sector-country specific and year-

specific characteristics that alter the productivity growth rates within our sample, creates biased 

results. Therefore, we adopt a fixed effects (FE) estimation approach when estimating the direct 

and indirect productivity effects of EU’s environmental regulations.  

 

3.3 – Identification  
This study aims to estimate the causal relationship between environmental policy stringency in 

the EU and innovation and productivity growth. As Brunel & Levinson (2016) phrases it: ‘the 

environment is a complex multidimensional issue, and so are its associated regulations’. 

Environmental regulations are not easily comparable across countries and industries over time. 

In an ideal world, suppose Yijt represents i.e. TFP growth rates for industry j, in country i at time 

t. Then, the impact of environmental regulation (ER) on TFP growth would be determined 

through the following equation:  

𝐼𝑚𝑝𝑎𝑐𝑡𝐸𝑅 =  𝑌𝑖𝑗𝑡 (𝑇) − 𝑌𝑖𝑗𝑡 (𝐶)            (7) 

where 𝑌𝑖𝑗𝑡 (𝑇) denotes the TFP growth of industry j subject to environmental policy (the 

treatment) and 𝑌𝑖𝑗𝑡 (𝐶) denotes TFP growth without environmental policy (the control), all else 

equal. In this case, we would just estimate the difference between the treated TFP growth ratios 

 
8 STATA’s direct two-stage iv regression method for panel data, xtivreg, is adopted. 
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and the control TFP growth ratios. However, it is impossible to construct this object as we can 

only observe one of the TFP growth values for each country-specific industry at time t. This is 

called the fundamental problem of causal inference. Therefore, identification of the true effect 

is a challenging task. Moreover, the simultaneous implementation of other measures related to 

the environmental policy further complicates a proper identification of the initial effect and 

attributing an observed economic outcome to the policy (Koźluk & Zipperer, 2015). For 

example, the EU ETS is accompanied by additional mitigating measures, designed to soften 

adverse impacts of the regulations, such as the promotion of environmental action in other 

countries, border tax adjustments and special treatment for installations considered at a 

significant risk of carbon leakage (European Commission, 2014).  

 For this reason, assessing the impact of EU’s environmental policy requires a measure 

of the relative stringency of the environmental regulations over time and across different 

countries and industries. We measure the stringency of EU’s environmental policy by 

environmental protection expenditures (EPE) directed towards pollution control, relying 

primarily on the identification assumption that higher pollution control expenditures are 

induced by more stringent environmental policy. Enterprises are expected to have higher 

pollution control expenditures when they encounter more strict regulatory measures. We argue 

that these reported pollution control expenditures are a suitable measure for this study as they 

vary over time and across industries and countries (Brunel & Levinson, 2016). The idea is that 

the industry-level EPE variable represents the stringency of EU’s environmental policy for 

these industries, influencing innovation and productivity growth.  

However, this concept faces certain econometric specification drawbacks. First of all, 

the identification assumption might be too strong as it is difficult to distinguish if the 

environmental expenditures are driven only by the regulatory measures or also by 

environmental sentiment or even residual profits. Although this is of relevant concern, Becker 

(2005) finds evidence that supports the fact that changes in regulations are reflected in reported 

pollution control expenditures. An additional concern is that certain unobserved industry and 

country-specific characteristics can alter both the pollution control expenditures and innovation 

and/or productivity growth. We hope to solve this by conducting a FE-estimation using country 

and sector-specific fixed effects.   

Additionally, our EPE variable might be subject to measurement error problems, due to 

its self-reporting characteristic (Brunnermeier & Cohen, 2003). This could lead to both upward 

and downward bias of our coefficients. Firms could face difficulties in identifying which 

portion of the total expenditures are associated with pollution control and related to compliance 
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with EU’s environmental regulations (Rubashkina et al., 2015). Moreover, firms might attempt 

to gain a greener image by attributing irrelevant expenditures to their environmental protection 

expenditures (Brunnermeier & Cohen, 2003). However, as we use aggregate industry-level 

environmental protection expenditures, we hope that the measurement error at the industry-

level will be on average close to zero.  

 Furthermore, to obtain unbiased estimates in the OLS-regressions, we require that the 

EPE variable is uncorrelated with the error-term. However, our regressions may be subject to 

reverse causality or simultaneity bias. While we seek to assess the effects of policy stringency 

on innovation activity and productivity growth, both outcome variables may simultaneously 

influence the stringency of EU’s environmental policy (Brunel & Levinson, 2016). This would 

result in our EPE variable being correlated with the error term, leading to biased estimates. 

Simultaneity in the innovation effect regressions may arise as regulation-induced R&D 

expenditures will be designed as such to lower the costs of pollution control (Kneller & 

Manderson, 2012; Rubashkina et al., 2015). Hence, not only pollution control expenditures 

impact R&D but also R&D influences the amount of pollution control expenditures. This 

simultaneity relation could bias downward the coefficient of the pollution control EPE variable. 

Reverse causality may also arise in the productivity effect, following the theory of the 

environmental Kuznets curve, suggesting that economic growth can spur the demand for 

environmental quality (Koźluk & Zipperer, 2015). The opposite may also be true, industries 

with low productivity growth decide to lower their pollution control expenditures to cut costs 

(Hille & Möbius, 2019). Hence, stricter environmental regulations, measured by our EPE 

variable, might be influenced by TFP growth, whereas this study tries to estimate the opposite 

relationship. This could result in an upward bias of our estimates. Furthermore, omitted variable 

bias can occur when certain unobserved effects are correlated with both the stringency of 

environmental regulations and innovation or productivity growth. For both the innovation and 

productivity effect, this suggests that our EPE variable may be subject to endogeneity. Many 

prior studies do not sufficiently address this potential endogeneity of the pollution control 

expenditures (except: Hille & Möbius, 2019; Rubashkina et al., 2015 and De Vries & Withagen, 

2005).  

 

To overcome these potential issues regarding endogeneity of our EPE variable, we adopt next 

to the OLS-estimations, an instrumental variable (IV) approach. The idea of IV-estimation is to 

find a variable that is strongly correlated with the EPE variable, but uncorrelated with our 

measures of innovation and productivity growth, except indirectly through the EPE variable, 
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and use this instrumental variable to estimate the causal relationship. Rubashkina et al. (2015) 

uses the average share of EPE divided by value added (EPE intensity) for the adjacent sectors 

of sector j, excluding sector j, as instrumental variable: 
𝐸𝑃𝐸

𝑉𝐴 −𝑗
. The authors argue that there is a 

strong correlation between environmental policy applied to different industries within the same 

country, suggesting a strong correlation between a sector’s EPE intensity and the EPE intensity 

of the adjacent sectors within the same country (Rubashkina et al., 2015). Hence, the average 

share of EPE intensity of adjacent sectors influences the EPE intensity of sector j, but does not 

directly impact innovation or productivity growth, except through its relationship with the EPE 

intensity of sector j.  

We use an instrumental variable that follows a similar structure: the average share of 

the EPE intensity of the adjacent sectors, excluding sector j. However, we specify the definition 

of the adjacent sectors. We argue that that there is a strong correlation between the stringency 

of EU’s environmental policy applied to different industries with similar pollution intensity 

ratios, which is reflected in the EPE variable. Industries with production processes that are 

strongly reliant on greenhouse gas emissions are more affected by increasing stringency of 

environmental policies, whereas less pollutive industries need fewer investment in pollution 

control. The opposite also holds, industries with similar reliance on greenhouse gas emissions 

receive similar amounts of freely allocated emissions under the EU ETS and therefore have 

strongly correlated (lower) environmental protection expenditures. Hence, we argue that 

industries with similar pollutive behavior have strongly correlated environmental protection 

expenditures as a response of more stringent environmental policy. Therefore, we have divided 

the industries within our sample into four different country-specific groups, based on similar 

average pollution intensity ratios. These pollution intensity ratios are calculated using country-

industry specific greenhouse gas emissions from the European Industrial Emissions Portal 

divided by the industry’s gross output. The industry division appeared naturally as we found a 

distinct difference between average industry-level pollution ratios. The sample consists of 14 

different industries and both the most pollutive and least pollutive groups contain four sectors, 

whereas the other two contain each three industries. Appendix 3A provides an overview of this 

pollution intensity industry division.  

The adjacent sectors of sector j, within our definition of the instrument ( 
𝐸𝑃𝐸

𝑉𝐴 −𝑗
), are the 

industries that are in the same pollution intensity group as sector j. Hence, our instrumental 

variable is defined as the average EPE intensity of sector j’s adjacent sectors within the same 

‘pollution group’, for country i at time t. The identification assumption is that this variable is a 
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strong predictor of the EPE intensity of the sector under consideration, which serves as our 

measure for environmental policy stringency, impacting the innovation activity and 

productivity growth. We adopt some important postestimation IV-tests to support the validity 

of the instrument.  

The second requirement for the instrumental variable is that the instrument is 

uncorrelated with innovation activity and productivity growth. We argue that the average share 

of EPE intensity of the adjacent sectors has no direct impact on sector j’s innovation and 

productivity, but only through its relationship with sector j’s own EPE intensity. The 

environmental protection expenditures of other industries do not directly affect R&D or TFP 

growth of the industry under consideration, but only through the above discussed relationship 

with the sector’s own environmental protection expenditures. The word ‘only’ requires the 

assumption that conditional on using fixed effects and all control variables within our models, 

the instrument is not correlated with unobserved factors that influence R&D and TFP growth. 

A similar assumption has been adopted by Rubashkina et al. (2015).9 However, we do note that 

the EPE of adjacent sectors influences the productivity level of these adjacent sectors, through 

its additional costs component. Hence, if there are potential productivity spillovers within the 

pollution intensity industry groups, this last assumption may be weak. This would namely 

suggest that our instrument is correlated with unobserved productivity spillover effects that 

influence sector j’s productivity growth and potentially even innovation activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
9 Rubashkina et al. (2015) does include an additional instrument where EPE intensity of adjacent sectors is 

interacted with pre-sample energy intensity of industry j. However, as this energy intensity variable is time-

invariant, it would drop out when including year fixed effects, due to collinearity. We argue that the use of year-

specific fixed effects is preferred over interacting our instrument with pre-sample sectoral energy-intensity.  
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4     Data  

 

4.1 – Sources  
The main variable of interest in our regressions is the stringency of EU’s environmental policy 

proxied by environmental protection expenditures (EPE). These expenditures have been 

collected from the Eurostat database Environmental Protection Expenditures by Environmental 

Domains, using the NACE revision 2 industry classification. The EPE variable is split into 

investment in equipment and plant for pollution control and investment in equipment and plant 

linked to cleaner technology. Our measure for environmental policy stringency is the first 

investment post: pollution control expenditures. R&D expenditures data at the industry-level 

are taken from the OECD Analytical Business Enterprise R&D (ANBERD) database for the 

period 2004 to 2017. The R&D expenditures of the years 2004 to 2007 have been used for the 

construction of the knowledge stock variable. Government R&D expenditures aimed at 

environmental objectives are collected from the Government Budget Allocations R&D 

(GBARD) database of OECD. Annual TFP growth ratios, defined as the fraction of value-added 

growth that cannot be attributed to the primary input factors of production, have been collected 

from the EU KLEMS Release 2019 Growth Accounts database that uses the growth accounting 

techniques discussed in section 2.2.3 (Stehrer et al., 2019; Adarov & Stehrer, 2019). Moreover, 

the EU KLEMS Release 2019 database is used to construct the TFPG-leader and TFP-gap 

variables to control for technology spillovers from the technology-leading country.  

 Data on our scaling variable gross value added (VA) are collected from the OECD 

National Accounts database - Value added and its components by activity (ISIC revision 4). 

Additional control variables include the country-sector specific birth- and death rates that 

control for industry stability and structural changes. These business demography indicators are 

collected from OECD Structural and Demographic Business Statistics (SBDS), at the ISIC 

revision 4 industry classification level. The OECD Trade by Enterprise Characteristics provided 

us with data on the number of exporting and importing firms by industry (within EU trade). 

Using the number of active enterprises from the OECD Structural and Demographic Business 

Statistics (SBDS) database, the EU export and import rates have been constructed following 

that the export/import ratios equal: exporting/importing firms divided by active firms. For the 

construction of the instrumental variable, we constructed pollution ratios using data from 

Eurostat Air Emissions Intensities, by NACE Rev. 2 activity, provided by the European 

Industrial Emissions Portal. The production output data are collected from the EU KLEMS 

Release 2019, National accounts database. 
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Finally, the environmental protection expenditures, R&D expenditures, government 

R&D expenditures, knowledge stock variable and gross value-added variable have been 

transformed from euros to PPP adjusted dollars, using the OECD PPPs and exchange rates 

dataset containing the PPP adjusted euro/U.S.-dollar rates. Across all data sources, the 

aggregation by industrial sectors varied. Therefore, a long process of data construction, merging 

and adaption was needed to merge all data into the large panel data set, following the NACE 

revision 2 industry classification. 

 

 

4.2 – Descriptive Statistics   
The balanced panel data set contains of 2520 observations for 14 different mining and 

manufacturing industries of 18 countries in the European Union between 2008 and 2017. The 

sample has been selected based on the availability of data of our explanatory EPE variable and 

the TFP growth ratios, following the NACE revision 2 industry classification. The dataset 

initially consisted of 22 countries, but large gaps of missing values in the EPE variable forced 

the exclusion of Denmark, Estonia, Ireland and the United Kingdom from the sample. Appendix 

1A and 1B provide a detailed overview of all final countries and sectors in the estimation. The 

period 2008 to 2017 covers the transition period of the EU ETS second phase into the third 

phase, which fully began to operate in 2013. Therefore, it is an interesting period to investigate 

the effects of EU’s environmental policy. 

 Table 1 shows a sectoral breakdown of the means of the main variables: environmental 

protection expenditures, R&D expenditures and TFP growth ratios. Moreover, table 1 shows 

the pollution intensity rates of all 14 sectors. The more pollution intensive industries, such as 

manufacturing of rubber and plastic products, and other non-metallic mineral products (C22-

C23) and manufacturing of chemicals and chemical products (C20) show relatively higher 

levels of investment in pollution control. However, the relatively pollution intensive mining 

and quarrying industry (B) has relatively lower investment in pollution control, suggesting 

lower stringency of environmental policy. This might be the result of the old-fashioned 

characteristics of the mining industry and the industry’s reliance on pollution intensive 

processes. Furthermore, table 1 shows that the highest R&D expenditures in absolute numbers 

comes from manufacturing of transport equipment (C29-C30). However, the 2405.69 million 

dollars in R&D account for only 8.33% of the industry’s value added. The manufacturing of 

computer, electronic and optical products (C26) industry spends the most on R&D relative to 

value added, on average 1228.59 million dollars, which denotes for 16.76 percent of value 
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added. The fact that the computer and electronic industry is continuously developing and 

modernizing, is expectedly the main reason for this relatively large investment into research 

and development. The manufacturing of basic pharmaceutical products and pharmaceutical 

preparations industry (C21) comes second with 13.44 percent R&D spending over value added. 

Interestingly, both industries have the highest average annual productivity growth, respectively 

 1.97% (C26) and 1.94% (C21), suggesting a relationship between innovation and productivity 

growth. The lowest average TFP growth is shown in the manufacturing of coke and refined 

petroleum products industry (C19), an industry largely affected by regulations and 

environmental sentiment.  

Based on the comparison of the means of the pollution control EPE/VA and R&D/VA 

in table 1, we do not see a direct relationship between environmental protection expenditures 

and innovation. However, graph 1, shows that both variables follow a similar trend over the 

estimation period. More specifically, pollution control investment and R&D expenditures over  

Table 1: Summary statistics: sectoral breakdown – pollution intensity and means of main variables 

Industry 

(NACE Rev. 2) 

Pollution 

Intensity 

Investment 

in Pollution 

Control 

(million 

dollars) 

Investment 

in Cleaner 

Technology 

(million 

dollars) 

R&D 

(million 

dollars) 

Pollution 

EPE/VA 

(%) 

R&D/VA 

(%) 

Average 

annual 

TFP 

growth 

rate 

        

Mining & quarrying 863.70 48.79 16.07 17.13 1.05 0.99 0.02 

Manufacturing of:        

Food & Drinks 77.27 103.48 24.99 136.88 0.15 1.04 -0.35 

Textile & leather 41.04 4.48 1.66 83.46 0.05 1.69 -0.13 
Wood & paper 

products 
326.86 95.25 31.61 65.95 0.19 0.89 1.26 

Coke & refined 

petroleum 
423.80 83.64 36.92 42.45 4.87 4.98 -1.70 

Chemicals & 

chemical products 
607.10 201.56 46.77 503.48 0.50 4.75 1.84 

Pharmaceutical 

products 
53.57 38.51 12.78 719.17 0.08 13.44 1.94 

Rubber & plastics 1204.03 83.28 52.30 262.68 0.22 2.34 1.10 
Metals & metal 

products 
684.72 83.10 30.72 305.49 0.28 1.99 0.82 

Electronics 20.03 7.25 2.46 1228.59 0.03 16.76 1.97 
Electrical 

equipment 
242.24 30.75 9.00 410.65 0.06 8.15 1.64 

Machinery 38.03 25.47 13.49 824.36 0.05 5.49 -0.01 
Transport 

equipment 
40.38 43.92 28.99 2405.69 0.06 8.33 1.61 

Other 

manufacturing 
66.63 5.77 3.77 222.80 0.04 1.59 -0.54 
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value added increased significantly around 2013/2014, which marks the beginning of the third 

phase of the EU ETS. This would suggest that stricter environmental policy induces investment 

into research and development.  

 

Graph 1: Environmental protection expenditures (pollution control) intensity and R&D 

intensity over the years 2008 to 2017.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4A and 4B present the scatterplots of the pollution EPE variable against respectively 

R&D expenditures and TFP growth. These scatterplots are also presented by industry. Based 

on these scatterplots, a similar indication is given that there is a potential positive relationship 

between the pollution EPE variable and sectoral R&D expenditures. In the sectoral scatterplots, 

the fitted lines all show a positive trend, whereby the Food & Drinks sector is shown to have 

the strongest positive correlation between pollution control EPE and R&D. The scatterplots of 

the relationship between the pollution EPE variable and TFP growth provide less of an 

indication. Both no strong positive or negative correlation can be determined. In the sectoral 

scatterplots, some industries show a small positive correlation and others a small negative 

correlation. 

Table 2 provides a correlation matrix of the main variables and shows that R&D is 

positively correlated with the pollution EPE variable. The same holds for the cleaner technology 

EPE variable. TFP growth on the other hand is negatively correlated with these environmental 

cost 
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variables, indicating a potential negative relationship. However, the sectoral scatterplots 

provide no strong indication for such a negative relationship between pollution EPE and TFP 

growth. Therefore, a regression analysis is needed. Additionally, table 2 shows that R&D 

expenditures and TFP have a positive correlation, in line with the theory that innovation 

stimulates productivity growth (Schumpeter, 1942). Finally, more summary statistics of the 

total sample, including all regression variables are tabulated in appendix 3B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Correlation matrix of the main variables 

 Pollution 

EPE 
Cleaner Technology 

EPE 
R&D TFP 

Pollution 

EPE 
1.0000    

Cleaner Technology 

EPE 
0.7321 1.0000   

R&D 0.2144 0.1391 1.0000  

TFP -0.1218 -0.0394 0.1204 1.0000 
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5    Empirical Results 

 

The first part of this section discusses the relationship between EU’s environmental regulations 

and innovation activity, following with some robustness checks of the main results. In the 

second part, we present the results of the relationship between EU’s environmental regulations 

and productivity growth. We conclude with some robustness checks for this productivity effect.  

 

5.1. – The innovation effect: environmental policy and R&D 
 

5.1.1 – Baseline estimation results  
We first estimate the innovation effect using a standard panel data OLS-estimation with the 

dependent variable being the log of country-sector level R&D expenditures, as presented in 

equation (1) of the methodology. Table 3 presents the results. The regressions in column (1) to 

(3) do not control for country-sector and year fixed effects, whereas in column (4) to (6) we 

conduct a fixed effects estimation. We include country-sector fixed effects in column (4) and 

(5) and in column (6) both country-sector and year fixed effects are accounted for. Without 

controlling for the fixed effects, a strongly significant but small positive relationship between 

pollution control environmental protection expenditures and R&D expenditures is shown in 

column (1) to (3). As expected, an industry’s past R&D investment, measured by our 

knowledge stock variable, has a strongly significant positive impact on R&D in the present. 

When including the vector of controls, the model improves as shown by an increasing test-

statistic and R-squared. The decreasing coefficient shows that the control variables play a role 

in explaining the variation in the R&D expenditures, which was in column (1) partly 

incorporated in the coefficient of the EPE variable. Government R&D is shown to have a 

strongly significant positive effect on R&D, indicating that Government R&D decisions impact 

the R&D investment of the private sector, as expected from the literature. Moreover, the birth 

rate is shown to play a key role in the regressions. A higher industry-level birth rate negatively 

influences R&D expenditures, as presented in the coefficient (-0.165) significant at the 1% 

level. This is in line with the Schumpeterian theory that innovation activity is negative related 

with industry instability and turbulence (Malerba & Orsenigo, 1995).  

However, the coefficient of the EPE variable lowers and becomes insignificant, when 

including country-sector fixed effects and the vector of controls, as presented in column (5). In 

this model, all time-invariant industry and country variation in R&D expenditures is captured 

in the country-industry specific fixed effects. Hence, the coefficient related to the EPE variable  
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only reflects the relationship between R&D expenditures and the EPE variable within industry 

and country, across the time dimension. Since the coefficient becomes insignificant, the results 

indicate that there are certain unobserved country-sector specific characteristics, which are 

constant over time, that are correlated with both the EPE variable and R&D expenditures. The 

inter- industry and country differences, such as for example technological opportunities, and 

the vector of controls, play a major role in explaining the variation in R&D expenditures. 

Including time fixed effects in column (6), further lowers the coefficient and takes out all the 

variation in the EPE variable. This potentially also has something to do with the characteristics 

of the EU ETS. The stringency of the EU ETS comes from the changes in the carbon price, 

which varies over the time. However, including time fixed effects takes out all time variation 

and we may have overcontrolled in our estimations, losing all variation in our explanatory 

Table 3: Innovation effect – R&D expenditures panel regression results of EU’s environmental policy 
R&D expenditures (1) (2) (3) (4) (5) (6) 

       

ln EPE 

(Pollution control) 

0.042*** 

(0.012) 

0.036*** 

(0.012) 

0.025** 

(0.012) 

0.022* 

(0.013) 

0.010 

(0.013) 

0.007 

(0.012) 

ln EPE 

(Cleaner Technology) 

-0.002 

(0.010) 

-0.007 

(0.010) 

-0.008 

(0.011) 

-0.005 

(0.010) 

-0.004 

(0.693) 

-0.003 

(0.010) 

ln Knowledge Stock 0.632*** 

(0.050) 

0.591*** 

(0.053) 

0.586*** 

(0.060) 

0.430*** 

(0.055) 

0.413*** 

(0.060) 

0.412*** 

(0.145) 

ln Government R&D  0.112*** 

(0.036) 

0.115*** 

(0.038) 

0.060 

(0.039) 

0.033 

(0.039) 

0.041 

(0.040) 

ln Value Added   0.033 

(0.021) 

 0.308*** 

(0.088) 

0.240 

(0.103) 

ln Birth Rate   -0.165*** 

(0.037) 

 -0.086* 

(0.045) 

-0.099** 

(0.042) 

ln Death Rate   -0.019 

(0.053) 

 -0.020 

(0.057) 

0.011 

(0.053) 
ln EU-export rate   0.108 

(0.101) 

 0.043 

(0.100) 

0.019 

(0.108) 

ln EU-import rate   -0.075 

(0.092) 

 -0.040 

(0.094) 

-0.024 

(0.102) 

       

Constant 5.139*** 

(1.078) 

4.107*** 

(0.936) 

3.813*** 

(1.030) 

8.572*** 

(1.301) 

2.593 

(2.142) 

4.125 

(2.636) 

       

Country-sector FE No No No Yes Yes Yes 

Time FE No No No No No Yes 

Test  
2 = 

164.92*** 

2 = 

279.43*** 

2 = 

453.14*** 

F = 

16.91*** 

F = 

12.59*** 

F = 

14.13*** 

No. Observations 1679 1430 1141 1430 1141 1141 

Within R2 0.382 0.914 0.911 0.911 0.448 0.557 

Notes: The dependent variable is the log of R&D expenditures; logging values equal to zero creates 

missing values, lowering the number of observations and extra control variables reduce the number of 

observations further due to less data availability; robust standard errors are in parentheses 

*** indicates significance at the 1% level; ** indicates significance at the 5% level; * indicates 

significance at the 10% level   
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variable. However, all in all, based on the OLS-estimation, we find no evidence supporting a 

relationship between environmental policy stringency, measured by pollution control 

expenditures, and innovation. 

An alternative on the log-log structure would be to regress R&D intensity (R&D/VA) 

on EPE intensity (EPE/VA). However, a big part of the relationship would then originate from 

the value-added variable. Moreover, as Jaffe and Palmer (1997) suggests, measurement error 

in value added will cause this ratio-structure to exhibit spurious correlation. Therefore, most 

empirical literature uses the log-log structure instead of R&D/VA on EPE/VA (Jaffe & Palmer, 

1997; Hammamoto (2006); Rubashkina et al., 2015; etc.).  

 

When using OLS-estimation techniques and proxying the stringency of EU’s environmental 

policy by pollution control environmental protection expenditures, we primarily rely on the 

identification assumption that higher pollution control expenditures are induced by more 

stringent environmental policy in the European Union. As extensively discussed in section 3.3, 

this concept faces certain drawbacks in the econometric specification and our EPE variable is 

subject to endogeneity issues (Hille & Möbius, 2019; De Vries & Withagen, 2005; Rubashkina 

et al., 2015). To overcome potential issues with the endogeneity of our explanatory variable, 

we conduct in table 4 a two-stage least squares instrumental variable estimation to study the 

innovation effect. Pollution control EPE is instrumented by the average share of pollution 

control EPE intensity of industry j’s adjacent sectors following the pollution intensity group 

division as shown in appendix 3A. In all six IV regressions, we use the FE-estimation to control 

for unobserved heterogeneity. 

 In column (1) to (3) of table 4, we adopt the log-log specification using the instrumental 

variable. In comparison to table 3, there is a strong significant positive relationship shown 

between EU’s environmental stringency and R&D. When including all control variables in the 

fixed effect estimation, the positive coefficient is significant at the 1% level. Moreover, when 

also accounting for unobserved year specific characteristics the positive relationship is still 

statistically significant at the 5% level. This indicates that the results in table 3 were downward 

biased due to endogeneity issues, related to the simultaneity bias. R&D investment lowers the 

pollution control expenditures, whereas we simultaneously tried to estimate the opposite 

relationship. This reverse causality biased our results in table 3. 

Table 4 provides a comprehensive series of postestimation tests for the validity of the 

instrument. First, to test for identification of the instrument, we use the Kleibergen-Paap rank 

LM-statistic test. The null hypothesis is that the instrument is uncorrelated with the pollution 



 45 

Table 4: Innovation effect – 2SLS Instrumental variable approach - panel regression results of environmental policy in the European Union.  

  R&D expenditures  R&D intensity (R&D/VA) 

2SLS IV - estimation  (1) (2) (3)  (4) (5) (6) 

EPE 

(Pollution control) 

 0.194** 

(0.083) 

0.321*** 

(0.102) 

0.296** 

(0.146) 

 0.113 

(0.137) 

0.250 

(0.255) 

0.399 

(0.395) 

EPE 

(Cleaner Technology) 

 -0.017 

(0.012) 

-0.019 

(0.018) 

-0.014 

(0.019) 

 0.022 

(0.019) 

0.018 

(0.020) 

0.022 

(0.027) 

Knowledge Stock  0.496*** 

(0.061) 

0.545*** 

(0.091) 

0.448*** 

(0.137) 

 0.362*** 

(0.097) 

0.265** 

(0.116) 

0.424** 

(0.168) 

Government R&D  0.013 

(0.038) 

-0.008 

(0.054) 

0.004 

(0.058) 

 0.223** 

(0.110) 

0.123 

(0.076) 

0.136 

(0.102) 

Value Added  0.219 

(0.140) 

0.548** 

(0.234) 

0.452* 

(0.247) 

 - 

 

- - 

 

Birth Rate   -0.138* 

(0.076) 

-0.168* 

(0.093) 

  -0.173** 

(0.081) 

-0.206* 

(0.117) 

Death Rate   0.004 

(0.078) 

0.042 

(0.075) 

  -0.005 

(0.070) 

-0.049 

(0.098) 

EU-export rate   0.003 

(0.120) 

0.003 

(0.122) 

  0.016 

(0.129) 

-0.035 

(0.146) 

EU-import rate   0.098 

(0.132) 

0.068 

(0.134) 

  -0.094 

(0.158) 

-0.051 

(0.181) 

Constant  5.565** 

(2.348) 

2.655 

(3.350) 

4.747 

(0.242) 

 0.358 

(0.216) 

0.042 

(0.247) 

0.277 

(0.385) 

Country-sector FE  Yes Yes Yes  Yes Yes Yes 

Time FE  No No Yes  No No Yes 

Test   F = 20.73*** F = 10.70*** F = 13.38***  F = 22.42*** F = 13.04*** F = 14.13*** 

No. Observations  1430 1121 1121  1430 1141 1141 

Within R2  0.805 0.710 0.667  0.871 0.872 0.863 

Identification  

    K-P Wald rank LM-statistic 

    p-value 

  

18.599 

0.001 

 

19.302 

0.001 

 

11.181 

0.004 

  

6.883 

0.009 

 

5.053 

0.041 

 

5.332 

0.038 

Weak instrument  

    K-P Wald F-statistic 

    15% level (Stock & Yogo) 

  

9.613 

11.59 

 

12.929 

11.59 

 

10.944 

11.59 

  

9.135 

8.96 

 

10.271 

8.96 

 

9.130 

8.96 

Notes: FE-estimation; the dependent variable is R&D expenditures in regression 1 to 3 and R&D intensity in regressions 4 to 6; the pollution control 

EPE variable is instrumented by EPE/VA-j; robust standard errors are in parentheses; logging values equal to zero creates missing values, lowering the 

number of observations and extra control variables reduce the number of observations further due to less available data.   

*** indicates significance at the 1% level; ** indicates significance at the 5% level; * indicates significance at the 10% level   
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control expenditures of industry j (Aiyar, 2012). The test-statistics in column (1) to (3) show 

that we can strongly reject the null hypothesis, suggesting that the instrument correctly 

identifies our explanatory variable. Furthermore, to test if the instrument is sufficiently strong, 

we conduct the Kleibergen-Paap Wald F-test, with the null hypothesis that the instrument is 

weak. The Cragg-Donald Wald test is more conventional, but when using heteroskedastic 

robust standard errors this test is invalid (Aiyar, 2012). In empirical literature the rule of thumb 

of the Kleibergen-Paap Wald F-test is an F-statistic above 10 to support having used a strong 

instrument. Therefore, the null hypothesis of a weak instrument can be strongly rejected in 

column (2) and (3). Moreover, in column (2) the F-statistic is above the weak IV critical value 

of 15% relative IV-bias toleration, following Stock and Yogo (2005). Unfortunately, as we 

include only one instrument, we cannot test for overidentification using the Hansen J-test to 

further support the exclusivity assumption that the instrument is uncorrelated with the error 

term and affects R&D expenditures only through its impact on sector j’s pollution control 

expenditures.  

Based on column (3), we can conclude that a 1 percent increase in pollution control 

expenditures is on average associated with a 0.296 percent increase in R&D expenditures. As 

mentioned in the methodology, we cannot control for potential productivity spillover effects 

that impact the exclusivity of our instrument. Hence, a part of the strong positive relationship 

found in column (1) to (3) of table 4 might be the result of our instrument being positively 

correlated with these productivity spillovers effects. However, the results do suggest that when 

accounting for endogeneity issues, the coefficient changes significantly. Conclusive, our results 

do indicate but not strongly support evidence for a positive relationship between EU’s 

environmental policy and R&D expenditures. 

 In column (4) to (6), we measure, through IV-estimation, the effect of EPE intensity on 

R&D intensity. We find still positive coefficients, but they are all insignificant. The Kleibergen-

Paap Wald LM-statistical values suggest a significantly strong identification of our instrument. 

Furthermore, the instrument seems to be significantly strong in column (5) according to the rule 

of thumb of the Kleibergen-Paap F-statistic. In all three columns the F-statistics is larger than 

the Stock and Yogo (2005) 15% critical value. The sign of the effect is positive in all regressions 

using R&D/VA on EPE/VA, indicating that there might be a positive relationship.  

Furthermore, also in column (1) to (6), we can attribute a strong impact of R&D 

variation to an industry’s birth rate, suggesting that high industry instability is an indicator for 

lower R&D. Finally, the results in this paper show no strong significant relationship between 

R&D expenditures and the EU-Export intensity and EU-import intensity rates. 
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5.1.2 – Robustness checks 

We conduct robustness checks of the results, presented in section 5.1.1, focused on the 

following concerns: a dynamic innovation effect; the sensitivity to different depreciation rates 

of the knowledge stock variable; and the measure of innovation activity.  

First, the innovation effect might be subject to a dynamic effect, requiring us to apply a 

one-year lagged structure to the regressions in table 3 and 4. In all regressions we find a similar 

qualitative positive relationship between pollution control environmental protection 

expenditures and innovation activity, however in most cases statistically insignificant and 

small. Therefore, we cannot conclude that environmental policy has a positive impact on 

innovation activity when applying a lag structure to the regressions. It is important to note, that 

these results are subject to other biases accompanying a lagged structure, as it requires the 

assumption that there is no serial correlation among the unobservable variables (Bellemare et 

al., 2017). For space reasons, we do not include a table of the results, but they are nevertheless 

available upon request. 

The second robustness check focuses on the construction of the knowledge stock 

variable, which relies on the choice of the depreciation rate. The depreciation rate represents 

the rate at which the impact of past R&D investments on the knowledge capital declines if no 

further R&D related activity is undertaken (Hall & Rosenberg, 2010). Empirical literature finds 

depreciation rates of R&D capital to lie between 10 and 30 percent (Nadiri & Prucha, 1996; 

Bosworth, 1978; Hall, 2005; Pakes & Schankerman, 1984). Appendix 5A.1 shows the 

estimation results using different depreciation levels in the construction of the knowledge stock 

variable. We conduct the regressions of column (6) of table 3, and column (2) of table 4 with 

knowledge stock depreciation rates varying between 10, 20 and 30 percent. Note that in the 

baseline specification we used the 20% depreciation rate, but these coefficients are included in 

appendix 5A.1 to provide a clear comparison. The results show that the positive relationship, 

found in table 4 is robust against different depreciation rates of the knowledge stock variable. 

The ‘10% and 30% regressions’ follow a similar pattern as when using a 20% depreciation rate. 

More specifically, for the IV-estimation, the coefficients of the EPE variable equal respectively 

0.231, 0.321 and 0.367 for the 10, 20 and 30 percent depreciation rates, all statistically 

significant.  

Finally, we rely in the main results on R&D expenditures as proxy for innovation 

activity, but it is of concern that this is not a perfect measure of innovation. Although it is hard 

to get a good grasp on finding a proper measure for innovation, we conduct regressions using 
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an alternative measure of innovation: the number of patent applications at the European Patent 

Office (EPO). The patent application data are collected from the OECD patent statistics 

database and are only available for the years 2008 to 2013. We conduct regressions of the OLS-

estimator and IV-approach using the log of the number of patent applications as dependent 

variable. Appendix 5A.2 presents the results. All coefficients are insignificant, but we find a 

sign switch in the IV-estimation, suggesting a negative relationship between pollution control 

expenditures and the number of EPO patents.Therefore, we do see some concerns regarding the 

robustness of the main results to different measures of innovation, but further research is 

required. Hence, our baseline results only apply to R&D expenditures as measure of innovation.  

 
 

5.2. – The productivity effect: environmental policy and TFP growth 
 

5.2.1 – Baseline estimation results 
Both through a direct and indirect effect, new or more stringent environmental regulations can 

have impact on productivity growth (Koźluk & Zipperer, 2015). We begin this section with the 

results on the direct effect of EU’s environmental policy on TFP growth, presented in table 5. 

Unfortunately, the countries Greece, Hungary, Lithuania, Poland, Portugal and Slovenia 

dropped out of the sample due to not enough available TFP growth data.  

Since the TFP growth rates are already based on value added production growth, no 

additional value-added control variable is included in the regressions. Column (1) to (6) show 

the results of the regressions using the OLS-estimator, whereas the regression results in column 

(7) and (8) originate from the two-stage least squares instrumental variable estimation. The IV-

approach is adopted to overcome endogeneity issues and uses the same instrument as applied 

to the innovation effect. In column (1) to (3), the OLS-estimator provides no significant effect 

of environment related pollution control expenditures on TFP growth. When controlling for 

unobserved country-sector fixed effects, we find a large statistically significant negative effect, 

as presented in column (4) and (5). This indicates that the negative productivity growth effect 

comes from within-industry and country variation. Not controlling for unobserved country-

sector specific characteristics results in biased estimates. Column (5) indicates that a 1 percent 

increase in pollution control expenditures, measuring the stringency of EU’s environmental 

regulatory measures, decreases annual productivity growth with 0.649 percentage point. A 

strong productivity growth effect can be attributed to structural changes in industry 

characteristics, as measured by the birth- and death rate variables. A high birth rate indicates 
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the entry of new entrepreneurs, which increases competition and stimulates firms to increase 

productivity, while a low birth rate helps shielding the position of unproductive firms. This is 

shown in the results, indicating that a 1 percent increase in the birth rate is associated with an 

annual productivity growth of 1.467 percentage point. The negative coefficient of the death rate 

variable is surprising as it is expected that the unproductive firms do not survive, which would 

suggest an increase in overall industry productivity.   

When including international competitiveness proxied by import intensity, export 

intensity controlling for the learning by exporting hypothesis and year-specific unobserved 

characteristics, the coefficient of the EPE variable becomes statistically insignificant, although 

still negative of sign (column (6)). The impact of time fixed-effects suggests that all variation 

in productivity growth related to the EPE variable comes from time variation. This might be 

related to the EU ETS characteristics whereby most stringency variation is time related. The 

sign of the coefficient remains negative.  

 The instrumental variable estimation also provides a negative coefficient accompanying 

the EPE variable, although highly insignificant, as presented in column (7) and (8). 

Postestimation IV- tests support the use of the instrumental variable in the productivity effect, 

but the support is less strong than for the innovation effect. We can reject the null hypothesis 

that the instrument is uncorrelated with the endogenous regressor, according to the 

Kleinbergen-Paap Wald LM-statistic. Moreover, although the Kleinbergen-Paap Wald F-

statistic does not present a value higher than the rule of thumb value of 10, the F-statistic in 

column (8) is higher than the 15% critical value of IV-bias tolleration (Stock & Yogo, 2005).  

Conclusive, we do not find a strong signficant direct effect of EU’s environmental policy 

on productivity growth, but the negative coefficient signs in all regressions, and the significant 

coefficients in column (4) an (5)) do indicate that there might be a negative relationship. This 

would be in line with the traditional theory that the environmental policy creates an additional 

cost-burden to the production process that negatively impacts productivity growth.  

Furthermore, the results of column (1) to (5) find no significant impact of the TFP 

growth rate of the technology leader and the TFP-distance with this country on productivity 

growth. In regression (6) to (8), the TFP-gap variable is found to have a negative impact on 

productivity growth. This suggests that there are no larger productivity growth gains from 

adopting efficient technologies in case a country and its sector lies further behind the technology 

leader (Griffith et al., 2004). Even more, the results suggest that the further a country is behind 

the technology leader, the lower the productivity growth. 
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Table 5: Productivity effect – Direct effect – OLS & 2SLS IV-estimation – panel regression results of environmental policy in the European Union. 

TFP growth 
 OLS-estimation  2SLS IV-estimation 

 (1) (2) (3) (4) (5) (6)  (7) (8) 

           

ln EPE 

(Pollution control) 
 -0.067 

(0.216) 

-0.020 

(0.195) 

-0.004 

(0.231) 

-0.826** 

(0.378) 

-0.649* 

(0.384) 

-0.256 

(0.368) 

 -2.594 

(5.872) 

-0.962 

(2.005) 

ln EPE 

(Cleaner Technology) 

 0.169 

(0.253) 

0.319 

(0.232) 

0.373 

(0.244) 

-0.401 

(0.461) 

-0.116 

(0.449) 

-0.395 

(0.376) 

 -0.147 

(0.819) 

-0.327 

(0.816) 

TFPG - leader  -0.015 

(0.020) 

0.003 

(0.026) 

0.015 

(0.033) 

-0.007 

(0.020) 

0.017 

(0.025) 

0.001 

(0.029) 

 -0.009 

(0.022) 

0.001 

(0.030) 

ln TFP - gap  -0.315 

(0.326) 

-0.323 

(0.405) 

-0.393 

(0.416) 

-0.055 

(0.525) 

-0.392 

(0.523) 

-2.189*** 

(0.674) 

 -1.792*** 

(0.674) 

-2.126*** 

(0.586) 

           

ln Birth Rate   0.835*** 

(0.163) 

0.766*** 

(0.143) 

 1.467** 

(0.429) 

0.518 

(1.125) 

  

 

0.429 

(1.124) 

ln Death Rate   -0.546*** 

(0.114) 

-0.778*** 

(0.179) 

 -1.497*** 

(0.295) 

0.792 

(1.561) 

  0.746 

(0.771) 

ln EU-export rate    0.812 

(0.974) 

  0.434* 

(0.219) 

  0.815 

(1.223) 

ln EU-import rate    -0.824 

(0.809) 

  -0.534** 

(0.186) 

  -0.145 

(0.727) 

           

Country-sector FE  No No No Yes Yes Yes  Yes Yes 

Time FE  No No No No No Yes  Yes Yes 

Test   2 = 2.57 2 = 15.67** 2 =22.16*** F = 1.51 F = 2.76** F = 13.16***  F = 19.32*** F = 13.51*** 

No. Observations  1108 1061 1026 1108 1061 1026  1085 1003 

Within R2  0.128 0.128 0.045 0.017 0.022 0.317  0.249 0.318 

Identification  
    K-P Wald rank LM -statistic 

    p-value 

  

- 

 

- 

 

- 

 

- 

 

- 

 

- 

 

 

 

 

3.514 

0.051 

 

3.793 

0.056 

Weak instrument  

    K-P Wald F-statistic 

    15% level (Stock & Yogo) 

  

- 

 

- 

 

- 

 

- 

 

- 

 

- 

 

 

 

8.723 

8.96 

 

9.831 

8.96 

Notes: The dependent variable is TFP growth and in regression 1 to 6 the OLS-estimator is used, whereas in 7 and 8 an IV-approach is used: the pollution control 

EPE variable is instrumented by EPE/VA-j; robust standard errors in parentheses; logging values equal to zero creates missing values, lowering the number of 

observations; extra control variables reduce the number of observations further due to less available data.   

*** indicates significance at the 1% level; ** indicates significance at the 5% level; * indicates significance at the 10% level   
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The exclusion of certain innovation measures may have led to omitted variable bias, as the 

potential indirect effect of EU’s environmental policy through innovation channels on 

productivity growth is not captured (Hille & Möbius, 2019). Porter’s strong hypothesis suggests 

a positive relationship between environmental policy and productivity growth through 

increasing innovation, induced by the policy. First, we estimate this indirect effect of the 

stringency of EU environmental policy by using an interaction term of country-sector R&D 

expenditures and the pollution control EPE variable in OLS estimation regressions. The results 

are presented in table 6 in column (1) to (4). The variable of interest is the interaction term of 

R&D and EPE. All regressions are conducted using fixed effect estimation. The coefficient in 

column (2) shows a small positive relationship between the interaction term and TFP growth, 

suggesting environmental policy to have a positive effect on TFP growth through R&D 

channels. However, the coefficient is small and statistically insignificant. As expected, the not 

interacted R&D expenditures positively influence productivity growth, although insignificant.  

When estimating the indirect productivity effects, empirical literature advocates for a 

lag structure in the econometric specification to capture potential time-dimension differences 

in the relationship between environmental policy and productivity growth, since R&D induced 

productivity effects may arise with some delay (Yang et al., 2012; Lanoie et al., 2008). In 

column (3) and (4) of table 6, we include a one-year lag structure of the variables. We find a 

statistically significant negative coefficient of the interaction term. Moreover, we do observe a 

strong statistically significant positive coefficient of the pollution control EPE variable. 

However, these results need to be taken lightly as the associated estimates are inconsistent and 

biased, as we cannot assume that there is dynamics among the observables but no dynamics 

among the unobservable variables (Reed, 2015). 

 Alternatively, this study instruments the R&D expenditures with the pollution control 

EPE variable, allowing for a more causal interpretation of a R&D-induced productivity effect, 

since the R&D variable becomes more exogenous. Column (5) to (8) of table 6 show the 

coefficients of the effect of R&D expenditures stimulated by EU’s environmental policy on 

TFP growth. Without using a lag-structure, the coefficient is negative but statistically 

insignificant. Although, the negative coefficient turns significant at the 10% level when using 

a one-year lagged structure, the coefficient becomes strongly insignificant when adding relevant 

control variables and year fixed effects, as presented in respectively column (7) and (8). It is 

noteworthy to mention that, in comparison to the negative coefficient in table 5, the industry-

level death rate is found to have a statistically significant positive impact on TFP growth when 
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including R&D expenditures, as shown in column (6) and (8). The coefficient associated with 

the birth rate remains positive when controlling for R&D effects.  

Although we cannot develop direct conclusions from the results presented in table 6, the 

direct negative effect of EU’s environmental policy appears to be greater in size than a potential 

positive innovation induced productivity effect. Hence, this study finds no significant evidence 

in favor of the strong hypothesis of Porter. We find no support for the fact that environmental 

regulations stimulate technical change directed towards technologies that positively impact 

productivity growth and offset the additional costs of compliance. Due to large econometric 

drawbacks of adding lagged structures, we cannot study the medium to longer-term innovation 

induced productivity effects. Further research is required to investigate these longer-term 

sustainability effects of environmental policy in the European Union. 

 

5.2.1 – Robustness checks 
Lanoie et al. (2008) finds a positive R&D induced productivity effect of environmental 

regulations for the less pollution intensive industries but not for the more pollution intensive 

industries. Therefore, we conduct several regressions to find if our baseline results are following 

a similar pattern or if they are robust against such a segregation of the sample. We have 

constructed a dummy variable that equals one for the subsample of the seven more pollution 

intensive industries and zero for the other seven less pollutive industries. The more pollution 

intensive industries are group 1 and 2 and the less pollution intensive industries are group 3 and 

4, following the instrumental variable pollution intensity classification, as presented in 

appendix 3A.  

 Appendix 5B.1 presents the results for the direct effect regressions, using all relevant 

control variables and country-sector and time fixed effects. In line with the main results, we 

find for the more pollution intensive industries a coefficient of -0.973, significant at the 10% 

level, suggesting a negative direct effect of environmental regulations on productivity growth. 

On the other hand, for the less pollution intensive industries, the coefficient is smaller and 

insignificant (-0.138). Moreover, the instrumental variable approach even suggests a potential 

sign switch for the less pollution intensive industries, but these coefficients are not significant. 

All in all, we can conclude from these results that the negative direct productivity effect, applies 

to the more pollution intensive industries.  

Appendix 5B.2 presents the results for the indirect productivity effect, when using the 

pollution intensity dummy variable, for the models without a lag structure. For the more 

pollution intensive industries, the interaction term in the OLS-estimation has a coefficient equal
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Table 6: Productivity effect –Indirect effect – OLS & 2SLS IV-estimation with R&D instrument – panel regression results of environmental policy in the EU 

TFP growth 

 OLS-estimation  2SLS IV-estimation 

 Not lagged One-year lags  Not lagged One-year lags 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

           

ln EPE 

(Pollution control) 

 -3.824 

(5.562) 

-1.575 

(5.532) 

0.894* 

(0.433) 

1.641*** 

(0.475) 

 - - - - 

ln R&D Expenditures  0.542 

(0.614) 

1.274 

(4.874) 

1.945 

(1.223) 

1.746* 

(1.007) 

 - - - - 

(ln R&D *  ln EPE (pc))  0.147 

(0.288) 

0.065 

(0.288) 

-0.579* 

(0.274) 

-0.655*** 

(0.227) 

 - - - - 

R&D instrumented by EPE 

 

 - - - -  -0.348 

(0.390) 

-1.388 

(2.232) 

-3.156* 

(1.824) 

-1.999 

(1.578) 

ln EPE 

(Cleaner Technology) 

  -0.548 

(0.376) 

 -0.014 

(0.347) 

 0.037 

(0.097) 

-0.026 

(0.063) 

0.024 

(0.081) 

0.003 

(0.072) 

TFPG - leader   0.032 

(0.023) 

 0.052 

(0.013) 

 -0.008 

(0.008) 

-0.006 

(0.010) 

-0.001 

(0.008) 

-0.001 

(0.004) 

ln TFP - gap   -0.631*** 

(0.175) 

 2.744*** 

(0.801) 

 

 

0.032 

(0.134) 

-0.014 

(0.096) 

0.134 

(0.136) 

0.266** 

(0.119) 

           

ln BR   0.933 

(1.025) 

 -0.915** 

(0.318) 

  0.838** 

(0.335) 

 

 

0.578 

(0.392) 

ln DR   0.393 

(0.474) 

 2.214 

(2.208) 

  0.539* 

(0.322) 

 0.819** 

(0.345) 

ln EU-export rate   0.193 

(0.358) 

 1.549 

(1.154) 

  -0.470 

(0.597) 

 -0.082 

(0.440) 

ln EU-import rate   -0.678* 

(0.492) 

 -0.896 

(0.825) 

  0.005 

(0.789) 

 0.098 

(0.398) 

Country-sector FE  Yes Yes Yes Yes  Yes Yes Yes Yes 

Time FE  No Yes No Yes  Yes Yes Yes Yes 

Test   F = 5.01*** F = 13.13*** F = 7.76*** F = 11.64***  F = 3.36*** F = 5.23*** F = 4.29*** F = 5.48*** 

No. Observations  1224 1012 1105 916  1080 1012 980 916 

Within R2  0.011 0.329 0.020 0.321  0.028 0.137 0.044 0.123 

Notes: The dependent variable is TFP growth; Regression 1 to 4 use the OLS-estimator with the explanatory variable being the interaction term R&D * EPE. In regression 

4 to 8, the R&D expenditures are instrumented by the pollution control EPE; robust standard errors are in parentheses; logging values equal to zero creates missing values, 

lowering the number of observations and extra control variables reduce the number of observations further due to less available data. 

*** indicates significance at the 1% level; ** indicates significance at the 5% level; * indicates significance at the 10% level 
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to 0.709, significant at the 10% level, which suggests that there is a positive effect of R&D, 

induced by environmental regulations, on productivity growth. On the other hand, an opposite 

relationship can be found for the less pollution intensive industries. Here, the coefficient of the 

interaction term is -0.732, significant at the 5% level. However, these striking opposing results 

between pollution intensity groups do not hold when adopting an IV-estimation approach for 

which the R&D variable becomes more exogenous.  

This segregation in the sectors provides no strong evidence, but some of the OLS-

estimation results do indicate a difference between the more pollutive industries and the less 

pollutive industries for both the direct productivity effect and the innovation-induced 

productivity growth effect. This suggests that the more pollutive industries are more negatively 

affected on productivity growth by changes in the stringency of environmental regulations in 

comparison to the less pollutive industries. However, these pollutive industries do benefit more 

from innovation induced by environmental regulations, contrary to the findings of Lanoie et al. 

(2008), indicating that the strong Porter hypothesis is more relevant for the more polluting 

industries.  

Finally, the exclusion of the aggregate and more old-fashioned mining and quarrying 

sector from our sample does not alter qualitatively the empirical results and the conclusions 

reached from the baseline estimations. 
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6    Conclusion 
 

This study has given new econometric evidence on the nexus between environmental policies 

and economic performance, measured by innovation and productivity growth. The results have 

shed further light on the renowned Porter hypothesis, in both the innovation effect (weak 

version) and productivity effect (strong version), using an industry-level panel data analysis of 

the mining and manufacturing industries in the European Union over the period 2008 to 2017. 

As this paper provides evidence for the economic effects of environmental regulations in the 

EU during the period of the second and third phase of the EU ETS, this study has provided a 

comprehensive overview containing further empirical evidence that strengthens the political 

debate on the economic performance effects of the EU ETS, in times of increasing carbon 

prices. The ability of an environmental policy to influence technological change and stimulate 

innovation, through which an industry can reach higher productivity growth, is an important 

criterion on which to judge a policy’s success (Calel and Dechezleprêtre, 2016).  

 In line with De Vries and Withagen (2005), Rubashkina et al. (2015) and Hille and 

Möbius (2019), this study recognizes the endogeneity issues accompanying the OLS-estimation 

using the environmental protection expenditures as a proxy for the stringency of environmental 

regulations. To account for reverse causality bias and other endogeneity issues, this paper has 

adopted an instrumental variable approach. The pollution control environmental expenditures 

are instrumented by the average share of pollution control expenditures over value added of the 

industry’s adjacent sectors, excluding the industry itself: 
𝐸𝑃𝐸

𝑉𝐴 −𝑗
. The instrumental variable 

follows a similar structure as the instrument of Rubashkina et al. (2015), but we include 

pollution intensity ratios to define the adjacent sectors. 

 With regards to the innovation effect of environmental regulations, this study finds 

empirical evidence for a positive relationship between the environmental regulations in the 

European Union and industry-level research and development expenditures, when accounting 

for endogeneity of the stringency measure. The results are robust against using different 

knowledge stock variables, but do not hold when using patent applications as measure for 

innovation. Although we do appoint certain issues with our instrumental variable, we argue that 

this study has provided supporting evidence for the existence of a positive innovation effect in 

line with the weak version of the Porter hypothesis. Hence, hypothesis 1 can be accepted. 

However, it is important to further foster innovation activity and increase the ability of EU’s 

environmental policy to direct technical change through the establishment of innovation 

stimulating incentives and programs, to insure the innovation effect over the years. 
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Regarding the productivity effects, this study finds some significant negative direct 

effect of environmental regulations in the EU on productivity growth. However, this significant 

effect disappears with the inclusion of time-fixed effects and when accounting for endogeneity 

issues regarding the environmental stringency measure. As the sign of coefficient remains 

negative, we cannot reject hypothesis 2A.  

Additionally, the strong hypothesis of Porter postulates the idea that environmental 

policy will lead to increasing productivity-levels, through channels of increasing innovation 

activity induced by the environmental regulations and directed to economizing and improving 

the production processes. This study finds no strong evidence supporting such a positive 

indirect effect on productivity growth in the European Union. The additional cost-burden 

accompanying the tradable emission permits of the EU ETS seems to negatively impact 

productivity growth, and this effect is larger than the potential growth from the increased 

innovation activity induced by the policy. Therefore, we reject hypothesis 2B.   

Using the OLS-estimation, a strong negative direct effect and positive indirect effect is 

found for the more pollution intensive industries. This indicates that that the more pollutive 

industries are more negatively affected by changes in the stringency of environmental 

regulations in comparison to the less pollutive industries. However, these pollutive industries 

do benefit more from innovation induced by the environmental regulations, as the R&D-

induced productivity growth effect is positive. We do suggest that further research is necessary 

to better determine this distinguishable difference between the productivity effects of the more 

pollutive industries and the less pollutive industries.  

 

This study contains certain limitations that are noteworthy. First of all, the assumption that, 

conditional on using fixed effects and all control variables within our models, the instrumental 

variable is not correlated with unobserved factors that influence R&D expenditures and TFP 

growth, might be weak. Although a similar assumption is made by Rubashkina et al. (2015), 

we do note that the EPE of adjacent sectors influences the productivity level of these adjacent 

sectors, through its additional costs component. Hence, if there are potential productivity 

spillovers within the pollution intensity industry groups, this would suggest that our instrument 

is correlated with unobserved productivity spillover effects that influence sector j’s productivity 

growth and potentially even innovation activity. Second, the overall negative productivity 

effects originate partly from the nature of our productivity growth measure. Per definition, TFP 

growth does not take environmental effects and pollution into account (Koźluk & Zipperer, 

2015). Adjusted TFP, or “green” TFP measures include environmental services as an omitted 
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output or input of the productivity definition (Koźluk & Zipperer, 2015). Third, besides the 

endogeneity issues regarding reverse causality of the main explanatory variable, some of the 

other variables in the vector of controls may be subject to simultaneity bias. For example, the 

export intensity ratios, that are included to control for the learning by exporting hypothesis, 

may increase when productivity growth is higher, as productivity growth may stimulate 

exporting activity. Finally, this study does not account for the potential that environmental 

policies may foster the creation of industries and activities that would not exist without the 

implementation of the policy. This makes the overall productivity effects of environmental 

policies more complex and uncertain a priori (Koźluk & Zipperer, 2015).  

This study provides stimulus for additional further research. First, as it is necessary to 

account for endogeneity issues accompanying the environmental protection expenditures, 

further research could focus on finding a better suited instrumental variable or adopt a different 

estimation strategy to overcome biased estimates. Furthermore, when specifically looking at 

the market-based EU ETS, it is interesting to apply different measures for the stringency of the 

environmental policy. Instead of using the pollution control environmental protection 

expenditures as a proxy, a difference in difference method or carbon price analysis can be 

conducted. However, a carbon price analysis is a difficult approach since the carbon price does 

not contain country-sector specific variation. Alternatively, further research can study the 

relationship between environmental policy and R&D expenditures directed specifically towards 

environmental objectives. Furthermore, the longer-term sustainability and overall productivity 

effects of environmental policy in the EU are subject to further research. However, longer time-

horizon effects are hard to capture and may depend on the specific policy design (Koźluk & 

Zipperer, 2015). Therefore, studies that are directed towards the different innovation and 

productivity effects of different policy designs (market-based; monitoring policies; waste-water 

management, etc.) are required. 

To conclude in a nutshell, this study finds that environmental regulations in the 

European Union, including the EU ETS, have a positive impact on industry-level innovation 

activity, supporting the weak version of the Porter hypothesis. This study finds no supporting 

evidence for a positive indirect productivity effect through innovation channels, as suggested 

by the strong version of the Porter hypothesis.  
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8    Appendices  

 

Appendix 1A – Alphabetic country list 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1B – Industry list 

Country list 

  

Austria Lithuania 

Belgium The Netherlands 

Czech Republic Poland  

Finland Portugal 

France Romania  

Germany Slovak Republic 

Greece Slovenia 

Hungary Spain 

Italy Sweden 

  

  

Industry 
NACE 

Revision 2 

Mining and Quarrying B 

Manufacturing of food products, beverages and tobacco C10-C12 

Manufacturing of Textiles, wearing apparel, leather and related products C13-C15 

Manufacturing of wood and paper products; printing and reproduction of 

recorded media 
C16-C18 

Manufacturing of coke and refined petroleum products C19 

Manufacturing of chemicals and chemical products C20 

Manufacturing of basic pharmaceutical products and pharmaceutical 

preparations 
C21 

Manufacturing of rubber and plastic products, and other non-metallic 

mineral products 
C22-C23 

Manufacturing of basic metals and fabricated metal products, except 

machinery and equipment 
C24-C25 

Manufacturing of computer, electronic and optical products C26 

Manufacturing of electrical equipment C27 

Manufacturing of machinery and equipment n.e.c. C28 

Manufacturing of Transport equipment C29-C30 

Manufacturing of Other manufacturing; repair and installation of 

machinerey and equipment 
C31-C33 
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Appendix 2A – Empirical findings – Innovation Effect  
 

Paper 
Dependent 

variable 
Sample 

Environmental 

Stringency 
Methodology Result 

Lanjouw & 

Mody (1996) 

Patents & R&D 

spending 

United States, 

Germany, 

Japan  

1970-1980 

Pollution Abatement 

Control Expenditures/ 

Interest in 

environmental 

protection 

Descriptive 

analysis – simple 

time series 

correlation 

Increasing interest in 

environmental protection 

correlates with 

innovation 

Jaffe & 

Palmer 

(1997) 

R&D 

expenditures & 

U.S. patent 

applications 

U.S. 

manufacturing 

industries  

1975-1991 

Pollution Abatement 

Control Expenditures 

Panel regression 

using industry 

fixed effects 

- A small positive 

relationship between 

PACE and R&D (0.131 

significant at 5%) 

- No significant 

relationship with patent 

applications 

 

Brunnermeier 

& Cohen 

(2003) 

Successful 

Environmental 

patent 

applications 

U.S. 

manufacturing 

industries  

1983-1982 

Pollution Abatement 

Control Expenditures / 

monitoring and 

enforcement activities 

Panel regression 

- PACE influences 

environmental innovation 

(0.0125 significant at 1% 

level) 

- Monitoring and 

enforcement activities are 

no incentive to innovate 

 

Hamamoto 

(2006) 

R&D 

expenditures 

Five heavy 

pollutive 

industries in 

Japan  

Pollution Control 

Expenditures 
Panel study 

Positive effect on R&D 

expenditures in Japan 

(0.195 significant at the 

5% level) 

Popp (2002) U.S. patents 
United States 

1970-1994 
Energy prices 

Regression 

analysis 

Energy prices have a 

positive effect on 

innovation 

Newell et al. 

(1999) 

Product 

innovation 

Product 

specific 
Energy prices Panel regression 

Energy price changes 

induce innovation 

activity 

Lanoie et al. 

(2011) 

Environmental 

R&D 

expenditures 

Survey data 7 

OECD 

countries 2003 

Environmental taxes Probit Estimation 

Positive relationship 

between environmental 

taxes and R&D (0.037 

significant at 10% level) 

Johnstone 

and Labonne 

(2006) 

Environmental 

R&D 

expenditures 

Survey data 7 

OECD 

countries 2003 

Environmental taxes Probit estimation 

Positive relationship 

between environmental 

taxes and R&D 

Arimura et 

al. (2007) 

Environmental 

R&D 

expenditures 

Survey data 7 

OECD 

countries 2003 

Perception of 

environmental 

stringency 

Tobit and bivariat 

probit estimation 

- The perception of 

environmental stringency 

positively impacts R&D 

spending 

- No stronger effect for 

flexible market-based 

policy instruments 

 

Rubashkina 

et al. (2015) 

R&D 

expenditures & 

patent 

applications 

European 

manufacturing 

sectors  

1997-2009 

Pollution Abatement 

Control Expenditures / 

(PACE/VA-j) 

Instrumental 

variable approach  

- No relationship between 

PACE and overall R&D 

- PACE has a positive 

impact on patent 

applications (0.063 

significant at 5% level) 
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Kneller and 

Manderson 

(2012) 

R&D 

expenditures  

UK 

manufacturing 

industries 

2000-2006 

Environmental 

Protection 

Expenditures (EPE) 

GMM estimation 

- Positive relationship 

between PACE and 

environmental R&D 

(0.163 significant at 1% 

level) 

- However, this is not 

true when using overall 

R&D spending 

De Vries and 

Withagen 

(2005) 

Environmental 

patents 

14 OECD 

countries  

1970-2000 

Population density as 

instrument for 

environmental 

stringency 

Instrumental 

variable approach 

Only for the IV-model a 

positive relationship 

 

 

Appendix 2B – Empirical findings – Productivity Effect  
 

Paper 
Dependent 

variable 
Sample 

Environmental 

Stringency  
Methodology Result 

Gray 

(1987) 
TFP growth 

450 U.S. 

manufacturing 

industries  

1958-1978 

PACE  Regression analysis 

- Negative effect of 

PACE on TFP growth.  

- Findings disappear 

when including 

appropriate controls 

Barbera 

and 

McConnell 

(1990) 

TFP growth 

Five U.S. 

manufacturing 

industries  

1960-1980 

Abatement capital 

Estimating cost 

elasticity of the 

abatement capital 

Negative direct effect, 

but without controlling 
for industry 

characteristics.  

Environmental 

requirements account 

for 10-30% of decline 

in productivity 

Dufour et 

al. (1998)  
TFP growth 

Canadian 

manufacturing 

industries  

1985-1988 

Investment in 

pollution control 

equipment over total 

input costs 

GLS estimation 
Negative direct effect, 

but small sample. 

Smith & 

Sims, 

(1985) 

TFP growth 

Canadian 

brewing industry  

1971-1980 

Pollution 

charges/payment 

Comparison of TFP 

growth between the 

unregulated and 

regulated firms 

Small negative effect 

of pollution charges on 

productivity growth 

Berman & 

Bui (2001) 
TFP 

Los Angeles oil 

refineries  

1977-1992 

Number of 

environmental 

regulations in place 

Fixed effect 

estimation 

Positive insignificant 

productivity effect 

Conrad & 

Wastl 

(1995) 

TFP growth 

10 pollution 

intensive 

German 

industries 1975-

1991 

Pollution abatement 

costs 

Look at the effect in 

terms of cost 

diminution 

Negative direct effect 

Pollution abatement 

costs reduce TFP 

growth by 2.5% 

Yang et al. 

(2012)  
TFP 

Taiwanese 

manufacturing 

industries  

1997-2003 

Pollution abatement 

fees & environmental 

regulation induced 

R&D spending 

Fixed effect 

estimation including 

a lag structure 

- Positive direct effect 

of environmental 

regulation on TFP 

(0.008 significant at 

10% level) 

- Positive effect of 

induced R&D on TFP 

(0.011 at 5% level) 



 66 

Lanoie et 

al. (2008) 
TFP growth 

Quebec 

(Canada) 

manufacturing 

industries  

1985-1994 

Investment in 

pollution control 

equipment over total 

input costs 

GLS estimation 

including a lag 

structure 

- Negative productivity 

effect disappears after 

three years.  

- This positive switch 

is only for the low 

pollutive industries and 

stronger for 

international 

competitive industries  

Hamamoto 

(2006) 
TFP growth 

Five heavy 

pollutive 

industries in 

Japan  

Pollution Control 

Expenditures 

- Using an extended 

Cobb-Douglas 

production function, 

including R&D 

capital 

- Lag structure 

Positive effect of 

induced R&D on TFP 

growth  

(0.282 at 5% 

significance level) 

Lanoie et 

al. (2011) 

Business 

performance 

dummy variable 

Survey data of 7 

OECD countries 

2003 

Environmental taxes 

Instrumental 

variable probit 

Estimation 

No support for strong 

version of Porter’s 

hypothesis 

Hille & 

Möbius 

(2019) 

TFP growth 

14 

manufacturing 

sectors in 28 

OECD countries 

1995 - 2009 

Shadow prices of 

energy 

GMM and FE 

estimation 

- No significant R&D 

induced productivity 

effect  

- Not controlling for 

endogeneity issues 

generates biased results 

Martínez-

Zarzoso et 

al. (2019) 

TFP 

14 OECD 

economies  

1990-2011 

OECD’s 

Environmental Policy 

Stringency (EPS) 

index 

Panel regression 

using a lag structure 

Positive long-term 

effect of the EPS index 

on productivity  

Rubashkina 

et al. 

(2015) 

TFP level & 

TFP growth 

European 

manufacturing 

sectors 

1997-2009 

PACE 
Instrumental 

variable approach 

No significant 

productivity effect of 

environmental 

regulations in the 

European 

manufacturing 

industries 
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Appendix 3A - Pollution intensity group division for the construction 

of the instrumental variable 
 

NACE Revision 2 
Pollution Intensity 
(Greenhouse Gas Emissions/Gross Output) 

IV-Group 

B 863.70 1 

C20 607.10 1 

C22-C23 1204.03 1 

C24-C25 684.72 1 

C16-C18 326.86 2 

C19 423.80 2 

C27 242.24 2 

C10-C12 77.27 3 

C21 53.57 3 

C31-C33 66.63 3 

C13-C15 41.04 4 

C26 20.03 4 

C28 38.03 4 

C29-C30 40.38 4 

 

Appendix 3B – Summary statistics of all regression variables (2008-

2017)  

 

Summary statistics over the period 2008 - 2017  

 
Unit Mean  

Standard 

Deviation 
Min Max 

Pollution 

EPE/VA 
Percentage 0.32 1.47 0 42.50 

Cleaner 

Technology 

EPE/VA 
Percentage 0.17 0.62 0 11.00 

R&D/VA Percentage 5.12 7.92 0 79.69 

∆TFP Percentage 1.61 13.69 -49.93 98.89 

KS/VA Percentage 29.34 40.61 0 193.55 

Gov.R&D/VA Percentage 4.37 7.42 0.01 83.36 

Birth Rate Percentage 8.17 7.07 0 76.00 

Death Rate Percentage 7.61 6.53 0 56.00 

EU Export Rate Percentage 27.46 17.71 0 97.00 

EU Import Rate Percentage 36.16 21.80 0.90 99.22 
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Appendix 4A – Scatterplots – R&D expenditures & EPE variable 

 
Total sample: 
 

 
By industry:  
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Appendix 4B – Scatterplots – TFP growth & EPE variable 
 

Total sample: 

 
 

By industry:  
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Appendix 5A – The innovation effect robustness checks 
 

Appendix 5A.1 – Different knowledge stock variables. 
 

 

 

 

 

 

 

 OLS-estimation 2SLS IV-estimation 

 R&D expenditures R&D expenditures 

 (1)  (2) (3) (4) (5) (6) 

       

 𝜹 = 10% 𝜹 = 20% 𝜹 = 30% 𝜹 = 10% 𝜹 = 20% 𝜹 = 30% 

       

EPE 

(Pollution 

Control) 

0.005 

(0.013) 

0.007 

(0.012) 

0.007 

(0.012) 

0.231* 

(0.122) 

0.321** 

(0.143) 

0.367** 

(0.160) 

       

       

Knowledge  

Stock 

0.435*** 

(0.061) 

0.412*** 

(0.145) 

0.519*** 

(0.108) 

0.577*** 

(0.073) 

0.545*** 

(0.091) 

0.559*** 

(0.082) 

       

       

Const. 
3.677* 

(2.144) 

4.125 

(2.636) 

2.916 

(2.291) 

3.113 

(2.721) 

2.655 

(3.350) 

1.833 

(3.589) 

       

FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes No No No 

Test  F = 16.51*** F = 14.13*** F = 16.82*** F = 18.06*** F = 10.70*** F = 17.28*** 

N 1141 1141 1141 1121 1121 1121 

R2 0.564 0.557 0.703 0.800 0.710 0.675 

Notes: Regression (1) to (6) use the OLS-estimator, whereas regression (7) to (9) adopt a 2SLS IV-estimation. The 

dependent variable in regression (1) to (3) and (7) to (9) is the log of R&D expenditures. Regressions (4) to (6) uses R&D 

intensity (R&D/VA) as dependent variable. Independent variables are the pollution control (PC) EPE, cleaner technology 

(CT) EPE; knowledge stock (KS) using depreciation rates of 10%, 20% and 30% and a vector of controls as used in the 

main results, but for space reasons the coefficients are not presented; robust standard errors in parentheses. 

Note that regression (2), (5) and (8) are already presented in the main results.  

*** indicates significance at the 1% level 

**   indicates significance at the 5% level 

*     indicates significance at the 10% level   
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 Appendix 5A.2 - Environmental policy and patent applications

  OLS-estimation  2SLS IV-estimation 

Patent applications  (1) (2)  (3) (4) 

       

ln EPE 

(Pollution Control) 
 0.021 

(0.025) 

0.016 

(0.025) 

 -0.138 

(0.209) 

-0.378 

(0.275) 

       

       

Const. 
 2.810 

(3.737) 

-0.335 

(0.208) 

 4.582 

(6.109) 

6.826 

(6.990) 

       

FE  Yes Yes  Yes Yes 

Time FE  No Yes  No Yes 

Test   F = 1.18 F = 4.09***  F = 0.80 F = 1.68* 

N  636 636  628 628 

R2  0.168 0.765  0.043 0.015 

Notes: Regression (1) and (2) use the OLS-estimator, whereas regression (3) and (4) adopt a 

2SLS IV-estimation. The dependent variable is the log of the number of patent applications at 

the European Patent Office. Independent variables are the pollution control (PC) EPE, cleaner 

technology (CT) EPE; knowledge stock (KS) and a vector of controls as used in the main results, 

but for space reasons the coefficients are not presented; robust standard errors in parentheses. 

*** indicates significance at the 1% level 

**   indicates significance at the 5% level 

*     indicates significance at the 10% level   
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Appendix 5B – The productivity effect robustness checks 
 

Appendix 5B.1 – The direct productivity effect using a pollution intensity 

dummy 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TFP growth 
 OLS-estimation  2SLS IV-estimation 

 (1) (2)  (7) (8) 

       

Pollution dummy  More pollutive Less pollutive  More pollutive Less pollutive 

       

ln EPE 

(Pollution control) 
 -0.973* 

(0.517) 

-0.138 

(0.438) 

 -2.835 

(4.388) 

1.052 

(3.448) 

       

Country-sector FE  Yes Yes  Yes Yes 

Time FE  Yes Yes  Yes Yes 

       

Test   F = 8.81*** F = 8.13***  F = 3.22*** F = 8.93*** 

No. Observations  509 517  495 508 

Within R2  0.324 0.411  0.016 0.304 

Note: the dependent variable is TFP growth; a dummy variable is included that equals one for 

the seven more pollution intensive industries and zero for the seven other less pollutive 

industries; the same vector of controls from the main results is used in all regressions of this 

table, but for space reasons the coefficients are not presented; robust standard errors are in 

parentheses. 

*** indicates significance at the 1% level 

**   indicates significance at the 5% level 

*     indicates significance at the 10% level   
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Appendix 5B.2 – The indirect productivity effect using a pollution intensity 

dummy 

 

 

TFP growth 
 OLS-estimation  2SLS IV-estimation 

 (1) (2)  (7) (8) 

       

Pollution dummy  More pollutive Less pollutive  More pollutive Less pollutive 
       

R&D instrumented by 

EPE 

 

    -2.866 

(4.900) 

-0.362 

(3.792) 

(ln R&D *  ln EPE (pc))  0.709* 

(0.376) 

-0.732** 

(0.277) 

   

Country-sector FE  Yes Yes  Yes Yes 

Time FE  Yes Yes  Yes Yes 

       

Test   F = 13.15*** F = 7.00***  F = 4.85*** F = 9.54*** 

No. Observations  500 512  500 512 

Within R2  0.350 0.395  0.134 0.262 

Note: the dependent variable is TFP growth; a dummy variable is included that equals one for the 

seven more pollution intensive industries and zero for the seven other less pollutive industries; the 

same vector of controls from the main results is used in all regressions of this table, but for space 

reasons the coefficients are not presented; robust standard errors are in parentheses. 

*** indicates significance at the 1% level 

**   indicates significance at the 5% level 

*     indicates significance at the 10% level   
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