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Idiosyncratic volatility related to behavioural

phenomena in option returns

Abstract

This paper analyses the cross-section of stock option returns by

sorting stocks on idiosyncratic volatility (ISV) on the one hand

and the difference between historical volatility (HV) and implied

volatility (IV) on the other hand and establishes a significant,

positive difference in return between high and low ISV stocks. A

zero-cost straddle and delta-hedged call trading strategy that is

long in the portfolio with stocks with the largest, positive differ-

ence between HV and IV and the highest ISV and short the port-

folio with the largest, negative difference and the highest ISV pro-

duces statistically and economically significant average, monthly

returns. These results are robust to known risk-factor models,

stock risk-factors and model assumptions, but are substantially

impacted by high transaction costs.

Keywords: Idiosyncratic volatility, implied volatility, historical volatility,

double-sorted portfolios, behavioural
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1 Introduction

There exists an interesting disparity in the relationship between the aca-

demic world and the stock market and the equity options market. Even

though by some accounts the notational value of the global option market

is actually larger than the global stock market, it receives far less attention.

Cao and Han (2013) suggest this is the result of the view that options are

merely leveraged positions in the underlying stocks. An equity option allows

an investor to either buy or sell a stock against a pre-determined price. The

value of the option essentially functions as a double-edged sword: it is deter-

mined by the price and volatility of the underlying stock, giving an investor

the opportunity to trade on a view about the future price or volatility of the

stock, but with a known option and stock price it also allows one to derive the

expected future volatility. The most prevalent estimate of future volatility is

implied volatility (IV), which can be obtained by inverting the Black-Scholes

model.

If the future volatility is estimated incorrectly by investors, this will have

the inevitable result that associated options are priced incorrectly. One in-

teresting observation in that light by Andersen, Bollerslev, Christoffersen,

and Diebold (2006) is the association of mean-reversion and expected future

volatility. This means that over time, the IV will in most instances revert

to the historical volatility (HV) of a stock, leaving room for investors to de-

rive positive return by selectively buying and selling stocks with the largest

difference between the HV and IV.

This investment strategy was implemented by Goyal and Saretto (2009)

by sorting stocks into equally-weighted portfolios, that are rebalanced monthly

on the basis of the log difference between HV and IV. The authors find that

a zero-cost trading strategy of straddles, consisting of a long position in a

portfolio of options with a large, positive difference between HV and IV and

a short position in a portfolio of options with a large, negative difference,

generates statistically significant returns of 22.7 percent per month.
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These significant returns are consistent with investor overreaction, ac-

cording to the authors. The deviations between HV and IV are very much

transitory: the deviation is non-existent a year before or after the portfo-

lio formation month and there is no traceable stock pattern, except in the

formation month. This pattern of very large deviations between HV and

IV associated with likewise stock return patterns indicates, according to the

authors, that investors increase (decrease) their estimate of future volatility

in excess of reality as a result of overreacting to current news events.

Such investor behaviour has earlier been established by Stein (1989), who

found that investors overweight current short-term implied volatility in esti-

mating long-term volatility. Goyal and Saretto (2009) apply this behavioural

explanation to the cross-section of option returns and find that by using al-

ternative, real-time estimates of implied volatility to estimate option prices

and therefore option returns, the excess option returns completely disappear.

The potential return for an investor trading on this strategy is essentially

a function of two parameters: the extent of the deviation between HV and

IV and the reversal speed of IV. A larger deviation implies a larger reversal

and a higher reversal speed will increase the return per time unit. The

return can thus be improved in two ways. One could maximize the deviation

between HV and IV by locating the portfolio initiation date at the exact

time the deviation reaches it maximum. There are two difficulties involved

with this strategy: the date where the deviation is maximized is different for

each option and will increase the complexity of the trading strategy beyond

fathomable levels. Even more so, how would one actually determine when

the deviation is maximized? The other option is to increase the reversal

speed, which is the focus of this paper.
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What factor determines the reversal speed? The speed with which IV

reverses will be determined by the ease that investors can rationally analyse

and realize that their most recent estimation does not match the current state

of affairs. Crucial in this process is the flow of information. As Hwang and

Rubesam (2013) note: if public signals are noisy, they do not provide new

information to the investor. The result is that the investor will not update

their prior distribution and will rely on prior beliefs that are in line with the

initial over(under)reaction. Therefore, the reversal speed will be determined

by the extent that investors can access information of high quality associated

with the company, ergo, by how noisy the information flow is.

A widely used proxy for the noise term in public signals is idiosyncratic

volatility (ISV). A very important paper in that regard has been written by

Cao and Han (2016). The authors concluded, albeit it for a different reason,

that there is a significant, negative relationship between delta-hedged option

returns and ISV in an OLS regression, with delta-hedged option returns as

the dependent variable and ISV as the independent variable. Even more

important, they found that this relationship strengthened after controlling

for the deviation between HV and IV in the regression. This is a relevant

indicator of the potential co-strenghtening relationship between the difference

between HV and IV and ISV, but it is not more than a starting point to

actually analyse ISV in the light of reversal speed.

The reasoning is thus as follows: to maximize returns, the mean reversion

speed has to be maximized. On the basis of Hwang and Rubesam (2013), it is

concluded that to maximize mean reversion speed, the noise in the informa-

tion flow should be minimized. ISV is a proxy for noise and should therefore

be minimized. Cao and Han (2016) not only confirm this expectation of a

negative relation between option returns and ISV, but specifically validate

the potential of combining the informational power of the difference between

HV and IV and ISV.
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This theoretical background derives certain expectations: (1). A positive

relation between option returns and the mean reversion parameter. (2) A

negative relation between option returns and ISV. (3). Combining the infor-

mational power of the difference between HV and IV and ISV in a trading

strategy increases the option returns over solely using the difference between

HV and IV.

With these expectations in mind, the main hypothesis of this paper is

that a double sort of stocks on the difference between HV and IV and ISV of

the underlying stock significantly and positively increases the portfolio return

over a single sort on the difference between HV and IV, robust to known risk-

factor models, stock risk-factors, model specifications and transaction costs.

To answer to the hypothesis of this paper, three steps are set out: (1).

Establish the returns of a trading strategy consisting of a single sort on the

difference between HV and IV in the context of a modern option dataset. (2).

Establish that the returns of a trading strategy consisting of a double sort of

stocks on the difference between HV and IV and ISV of the underlying stock

significantly and positively increases the portfolio return over a single sort

on the difference between HV and IV; this essentially constitutes proving

expectation 3. To do that, the informational value of ISV and the mean

reversion parameter first has to be proven. Expectation 1 will be proven by

forming a mean reversion parameter and relating it directly to the double-

sorted option returns in a regression. Expectation 2 will be proven by relating

ISV to the full sample of option returns. (3). Control the results for known

risk-factor models, stock risk-factors, model specifications and transaction

costs.
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This paper finds that the hypothesis of Goyal and Saretto (2009) extends

to the present day (albeit with a smaller magnitude of 9.6 percent monthly

straddle return) and more importantly, that it is outperformed by a zero-cost

trading strategy involving a long position in the option portfolio with stocks

with a high ISV and a large, positive difference between HV and IV and

a short position in the option portfolio with stocks with a high ISV and a

small, negative difference between HV and IV, displaying a monthly straddle

return of 15 percent, thereby confirming expectation 3. At the basis of this

observation is the finding that there is a significant difference in long-short

option returns between high and low ISV stocks, which explains the decision

to solely invest in high ISV stocks. In addition, expectation 1 is confirmed

by directly regressing the mean reversion parameter on the double-sorted

portfolio returns on a monthly basis and establishing a significant, positive

relation between mean reversion and option returns.

The next step is to relate the option returns to aggregate risk factors (Q5-

factor model) and stock risk-factors. Only the market factor under two spe-

cific circumstances displays significance in explaining the abnormal, double-

sorted portfolio returns and all other factors relate in no way significantly

to the abnormal returns. Even more so, the abnormal returns are very close

to the raw returns, with thus almost no part of it relating to aggregate risk

captured by the Q5-factor model. With respect to the stock risk-factors, a

cross-sectional regression using the full sample is applied, with the straddle

and delta-hedged call returns as the dependent variable and HV-IV, ISV and

six other stock variables as the independent variables. All alpha’s but one are

insignificant, indicating that almost all variation in the option returns can be

captured by the combination of HV-IV and ISV and certain stock variables.

HV-IV and ISV are significant in each regression with varying variables. This

also indicates that ISV is a relevant addition to HV-IV in explaining option

returns and more importantly, the significant, negative relation between the

option returns and ISV confirms expectation 2.
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Observing a significant, negative relation between the option returns and

ISV, while still only investing in high ISV stocks might seem contradictory,

but this would only be true with a portfolio that is solely long into low ISV

stocks. With a long-short portfolio, the interaction with HV-IV creates an

asymmetric effect that has caused it to be more profitable to invest in high

ISV stocks, regardless of the higher return of low ISV stocks, because with a

long-short portfolio, one can profit from extreme underperformance of high

ISV stocks with a negative difference between HV and IV.

In line with academic literature and Goyal and Saretto (2009), transaction

costs significantly reduce the profitability of the trading strategy. Assuming

an effective spread to quoted spread of 50 percent is sufficient to reduce re-

turns to zero for both types of returns. Including stock trading costs, 25 per-

cent is sufficient in regard to the straddle return and with delta-hedged calls,

trading at the midpoint ceases to be profitable. This shows that transaction

costs might evaporate any possible returns of a double-sorted portfolio strat-

egy, especially if the effective spread is large (close to 50 percent). Depending

on the expected level of transaction costs, the strategy might or might not

be statistically and economically significant. What is still interesting is that

the difference in return between high and low ISV is maintained, even if the

trading costs increase.

The double-sorted portfolio returns are robust to weighting method, mon-

eyness range and time period chosen. The decision to either use equal-

weighting or value-weighting does have impact on both the straddle and

delta-hedged call returns, reducing the mean return from a monthly 15 per-

cent and 1.6 percent respectively to 8.5 and 0.9 percent. One can also observe

that the extreme values become more extreme. Nevertheless, the straddle re-

turns are still significant at 1 percent and the delta-hedged call returns still

significant at 5 percent.
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Changing the moneyness range from being between 0.95 and 1.05 to 0.9

and 1.1 has barely any effect on the actual raw returns, despite a minor

increase, certainly not significantly. Lastly, the sample period is split into

two subsamples, before and after 2006, therefore equal to the period studied

by Goyal and Saretto (2009) and all years that they have not studied in their

paper. The clear observation is that after 2006 the double-sorted portfolio

returns are lower for both types of returns, with more extreme values and a

lower Sharpe Ratio. Nevertheless, both types of returns remain significant at

1 percent. This pattern, a substantial decrease in return, is not only observed

for the double-sorted portfolio returns, but also for the single-sorted returns

on HV-IV.

With this paper, the author adds to the existing literature by displaying

that the observation by Goyal and Saretto (2009) that a zero-cost trading

strategy on the difference between HV and IV produces significant returns,

still holds true to this day, with a dataset that is more than five times larger.

What is truly unique about this paper is that it is shown that their strategy

can be significantly improved upon, controlling for known risk-factor mod-

els and stock risk-factors, by adding the element of ISV, theoretically and

empirically founded by the new-found idea of increasing the reversal speed

in a behavioural context. The indirect link established between the mean

reversion parameter and portfolio returns through ISV is not only promising

in regard to mean reversion in option volatility, but might have potential for

application in other fields of research within economics. It also contributes to

the debate about the existence of efficient markets, by improving on a trading

strategy that very likely exploits a behavioural bias, producing significant,

abnormal returns that are not consistent with the existence of efficiency in

markets.
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Furthermore, the results confirm the prior found relationship between

option returns and ISV of the underlying stock by Cao and Han (2016) and

also relate to the recently growing literature revolving around researching the

relationship between(delta-hedged) option returns and stock characteristics

by Cao et al (2021) and Gao et al (2018), increasingly showing the existence

of possible anomalies in the field of options that provide opportunities for

abnormal returns.

The results also have relevance for practitioners in the field of option trad-

ing. With Goyal and Saretto (2009), a singular way was already established

to produce significant returns. With this paper, not only can practicioners

learn that the initial strategy still holds true to this day, even more impor-

tant, a new strategy is set out in which option returns can be significantly

increased. Furthermore, the paper also functions as a mirror to the be-

havioural traits of traders, which might have created the regularity discussed

in this paper.

The rest of the paper is organized in the following way: in Section 2 the

datasets collected from Optionmetrics, CRSP and Compustat and how they

were filtered is discussed. In Section 3, the HV-IV hypothesis in a modern

context is discussed, along with proving the informational value of ISV and

the mean reversion parameter and discussing the double-sorted portfolio re-

turns. Lastly, Section 4 discusses the extent to which the results are robust

to known aggregate risk factors, stock risk-factors, transaction costs and the

assumptions underlying this paper.
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2 Data

The data that is the subject of this paper has three sources: the Option-

Metrics Ivy DB Database, CRSP and Compustat. OptionMetrics is used

to gather daily closing bid and ask quotes for American equity options, in

addition to the IV, delta, gamma and vega, open interest and the strike price

for the period of the 4th of January 1996 to December 31st 2020.

Multiple data filters are applied to minimize the potential impact of

recording errors. Any observation with a bid price equal to or lower than zero

is eliminated; this is also true for observations where the ask price is lower

than the bid price. All observations for which the bid-ask spread is lower

than the minimum tick size (equal to $0.05 for option trading below $3 and

$0.10 in any other case) also get eliminated. In line with Driessen, Maen-

hout, and Vilkov (2009), all observations for which the option open interest

is equal to zero are also eliminated, in order to eliminate options with no

liquidity. Lastly, all observations that violate arbitrage bounds are removed,

in accordance with equation 2.1 for call options and 2.2 for put options:

Price < Option Cost at Midpoint < Max (0,Price − Strike ∗ e−Rf ∗(1/252)))

(2.1)

Strike < Option Cost at Midpoint < Max (0, Strike ∗ e−Rf ∗(1/252)) − Price)

(2.2)

11



The filtered OptionMetrics dataset is used to develop portfolios based on

information available on the first trading day, which is usually a Monday,

directly following the expiration Saturday of the same month (all options ex-

pire on the Saturday immediately following the third Friday of the expiration

month). In the instance that the particular Monday is a non-trading day, the

first trading day within four days later than the Monday is taken instead. If

none of the days in that particular week are trading days, the option data

is eliminated. With the goal of establishing a continuous time-series with

constant maturity, only options that have a time to maturity of one month

left are considered.

To ensure that only the most liquid options contracts are part of the

final dataset, only options with a ratio of strike to stock price (moneyness)

between 0.95 and 1.05 are considered. In particular, such a narrow range is

chosen because of two reasons: with a narrow range, the option returns are

not determined by the smile in the volatility surface. The second reason is

related to the type of strategy employed in this paper, a strategy aimed at

exploiting volatility. To maximize the effectiveness of this strategy, options

should be chosen with a high sensitivity to volatility changes, measured by

vega. Vega is the highest close to ATM and therefore, to maximize the

potential of the volatility strategy, only options that are very close to ATM

should be considered.

The final dataset consists of one put and one call contract per firm in

each month with moneyness close to 1. These contracts will be held for

one month, until expiration, after which the process starts again. The final

dataset consists of 381,410 monthly pairs of put and call contracts, over in

total 8641 stocks. Each of the monthly pairs has non-missing observations

on the data that is required to calculate the straddle and delta-hedged call

returns.
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The Compustat database is used to gather data for two stock risk-factors

that are used as control factors, respectively size and book-to-market value

(BM). Regarding the Compustat data, firms which have less than two years

of data are removed to avoid a back-filing bias, in accordance with Loughan

and Wellman (2011) and firms with a negative book value of equity are also

removed, based on Fama and French (1993). Following Fama and French

(1993), size is equal to the market value of equity and is defined as the share

price multiplied with the amount of shares outstanding (CRSP items PRC

and SHROUT). BM is defined as the book equity divided by size, with book

equity equal to equity value plus deferred taxes and investment tax credit

minus preferred stock value. The latter, depending on availability and anal-

ogous to Fama and French (1993), is equal to the redemption- (Compustat

item PSTKRV), liquidation- (item PSTKL), or par-value (item PSTK), in

that order. Equity value is defined as, depending on availability, stockhold-

ers’s equity (Compustat item SEQ), ordinary shares equity plus preferred

stock at redemption value (items CEQ and PSTKRV), total assets minus

liabilities (items AT and LT) or simply book values per shares times shares

outstanding (items BKVLPS and CSHO), in that order. The Compustat

data is coupled with the CRSP data by merging the daily price information

from the CRSP data set from July in year t to June in year t +1 with the

Compustat data of year t-1.
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Table 2.1: Summary Statistics.
HV is defined as the standard deviation of the daily stock return of the past

252 trading days. The calculation of ISV consists of two steps: (1). The daily
return over all observations is regressed on the daily market return over the past
252 trading days, (with a minimum of 21 trading days required) which determines
the residual return. (2). ISV is defined as the standard deviation of the residual
return of the past 252 trading days. ISV and HV are annualized by multiply-
ing the value by the square of 252, for the amount of trading days in 1 year.
IV is calculated as the average of the implied volatility of the monthly put and
call contract. Delta represents the difference between this month and the pre-
vious month, calculated by each stock. The sample consists of 381,410 monthly
pairs of put and call contracts, over in total 8641 stocks from 1996 until 2020.

Mean Std. Dev. Min Med Max Kurt Skew

HV .525 .289 .017 .464 7.068 47.895 3.620

IV .517 .254 .021 .464 2.637 6.692 1.430

ISV .468 .286 .009 .411 7.028 50.341 3.665

∆HV .004 .058 -.964 .001 1.676 152.262 3.485

∆IV -.002 .067 -.886 -.000 0.916 43.202 0.084

∆ISV .003 .053 -.970 .001 1.674 198.704 4.795

For each stock and for each month in the sample, three different measures

of volatility are calculated: historical volatility (HV), implied volatility (IV)

and idiosyncratic volatility (ISV). The CRSP dataset consisting of the daily

price data is the basis of the HV, ISV and the stock trading costs (discussed

in Section 4) calculations. HV is defined as the standard deviation of the

daily stock return of the past 252 trading days. The calculation of ISV

consists of two steps: (1). The daily return over all observations is regressed

on the daily market return over the past 252 trading days, (with a minimum

of 21 trading days required) which determines the residual return. (2). ISV

is defined as the standard deviation of the residual return of the past 252

trading days. ISV and HV are annualized by multiplying the value by the

square of 252, for the amount of trading days in 1 year.
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IV is calculated as the average of the implied volatility of the monthly put

and call contract from the OptionMetrics database. The average of each stock

per month is calculated, thereby creating a time-series for each stock. The

cross-sectional average of IV, HV and ISV is reported regarding all relevant

statistics (median, standard deviation, minimum, maximum, skewness, and

kurtosis) in Table 2.1, essentially mimicking the summary statistics of an in-

dividual stock. The mean value of HV and IV is extremely close, respectively

with a value of 52.5 percent and 51.7 percent; in addition, HV is slightly larger

than IV, in line with Goyal and Saretto (2009) and Driessen, Maenhout, and

Vilkov (2009). HV is more positively skewed and more variable than IV and

also displays a larger kurtosis, in contrast with Goyal and Saretto (2009),

most likely resulting from using a larger and more recent dataset. This gives

a first indication that the fundamentals may have changed since Goyal and

Saretto published their findings. ISV is smaller than both HV and IV at

46.8 percent and, as expected, has a distribution that is very similar to HV

in terms of variance, skewness and kurtosis. One can deduce that most of

the volatility in stock returns is idiosyncratic, thus specific to each stock.

In addition to this, a time series has been created of the monthly change in

HV, IV and ISV. The monthly change in either HV, IV or ISV is close to zero

on average, but has large spikes over time relating to important information

disclosures relevant to a specific stock, visible in the relatively high variance.

For example, the largest negative spike in HV is minus 96.4 percent in one

month.
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3 Results

In the introduction, it was set out that to answer to the hypothesis of this

paper, the research is designed around three vital steps. The subsection HV-

IV will cover step 1: establish the returns of a trading strategy consisting of

a single sort on the difference between HV and IV in the context of a modern

option dataset. This involves replicating the research design of Goyal and

Saretto (2009), while using a dataset that is five times larger, to extend their

work to modern times and develop a baseline for the introduction of ISV. In

the subsection Idiosyncratic Volatility step 2 will be covered.

3.1 HV-IV

3.1.1 Portfolio Formation

The construction of the modern-day extension of the Goyal and Saretto

(2009) research design starts with the portfolio construction process. This

process essentially revolves around two types of portfolios. The first type

of portfolio is constructed by sorting each stock into a decile in accordance

with the log difference between HV and IV respectively. Portfolio 1 holds the

stocks with the most negative or lowest, negative difference between HV and

IV and portfolio 10 will hold the stocks with the largest or largest positive

difference. Each decile is equal-weighted and rebalanced on a monthly basis.

The second type of portfolio consists of two deciles, positive (P, HV higher

than IV) and negative (N, HV smaller than IV). These two portfolios are

monthly rebalanced and relative value-weighted, weights in each of the two

groups are proportional to the (absolute) deviation between HV and IV.

Table 3.1 on the next page displays the descriptive statistics of both types

of portfolios. The average is calculated over each stock per month, resulting

in a continuous time-series, either equally-weighted or value-weighted in line

with the respective weighting method. The statistics displayed in the table

are the time-series average of these statistics.
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3.1 HV-IV

Table 3.1: Formation period statistics of all portfolios, sorted on the difference
between HV and IV.

The decile portfolios are constructed by sorting each stock into a decile in accor-
dance with the log difference between HV and IV. Portfolio 1 holds the stocks with
the most negative or lowest negative difference between HV and IV and portfolio 10
will hold the stocks with the largest or largest positive difference. Each decile is equal-
weighted and monthly rebalanced. The last two portfolios, positive (P, HV higher than
IV) and negative (N, HV smaller than IV), are relative value-weighted, weights in each
of the two groups are proportional to the (absolute) deviation between HV and IV.
The average is calculated over each stock per month. The sample consist of 381,410
monthly pairs of put and call contracts, over in total 8641 stocks from 1996 until 2020.

Decile portfolios

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (N) (P)

HVt − IVt -.189 -.082 -.046 -.022 -.002 .015 .035 .057 .088 .191 -.109 .116

HVt .430 .441 .448 .460 .464 .470 .482 .498 .522 .603 .457 .566

IVt .618 .523 .494 .482 .466 .455 .448 .442 .434 .412 .567 .450

∆c .548 .541 .537 .534 .530 .525 .522 .519 .515 .514 .539 .524

∆p -.457 -.466 -.469 -.472 -.477 -.482 -.485 -.489 -.493 -.496 -.468 -.484

Γ .178 .174 .173 .172 .175 .174 .175 .177 .183 .209 .183 .203

ν 3.326 3.613 3.709 3.726 3.794 3.808 3.821 3.835 3.795 3.686 3.289 3.495

Observing Table 3.1, there is a clear pattern in both HV and IV in

analysing the deciles from 1 to 10: HV increases, whereas IV decreases.

Because of this opposing movement, the difference between HV moves from

negative 18.9 percent at decile 1, close to zero at decile 5, until positive

19.1 percent at decile 10. The spread between decile 1 and 10 for HV (17.3

percent) and IV (20.6 percent) is relatively dissimilar and larger for IV, dis-

playing that a sort on the difference between HV and IV is more than merely

exploiting different levels of IV, but captures a certain dynamic of that differ-

ence. With the P and N deciles, the exact same pattern is observed, although

the pattern is less extreme than by strictly looking at decile 1 and 10, im-

plying that the extreme decile portfolios contain options with more severe

deviations of HV and IV than the P and N portfolios.
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3.1 HV-IV

The option Greeks, delta, gamma and vega, do not appear to display a

pattern and do not vary much in analysing the deciles from 1 to 10. The

only observation that could be made is a slight, opposing pattern in the delta

of the call and the delta of the put options. This pattern was also observed

with Goyal and Saretto (2009) and absolute values of the option Greeks are

extremely similar as well. This is also true for the P and N portfolios.

3.1.2 Portfolio Returns

A simple, but important decision in developing and implementing a re-

search design revolves around the calculation of the option returns. The goal

is to solely study the volatility characteristics of the options and not report

any irrelevant or unwanted movements which provides no information in re-

gard to the hypothesis. Therefore, it is necessary to neutralize movements

in the underlying stock. To achieve this goal, the decision was made to work

with two types of returns: straddle returns and delta-hedged call returns.

Delta-hedged put returns are similar to delta-hedged call returns and are

therefore not discussed. A straddle return is the return of a straddle portfo-

lio, which is the combination of a call and put option on the same stock, with

equal strike price and maturity. A delta-hedged call return is the return of

a delta-hedged call portfolio, consisting of a call option plus delta shares of

the underlying stock sold short at the initiation date and an equal amount

of shares of the underlying stock bought at expiration.
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3.1 HV-IV

There are two important things to note: the delta-hedged call portfolios

are not rebalanced, as is commonly applied, during the period until expira-

tion that they are held. This decision, made out of simplicity concerns, has

a two-fold effect: on the one hand, it saves this strategy from incurring high

transaction costs because of frequent rebalancing to trade the underlying

stock, needed to adjust the delta to the desired level; on the other hand, be-

cause the delta will change over the period the portfolio is held, movements

in the underlying stock will not be completely neutralized as a result, in-

creasing the risk of the strategy. Secondly, this paper uses data on American

options. One important characteristic of American options is the possibility

of early exercise. This possibility is ignored because of simplicity concerns

and the net effect on the returns is not clear, as suggested by Poteshman and

Serbin (2003).

For each stock and for each month in the sample, a call and put contract

with the same underlying stock, maturity and strike price are matched, that

is also approximately ATM and has one month to maturity. The next step is

to construct a time-series of straddle and delta-hedged call returns. Equation

3.1 displays the calculation of straddle returns for call options, equation 3.2

for put options and equation 3.3 shows the calculation of delta-hedged call

returns:

Straddlec = (Max (0,Expiration Price − Strike)/

Sum of Put and Call Option Cost) − 1
(3.1)

Straddlep = (Max (0,Strike − Expiration Price)/

Sum of Put and Call Option Cost) − 1
(3.2)

Hedgec = ((Max (0,Expiration Price − Strike) + Trading Delta ∗ Price

− Call Option Cost − Trading Delta ∗ Expiration Price)/

(Call Option Cost + Trading Delta ∗ Expiration Price)

(3.3)
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3.1 HV-IV

To highlight the meaning of the prior equations, the calculation of the

straddle portfolio returns consist of two elements: the profit and the cost.

The profit is equal to the terminal payoff of the option that expires in the

money, which depends on the stock price at expiration and the strike price

of the option. The cost is equal to the sum of the average of the closing

bid and ask quotes of the call and put. Dividing the profit by the cost and

subtracting 1 delivers the straddle return.

The calculation of the delta-hedged call portfolio returns consists of the

same elements. The profit is equal to the sum of the terminal payoff and

the delta on the first trading date times the trading price on that day, minus

the cost of the delta-hedged call portfolio. The cost of the delta-hedged call

portfolio is equal to the average of the closing bid and ask quote of the call

option plus the amount of shares bought at the first trading date of the

portfolio multiplied with the expiration price. The return is equal to the

profit divided by the cost.

An important difference has to be made between the portfolio formation

date and the first trading date. To avoid microstructure biases, there is a

difference of one day implemented between the portfolio formation signal,

the difference between HV and IV, and the day the portfolio is first traded.

The signal is taken and the portfolio is formed on the first trading day after

the expiration Friday of the month, usually a Monday. The portfolio is

traded on the second trading day after the expiration Friday of the month.

In the instance that the particular Tuesday is a non-trading day, the first

trading day within four days later than the Tuesday is taken instead. If

none of the days in that particular week are trading days, the option data is

eliminated. A similar approach is applied in regard to the expiration date:

in many instances, the OptionMetrics database lacks data on or close to the

expiration date of an option. Therefore, if there is no price information on

the closing date, the first available data in the six days prior is used. If at

none of those days any information is available, the option is eliminated.
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3.1 HV-IV

Table 3.2: Post-formation period returns of all portfolios, sorted on the difference between
HV and IV.

The calculation of the straddle portfolio returns consist of two elements: the profit and the cost.
The profit is equal to the terminal payoff of the option that expires in the money, which depends on
the stock price at expiration and the strike price of the option. The cost is equal to the sum of the
average of the closing bid and ask quotes of the call and put. Dividing the profit by the cost and
subtracting 1 delivers the straddle return. The calculation of the delta-hedged call portfolio returns
consists of the same elements. The profit is equal to the sum of the terminal payoff and the delta
on the first trading date times the trading price on that day, minus the cost of the delta-hedged call
portfolio. The cost of the delta-hedged call portfolio is equal to the average of the closing bid and
ask quote of the call option plus the amount of shares bought at the first trading date of the portfo-
lio multiplied with the expiration price. The return is equal to the profit divided by the cost. The
returns are equal-weighted (for deciles) or value-weighted (for P and N portfolios) across all the stocks
in the portfolio on a monthly basis. SR stands for Sharpe Ratio. SR is annualized. The sample con-
sists of 381,410 monthly pairs of put and call contracts, over in total 8641 stocks from 1996 until 2020.

Decile Portfolios

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (10-1) (N) (P) (P-N)

Panel A: Straddle Returns

Mean -.040 .016 .013 .027 .033 .033 .026 .030 .047 .056 .096 -.025 .027 .053

Std .265 .310 .304 .322 .319 .345 .342 .338 .351 .322 .211 .254 .265 .188

Min -.435 -.493 -.446 -.406 -.431 -.401 -.413 -.419 -.425 -.378 -.932 -.465 -.500 -.709

Max 2.904 3.400 3.288 3.489 3.324 3.607 3.887 3.538 3.587 2.877 1.224 2.553 1.964 .876

SR -.523 .178 .144 .291 .356 .327 .266 .302 .466 .599 1.571 -.346 .357 .970

Panel B: Delta-Hedged Call Returns

Mean -.000 .003 .003 .004 .005 .005 .006 .006 .007 .008 .009 .002 .006 .004

Std .036 .039 .038 .041 .039 .044 .040 .042 .041 .040 .021 .043 .037 .027

Min -.058 -.058 -.050 -.052 -.052 -.044 -.053 -.044 -.047 -.041 -.065 -.064 -.060 -.184

Max .395 .487 .468 .526 .455 .556 .489 .538 .489 .417 .113 .464 .323 .115

SR -.039 .271 .303 .355 .465 .423 .491 .456 .599 .725 1.459 .156 .538 .486

Each option is designated to a certain portfolio. The average, monthly

return is calculated for each portfolio to create a continuous time-series of

option returns, either equally-weighted or value-weighted depending on the

type of portfolio. Assuming that a long-short portfolio with zero wealth in-

vested should have zero return, a long-short variable is constructed, equal

to the difference between the average return on portfolio 10 and portfolio 1.

Under this assumption, a t-test under null hypothesis equal to zero is applied,

using Newey-West (1987) heteroskedasticity and autocorrelation consistent

standard errors and a correction for twelve lags, as twelve lags is most ap-

propriate for a dataset that spans several decades and has monthly data.

21



3.1 HV-IV

Table 3.2 displays the summary statistics of both the straddle and delta-

hedged call portfolio returns in regard to both type of portfolios that have

been described earlier: the 10 decile portfolios and the positive and negative

portfolio. The statistics displayed in the table are the time-series average

of these statistics. Any significant coefficient in this t-test will indicate that

the hypothesis of Goyal and Saretto (2009) also applies to the period of 1996

until 2020. In addition to standard summary statistics, the Sharpe Ratio,

a measure of the risk-return tradeoff, is displayed. The Sharpe Ratio is

calculated as the average return divided by the monthly standard deviation

and annualized by multiplying this number by the square of 12.

Panel A of Table 3.2 displays the relevant statistics of the straddle port-

folios. The average return varies from –4.0 percent in decile 1, continuously

increasing to 5.6 percent in decile 10, a difference of 9.6 percent. This is

substantially lower than what Goyal and Saretto (2009) found. The accom-

panying standard deviation is relatively low and consistent across each decile,

with no clear pattern. The long-short straddle portfolio (10-1) produces a

significant at 1 percent (t-value of 5.68), 9.6 percent return per month. The

Sharpe ratio of the straddle strategy is also very substantial, at 1.571. The

P-N straddle portfolio has a substantially lower average return at 5.3 percent.

The monthly return of 5.3 percent is significant at 1 percent (3.66), but is

lower than the 10-1 portfolio, very likely because it does not exploit the most

extreme deviations of HV and IV, as discussed in the data section. Likewise,

the Sharpe Ratio is lower, at 0.97.
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3.1 HV-IV

With the delta-hedged call returns in Panel B of Table 3.2, a very similar

pattern is observed as compared to the straddle returns: returns increase

from decile 1 to 10 and the standard deviation is constant and displays no

pattern. What is different is the magnitude of the returns: the returns

are very small and close to zero. This difference can be logically explained

from two perspectives. (1). Straddles can exploit mispricing in both calls

and puts, whereas delta-hedged calls can solely exploit the mispricing in

calls. (2). A delta-hedged call portfolio partly consist of an investment in

the underlying stock, passively neutralizing stock price movements. Also,

regarding investments in the underlying stock, no mispricing is assumed.

Regardless, a clear pattern in mean option returns is visible. The long-short

portfolio produces a 0.9 percent return per month, significant at 1 percent

(4.76), with a substantial Sharpe Ratio of 1.459, not dissimilar to the straddle

returns, despite the difference in the magnitude of the returns. The P-N

portfolio produces an even smaller, monthly return of 0.4 percent, significant

at 10 percent (1.96), with a less impressive Sharpe Ratio of 0.486.

It must also be highlighted that the statistical significance of the monthly

option returns, either straddle or delta-hedged call or more specifically, the

spread in option returns across portfolios, is not the result of the reality that

stocks in decile 1 have high IV and in decile 10 have low IV. A sort solely on

HV or IV still displays a statistically significant difference in return between

decile 10 and 1.
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3.2 Idiosyncratic Volatility

3.2 Idiosyncratic Volatility

In the introduction, it was set out that to answer to the hypothesis of this

paper, the research is designed around three vital steps. In the subsection

Idiosyncratic Volatility step 2 will be covered: establish that the returns of

a trading strategy consisting of a double sort of stocks on the difference be-

tween HV and IV and ISV of the underlying stock significantly and positively

increases the portfolio return over a single sort on the difference between HV

and IV; this essentially constitutes proving expectation 3. Essentially, the

goal is to prove there is a significant difference in option returns between high

and low ISV and use that information to improve the option returns with a

double-sort on the difference between HV and IV and ISV. To do that, the

informational value of ISV and the mean reversion parameter first has to be

proven. Expectation 1 will be proven by forming a mean reversion parameter

and relating it to the double-sorted option returns. Expectation 2 will be

proven by relating ISV directly to the full sample of option returns.

3.2.1 Informational Value

The addition of ISV should not only be theoretically founded, as was

laid down in the introduction, but also empirically supported. In the words

of John Locke, experience is the sole guide of the acquirement of knowledge

and thus this envoyage to acquire knowledge should be guided by experience.

Goyal and Saretto (2009) displayed that volatility is highly mean-reverting

and therefore, that any forecast of future volatility must account for this. One

of those forecasts is embedded in the IV of a stock. The hypothesis derived

from this, is that IV captures some information about future volatility. The

idea founding this paper is that ISV also captures some information about

future volatility.
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3.2 Idiosyncratic Volatility

To motivate this proposition, a standard rationality test is constructed

on the relation between future realized volatility (FV) and HV, IV and ISV,

in line with Christensen and Prabhala (1998), applying two monthly cross-

sectional regressions, as displayed in equation 3.4 and 3.5:

Fvi,t+1 = αt + β1tivi,t + β2thvi,t + +εi,t+1 (3.4)

Fvi,t+1 = αt + β1tivi,t + β2thvi,t + β3tisvi,t + εi,t+1 (3.5)

In equation 3.5, which is equal to equation 3.4 extended with ISV, fv is the

log value of FV over the total life of the option, defined as the standard

deviation of daily returns. Hv and iv are the log value of HV and IV. There

is one cross-section regression without ISV and one with ISV as explanatory

variable, to compare the result of the addition of ISV and to prove that

ISV captures certain information about FV that is not subsumed by HV

and IV. The null hypothesis that underlies the regressions is that, if IV,

HV and ISV do not contain significant information on FV, ergo, are an

unbiased forecast of FV, the parameters α, β1, β2 and β3 should have a value

equal to, respectively, zero, one, zero and zero. The regressions are applied

on a monthly basis to calculate the time-series average of the regression

coefficients, using Newey West (1987) heteroskedasticity and autocorrelation

consistent standard errors and a correction for twelve lags.

In the multivariate regression (equation 3.4) with only HV and IV as

explanatory variables, it is observed that β1(β2) is equal to .617 (.097), with

t-values of 33.35 (15.97), which is relatively similar to Goyal and Saretto

(2009). After adding ISV in the multivariate regression (equation 3.5) as

explanatory variable, both β1 and β2 remain very significant with respective

values of .478 and .093, whereas more importantly, β3 is equal to 0.135 and

significant at 1 percent, with a t-value of 3. This is an important indication

that ISV adds new information with respect to FV that is not subsumed by

HV and IV and that it is not an unbiased predictor of FV.
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3.2 Idiosyncratic Volatility

3.2.2 Mean Reversion Parameter

The mean reversion parameter is the result of an autoregressive model

with 1 lag in an univariate framework, an AR(1) process. The variable that is

assumed to be mean-reverting, is equal to the difference between HV and IV.

In the framework of Goyal and Saretto (2009), that variable should mean-

revert to zero in the long-run. The goal is to establish the mean-reverting

level of each double-sorted portfolio individually, as to be able to compare

different levels of the difference between HV and IV and ISV. The first part

of the process is to average the difference between HV and IV for each firm

on a daily basis over the multiple options each firm has available. Only

stocks which have been designated to a certain double-sorted portfolio in the

portfolio formation process are used. A monthly regression for each firm is

applied in accordance with equation 3.6:

HV − IVi,t = αt + β1HV − IVi,t−1 + εi,t (3.6)

After establishing β1 on a monthly basis for each firm (requiring a minimum

of 14 observations), it is then averaged across each portfolio on a monthly

basis. β1 is essentially what is most interesting, because it displays the extent

to which prior values are correlated with current values of the difference

between HV and IV. The closer this value is to 1, the stronger the mean

reversion; the closer it is to 0, the weaker the mean reversion is. Within the

behavioural framework that this paper has adopted, it is expected that there

is a positive relationship between β1 and the double-sorted portfolio returns.

In the next subsection, the mean reversion parameter determined with the

aforementioned method will be regressed directly on the double-sorted option

returns to test expectation 1.
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3.2 Idiosyncratic Volatility

3.2.3 Double-Sorted Returns

The implementation of the addition of ISV in terms of portfolio formation

follows a similar process as described before. This paper will now focus solely

on decile portfolios and not on the P-N portfolios, because the focus will now

shift to ISV and the deciles are more relevant with respect to researching

ISV. A double-sort is implemented in a 5x10 system with dependent sorting

(baseline is ISV), on the log difference between HV and IV and ISV, equally-

weighted and monthly rebalanced. The returns are calculated in the same

way as described before and the same procedures still apply.

As one will observe in Table 3.3 on the next page, the mean reversion

parameter and statistics of double-sorted option returns are displayed of the

high and low HV-IV and ISV portfolios and four specific double-sorted port-

folios. Why these four specific portfolios? To reiterate again, the goal of this

subsection is to display that there is a significant difference in option returns

between high and low ISV stocks and use that information to generate a

double-sorted portfolio that outperforms a single-sorted portfolio on the dif-

ference between HV and IV. To prove this, one has to compare a long-short

portfolio solely invested in high ISV stocks and a long-short portfolio solely

invested in low ISV stocks.

A t-test under null hypothesis equal to zero is applied, using Newey-West

(1987) heteroskedasticity and autocorrelation consistent standard errors and

a correction for twelve lags. If the difference between those two long-short

portfolios is significant, ISV does matter with respect to option returns over

the time period 1996 to 2020 and could be used to improve the option returns

over a single-sort. That is why those four portfolios are especially relevant,

which consist of: low ISV and a low, negative difference between HV and

IV (1), low ISV and a high, positive difference between HV and IV (2), high

ISV and a low, negative difference between HV and IV and (3) high ISV and

a high, positive difference between HV and IV (4).
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3.2 Idiosyncratic Volatility

Table 3.3: Post-formation period returns and mean reversion parameter
of relevant portfolios, sorted on the difference between HV and IV and
ISV.

A double-sort is implemented in a 5x10 system with dependent sorting (base-
line is ISV), on the log difference between HV and IV and ISV, equally-weighted
and monthly rebalanced. The returns are calculated in a similar fashion as in
Table 3.2. The mean reversion parameter is the result of an autoregressive model
with 1 lag in a univariate framework, an AR(1) process. The variable that is
assumed to be mean-reverting, is equal to the difference between HV and IV. The
four portfolios consist of: low ISV and a low, negative difference between HV and
IV (1), low ISV and a high, positive difference between HV and IV (2), high ISV
and a low, negative difference between HV and IV and (3) high ISV and a high,
positive difference between HV and IV (4). The sample consists of 381,410 monthly
pairs of put and call contracts, over in total 8641 stocks from 1996 until 2020.

HV-IV ISV Double-Sorted

(Low) (High) (Low) (High) (1) (2) (3) (4) (Difference)

Panel A: Straddle Returns

Mean -.043 .060 .040 .010 .016 .071 -.095 .055 .095***

Std .248 .369 .450 .228 .543 .579 .227 .354 .613

Min -.415 -.417 -.518 -.355 -.740 -.620 -.604 -.468 -1.287

Max 2.582 3.785 5.426 1.731 5.194 6.528 1.060 2.245 5.414

SR -.606 .568 .311 .153 .103 .426 -1.454 .541 .539

Panel B: Delta-Hedged Call Returns

Mean -.000 .008 .005 .005 .005 .007 -.007 .009 .014***

Std .037 .036 .034 .047 .046 .036 .050 .050 .062

Min -.058 -.039 -.046 -.047 -.065 -.054 -.096 -.053 -.180

Max .383 .409 .448 .508 .402 .404 .286 .406 .432

SR -.034 .729 .473 .355 .405 .675 -.476 .612 .791

Panel C: Mean Reversion Parameter

Mean .684 .727 .751 .671 .737 .723 .601 .702 .115

White (1980) Heteroskedastic consistent standard errors. ***, **, * show that a
coefficient is significant respectively on a 1, 5 and 10 percent level.

28



3.2 Idiosyncratic Volatility

Table 3.4: Post-formation period returns, comparing a single-sort on
the difference between HV and IV with a double-sort on the difference
between HV and IV and ISV.

The Single portfolio is constructed by taking the long-short portfolio of the
single-sort on the difference between HV and IV. The Optimized portfolio is
long in the portfolio with stocks with the largest, positive difference between
HV and IV and the highest ISV and short the portfolio with the largest,
negative difference and the highest ISV. The sample consists of 381,410 monthly
pairs of put and call contracts, over in total 8641 stocks from 1996 until 2020.

Decile Portfolios

Single Optimized

Panel A: Straddle Returns

Mean .096*** .150***

Std .211 .348

Min -.932 -.863

Max 1.224 2.657

SR 1.571 1.497

Panel B: Delta-Hedged Call Returns

Mean .009*** .016***

Std .021 .043

Min -.065 -.126

Max .113 .199

SR 1.459 1.272

White (1980) Heteroskedastic consistent standard errors. ***, **, * show that a
coefficient is significant respectively on a 1, 5 and 10 percent level.
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3.2 Idiosyncratic Volatility

The calculation of the Difference portfolio that is in Table 3.3 is displayed

in equation 3.7:

Rt = (4t − 3t) − (2t − 1t) (3.7)

The first observation that is clear from Table 3.3 is that expectation 1, a

positive relation between option returns and the mean reversion parameter,

appears confirmed. One can anecdotally notice that for both the straddle and

delta-hedged call returns, there is a direct, positive relation (for example,

low HV-IV displays lower returns and a lower mean reversion parameter

than high HV-IV). More importantly, a monthly regression is applied with

the full range of double-sorted portfolios as the dependent variable (either

straddle or delta-hedged call returns) and the mean reversion parameter as

the independent variable:

Double-Sorted Returns t = α + β1Mean Reversiont + εt (3.8)

In regard to the straddle (delta-hedged call) returns, β1, the mean reversion

parameter, is positive and equal to .095 (.008) and is significant at 5 per-

cent in both instances, indicating that the mean reversion parameter has a

significant, positive relation with double-sorted option returns, confirming

expectation 1. This strong evidence gives good consideration to analysis ex-

pectation 3: combining the informational power of the difference between

HV and IV and ISV in a trading strategy increases the option returns over

solely using the difference between HV and IV. Therefore, one has to com-

pare a long-short portfolio solely invested in high ISV stocks and a long-short

portfolio solely invested in low ISV stocks. This difference is shown in the

last column of Table 3.3 and is named the Difference portfolio.
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3.2 Idiosyncratic Volatility

Observing Table 3.4, the most important observation is that the mean

difference between a long-short portfolio solely invested in high ISV stocks

and a long-short portfolio solely invested in low ISV stocks is positive and

significant at 1 percent, indicating that investing in high ISV stocks gener-

ates a larger return than investing in low ISV stocks in a long-short context.

This might seem contradictory with the hypothesized positive relationship

between option returns and ISV (which will be proven in the subsection

Stock Risk-Factors). In actuality, the relation is not disconfirmed by Table

3.4: each low ISV portfolio, 1 and 2, displays larger returns than the com-

parative high ISV portfolio, respectively 3 and 4. The relation would only be

contradictory with a portfolio that is solely long into low ISV stocks. With a

long-short portfolio, the interaction with HV-IV creates an asymmetric effect

that has caused it to be more profitable to invest in high ISV stocks, regard-

less of the higher return of low ISV stocks. The high ISV long-short portfolio

produces larger returns because the short portfolio displays extremely nega-

tive returns, which is also implied by the very low mean reversion parameter.

In Table 3.4, the return of the long-short, double-sorted portfolio exclu-

sively invested in high ISV stocks is compared to the return of the single-

sorted portfolio on HV-IV. One can observe a significant at 1 percent increase

in the mean return in the comparison between the single-sorted and double-

sorted portfolios, for both the straddle (5.6 percent) and delta-hedged call

returns (0.7 percent), with a similar increase in the standard deviation. The

Sharpe Ratio therefore remains consistent or decreases slightly with the delta-

hedged call returns, implying that the addition of ISV indeed does increase

returns, but also the associated risk. Nevertheless, one can conclude that the

returns of a trading strategy consisting of a double sort of stocks on the dif-

ference between HV and IV and ISV of the underlying stock significantly and

positively increases the portfolio return over a single sort on the difference

between HV and IV.
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4 Control Factors

The results have now been established and are very promising. The re-

search design of this papers revolves around three vital steps. The Section

Control Factors will cover step 3: control the results for known risk-factor

models, stock risk-factors, model specifications and transaction costs. This

essentially constitutes asking whether those large returns, provided by the

addition of ISV, are actually abnormal, are merely compensation for some

form of (unknown) risk taken or simply disappear altogether after factoring

in transaction cost. If the returns are systematic compensation for a taken

risk or disappear after factoring in transaction costs, there is very good rea-

son to believe that these results will hold, but if they simply constitute a

free lunch, one would expect these results to disappear shortly as a result of

arbitrageurs.

In the endeavour to investigate the returns, it is important to consider

that there is no general formal theoretical model that can be applied to

the cross-section of option returns, necessarily requiring flexibility. One such

path is the assumption that option returns, to some extent, depend on similar

risk factors and characteristics that are relevant in interpreting stock returns.

A total of four perspectives are applied to analyse the large returns pro-

vided by the addition of ISV, starting with running factor-model regressions

with the Q5-factor model on the Difference and Optimized portfolio. The

decision to use the Q5-factor model and not the more common Fama French

5-factor model will be explained further. Then it is explored to what extent

stock risk-factors relate to variation in the option returns via cross-sectional

regressions relative to the full sample of indidividual option data. Thirdly, the

results are exposed to both varying effective spreads to quoted spreads and

stock trading costs, to determine the extent to which transaction costs reduce

the option returns. Lastly, the robustness of the option returns are checked

against three important assumptions underlying the paper, the weighting

method, moneyness range and time period chosen.
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4.1 Risk Factors

Various specifications of a linear pricing model are employed as the in-

dependent variables, regressed on both the Difference and the Optimized

portfolio of both the straddle and delta-hedged call portfolio returns. The

goal of this exercise is to display that the option returns are not related to

aggregate sources of risk. The two specifications of the linear pricing model

consists either of solely the market return and the Q5-factor model by Hou,

Mo, Xue and Zhang (2020). The reason to choose this factor model over the

more commonly used Fama French 5-factor model or 6-factor model, is the

finding by Hou, Mo, Xue and Zhang (2020) that the Q5-factor model not only

substantially outperforms and subsumes the Fama French 6-factor model in

a large set of testing deciles based on 150 anomalies, but also a very large

set of other, important factor models. The Q5-factor model consists of five

factors: the market return, size, investment, return on equity and expected

growth.

The regression specification of the linear pricing model on the long-short

portfolio of both the straddle and delta-hedged call portfolio returns has the

form of equation 4.1:

Rpt = αp + β′pFt + εpt (4.1)

In this regression, Rp is the return spread on the straddle and delta-hedged

call portfolios. The constant, αp , is the most important variable to interpret

in the context of risk-adjusted returns, as a statistically and economically sig-

nificant alpha might lead to the conclusion that, after correcting for known,

relevant risk factors, there is still abnormal return left. The size of the con-

stant should therefore be interpreted as the magnitude of the abnormal return

relative to the specified factor model. Ft are the factors, which, depending

on the specification, will either be the market return or the Q5-factor model.

If any of the independent variables is significant, this will indicate that the

option return is captured by some form of known, aggregate risk.
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4.1 Risk Factors

Table 4.1: Option returns of both the Difference (D) and the Optimized (O)
long-short portfolio relative to the Q5-factor model.

The goal of this exercise is to display that the option returns are not related to aggre-
gate sources of risk. The two specifications of the linear pricing model consists either of
solely the market return and the Q5-factor model by Hou, Mo, Xue and Zhang (2020) as
independent variables and the straddle and delta-hedged call returns as dependent vari-
ables. The Q5-factor model consists of five factors: the market return, size, investment,
return on equity and expected growth. The regression specification of the linear pricing
model has the form:

Rpt = αp + β′
pFt + εpt

The sample consists of 381,410 monthly pairs of put and call contracts, over in
total 8641 stocks from the 4th of January 1996 until the 31st of December 2020.

Straddles Delta-Hedged Calls

D O D O

(1) (2) (3) (4) (5) (6) (7) (8)

Alpha .088** .074* .158*** .147*** .014*** .012** .016*** .015***

(.038) (.040) (.005) (.021) (.005) (.005) (.003) (.003)

Mkt-RF .011 .017** -.011** -.004 -.000 .001 -.000 .000

(.008) (.009) (.022) (.006) (.001) (.001) (.001) (.001)

ME -.002 -.004 -.001 -.000

(.012) (.006) (.001) (.001)

IA .019 -.000 .001 -.000

(.016) (.011) (.002) (.001)

ROE -.001 .012 .001 .000

(.014) (.007) (.002) (.001)

EG .014 .007 .002 .001

(.017) (.013) (.002) (.002)

White (1980) Heteroskedastic consistent standard errors in parentheses. ***, **, * show
that a coefficient is significant respectively on a 1, 5 and 10 percent level.
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4.1 Risk Factors

The univariate and multivariate regression results are in Table 4.1. One

can observe that the market factor is the only significant factor with respect

to the straddle returns of the Optimized portfolio. In all other instances,

the market factor has no explanatory power regarding the option returns,

indicating that the portfolios are well diversified in relation to market risk.

This was very similarly concluded by Goyal and Saretto (2009) and does not

change with the addition of ISV. The sign of the market factor is ambiguous,

changing between positive and negative, which is also similar to Goyal and

Saretto. More important than this observation, is the clear statistical and

economical significance over the full range of the univariate regressions of the

alphas, which indicates that after adjusting for inherent market risk, there is

still statistically and economically significant return that is not just a form

of known aggregate risk. This is true for both types of strategies and both

the Difference and Optimized portfolio.

Regarding the multivariate setting that includes the Q5-factor model as

independent variables, this observation does not change. The only signifi-

cant factor is the market factor with respect to the straddle returns and the

Difference portfolio. Each alpha is slightly reduced in magnitude in compar-

ison to the univariate setting, but each is still economically and statistically

significant, leaving ample abnormal return that is not captured by aggregate

risk. To conclude, the magnitude of the abnormal returns regarding each

strategy is very close to the raw returns, with thus almost no part of the

returns relating to aggregate risk.
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4.2 Stock Risk-Factors

4.2 Stock Risk-Factors

It will now be investigated to what extent the individual option returns

are related to stock risk-factors, including the difference between HV and IV

and ISV and the extent to which either the sorting factors or known stock

risk-factors can explain those returns. The relevant regressions are applied

to the full sample of 762,820 individual option returns.

The implementation is ensued with a two-step procedure, starting with

a first-pass time-series regression of the individual option returns on the Q5-

factor model to generate risk-adjusted beta’s, which are used to calculate

risk-adjusted option returns for each individual option. The second step is

to apply monthly, cross-sectional regressions of the lagged stock risk-factors

on the risk-adjusted, individual option returns. The regression procedure

and specification is similar to that in Brennan, Chordia, and Subrahmanyam

(1998):

Rit − β̂′iFt = γ0t + γ′tZit−1 + εit (4.2)

Rit in equation 4.2 is the excess return of individual options, with Ft the

Q5-factors and Zit the stock risk-factors. The beta’s on the left-hand-side

of the equation are estimated with the earlier described procedure, the first-

pass time-series regression. In total there are seven stock risk-factors that

are employed in the second stage of the regression procedure: the HV-IV

variable, ISV, size, book-to-market (BM), momentum of the past six months,

kurtosis and skewness. The log value of size and kurtosis is taken to correct

for the possible effect of outliers (both have very large values and are strictly

positive). The specified regression is applied on a monthly basis, with the

stock risk-factors lagged one fiscal period to avoid a forward-looking bias.

A t-test under null hypothesis equal to zero is applied, using Newey-West

(1987) heteroskedasticity and autocorrelation consistent standard errors and

a correction for twelve lags. The time-series average of the independent

variables and the alpha is reported with their t-statistics.
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4.2 Stock Risk-Factors

Table 4.2: Option returns adjusted for stock risk-factors.
Rit in equation 4.2 is the excess return of individual options, with Ft the

Q5-factors and Zit the stock risk-factors. The beta’s on the left-hand-side of the
equation are estimated with a first-pass time-series regression of the individual
option returns on the Q5-factor model. In total there are seven stock risk-factors
that are employed in the second stage of the regression procedure: the HV-IV
variable, ISV, size, book-to-market (BM), momentum of the past six months,
kurtosis and skewness. The specified regression is applied on a monthly basis,
with the stock risk-factors lagged one fiscal period to avoid a forward-looking bias.

Rit − β̂′iFt = γ0t + γ′tZit−1 + εit

The sample consists of 762,280 individual options, over in
total 8641 stocks from January 1996 until December 2020.

Straddles Delta-Hedged Calls

(1) (2) (3) (1) (2) (3)

Alpha .061** -.018 .030 .002 .001 .007

(.027) (.057) (.056) (.002) (.004) (.004)

HV-IV .123*** .121*** .144*** .015*** .016*** .018***

(.021) (.023) (.022) (.002) (.002) (.002)

ISV -.088*** -.104*** -.070* -.008*** -.010*** -.007**

(.034) (.037) (.037) (.002) (.003) (.003)

Size .005 .004 .000 .000

(.003) (.003) (.000) (.000)

Mom .007 .009 -.001 -.001

(.025) (.024) (.002) (.002)

BM -.293 -.450 -.033 -.048

(.563) (.570) (.037) (.037)

Skew -.004* -.000***

(.002) (.000)

Kurt -.025*** -.003***

(.005) (.000)

White (1980) Heteroskedastic consistent standard errors in parentheses. ***, **,
* show that a coefficient is significant respectively on a 1, 5 and 10 percent level.
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4.3 Transaction Costs

The results are in Table 4.3. The first clear observation is that the alphas

are relatively consistently not significant, implying that the return variation

in at least the delta-hedged call returns is solely captured by the combination

of HV-IV and ISV and with straddle returns by the combination of HV-IV,

ISV and size, momentum and BM. One can also observe that HV-IV and

ISV are both significant in all regressions, to varying degrees, indicating

that ISV is a relevant addition to HV-IV in explaining the cross-section of

option returns. More importantly, ISV consistently has a significant, negative

relation with both type of option returns, confirming expectation 2, that there

is a negative relation between option returns and ISV. Lastly, one can observe

that the significance of ISV as an explanatory variable does decrease, for both

type of returns, with the introduction of skewness and kurtosis, indicating

that some part of the information in ISV is also captured by skewness and

kurtosis. Nevertheless, regardless of that the option returns covary with

those two factors, this covariance is not substantial enough to subsume the

explanatory power of ISV in explaining the straddle and delta-hedged call

returns.

4.3 Transaction Costs

There is a wealth of academic literature reporting that transaction costs in

the options market can be very substantial and might be the explanation for

the existence of abnormal returns. Abnormal returns relative to a risk-factor

model that disappear after transaction costs have no practical relevance.

Therefore, it is crucial to determine the magnitude of the effect of transaction

costs under the specific context that the abnormal returns resulting from the

addition of ISV have been established. The effect of transaction costs on

the economical significance of the long-short straddle and delta-hedged call

returns will be reviewed from a common angle, using two elements: option

costs from the perspective of the effective spread relative to the quoted spread

and stock trading costs.
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4.3 Transaction Costs

First, the option costs from the perspective of the effective bid-ask spread

relative to the quoted spread will be discussed. The analysis presented in this

paper has made one important assumption: a call or put option was bought

at the mid-point price. This might not be feasible in all circumstances. De

Fontnouvelle, Fisher, and Harris (2003) and Mayhew (2002) conclude that

effective spreads, most specifically for equity options, are large in absolute

terms, but usually the ratio of effective to quoted spread is less than 0.5.

Unfortunately, the author is in no position to access transactions data on

option pricing (because of the OTC character of option trading), therefore,

multiple effective spread magnitudes are assumed and tested, equal to 25%,

50% and 100% of the quoted spread.

What does this imply? Assuming the bid price is $5 and the ask price is

$10, this subsumes several scenarios: for example, buy at $8.75 and sell at

$6.25 (50 percent effective spread relative to quoted spread); buy at $10 and

sell at 5$ (100 percent effective spread relative to quoted spread). For both

type of option returns, this adjustment process is only applied at the start of

the strategy, as the portfolio is eliminated with the expiration of the options

in the money.

The second part revolves around the transaction costs resulting from stock

trading, having to buy the underlying stock as part of both the straddle and

delta-hedged call strategy. Under a long-short, straddle strategy the cost of

buying the underlying stock is only incurred at expiration of the option. The

magnitude of the cost is dependent on whether the stock is bought or sold,

depending on the profitability of either the call or put option and therefore

which is most attractive to exercise. With a delta-hedged call strategy, this

is more complicated. The process with a delta-hedged call option strategy is

more complicated. Shares have to be sold at initiation of the strategy and

bought at the settlement of the call option. The amount of shares sold and

bought is equal to the option delta at initiation.
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4.3 Transaction Costs

Table 4.3: Impact of transaction costs on option returns.
The impact of transaction costs, consisting of option costs and stock trading costs, on

option returns are analysed. Multiple effective bid-ask spread magnitudes are assumed
and tested, equal to 25%, 50% and 100% of the quoted spread with respect to the option
costs. These are incurred only at the initiation of the portfolio. The stock trading costs
are incurred only at expiration for the straddle strategy and with the delta-hedged call
strategy, incurred at both the initiation and the expiration of the option. The scenario
in row 1 and 3 only analyses the effect of option costs, whereas the scenario in row 2 and
4 analyses the effect of both types of transaction costs. The sample consists of 381,410
monthly pairs of put and call contracts, over in total 8641 stocks from 1996 until 2020.

D O

ESPR/QSPR ESPR/QSPR

MidP 25% 50% 100% MidP 25% 50% 100%

Panel A: Straddles

Alpha .095*** .102** .108*** .149*** .150*** .085*** .018 -.165***

(.040) (.041) (.042) (.049) (.023) (.024) (.027) (.042)

Including Stock Trading Costs

Alpha .090** .095** .100** .140*** .090*** .026 -.041* -.225***

(.039) (.039) (.041) (.049) (.021) (.022) (.025) (.040)

Panel B: Delta-Hedged Calls

Alpha .014*** .009* .004 -.007 .016*** .007** -.002 -.020***

(.005) (.005) (.005) (.006) (.003) (.003) (.004) (.004)

Including Stock Trading Costs

Alpha .005 .000 -.005 -.016*** -.001 -.010*** -.018*** -.037***

(.005) (.005) (.005) (.006) (.003) (.003) (.003) (.004)

White (1980) Heteroskedastic consistent standard errors in parentheses. ***, **, * show
that a coefficient is significant respectively on a 1, 5 and 10 percent level.

The effective spread, ergo, the stock trading cost, is calculated in accor-

dance with equation 4.3. The trading, bid and ask price are taken from

CRSP:

Effective Spread = (Price − ((Ask + Bid)/2) ∗ 2 (4.3)
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4.4 Robustness

The results are in Table 4.3. In line with Goyal and Saretto (2009), trans-

action costs substantially hit the return of the Optimized portfolio. Looking

only at option costs, an effective spread to quoted spread of 50 percent is

sufficient to reduce returns to zero for both types of returns. By including

stock trading costs, one can observe that an effective spread of 25 percent is

sufficient in regard to the straddle return and for delta-hedged calls trading

at the midpoint is not even profitable any more.

This does show that transaction costs might evaporate any possible re-

turns of a double-sorted portfolio strategy, especially if the effective spread is

large (close to 50 percent). In the context of options, this is not an unsurpris-

ing result, and it gives a slight indication that the earlier abnormal returns

exist because transaction costs prevent an arbitrageur to profit from them.

Depending on the expected level of transaction costs, the strategy might or

might not be statistically and economically significant.

Interestingly, in regard to straddle returns the difference in return between

high and low ISV is maintained, even if the trading costs increase (with delta-

hedged call returns this observation is less clear). Despite the significant,

negative effect of transaction costs on the double-sorted portfolio returns,

this does indicate that the relevance of ISV barely decreases with an increase

in transaction costs.

4.4 Robustness

One inevitable consequence of doing research, is making assumptions.

The results presented in this paper are linked to decisions made about key

variable definitions and procedures. In this section, it will be shown that the

results are independent of key assumptions made. Three topics will be dis-

cussed: the decision between value-weighting and equal-weighting long-short

portfolios, the width of the moneyness range and the time period chosen.
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4.4 Robustness

Table 4.4: Optimized portfolio returns under equal-weighting and under value-
weighting.

The Optimized portfolio is long in the portfolio with stocks with the largest, positive
difference between HV and IV and the highest ISV and short the portfolio with the largest,
negative difference and the highest ISV. The weight under value-weighting is determined
by the log value of the market capitalization of a firm. The sample consists of 381,410
monthly pairs of put and call contracts, over in total 8641 stocks from 1996 until 2020.

Equal-Weighted Value-Weighted

Panel A: Straddle Returns

Mean .150*** .085***

Std .348 .492

Min -.863 -2.302

Max 2.657 2.613

SR 1.497 .595

Panel B: Delta-Hedged Call Returns

Mean .016*** .009**

Std .043 .073

Min -.126 -.366

Max .199 .373

SR 1.272 .405

White (1980) Heteroskedastic consistent standard errors. ***, **, * show that a coefficient
is significant respectively on a 1, 5 and 10 percent level.
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4.4 Robustness

4.4.1 Value-Weighting

Traditionally, there has always been a rift between value weighting and

equal-weighting. Equal-weighting is usually applied as the first method in

academic research, because commonly it will provide larger returns and a

larger t-statistic than value-weighting, establishing a first indicator of truth

relative to an hypothesis. On the other hand, actually implementing an

equal-weighted strategy is much more costly: one constantly has to update

the portfolio to maintain an equal weight for each share, whereas with value-

weighting this is not the case. Therefore, it is also important that the option

returns are researched under a value-weighted portfolio construction process,

especially in the light of one of the goals of this paper: to provide practition-

ers with relevant information. The portfolio construction process is exactly

applied as described before, except that the weight of each option is deter-

mined by the lagged market value of the underlying stock. The result is in

Table 4.4

The decision to either use equal-weighting or value-weighting has a sub-

stantial impact on both type of option returns, in mean return, standard

deviation and Sharpe Ratio. The mean return almost halves, while the stan-

dard deviation increases, which has a similar result on the standard devia-

tion. One can also observe that the extreme values become more extreme.

Nevertheless, the straddle returns are still significant at 1 percent and the

delta-hedged call returns still significant at 5 percent. The chosen weight-

ing method has its effect on the economical significance of the double-sorted

portfolio returns, but it remains statistically significant. This is not only true

for the double-sorted portfolio returns, but also for the single-sorted returns

on HV-IV.
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4.4 Robustness

4.4.2 Moneyness

The reason to choose a very narrow range of moneyness has been discussed

earlier in the data section. The initially chosen range of moneyness is from

0.95 to 1.05 and is now changed to 0.9 and 1.1. The result is an increase in

the amount of monthly option pairs from 381,410 to 458,592 and from 8641

stocks to 8832 stocks. Nevertheless, the actual raw returns barely change at

all (only a small increase), certainly not significantly.

4.4.3 Time Period

This paper concluded that the hypothesis of Goyal and Saretto (2009)

can be extended to the range of years from 1996 until 2020 and that ISV

is a relevant addition. One should still be cautious: it might very well be

that this conclusion only applies to the time period studied by Goyal and

Saretto (2009), 1996 until 2006 and that after that, the returns are not

significant any more, despite the average over the time period 1996 until

2002 being significant. Therefore, it is relevant to split the total data into

two subsamples: from 1996 until 2006 and from 2007 until 2020 and compare

the double-sorted portfolio returns. The results are in Table 4.5 on the next

page.
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4.4 Robustness

Table 4.5: Optimized portfolio returns prior to 2006 and after 2006.
The Optimized portfolio is long in the portfolio with stocks with the largest,

positive difference between HV and IV and the highest ISV and short the portfolio with
the largest, negative difference and the highest ISV. The sample consists of 381,410
monthly pairs of put and call contracts, over in total 8641 stocks from 1996 until 2020.

Prior 2006 After 2006

Panel A: Straddle Returns

Mean .193*** .116***

Std .321 .368

Min -.833 -.810

Max 1.518 2.657

SR 2.086 1.091

Panel B: Delta-Hedged Call Returns

Mean .024*** .009***

Std .049 .037

Min -.121 .118

Max .209 .120

SR 1.724 .820

White (1980) Heteroskedastic consistent standard errors. ***, **, * show that a coefficient
is significant respectively on a 1, 5 and 10 percent level.

The clear observation is that after 2006, the double-sorted portfolio re-

turns are substantially lower for both types of returns, with more extreme

values and a lower Sharpe Ratio. Nevertheless, both types of returns remain

significant at 1 percent. This pattern is not only observed for the double-

sorted portfolio returns, but also for the single-sorted returns on HV-IV,

indicating that it is not simply the result of ISV becoming less relevant. One

important question is what this predicts about the future: can one expect

these returns to disappear at some point altogether? And what has caused

this decline so far? The former will need more years of data to develop a

conclusion, the latter might be the subject for a new research paper. Could it

be that practitioners have already implemented the Goyal and Saretto (2009)

hypothesis in their trading model?
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5 Conclusion

In this paper, the following hypothesis was tested: a double sort of stocks

on the difference between HV and IV and ISV of the underlying stock sig-

nificantly and positively increases the portfolio return over a single sort on

the difference between HV and IV, robust to known risk-factor models, stock

risk-factors, model specifications and transaction costs.

Using a dataset that extends from the 4th of January 1996 until the 31st

of December 2020, it is concluded that the hypothesis of Goyal and Saretto

(2009) extends to the present day (albeit with a smaller magnitude of 9.6 per-

cent monthly straddle return) and more importantly, that it is outperformed

by a zero-cost trading strategy involving a long position in the option port-

folio with stocks with a high ISV and a large, positive difference between

HV and IV and a short position in the option portfolio with stocks with a

high ISV and a small, negative difference between HV and IV, displaying a

monthly straddle return of 15 percent, thereby confirming expectation 3. At

the basis of this observation is the finding that there is a significant differ-

ence in long-short option returns between high and low ISV stocks, which

explains the decision to solely invest in high ISV stocks. In addition, ex-

pectation 1 is confirmed by directly regressing the mean reversion parameter

on the double-sorted portfolio returns on a monthly basis and establishing a

significant, positive relation between mean reversion and option returns.
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The next step was to relate the option returns to aggregate risk fac-

tors (Q5-factor model) and stock risk-factors. Only the market factor under

two specific circumstances displays significance in explaining the abnormal,

double-sorted portfolio returns and all other factors relate in no way signifi-

cantly to the abnormal returns. Even more so, the abnormal returns are very

close to the raw returns, with thus almost no part of it relating to aggregate

risk captured by the Q5-factor model. With respect to the stock risk-factors,

a cross-sectional regression using the full sample is applied, with the strad-

dle and delta-hedged call returns as the dependent variable and HV-IV, ISV

and six other stock variables as the independent variables. All alpha’s but

one are insignificant, indicating that all variation in the option returns can

be captured by the combination of HV-IV and ISV and certain stock vari-

ables, where HV-IV and ISV are significant in each regression with varying

variables. This also indicates that ISV is a relevant addition to HV-IV in

explaining option returns and more importantly, the significant, negative

relation between the option returns and ISV confirms expectation 2.

Observing a significant, negative relation between the option returns and

ISV, while only investing in high ISV stocks might seem contradictory, but

this would only be true with a portfolio that is solely long into low ISV

stocks. With a long-short portfolio, the interaction with HV-IV creates an

asymmetric effect that has caused it to be more profitable to invest in high

ISV stocks, regardless of the higher return of low ISV stocks, because with

the long-short portfolio, one can profit from extreme underperformance of

high ISV stocks.
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In line with Goyal and Saretto (2009), transaction costs significantly re-

duce the profitability of the trading strategy. Assuming an effective spread

to quoted spread of 50 percent is sufficient to reduce returns to zero for both

types of returns. Including stock trading costs, 25 percent is sufficient in

regard to the straddle return and with delta-hedged calls, trading at the

midpoint ceases to be profitable. This shows that transaction costs might

evaporate any possible returns of a double-sorted portfolio strategy, espe-

cially if the effective spread is large (close to 50 percent). Depending on the

expected level of transaction costs, the strategy might or might not be sta-

tistically and economically significant. Interestingly, the difference in return

between high and low ISV is maintained, even if the trading costs increase.

The double-sorted portfolio returns are robust to the weighting method,

moneyness range and time period chosen. The decision to either use equal-

weighting or value-weighting does have impact on both the straddle and

delta-hedged call returns, reducing the monthly mean return from 15% and

1.6% respectively to 8.5% and 0.9%. Nevertheless, the straddle returns are

still significant at 1% and the delta-hedged call returns still significant at

5%. Changing the moneyness range from being between 0.95 and 1.05 to

0.9 and 1.1 has barely effect on the actual raw returns, despite a minor

increase, certainly not significantly. Lastly, the sample period is split into

two subsamples, before and after 2006, therefore equal to the period studied

by Goyal and Saretto (2009) and all years that they have not studied in

their paper. The observation is that after 2006 the double-sorted portfolio

returns are lower for both types of returns, with more extreme values and a

lower Sharpe Ratio. Nevertheless, both types of returns remain significant

at 1 percent. This pattern, a substantial decrease in return, is not only

observed for the double-sorted portfolio returns, but also for the single-sorted

returns on HV-IV. The author therefore concludes that the addition of ISV

is promising and that the hypothesis is confirmed to a large extent, but is

accompanied by a practical caveat in the transaction costs.
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A critical note on the research design concerns the data on the stock

trading costs. Goyal and Saretto (2009) used the inter-day transactions data

from TAQ, whereas this paper used the closing ask and bid prices from CRSP.

The reason for this deviation is that for the size and scope of the options

dataset, garnering matching TAQ data proved to be too difficult because of

the sheer size of the data required. The TAQ data would have been more

exact, but it was practically not feasible.

One could still ask: to what extent does one expect that this strategy will

still provide significantly positive risk-adjusted returns in the future? The

answer to this question lies in what drives the abnormal return: is it an (un-

known) aspect of risk, that is at least not captured by the Q5-factor model

and stock risk-factors, or does it constitute a “free lunch”, return without

risk. If the former is true, there is very good reason to believe that these

results will hold, but if the latter is true, one would expect these results to

disappear shortly as a result of arbitrageurs. The reality is that the reason

for the observed empirical regularity is unclear. Most of the variation in

the return is not related to an obvious source of risk, either a risk factor

or a stock risk-factor. The hypothesis and theoretical background of this

paper pointed, as did Goyal and Saretto (2009), to a behavioural explana-

tion, which would deem it a “free lunch”, because it is a result of irrational

market behaviour. To a large extent this was confirmed, and it would also

explain why the magnitude of the regularity has decrease in recent years:

arbitrageurs are taking their “free lunch”. Still, a critical note can be found

in the presence of transaction costs, which were able to remove any possible

returns at reasonably high levels. Therefore, it might be practically impossi-

ble to profit from the abnormal returns for arbitrageurs. Both explanations,

either the behavioural perspective or transaction costs, are plausible.
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With this in mind, two things would be very interesting concerning fu-

ture research: Delve deeper into the behavioural explanation, using the be-

havioural framework set up by this paper, to either confirm or disconfirm the

behavioural explanation of the abnormal, option returns. Closely related to

this, one can also focus on the significant difference in double-sorted option

returns before and after 2006. What may have caused this change, does it

give any predictions about the future of this regularity, and does it provide

an explanation on the cause of the abnormal returns?

50



REFERENCES

References

Poteshman, A. M., & Serbin, V. (2003). Clearly Irrational Financial Market Behav-

ior: Evidence from the Early Exercise of Exchange Traded Stock Options. The

Journal of Finance, 58 (1), 37-70.

Andersen, T., Bollerslev, T., Christoffersen, P. & Diebold, F. (2006). Volatility and

Correlation Forecasting. In G. Elliott (Ed.), Handbook of Economic Forecasting

(pp. 777-878). Amsterdam, The Netherlands: Elsevier.

Barberis, N., & Huang, M. (2002). Mental Accounting, Loss Aversion, and Individual

Stock Returns. The Journal of Finance, 56 (4), 1247-1292.

Brennan, M., Chordia, T., & Subrahmanyam, A. (1998). Alternative factor specifi-

cations, security characteristics, and the cross-section of expected stock returns.

Journal of Financial Economics, 49 (3), 345-373.

Cao, J. & Han, B. (2013). Cross-Section of Option Returns and Idiosyncratic Stock

Volatility. Journal of Financial Economics, 108 (1), 1-46.

Cao, J., Han, B., Tong, Q., & Zhan, X. (2021). Option Return Predictability. The

Review of Financial Studies, 34 (2), 569-1103.

De Font Nouvelle, P., Fishe, R. P. H., & Harris, J. H. (2003). The Behavior of Bid-

Ask Spreads and Volume in Options Markets during the Competition for Listings

in 1999. The Journal of Finance, 58 (6), 2437-2464.

Driessen, J., Maenhout, P. J., & Vilkov, G. (2009). The Price of Correlation Risk:

Evidence from Equity Options. The Journal of Finance, 64 (3), 1377-1406.

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks

and bonds. Journal of financial economics, 33 (1), 3-56.

Gao, C., Xing, Y., & Zhang, X. (2018). Anticipating Uncertainty: Straddles Around

Earnings Announcements. Journal of Financial and Quantitative Analysis, 53 (6),

2587-2617.

51



REFERENCES

Goyal, A. & Saretto, A. (2009). Cross-section of option returns and volatility. Journal

of Financial Economics, 94 (2), 310-326.

Hou, K., Mo, H., Xue, C., & Zhang, L. (2020). An Augmented q-Factor Model

with Expected Growth. Review of Finance. Available at: https://papers-ssrn-

com.eur.idm.oclc.org/sol3/papers.cfm?abstractid = 3525435.

Hwang, S. & Rubesam, A. (2013). A behavioral explanation of the value anomaly

based on time-varying return reversals. Journal of Banking Finance, 37 (7), 2367-

2377.

Loughran, T., & Wellman, J. W. (2011). New evidence on the relation between the en-

terprise multiple and average stock returns. Journal of Financial and Quantitative

Analysis, 46 (6), 1629-1650.

Newey, W. K. & West, K. D. (1987). A Simple Positive Semi-Definite, Heteroskedas-

ticity and Autocorrelation Consistent Covariance Matrix, Econometrica, 55, 703-

708.

Stein, J. (1989). Overreactions in the Options Market. The Journal of Finance, 44 (4),

1011-1023.

52


