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Abstract

This study argues that complexity theory based methods can be leveraged for marketing-rooted

causal questions. Specifically, within marketing, reductionist approaches are traditionally applied

where elements are isolated and only then causally evaluated. However, such an approach fails

to capture the underlying dynamics that might be present even though a setting might at first

seem straightforwardly to interpret. In other words, only a part of the system is evaluated and

might not give an accurate representation of what is truely happening. Furthermore, complex

phenomena like non-linearity or feedback effects among others also obstruct the use of commonly

deployed methods and oftentimes leads to a situation that a complex setting is being linearized,

which may lead to unrealistic estimations. Therefore, this study discusses in general how complexity

theory based methods adds value to the marketeer’s toolbox and specifically discusses the Cross

Convergent Mapping (CCM) method. This is a (non-linear) state space reconstruction method that

leverages the properties of delay embedding to determine causality between time series. Hence,

this study shows that by means of CCM a complete causal network can be mapped even when

complex phenomena are observed. Moreover, it is shown that by means of CCM complex causal

interactions can be revealed that cannot be identified with the traditional deployed methods. To

conclude, complexity theory based methods can be leveraged to enhance causal estimations which

subsequently aids management in making better informed strategic decisions.
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1 Introduction

If the price is increased by 10%, what will be the impact on the number of sales? If the

advertising expenditures are increased by 15%, how will this affect the gross revenue? These are

just some of the many possible questions a marketeer might seek answers for. However, an element

that is of crucial importance for most of such questions is that an answer is sought for in terms of

a causal effect estimation. More specifically, it is desired to understand how a particular variable

affects a targeted outcome because, after all, correlation does not imply causation.

The notion of causality is within the field of marketing research commonly associated with

conducting experiments, such as setting up randomized controlled experiments where the expected

difference in the variable of interest denotes the causal effect. In such experimental settings and

more generally when observational data is available, causal interpretations are oftentimes based

on the Neyman-Rubin causal framework otherwise known as the potential outcomes framework

(Holland, 1986; Maldonado and Greenland, 2002; Neyman et al., 1923; Rubin, 1974). Particularly,

within the field of marketing research a large body of literature exists on utilizing observational

data with methods underlying the potential outcomes framework as a means of estimating causal

effects (e.g.,Bertrand et al., 2010; Huang et al., 2020; Pochun et al., 2018).

However, for certain marketing related research questions the utilization of cross-sectional data

to estimate causal effects is not desired as it might encounter potential limitations, most notably

the limitation that dynamic effects cannot be captured. More precisely, when cross-sectional data

is utilized to estimate for example the causal impact of advertising on sales then the estimation

does not control for the fact that advertising has carry-over effects. In other words, the effects of

the given advertising expenditures on sales are distributed over time which imply that estimations

based on data from one specific point in time do not capture the full effect (Bruce et al., 2017; Tull,

1965). Moreover, another prominent example that demonstrates the limitations of using cross-

sectional data for causal inference rooted questions is when one is interested in the effect of pricing

on sales. More specifically, pricing has been shown to poses dynamic effects stemming from, among

others, competition, consumer patient levels and the word-of-mouth effect and thus again implies

that an estimation from one point in time does not capture the full effect (Ajorlou et al., 2018;

Lobel, 2020; Schlosser and Boissier, 2018).

Hence, for certain marketing mix related questions it would make sense to utilize time series

data to be able to capture relevant dynamic effects, which subsequently contributes to a more
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realistic estimation of a particular effect. Within the field of time series analysis various methods

exist to estimate causal effects, where commonly a distributed lag model with exogenous regres-

sors is deployed as a baseline to estimate such dynamic causal effects. Such an approach and its

estimations are otherwise known as dynamic multipliers or cumulative dynamic multipliers (Stock,

Watson, et al., 2012). Nonetheless, still one of the most widely deployed methods for estimating

causal effects in time series is by means of Granger Causality. Granger Causality is a probabilistic

concept of causality and in essence does not estimate true causality but whether one time series

provides statistically significant information about the future values of another time series. For-

mulated differently, Granger Causality constitutes a statistical hypothesis test to test whether one

time series contains information to forecast another one and thus merely provides predictive causal-

ity. Nevertheless, the Granger Causality test is the basis for numerous other causality identifying

methods and is still one of the most popular methods deployed in practice (Eichler, 2012; Granger,

1969).

However, a crucial limitation of the aforementioned methods and various related methods is

that it assumes a form of linearity and thus does not work well in settings where non-linearity is

present or when the interrelated causal relationships are not so straightforward. Specifically, an

issue that arises is when the assumption of separability is not fulfilled which is crucial for Granger

Causality and implies that the causal variables should be independent of the variables it influences.

Additionally, it could occur that shared causal variables are present resulting into synergistic effects

that cannot be captured by traditional (linear) methods (Čenys et al., 1991). More generally,

settings where various of such complex phenomena occur undermine the crucial assumptions of

commonly deployed (linear) causal methods in both time series analysis and marketing and thus

demands for a different approach. In addition, this study argues that the occurrence of such complex

phenomena, like feedback loops, tend to be more likely within marketing than initially thought of

and thereby confirms the need for a different approach. More fundamentally, within marketing there

is a tendency to deploy reductionist methods where single components are isolated and only then

evaluated. For instance, the traditional focus is on for example evaluating the causal effects of the

advertising efforts of product one on the sales of product one, while there might actually be a more

complex underlying system present. For example, there might be complementary products where

its advertising and pricing might also influence both the sales and advertising efforts of product

one. In other words, at first a particular setting might seem to be straightforward to evaluate while

in reality it is much more complex due the many components and interactions that are present
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which are likely to give rise to phenomena like feedback effects and thus non-linearity.

Hence, this study proposes a complexity theory based approach by treating a marketing setting

as a complex system. Specifically, there are various key elements that characterizes a complex

system and can be used as guideline to determine whether a particular setting seems plausible to

be regarded as complex. Consequently, applying such complexity theory based methods allows

to capture the dynamics of the system and provides insights in all the causal interrelationships

among the variables. More precisely, this study discusses the Cross Convergent Mapping (CCM)

method which is a (non-linear) state space reconstruction method that investigates whether two

time series variables are causally influencing each other by means of leveraging the properties of

delay embedding.

In short, this study is pioneering in two ways, first because this study explores the theory

of complex systems in relation to marketing from a causality perspective and secondly on how

causal methods designed for complex systems can be leveraged empirically for marketing rooted

questions. So, the key idea is to approach marketing causally-rooted questions from a complexity

theory based approach instead of the traditional deployed reductionist approach with the goal that

complex marketing settings can be more accurately captured. Therefore, this study first argues

how complexity theory is relevant for causal estimations within marketing and subsequently how

such methods from complexity theory like Cross Convergent Mapping can be empirically leveraged.

Hence, this research aims to answer the following research question:

”How can complexity theory based methods be leveraged to enhance causal estimations from time

series data for marketing mix related questions?”

Based on this research question, it is by no means argued that complexity theory based methods

should substitute all the traditional deployed methods or approaches, but this study argues that the

field of complexity theory broadens the possibilities for marketeers. More specifically, marketing

settings that may be characterized by complex phenomena like non-linearity, feedback effects or

many interacting variables could be more accurately captured by complexity based methods. In

other words, within marketing it is oftentimes observed that settings are being linearized which is

not always necessary nor the best choice and could even result into findings that are very different

from reality. By being able to map all causal relations, especially in complex settings which is

oftentimes the case with real data, provides management with more accurate and valuable insights.

More precisely, the consequences of a particular strategic decision can be better understood and
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thus helps management in making better informed decisions. So, this study first discusses the

key characteristics of complex systems and how and why this is relevant for marketing. Addi-

tionally, a case study is provided to demonstrate complexity theory’s relevancy. Thereafter, the

specific method Cross Convergent Mapping (CCM) is discussed which is a (non-linear) state space

reconstruction method. Subsequently, empirical evidence is provided where CCM is applied to real

marketing data and is followed by a discussion.

2 Literature Review

It is first discussed how time series data adds value for certain marketing mix related questions.

More specifically, it is discussed how time series data can be utilized to capture dynamic effects

where two prominent examples from the literature are provided, namely: dynamic effects of ad-

vertising and the dynamic effects of pricing. Next, causal methods that are commonly deployed

in time series analysis are briefly discussed including their limitations. Thereafter, a brief general

overview of the theory of complex systems is provided and subsequently discussed in the context of

marketing. Lastly, a case study is provided to argue why complexity based approaches might add

value for causality rooted questions related to marketing.

2.1 Dynamic Effects in Marketing

Within marketing different phenomena might show dynamic behavior where the two most promi-

nent examples are advertising effects and pricing and are therefore briefly discussed.

Dynamic effects of Advertising

One of the first studies that extensively examined the phenomenon of carry-over effects of

advertising was conducted by Tull (1965). Tull (1965) provides empirical evidence and a model,

which in essence shows that the advertising expenditures has effect on sales distributed over time,

implying that the effect of advertising is delayed and the effect is spread over a longer period.

One possible driver for such carry-over effects is brand loyalty, where advertising is a means to

introduce a particular brand and therewith can initiate brand loyalty. A second driver for carry-

over effects originates from the field of psychology referred to as the cummulated impression model.

More specifically, this argues that the advertising impressions cumulate gradually which implies

that by repeatedly showing an advertisement it reinforces the impression shown to the audience

and therewith the impression becomes stronger. This subsequently means that the awareness of
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the brand and the products grow over time and eventually lead to a purchase but not necessarily

directly after having been exposed to an advertisement (Tull, 1965). In line with Tull (1965) is

the empirical evidence from Simester et al. (2009) whom conducted a field experiment. More

precisely, a controlled field experiment was conducted for a large durable goods retailer where the

specific interest was in the dynamic effects of advertising on the long-run. Two competing effects

were found where the first was intertemporal substitution which leads to large short-term positive

effects but negative effects on long-term. The other contrasting effect is that advertising tends to

significantly increase future demand which can be attributed to goodwill effect. Which of these

two effects predominates depends on the type of consumers, where specifically the most ordering

customers, referred to as best customers, the intertemporal substitution effect clearly dominates.

Hence, this study was the first to show that advertising might also have negative long-term effects

on sales and again confirms the dynamic behavior of advertising (Simester et al., 2009). Next to

these studies, the dynamic nature of advertising by means of demonstrating carry-over effects was

again confirmed by the meta-marketing study conducted by Köhler et al. (2017).

Dynamic effects of pricing

Within marketing a commonly asked question is what the effect of a price reduction is on the

number of sales. On short-term it is plausible to expect an increase in sales, especially for elastic

goods. However, when measuring the effect of a price reduction on sales it is important to be aware

of the dynamic characteristics pricing possess and that the long-term effects may be different than

short-term. More specifically, Mela et al. (1997) provide empirical evidence on that consumers also

become on the long-term more price sensitive, especially non-loyal customers where this group tend

to grow when reducing prices. However, it is important to be aware of competition and that it

is even a possible that price wars might erupt which can be harmful on the long-term (Heil and

Helsen, 2001). In other words, when reducing prices and measuring only the effect at one specific

moment in time does not provide an estimations of the full effect, since it might be underestimated

as Mela et al. (1997) argue or overestimated when it erupts a price war for example. Moreover, the

effect is also greatly dependent on the market structure whether it is a monopolistic or perfectly

competitive market and the price elasticities of demand among other factors. In short, by changing

the price and measuring the effects at one specific moment in time does not seem to provide an

unbiased estimate due to the dynamic effects that play a key role in pricing (Rao, 2009).
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2.2 Estimating Dynamic Causal Effects

2.2.1 The Distributed Lag Model

In order to estimate dynamic causal effects in time series analysis, one of the most intuitive

methods to do this is by means of deploying a distributed lag model. The idea of estimating causal

effects based on randomized controlled experiments can be adapted to a time series setting. More

specifically, in a time series setting the same subject will act as the treatment and control subject

but differing over time. In other words, in some periods the subject acts as the treatment unit

while in other periods of time it acts as the control unit. In this way the dynamic causal effects can

be estimated, since the effect over time on the variable of interest can be captured. In its simplest

form, the distributed lag model can be represented as follows:

Yt = β0 + β1Xt + β2Xt−1 + β3Xt−2 + . . .+ βr+1Xt−r + εt (1)

In equation 1 the variable Xt and its r lags are related to Yt whereas the ε denotes the error term

which captures all the effects of the omitted variables on Yt. The β1 denotes the immediate effect of

a unit change in Xt on Yt whereas in general Xt−k captures the effect of a unit change in X on Y , k

periods later. Hence, the dynamic causal effect is the change in Xt on the current and future values

of Y , so in other words the sequence of β1, . . . , βr+1. The aforementioned approach mimics the

concept of an experiment, except that in a time series setting the same subject receives repeatedly

different treatment levels. However, this approach underlies two assumptions, firstly that the time

series Xt and Yt are jointly stationary, which in essence requires that the probability distribution

of the time series variables do not change over time, allowing to use historical relationships to

forecast the future. Secondly, the regressors (X in equation 1) should be uncorrelated with the

error term εt, formally knows as exogeneity. This can be either exogeneity or strict exogeneity

where the former implies that the conditional mean of the error term εt is zero given the current

and past values of Xt, whereas the latter implies that the conditional mean of the error term εt is

zero given current, past and future values of Xt. This exogeneity assumption intuitively implies

that all the coefficients for the r lags included in equation 1 are non-zero and that lags beyond r

are zero. Moreover, when the included regressors fulfill the exogeneity assumption, Ordinary least

Squares (OLS) can be deployed as a means of estimating equation 1. Nonetheless, besides these two

assumptions there are three more assumptions related to the distributed lag model that should be

met, firstly that (Yt, Xt) and (Yt−j , Xt−j) becomes independent when j is large, implying that the
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distributions become independently distributed. Secondly, large outliers are unlikely and thirdly

that no perfect multicollinearity is present.

The dynamic causal effect is otherwise known as the dynamic multiplier and refers to the

respective estimated coefficients β1, . . . , βr+1 in equation 1. In addition, the cumulative dynamic

multiplier refers to the cumulative dynamic effect, which is the cumulative sum of the dynamic

multipliers where for example the r-period cumulative dynamic multiplier corresponds to the sum

of β1 + . . . + βr+1. The cumulative dynamic multipliers can be estimated directly, which can be

denoted, given equation 1, as follows:

Yt = φ0 + φ1∆Xt + φ2∆Xt−1 + φ3∆Xt−2 + . . .+ φr∆Xt−r+1 + φr+1Xt−r + εt (2)

The cumulative multipliers are denoted by the coefficients, φ1, . . . , φr+1, in equation 2. Equation

1 and equation 2 are equivalent, where for example φ0 corresponds to β0, φ1 corresponds to β1 and φ2

corresponds to the sum of β1 and β2 and so on. However, important to note is that the error terms in

the distributed lag regression model as shown in equation 1 and 2 can be autocorrelated, which has

the implication that the standard errors estimated by OLS are inconsistent and may therefore result

into misleading statistical inferences. Hence, the heteroskedasticity and autocorrelation consistent

(HAC) errors should be used such as the Newey-West variance estimator. In essence, given a simple

distributed lag model with no lags the variance of the coefficient β̂1 can be estimated by multiplying

the OLS standard error by a factor fT . This factor fT is defined as:

fT = 1 + 2
T−1∑
j=1

(
T − j
T

)
ρj (3)

This factor fT adjusts the usual OLS standard error for the serial correlation in the error term.

However, this factor fT is not known, since it depends on the autocorrelation of vt = (Xt − µx)εt

which is unknown, where ρj = corr(vj , vt−j). Nonetheless, Newey and West (1987) proposed to

estimate equation 3 by:

f̂T = 1 + 2
m−1∑
j=1

(
m− j
m

)
ρ̃j (4)

Equation 4 aims to seek a consistent estimator of fT which is not straightforward, because if

too many autocorrelations are included to be estimated then the result will be an estimator with a

large variance while when too few autocorrelations are estimated it tends to ignore autocorrelations

at the higher lags. This implies that in both cases the estimator tends to be inconsistent. Hence, it
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is proposed to include the number of autocorrelations depending on the sample size T , where the

parameter m is the truncation parameter and depends on T such that in small sample sizes fewer

autocorrelations are estimated and in larger sample sizes more autocorrelations are estimated, but

much fewer than T . One rule of thumb proposed by Newey-West (1987) for m is as follows:

m = 0.75T
1
3 (5)

The resulting number from equation 5 is rounded to the nearest integer. In short, this study

follows the Newey-West (1987) HAC estimators although this is just one of the possible guide-

lines that can be followed. However, besides estimating dynamic causal effects by means of the

distributed lag model, a commonly deployed method in practice to test for causality is by deploy-

ing the Granger Causality test. Although Granger Causality does not estimate dynamic causal

effects as the distributed lag model does, it remains to be one of the most widely used methods for

identifying causality, hence it is discussed further.

2.2.2 Granger Causality

Granger Causality is a probabilistic concept of causality and is a widely adopted method for

cause-and-effect inferences. It is in essence a statistical hypothesis test by means of using the F -

statistic that tests whether the coefficients on all the lags of one of the regressors are zero. In other

words, the null-hypothesis states that a particular regressor has no predictive information for the

variable of interest, Yt, beyond which the other regressors already contain. However, noteworthy is

that the Granger Causality test does not account for true causality but rather predictive causality.

More specifically, it tests whether one time series contains statistically significant information about

the future value of another time series. Hence, if X Granger causes Y this implies that X seems

to be a useful predictor, given all the other regressors, but this does not imply causality as it is

commonly understood like in an experimental design. In its simplest forms, it can be tested whether

X Granger causes Y and whether Y Granger causes X as shown in equation 6 and 7.

Yt = β0 + β1Yt−1 + β2Yt−2 + . . .+ βpYt−p + φ1Xt−1 + φ2Xt−2 + . . .+ φqXt−q + εt (6)

Xt = γ0 + γ1Xt−1 + γ2Xt−2 + . . .+ γpXt−p + δ1Yt−1 + δ2Yt−2 + . . .+ δqYt−q + µt (7)

Granger Causality subsequently tests the null-hypotheses of whether φ1 = φ2 = . . . = φq = 0

and δ1 = δ2 = . . . = δq = 0, corresponding to equation 6 and 7 respectively. As with the distributed

10



lag model, it is assumed that the time series are stationary. Additionally, Granger Causality solely

captures information about linear causal relationships and thus cannot capture non-linear effects.

Lastly, another critical assumption is separability which implies that the cause and effect must be

separable which is generally satisfied in linear stochastic systems (Granger, 1969; Yang et al., 2018).

Nonetheless, it has been shown by Sugihara et al. (2012) that separability does not hold in dynamic

systems that are not completely stochastic, which are systems where through time some information

about past states is carried forward. Formulated differently, such a setting would occur when for

example X is causal to Y while simultaneously information about X is captured in Y implying that

the causal variable X does not have completely unique information. Subsequently, based on Taken’s

theorem (1981) if X influences Y then past values of X can be recovered from Y , also referred to

as cross mapping. In such settings the Granger Causality test is not valid, hence Sugihara et al.

(2012) propose the Convergent Cross Mapping method to still be able to identify causality in time

series. More generally, methods like the CCM and its extensions are suitable for complex systems

which tend to have the characteristic of being dynamic and not completely stochastic. However, the

term complex systems is rather more general and constitutes of different complex phenomena that

might occur which would undermine the more traditional deployed methods. Hence, the concept

of complex systems and argumentation why it might be relevant to study in a marketing setting

are further discussed.

2.3 Complex Systems Theory

2.3.1 The Principles of Complex Systems

The notion of complex systems can be understood broadly and does not entail one universal

definition since it has seen numerous applications in various different disciplines, ranging from

meteorology to physics and from sociology to economics. Nonetheless, more generally a complex

system consists of numerous individual components that interact with each other, where the collec-

tive behavior in the system cannot be straightforwardly inferred by a reductive study of its single

components. In other words, the behaviour in a complex system is generally difficult to model due

to the presence and interactions of (causal) relationships, dependencies, emergence, feedback loops,

feed forward and non-linearity among others. In essence, complex systems are generally called

complex due to the fact that the relationships between the single components matters as much

as the components themselves. However, the field of complex system theory is primarily focused
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on understanding such relationships rather than focusing on the single components. The concept

of causality demonstrates well how a complex system differs from a non-complex system. More

specifically, in figure 1 on the right it can be observed that A causes B which in turn causes C

and is referred to as a causal chain. The concept of the causal chain is the primary focus for most

research fields where chains are usually detected by means of discovering correlations. However,

the concept of partial causality otherwise known as circular causality plays a key role in complex

systems. A looped causal system is shown on the left in figure 1 where C could also causally affect

A. Nevertheless, when a causal loop is encountered in experimental settings the researcher usually

decides (implicitly) to cut the loop at a specific location in order to transform the causal loop into

a linear causal chain. The main reason for cutting the loop is that analyzing a linear causal chain

is much easier and correlations can be detected easier. However, the specific location of the cut

can alter the conclusions, such as when for example the cut is made between A and B which would

lead to analyzing the causal chain of B on C on A and could yield different results.

Nevertheless, in general there is no universal theory or framework that can explain complex

systems in its entirety. The theory of complex systems has its roots in numerous different fields

which imply that the deployed tools and methods are to a great extent domain-specific dependent.

Nonetheless, some simple rules were discovered that characterize most, if not all, complex systems.

More precisely, complexity can arise from these simple rules in two ways. The first one is referred

to as less is more which means that the iteration of simple rules over time can lead to complex

behaviour. Additionally, the second one is referred to as more really is more and refers to the fact

that the interactions between many-bodied systems results into complex behaviour due to the fact

that unpredictable behaviour is emerging.

Figure 1: The right shows a causal chain as measured in an experiment, whereas the left shows

a causal loop system which transforms into the causal chain if the line between A and C is not

measured (Tranquillo, 2019)
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One of the most prominent simple rules that were discovered shows that a change in a single

parameter can lead to a wide variety of behaviours, where understanding such behaviours is one of

the fundamental aims of complexity theory. The essence of this simple rule is famously illustrated by

the exponential growth equation of the population. More specifically, the growth of the population

can be represented by the differential equation shown in equation 8 where the x denotes the number

of species and α represents the growth rate, which is in this setting exponential. In addition, the

parameter K represents the carrying capacity which indicates that due to the presence of limited

resources the population growth will eventually plateau down. Visually, equation 8 would be like

a S-curve where initially for low values of x exponential growth can be observed but this growth is

slown down to the carrying capacity value K which acts as the plateau value.

dx

dt
= αx(1− x/K) (8)

However, to investigate the dynamics of a differential equation it can be transformed into its

discrete form so that it becomes dimensionless. This allows to specifically study the behaviour

rather than the actual values. Hence, equation 9 denotes the discrete form of equation 8, where

parameter r is a combination of α and K. So, equation 9 yields the time course of x where this time

course depends on the initial parameter settings r and the starting value x. By varying the starting

values for r and x different sequences can be discovered and thus shows that different behaviors

might occur while being in the same system. This has the implication that depending on the initial

starting conditions, x might be trending to a different static equilibrium.

xt+1 = rxt(1− xt) (9)

Another simple rule has been deduced from agent-based systems, which shows that a purely

reductionistic approach can never completely describe a complex system. More specifically, when

studying just one agent in isolation would be very simplistic and just uncovers changes in internal

states but misses all the rules controlling the interactions between agents. A third simple rule

shows that complex systems are oftentimes sensitive to the initial conditions and that by means of

iteration in both space and time the dynamics of how patterns change over time can be uncovered.

These three prominent simple rules are not the only simple rules but show the key features of

complex systems (Tranquillo, 2019).
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Differential Equations

Besides these simple rules, one of the most important tools to actually model real-world sys-

tems or to study system dynamics are by means of differential equations. Differential equations

can be applied to any system that changes, where for example in some models there are several

interdependent (coupled) differential equations as shown in equation 10. The term dx
dt refers to how

x changes over time t whereas the functions f, g, h are the rules stating by how much it changes.

In system dynamics the term state refers to a snapshot of the variables in a system at a particular

moment in time, where in equation 10 the snapshot constitutes of three variables at a particular

moment in time t and is therefore labelled as a third-order system. Moreover, the functions f, g, h

denote how this snapshot will subsequently change in the future.

dx

dt
= f(x, y, z)

dy

dt
= g(x, y, z)

dz

dt
= h(x, y, c)

(10)

A general distinction between differential equations is whether it is a linear or non-linear equa-

tion. A linear system is in essence a superposition system, which implies that the system has

homogeneity and additivity. More specifically, homogeneity refers to the fact that if the input is

tripled then the output should also tripled and additivity indicates that when multiple different

linear systems are combined that a larger linear system will be the result. However, this also

shows that a non-linear system is labelled as non-linear when at least one term or function is non-

linear. As opposed to linear systems, finding an analytic solution to non-linear systems is not so

straightforward, hence two approaches exist that can be deployed to learn about the dynamics of

the system while no analytical solution has to be found. The first approach is by means of nu-

merical simulations where the differential equation is transformed into numerical approximations

in an iterative procedure. However, oftentimes differential equations are denoted with time being

the continuous variable, t, implying that there exists infinitely many time instants between two

moments. Nonetheless, it is not feasible to compute infinitely number of data points, hence the

differential equation is discretized which allows to solely compute the state variables at a given time

instant. One commonly deployed numerical method is Euler’s iteration:

dx

dt
= f(x)

xt+∆x = xt + ∆tf(x)

(11)
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This in essence shows how much x will change, given the current value of x and how much

farther in time the prediction should be made for, ∆t. In other words, based on the current value

xt, other future values of x can be found denoted as xt+∆x. Graphically, this means that the slope

of current point is used to predict the next point (Fieguth, 2017; Tranquillo, 2019).

Geometric approach and perturbations

Besides the numerical simulation approach, the second approach deploys geometric methods to

understand the key terms within system theory and additionally provides more intuition. In its

simplest forms, one could have a first-order non-linear system where f(x) might take the form of

−x3. The key step is to find the equilibria which equals to finding the roots of f(x). In such points

it means that x does not change, since the differential equation equals zero (dxdt = 0). Graphically,

a phase plot can be constructed by plotting dx
dt against x where subsequently the equilibria are

denoted by the points where f(x) intersects the x-axis as illustrated in figure 2. Furthermore,

the behaviour near the equilibrium within a system can also be closely investigated by means of

perturbation theory. Essentially, the idea is to examine what happens around the equilibrium when

the system is slightly perturbed by an external force fiction I for a a particular moment in time.

So, generally stated it can be written as:

dx

dt
= f(x) + I (12)

To illustrate the idea of perturbation theory, suppose again that f(x) = −x3 and the perturbation

equals I=1, then the effect of this perturbation on the equilibrium point is illustrated in figure 2.

Given that the system is located in the equilibrium point, x = 0, it shows that if the perturbation

causes x to be positive as indicated by arrow 1, then the change in x, as shown by f(x), will be

negative and therewith reduces the value of x as indicated by arrow 2. Moreover, if the perturbation

has the result that x will be negative then the change in x will be positive and thus tends to move

back to the equilibrium point where x = 0. Put differently, despite the effect of the perturbation,

either positive or negative, the system moves back to the equilibrium point x = 0. Such equilibria

points are referred to as stable equilibria or otherwise known as attractors of the system.
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Figure 2: The plot of dx
dt = −x3 + 1, where 1 denotes the perturbation. The slightly positive

perturbation has a negative effect on the change of x given that x is positive and vice versa, which

implies it has a stable equilibrium

However, depending on f(x) a perturbation could also reveal an unstable equilibrium which is

referred to as a repellor of the system where the perturbation has the result of moving the x away

from the equilibria, which could be observed when for example f(x) = x3. Additionally, a third

option would be that the equilibrium is a saddle point, which can however only occur in non-linear

systems such as when f(x) = x2. Furthermore, the idea of attractors and repellors may be deployed

as decision boundaries within a system, since states move towards or away from the equilibria in

the system (Fieguth, 2017; Tranquillo, 2019).

Bifurcations, Velocity Vectors and Attractor Basins

A further approach to examine the equilibria points is by means of a Bifurcation plot, where

two related key concepts are velocity vectors and the attractor basins. These key concepts can be

illustrated by assuming that f(x) = x2, where its equilibrium point is a sadle point and indicates

in this example that if a perturbation decreases x then it will be pulled towards the equilibrium

(x = 0), while when the perturbation increases x it will be pulled away from the equilibrium. Hence,

to investigate this behaviour in more detail, velocity vectors can be used to evaluate each point of

f(x) to quantify the strength of how x moves towards or is pulled away from the equilibrium point,

respectively for when x is negative and positive. The velocity vectors are denoted by arrows where

its length corresponds to its strength, as illustrated in figure 3. The velocity vectors in figure 3

indicate that on the left of the -1 equilibrium the system pulls away from this equilibrium while

16



between the equilibria -1 and +1 the system is pulled towards the +1 equilibrium. However, on

the right of the +1 equilibrium the systems pulls again back to the equilibrium. Hence, +1 can

be characterized as a stable equilibrium while -1 is characterized as an unstable equilibrium. The

two equilibria combined define the basin of attraction, which in this illustration is defined by the

interval -1 to +∞ where the system in this interval will be attracted to the stable +1 equilibrium.

More formally, a basin of attraction can be defined as a stable equilibrium that is being surrounded

by unstable points, which subsequently regulate the basin size.

Figure 3: The plot of dx
dt = 1 − x2, where the roots are +1 and -1. The velocity vectors are

represented by arrows and indicate that on the left of -1 the system pulls away from the equilibrium,

while between -1 and 1 the system pulls towards the +1 equilibrium. However, on the right of the

+1 equilibrium the system is also pulled back to the equilibrium. Additionally, filled circles denote

stable equilibria while open circles denote unstable ones.

After introducing the key ideas of velocity vectors and the attractor basins, the idea of bi-

furcation can be further elaborated. Given that f(x) = x2, one can add a so-called bifurcation

parameter, r, which in essence generalizes the previous example. So, the simple illustration would

change to equation 13. The effect of this bifurcation parameter, r, can be observed in figure 4 where

the parabola is vertically shifted. The main idea is that the bifurcation parameter determines how

many equilibria points are present and that it can change its type, for example from unstable to

stable. In other words, this shows that systems are sensitive to changes in the parameters and may
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impact its stability and therewith the behaviour of the entire system .

dx

dt
= x2 + r (13)

When the bifurcation parameter r is lower than 0, two equilibria points can be observed as

shown on the left in figure 4 where there is both a stable and an unstable equilibrium. Moreover,

when r = 0 there will be a saddle equilibrium as before, but when r is larger than 0 there will be

no equilibria in the system and x is pushed towards infinity.

Figure 4: The phase plots for dx
dt = x2 + r, where r denotes the perturbation parameter and differs

per plot.

The behaviour of a system as a result of bifurcations can be effectively shown in a bifurcation

plot. In this way, the locations of the stable, saddle and unstable equilibria are plotted for different

values of r. As shown in previous example (figure 4), if the bifurcation parameter r is lower than

0 both a stable and an unstable equilibrium appear, which is illustrated in the bifurcation plot on

the left of the the vertical axis (figure 5). The solid line denotes all the stable equilibria whereas

the dashed line denotes all the unstable equilibria. With the same rationale, when r equals zero

a saddle point emerges and is therefore referred to as a saddle-node bifurcation. However, when

r is greater than 0 a different scenario occurs. More specifically, in such a setting the velocity

vectors are of different strength since x tends to increase slowly around the point where x = 0 but

increases much more rapidly when the initial value is very negative or very positive. This behaviour

can be explained by the fact that the point x = 0 can be treated as a near equilibrium point or

ghost equilibrium and thus implies that the velocity vectors around this point are smaller, which

is referred to as the critical slow down. Hence, when a critical slow down phase can be observed it

is an indication of a bifurcation which implies that a change in a (bifurcation) parameter changes
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the stability of the equilibria and therewith changing the behaviour of the system (Fieguth, 2017;

Tranquillo, 2019).

Figure 5: The bifurcation plot for dx
dt = x2 +r, where r denotes the general perturbation parameter

and varies

Hysteresis and Tipping Points

Next to the concepts of bifurcations, velocity vectors and attractor basins, two other important

phenomena that occur in systems are: hysteresis and tipping points. Both concepts can be well

illustrated by the system defined as

dx

dt
= rx+ x3 − x5 (14)

Such a system results into a subcritical pitchfork bifurcation and is illustrated in figure 6. In

such a subcritical pitchfork bifurcation, the equilibrium value for x is changed depending on the

value for r. More precisely, between −rs and 0 three stable equilibria appear on the branches

and x-axis. Additionally, two unstable equilibria appear where again the solid lines represent the

stable ones and the dashed lines the unstable ones. Nevertheless, suppose the initial value of r

is highly positive and x is located on the upper bifurcation branch. If the r value is decreased

sufficiently it will move the x value to the left indicated by arrow 1. Subsequently, if r is decreased

even further all the way down to rs then the x value drops to the origin indicated by arrow 2.

Moreover, if r is then increased again then x will remain on the horizontal axis until r equals 0,

indicated by arrow 3. Thereafter, if r is increased further then the x value will increase again to the
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stable upper bifurcation branch. So, this example demonstrates the idea of hysteresis which relates

to the memory of the system given that various stable equilibria occur. Specifically, hysteresis

refers to that a certain state within the system is dependent on its history or past trajectories

and thus implies that the system’s output depends on where it initially came from. Hence, the

past trajectory impacts which equilibrium eventually is selected in the system. The concept of

hystersis also appears in economics, referring to the delayed effect of a certain event such as in

unemployment. More precisely, it oftentimes happens that the unemployment rate still increases

even though the economy is already recovering from a recession and thus shows the delayed effects

of unemployment and is referred to as hysteresis (Jaeger and Parkinson, 1994). Nonetheless, no

universal mathematical approach exists for the phenomenon of hysteresis and is considered as a

very complex phenomenon to model.

Figure 6: The bifurcation plot for dx
dt = rx + x3 − x5, where r denotes the general perturbation

parameter and varies. Specifically, a subcritial pitchfork bifurcation is shown with three stable

equilibria and two unstable equilibria as represented by the solid and dashed lines, respectively.

The second phenomenon that is observed in the example illustrated in figure 6 is that of a

tipping point. It can occur that a certain parameter is changed, like r, but that the value of x does

not change and thus it seems that the result does not change, as indicated by arrow 3. However,

just after the point of r = 0 there is a sudden large increase in x hence this point is referred to

as the tipping point. Such points show a sudden change but are oftentimes in real-world systems

hard to predict and are perceived as to be out of the blue when they do occur.

Phase Space

Up until now various key concepts from system theory have been discussed, particularly in a one-
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dimensional system where nonetheless the same concepts also hold for higher-dimensional systems.

However, when moving to higher-dimensional systems the possible behaviors within a system can

change substantially and is therefore further discussed by starting with a two-dimensional setting

followed by a three-dimensional setting. So, a general two-dimensional system can be denoted as

dx

dt
= g(x, y)

dy

dt
= h(x, y)

(15)

In equation 15 the functions x and y are dependent on each other and is referred to as a coupled

system, which imply that if one equation changes then the other one will change too. Naturally,

a decoupled system would refer to a setting where dx
dt would solely depend on x and dy

dt solely on

y. The variables x and y are oftentimes plotted against the variable time t. However, when the

variables are plotted against each other, specifically excluding time variables, it is referred to as a

phase space. Based on a phase space plot it can be observed how different variables, excluding time,

interact or vary with each other and therewith revealing a certain trajectory. Plotting the trajectory

of x and y in a real system can be challenging if possible at all, hence an alternative method is

available where the trajectory of x and y can be reconstructed in a two-dimensional phase space by

just a single variable. The essence is to deploy Taken’s method and to construct a surrogate second

variable from x(t). Then the variable x(t) will be plotted against its delayed version x(t+π) where

π denotes the delay. This idea can be generalized to higher-order systems where naturally also a

higher-order surrogate variable needs to be created (Takens, 1981; Tranquillo, 2019).

Nullclines

So, based on a phase space plot one can identify the trajectories of certain variables, such as

x and y in a two-dimensional phase space. However, the behaviour of a system can be further

examined by means of so-called nullclines. The idea of nullclines can be illustrated by the following

coupled two-dimensional system:

dx

dt
= x3 − y + 3

dy

dt
= y3 + x

(16)

As before, the interest is in finding the equilibria which could be found by solving the equations

but another approach is by means of the nullclines. Each of the differential equations in 16 should

be set to zero which allows to rewrite the equations into y = x3+3 and x = −y3, respectively. These
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rewritten equations are respectively known as the x-nullcline and y-nullcline and are illustrated in

figure 7.

Figure 7: A two-dimensional phase space of variable x and y, where the solid line denotes the

x-nullcline and the dashed line the y-nullcline.

More precisely, the x-nullcline denotes all the x − y pairs where the system cannot change in

the x direction or in other words where dx
dt = 0. With the same rationale, the y-nullcline denotes

all x− y pairs where the system cannot change in y direction, implying that dy
dt = 0. Moreover, the

point where both nullclines intersect with each other denotes the equilibrium point.

Furthermore, to examine whether the observed equilibria are stable or not one can evaluate

the velocity vectors as in the one-dimensional setting. More specifically, if the velocity vectors all

point towards the respective equilibrium it can be considered as a stable equilibrium while when

the velocity vectors are all pointing to different directions then the respective equilibrium would be

characterized as unstable. More formally, a Jacobian matrix can be constructed which shows the

slopes of the velocity vectors, as shown in equation 17.

Jf (x, y) =

∂f1∂x ∂f1
∂y

∂f2
∂x

∂f2
∂x


xeq ,yeq

(17)

The Jacobian matrix shows the first-order partial derivatives with respect to x and y for two

functions, since it is a two-dimensional setting but naturally can be generalized to m functions.

However, in this case f1 and f2 could refer to the functions g(x, y) and h(x, y) in equation 15 respec-
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tively. This Jacobian matrix specifically evaluates the equilibrium point referred to as (xeq, yeq).

Intuitively, the resulting matrix shows the directions and magnitude of the velocity vectors in the

x and y directions for the equilibrium point and contributes to determining the type of equilibrium

(Fieguth, 2017; Panfilov, 2018; Tranquillo, 2019).

Separatix, Phase Portrait and Limit Cycles

The concept basins of attractions which was already introduced for one-dimensional systems

can naturally be extended to a two-dimensional setting or to even higher dimensional systems.

However, in the two-dimensional setting the basins of attractions are areas, as illustrated in figure

8. In this two-dimensional setting, the basins of attraction are separated by a so-called separatix

which denotes an unstable line (dashed). This line can intuitively be seen as a border and depending

on the initial conditions the starting point will be left or right of this line. Based on the initial

starting point, the respective velocity vectors are followed towards the corresponding equilibrium

within the respective basin. However, when the system is located in a certain basin it will remain

there unless a substantial perturbation occurs that would move the system into another basin,

where it essentially moves the system accross the separatix. This once again confirms a system’s

sensitivity to the initial starting conditions. More generally, figure 8 displays a phase portrait

referring to the fact that it captures both the velocity vectors and nullclines into one plot.

Figure 8: A two-dimensional system where the separatix is denoted by the dashed line and separates

the basins of attraction. Additionally, the x-nullcline and y-nullcline are denoted by the solid lines

next to the two stable equilibria (filled circle) and the unstable equilibrium (open circle)
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Next to these concepts, another commonly observed phenomenon is a so-called limit cycle. More

precisely, a limit cycle can be observed in phase space and can be illustrated by any closed shape

such as shown in figure 9.

Figure 9: On the left a stable limit cycle is shown (solid line) while the right side shows an unstable

limit cycle (dashed line/separatix)

So, as indicated by the velocity vectors in figure 9 on the left all close by trajectories are being

attracted to the stable limit cycle, but when the trajectory actually lands on the limit cycle itself

it will be looped indefinitely. Formulated differently, the same x-y pair values are continuously

repeated for an indefinite period of time and is comparable to an oscillation. Moreover, it has been

been mathematically proven that in a stable limit cycle an unstable point must reside. Intuitively

this makes sense, because as aforementioned a stable limit cycle attracts all close by trajectories

which means that when the initial start condition is within this limit cycle there must be a force

that pushes the velocity vectors outwards. Hence, this force can subsequently originate from an

unstable equilibrium that pushes the velocity vectors outwards.

Moreover, when a separatix forms a closed shape as illustrated on the right in figure 9, it forms

an unstable limit cycle. As indicated by the velocity vectors, all points located nearby the unstable

limit cycle will move away from this. So, with the same rationale as before, a stable point must

reside within the unstable limit cycle so that the points that are located within this cycle are pushed

away from the cycle path (Tranquillo, 2019).

Chaos Theory

After having briefly discussed the two-dimensional setting, it naturally raises the question

whether the three-dimensional setting also introduces different phenomena that might occur in
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systems. Following previous notation, the setting can be extended to a third-order system:

dx

dt
= f(x, y, z)

dy

dt
= g(x, y, z)

dz

dt
= h(x, y, z)

(18)

All the previously discussed phenomena that could occur in the one and two-dimensional system

also appear in higher-order systems. However, a different phenomenon that can occur in third-

and-higher-ordered systems is so-called chaos. A system with chaotic behaviour is very sensitive to

perturbations and its starting conditions and is by definition deterministic. Nonetheless, quite some

variables and systems were first thought of to be random, while they were actually deterministic

but chaotic. More precisely, the main difference between randomness and chaos is that a a state in

a random system cannot be fully accurately predicted while the state in a chaotic system can be

predicted well if the initial conditions are completely known since small differences in the initial

conditions can result into substantially different outcomes. In essence, chaos theory shows that a

deterministic system might actually be unpredictable or that it may be very difficult to accurately

predict a certain state in such a system. Hence, this also makes the boundary between randomness

and a deterministic but chaotic system to some extent less straightforward in first instance.

Remarkable behavior of a chaotic system in phase space is that the trajectories do not stabilize

to a certain value and nor does a limit cycle appear. So, a different kind of behavior can be observed

which is referred to as the Lorenz attractor more commonly known as the strange attractor, which

can only occur in higher than two-dimensional systems. In short, the values in the phase space

do not go to infinity, are not repeated and the trajectories do not cross each other where such an

example is illustrated in figure 10 (Tranquillo, 2019).

Figure 10: On the right the x, y, z phase space is illustrated and on the left the time courses of the

respective variables. This is known as the Lorenz attractor
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To further clarify the notion of chaos, a famous example is a bifurcation plot of the discrete

logistic function, which was earlier shown in equation 9, and is illustrated in figure 11. In this plot

the x demonstrates the state of the system where the state is evolving according to the equations

xn+1 = rxn(1− xn). However, the dynamics of the system are highly dependent on the parameter

r where for low r values (< 3) the system moves to a stable point. Nonetheless, for large r values

(> 3.5) the systems begins to oscillate and the x values differ substantially. In essence, it is

illustrated that the system is very sensitive to its initial starting conditions. The system first moves

towards a single point, thereafter when r increases it oscillates between two points, then between

four points then between eight and so forth. This is referred to as period doubling where the value

of r = 3.57 is considered as critical value and from then onward characterized as chaos. At first,

the values of x seem to be random but can actually be attributed to chaos since the system is

moving to an infinity period oscillation as r increases. The speed of this period doubling has been

proven by Feigenbaum (1978) to be at a constant speed of 4.669... comparable to the number π and

is therefore referred to as the Feigenbaum constant. This finding is universally applicable to any

equation and system that shows chaotic behavior (Fieguth, 2017; Giglio et al., 1981; Tranquillo,

2019).

Figure 11: Bifurcation plot of xn+1 = rxn(1 − xn), which displays chaotic behavior by means of

period doubling. The phenomenon of chaos can be observed from the critical value r = 3.57 onward.

Additionally, it is argued that there are three fundamental features of chaos theory which

are: non-linearity, system states and emergent order (Doherty and Delener, 2001). The non-

linearity property was extensively earlier discussed, but primarily results from different feedback

26



effects both positive and negative. Where positive feedback reinforces the effects while negative

feedback dampens the effects. In other words, even a very small initial change could lead to

a significant change in the system as was shown by Lorenz (1963, 1969) whom discovered this

property by studying weather forecast models where this phenomenon is also referred to as the

butterfly effect. The second property, system states, refers to structural or behavioural instability

of the system. Structural specifically refers to the fact that the initial conditions have significant

effects on the systems, which was illustrated in figure 11. Additionally, small changes in the

systems may also lead to cumulative effects or butterfly effects in the behavior of the system.

The third property, emergent order, refers to that the components of the system have an intrinsic

self-organizing property. Moreover, Doherty and Delener (2001) argue that the required degree

of non-linearity to result into chaos within marketing is relatively low due to all the assumptions

regarding demand and advertising elasticities, competitors, interdependencies between marketing

mix variables among others. In other words, due to all these components, variables and levels that

are interdependent or interact with each other already with a low degree of non-linearity one can

observe chaos in a marketing setting.

To conclude, up until now the most common phenomena that occur in systems have been

discussed starting from from one-dimensional systems to higher-ordered systems. In general, when

moving from one up to higher dimensional systems it is shown that simultaneously also more

complex phenomena can be observed such as chaotic behavior. However, noteworthy to mention

is that this part only touches upon the tip of the iceberg regarding the research field of complex

systems but provides the understanding of relevant key terms. Nevertheless, the idea of complexity

theory in relation to marketing, to the extent it has been researched to this date, will be further

discussed.

2.3.2 Complexity Theory in Marketing

Applications in marketing

To this date it seems that very limited number of studies have been conducted yet to linking

complex system theory to a marketing setting, which can be attributed to the fact that complexity

theory and chaos are very difficult to identify and work with (Gregersen and Sailer, 1993). Nonethe-

less, there are a few studies that conceptualize the ideas from complexity theory to a marketing

setting, such as Varnali (2019) where the customer journey is conceptualised from a complexity
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theory point of view. It is argued that customer service can be considered as a self-organizing

system since the service environment continuously changes and no complete set of predefined rules

can capture these dynamics. More specifically, it is argued that the customer journey is charac-

terized by three fundamental characteristics of complex systems including being autopoietic, path

dependent and non-linear. The customer journey is considered as autopoitic referring to the fact

that it is based upon reiterative feedback loops in a network of interactions. For example, the effect

of a customer’s action at one touchpoint is recursively fed back to the customer and subsequently

affects its future behavior. Moreover, a customer journey tends to be non-linear since customer

experiences are very sensitive to small perturbations and when the customer service meets all the

customer’s expectations at all touchpoints, multiplier effects could be observed for the customer ex-

perience. Furthermore, the customer journey tends to be path-dependent since the order of events

can substantially affect the non-linear effects on customer experiences. Hence, the customer journey

tends to fit the definition of a complex system as argued by Varnali (2019) and subsequently offers

the possibility to deploy different tools that are specifically designed for complex systems (Varnali,

2019).

Another application of complexity theory in relation to marketing is in the setting of new

product diffusion models. More precisely, Goldenberg et al. (2001b) show that the stochastic

cellular automata simulation technique, borrowed from complex system analysis, can be leveraged

to model consumer’s heterogeneity on new product growth. In essence, the assumptions made about

individuals and how it influences the aggregate level parameter values can be better understood,

which implies that also the limitations of the aggregate analysis can be more accurately interpreted.

The key idea of deploying the automata simulation technique is that it can generate data on an

individual level, which is generally not available, and therewith allowing to model heterogeneity

effects. Besides the new product diffusion models application, the cellular automata simulation

technique has also been applied to understand the underlying process of word-of-mouth marketing

(Goldenberg et al., 2001a). More specifically, it helps understanding the aggregate effect of the

spread of information via word-of-mouth, through so-called weak and strong social ties. Where

weak ties refers to less personal communication an individual makes to acquaintances and strong

ties refers to the strong personal communication an individual makes to closer friends. By means

of deploying the cellular automata technique, data could be generated to research whether any

apparent differences or patterns between strong and weak ties could be observed. More generally, it

is argued that methods like the cellular automata technique borrowed from complex system analysis
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can be leveraged to analyse various marketing phenomena (Goldenberg et al., 2001a, 2001b).

Chaos in Marketing

Next to the above discussed marketing applications there is also more specific literature, al-

though again limited, about applying chaos theory in marketing settings. One article that pio-

neered in relating chaos theory to marketing was by Hibbert and Wilkinson (1994). Hibbert and

Wilkinson (1994) argue that traditional marketing methods overlook the complex dynamics that

even occur in the simplest non-linear equations and that in the field of marketing the primary

focus is too much on equilibrium approaches and linear approximations. Chaos theory offers man-

agers and policymakers new ways of understanding complex phenomena rather than assuming it

to be external shocks or noise and can subsequently be used to better account for certain patterns

or behavior. Additionally, chaos theory can be deployed to distinguish purely randomness from

chaos, which is of added value since purely random processes cannot be predicted while chaotic

systems can be predicted on short-term but just not on long-term. Lastly, chaos theory can be

utilized to find new ways of explaining the evolution of certain marketing systems. Hibbert and

Wilkinson (1994) show three different models that result into complex behavior and chaos where

the three models correspond to three different settings, namely: new product diffusion models,

market evolution and brand competition. Besides showing three marketing case studies that result

into complex behavior and chaos, it is showed how chaos can be distinguished from randomness

by means of deploying one of the following methods: return maps, correlation dimension, the Lya-

punov exponent and prediction error. The essence is that chaos theory can be of substantial value

to distinguish randomness from chaos because within marketing traditionally all time series that

seem to appear random are attributed to random shocks or noise while this is not automatically

true and might actually indicate there there are underlying (complex) non-linear dynamics. If so,

then various methods can subsequently be deployed to investigate the origin of these dynamics and

why this behavior can be observed (Gregersen and Sailer, 1993; Hibbert and Wilkinson, 1994).

Although Hibbert and Wilkinson (1994) already pioneered with the idea of applying chaos theory

for marketing phenomena and showing all the opportunities it offers, the amount of literature on

this subject is to this date is still very scarce. The main explanation for this as stated by Hibbert

and Wilkinson (1994) and Gregersen and Sailer (1993) is due to the fact that chaos very difficult

to identify and to work with such models/theories.
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Nevertheless, about 8 years later one other study appeared on relating chaos to marketing

which was done by Doherty and Delener (2001). More specifically, Doherty and Delener (2001)

use the laws of chaos to investigate the evolution of high-tech markets, where such markets are

characterized by rapid advancements, globalization, fierce competition, risky strategies and freer

international trade among others and thus are considered to be a complex system of which behavior

can be explained by means of chaos theory. The three fundamental features of chaos are followed

by Doherty and Delener (2001), which were earlier discussed. The first property non-linearity can

be attributed to the presence of both positive and negative feedback effects, such as the growth of

complementary products or learning curve effects among others. The second property system states

can be traced to aspects like the initial structures of firms or the market. Additionally, small changes

can occur due to changes in for example policies, regulations or entries/exits of firms. Moreover,

the third property emergent order can be related to the social order that is emerging from actions

of economic agents. Doherty and Delener (2001) extend the two factor NK model, which is based

on the laws of chaos and evolution, to a four factor NK model. This four factor NK model accounts

for various growth and adaptive activities that are observed in the business environment. The

main idea is to model the evolution of the business environment where the four factors capture the

interdepencies within and among firms. This model demonstrates that decentralisation regarding

firm structure and decision-making is important, since without decentralization it is shown that

the company tends to perform suboptimally in the market. A company should divide itself into N

number of units where N should be chosen when it is located at the edge of chaos. In other words,

the number of interdependencies within a firm should be sufficiently low so that the optimization

of each seperate unit results into the optimization of the complete system (company) while being

subject to the overall company mission. Besides the organizational structure, this model also shows

that innovation is a autocatalytic process implying that it leads to the creation of multiple niche

markets where subsequently each niche market again leads to innovation and subsequently to even

more niche markets and so forth. Another insight that was obtained through this model is that

segmentation, differentiation and positions tends to limit the change to chaos, since a higher degree

of independence can be achieved. Lastly, it is shown that no long-term forecasts can be made about

a complex system due to the fact that too many variables and interdependencies are present in such

systems. Nonetheless, in summary, Doherty and Delener (2001) show that the laws and models of

chaos can be utlized to model the evolution of a business environment and subsequently encourage

to further research chaos theory in relation to marketing.
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Complexity Economics

Besides the aforementioned marketing applications, there is also more general literature avail-

able on how complexity theory is relevant for the field of economics, where economics is closely

related and interrelated to the field of marketing. Within the field of economics, since last decades,

a different way of thinking about the economical science in its entirety has emerged. Namely,

complexity economics, which sees the economy not as being in an equilibrium but rather as a dy-

namical system where economic agents continuously adapt. In other words, it is a different view of

the economy where the system is continuously evolving and phenomena occur that have not been

observed earlier in the traditional neoclassical approach. This approach does not exclude the idea

of the presence of equilibria, but rather that the economic system is not necessarily in equilibrium

due to the fact that it is an organic evolving system and thus actually generalizes the traditional

approach by including nonequilibrium economics. Within complex systems many different elements

interact with each order and co-create certain patterns. This same idea can be observed within

economics, where economic agents continually change their market moves like pricing, forecasting,

buying decisions and so forth. The key difference between the general equilibrium approach and the

complexity economics approach is that instead of asking how prices and quantities are consistent

with their overall pattern of pricing and quantities, complexity economics asks how strategies and

actions may endogenously change with the patterns they create (Arthur, 2013).

To summarise, despite the fact that there are some applications of complexity theory and chaos

theory in marketing, it is still very scarce and almost no recent literature is available on this

subject, which can be attributed to the fact that the concepts within complexity and chaos theory

are difficult and it is not straightforward to translate such concepts to marketing settings according

to Doherty and Delener (2001), Hibbert and Wilkinson (1994), and Wilkinson and Young (2013).

Nonetheless, because of this scarcity of literature on this subject, the aim of this study is to provide

new evidence. More precisely, this study focuses on how causal effects might more accurately

estimated by treating certain marketing settings as complex systems which subsequently allows to

deploy more advanced methods to capture the causal relationships.

2.3.3 Case Study: Complexity Theory in Advertising

As aforementioned, this study illustrates how complexity based methods might be leveraged

to more accurately estimate causal effects for different marketing mix related questions. However,

the first step is to evaluate whether a particular marketing setting seems to fit the definition of a
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complex system, although there is not one universal definition that can be followed to easily label a

setting as a complex system or not. Nonetheless, there are various important features that typically

characterize complex systems where the most prominent characteristics are: non-linearity, there are

numerous single components that interact with each other, might be a self-organizing system and

presence of emergence (Varnali, 2019).

So, suppose a setting of a large company with three different products where for each separate

product the following information is known: the price, distribution amount, the advertising efforts,

and feature. A question of interest to a marketeer could be for example what the effects of pricing

has on sales or what the effect of advertising has on sales. Traditionally, a marketeer might evaluate

the causal effect of the advertising efforts of product 1 on the sales of product 1 to better under-

stand the causal impact of advertising. Such a reductionist approach where elements are isolated is

commonly deployed within marketing but is not necessarily the most plausible approach. For exam-

ple, in the setting with three different products, that can be either complementary or substitutes,

isolating certain components does not capture the complete picture. More specifically, it is likely

that the advertising of the different products will interact with each other and subsequently affect

the respective sales of each product. In other words, solely looking at the advertising efforts of one

specific product and attributing all the observed effects to that might give a biased view of what

is truly happening. By approaching this setting in such a reductionist approach would seem like

that there is a linear effect of advertising on sales, while this may be attributed to the fact that all

the other dynamics are not taken into account. More precisely, in this setting it seems plausible to

assume that the interactions between the sales and advertising result into non-linear effects, which

was comparably also argued by Doherty and Delener (2001) whom stated that complementary

products are a source of feedback effects and thus result into non-linearity.

To clarify the idea even further of why treating certain marketing settings as a complex sys-

tem might add value, a simple example is illustrated in figure 12 which might be to some extent

oversimplified but demonstrates the main motivation of a complexity theory based approach. So,

suppose again the setting as described above where three complementary products are offered and

each product has its own advertising efforts and distribution. Moreover, assume that the question

of interest here is to find out what the causal effect of advertising 1 is on the sales of product 1,

where the numbers 1 to 3 of each variable refer to respective product. As aforementioned, reduc-

tionist approaches are traditionally deployed within marketing where this idea in its simplest forms

is illustrated in (a). In other words, it is investigated how advertising 1 causally impacts sales 1,
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where subsequently different models might be explored that also control for the other variables.

However, controlling for the other variables does not ignore the fact that there might actually be

more complicated dynamics present. More specifically, the setting outlined here might actually be-

have as illustrated in (b) which shows that deploying reductionist methods is not straightforwardly

the best choice and cannot capture the actual dynamics of the system that may be present.

((a)) Simple idea of evaluating causality of advertising on sales

((b)) The system might actually be less straightforward and might involve non-linearity and numerous interdepen-

dencies among sales, advertising channels and distribution

Figure 12: Here a very simple idea is showcased of a reductionist approach (a) for evaluating

causality compared to how the system might actually behave and could be treated as a complex

system

An illustration of likely occurring behavior in this setting is shown in (b), which shows that

multiple components are interdependent and that non-linearity seems plausible. More precisely, it

is likely that the sales of the products are interdependent, especially if the products are comple-

mentary, resulting into feedback effects and thus non-linearity, as argued by Doherty and Delener

(2001). Moreover, it is also plausible to assume that advertising efforts for the different products

interact with each other, due to different reasons. First, because there will be a budget where this

budget has to be allocated and the budget allocation might change over time. Secondly, because
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when product 2 is advertised heavily then it is likely that, perhaps more indirectly, that product 1

and 3 might also benefit from this due to the branding, which might be even reinforced due to the

complementary nature of the products. Next to the fact that between advertising efforts A and

sales S such interdependencies are likely, it is also plausible to observe bidirectional (causal) effects

between advertising and sales, since earlier research found such a relationship between advertising

and sales (e.g. Lee et al., 1996; Sharma and Kapur, 2014). Besides, due to the complementary

nature of the products it is likely that for example the advertising of product 2 will also impact the

sales of product 1, both directly and indirectly through the sales of product 2. Moreover, another

component where both sales and advertising (R) might interact with is the distribution D. Given

that distribution is constrained by certain capacities it seems likely to find interdependencies be-

tween the different products. Additionally, distribution also interacts with sales and advertising,

because if the distribution is low then naturally also the sales can be lower due to out-of-stock

scenario’s even though when for example the advertising efforts are increased. Furthermore, it can

also be argued from the other way around, so sales and advertising can also lead to changes in

the distribution. Specifically, the allocation within distribution could shift among the products

depending on performance but it can also occur that the sales significantly increase and would lead

to a permanent increase in the distribution capacity. The effect of this distribution expansion can

flow back to the sales, since an out-of-stock scenario is less likely and therefore might also result

into higher sales given that the demand is higher than supply.

To summarize, in a setting with just three products that seem to be straightforward to inter-

pret might actually show more complex underlying dynamics such as non-linearity and numerous

components that interact with each other. Here just a simple example was provided to show that

most marketing settings can be actually more complex than initially thought of. However, labeling

a particular setting as a complex system or not is not that straightforward and there is not one

test or something a like to determine this. Nonetheless, domain specific knowledge can be uti-

lized to map a particular situation and although not all interdependencies and relationships can

be formally tested it can still give a good overview of whether it would make sense to investigate

complexity based methods further for that particular setting. Additionally, direct non-linearity

between variables can be evaluated by means of visual inspection or different tests and to identify

the presence of chaos different test exist but again the system as a whole, feedback effects or more

complicated phenomena alike cannot be formally tested and would also require an expert opinion

to judge whether it is worth to investigate the complexity based phenomena further.
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3 Methods

In this section the method Cross Convergent Mapping originating from complexity theory is

discussed. This method is designed to detect causality between (time-series) variables even when

complex phenomena like feedback effects or non-linearity among others are observed. Moreover,

this method follows the principle of ”a lack of correlation, does not imply a lack of causation” since

this method is still able to identify causality even though there is a lack of correlation as stated by

the authors Sugihara et al. (2012).

3.1 Cross Convergent Mapping

Cross Convergent Mapping (CCM) is a (non-linear) state space reconstruction method and

distinguishes correlation from causality by means of leveraging the properties of delay embedding

(Sugihara et al., 2012). Within complex systems numerous general complex phenomena can be

observed, as the term complex logically implies, and CCM is able to deal with such settings. More

specifically, a commonly observed phenomenon within complex systems is referred to as mirage

correlation, which means that the correlation depends on the state of the system and thus that

the sign and magnitude changes over time. However, correlation is not a necessity nor sufficient to

establish causation which is demonstrated by one of the most popular methods to detect causality

in time series, namely Granger Causality. Granger Causality is commonly deployed as a means to

detect causality between time series variables, although Granger Causality utilizes predictability

for defining causality rather than true causality as understood from experimental settings. Despite

the fact that Granger Causality is a commonly deployed method for (predictive) causality, it is

crucially dependent on its separability assumption. As earlier discussed, separability in short refers

to the fact that a variable x contains independent unique information about the target variable y.

However, this assumption cannot be satisfied when the variable y also captures information about x

since this would imply that x is not a unique causative factor to y. In other words, it seems counter

intuitive but when x is unilateral causing y (x =⇒ y) then the variable x can be estimated based

on y but not vice versa. In essence, non-separability allows to predict past states of the causative

factor where this concept plays a fundamental role within CCM, since this method aims to deal

with such settings. Specifically, systems that are both linear and fully stochastic generally satisfy

the separability assumption, but otherwise it usually fails to satisfy this assumption. To further
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clarify the idea behind non-separability, a simple example with a logistic model is illustrated.

X(t+ 1) = 3.9X(t)[1−X(t)− βY (t)]

Y (t+ 1) = 3.7Y (t)[1− Y (t)− βX(t)]
(19)

In this model the X and Y are dependent on each other as long as β 6= 0, more generally the

parameter β determines how sensitive X is to Y where a large value substantially decreases the

growth of X. However, the equations in 19 can be rewritten to show that the values Y (t+ 1) and

Y (t) can be used to obtain the value for X(t) and the values X(t + 1) and X(t) can be used to

obtain the value for Y (t). Hence, after algebraically rewriting the equations in 19 gives:

βY (t) = 1−X(t)− X(t+ 1)

3.9X(t)

0.2X(t) = 1− Y (t)− Y (t+ 1)

3.7Y (t)

(20)

However, a problem of the equations in 20 is that it is dependent on future values, respectively

X(t+ 1) and Y (t+ 1) hence these equations alone are not sufficient to retrieve the cross mapping

dynamics. Therefore, equation 20 can be substituted back into equation 19 to obtain equations

with lagged values, as shown in equation 21.

X(t) =
3.9

0.2

[
(1− βY (t− 1))

(
1− Y (t− 1)− Y (t)

3.7Y (t− 1)

)
− 1

0.2

(
1− Y (t− 1)− Y (t)

3.7Y (t− 1)

)2]
Y (t) =

3.7

β

[
(1− 0.2X(t− 1))

(
1−X(t− 1)− X(t)

3.9X(t− 1)

)
− 1

β

(
1−X(t− 1)− X(t)

3.9X(t− 1)

)2]
(21)

Equation 21 shows the cross map estimates of X(t) and Y (t), respectively, where Y (t) cannot

be solved when β = 0 while X(t) remains to be defined everywhere. This can also already be

observed in equation 20 where βY (t) can clearly not be solved in terms of X given that β = 0

and implies that the past states of X are not relevant to determine Y . More importantly, in a

bidirectional setting (β 6= 0) the equations of 21 can be substituted back into equations 19 so that

X(t + 1) can be written as a function solely in terms of X(t) and X(t − 1) and thus shows that

the variable X can be predicted only based on its past values. However, this touches upon the

fundamental issue, because the Granger Causality method would eliminate the variable Y from the

model since it does not affect the predictive performance because x(t) can be predicted based on its

lagged values and thus y would be classified as redundant. Subsequently, Granger Causality would

incorrectly conclude that Y does not cause X and this is one of the key points CCM can address.
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In short, CCM can deal with systems that tend to be non-separable, CCM can also identify

causality even when the variables are low to not correlated and CCM can distinguish among inter-

actions from shared driving variables. Moreover, Granger Causality specifically experiences issues

when the system is not purely stochastic as aforementioned which is also addressed by CCM. More

specifically, when the system is not purely stochastic then there exists an underlying manifold that

governs the system dynamics. So, suppose two variables X and Y then in dynamical systems the-

ory it is stated that these variables are causally related if they are from the same dynamic system

which implies that these variables share a common attractor manifold M . The implication of this

is that the variables contain information about each other where, as illustrated before in equations

19 to 21, the information of past states of X can be retrieved from variable Y . This already touches

upon the fundamental idea of Cross Convergent Mapping, since this method tests to what extent

historical values of Y can be used to estimate past states of X which can only occur if X causes

Y . More technically, CCM inspects whether there is correspondence between the shadow manifolds

My and Mx that are derived from the manifold M . More precisely, it is tested whether the time

indices of closely located points on My can be used to identify closely located points on Mx because

if that is possible then this implies that the variable Y can be used to estimate X and the other way

around. To clarify this idea and the concept of manifolds further it can be best illustrated by means

of an example. More specifically, the famous Lorenz System is commonly used to illustrate such

concepts including demonstrating the CCM method, where not the idea behind the Lorenz system

in itself is relevant but rather the general rationale of what exactly is happening. So, the Lorenz

system is a coupled non-linear third-order system which was originally designed to model the air

movement in the atmosphere and was additionally the first one to discover the concept of chaos

with this particular system, which was extensively discussed in the literature review. Nevertheless,

the Lorenz system is denoted as follows (Lorenz, 1963):

dx

dt
= σy − σx

dy

dt
= rx− y − xz

dz

dt
= zy − bz

(22)

This system and the idea of the CCM method can subsequently be illustrated graphically,

as shown in figure 13 (Sugihara et al., 2012). So, in this system each equation (component) is

dependent on the state and dynamics of the other components and thus each component naturally

changes when the other two components changes. In other words, a three-dimensional setting is
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here displayed where each dimension refers to the respective equation, referring to the variables

X,Y and Z. The manifold, M , refers to the set of all trajectories and are simply denoted by

the solid lines in figure 13. Moreover, m(t) refers to a particular point on this manifold and is

therefore denoted as m(t) = [X(t), Y (t), Z(t)]. Subsequently, for each respective dimension the

time series for that particular dimension can be projected. Graphically, this would imply that for

each edge of the state space, where there are three in this setting (X,Y, Z), a time series can be

projected from the manifold to each respective axis. This would yield in total three time series

where for each dimension the placement of that respective variable on the manifold is projected,

over time. However, the idea of the manifold M can also be viewed from the other way around.

So, for each respective variable X,Y and Z there is a time series and when plotting these three

time series simultaneously in a state space, the manifold M can be recreated. Subsequently, based

on the manifold M the shadow manifolds Mx and My can be derived which are constructed based

on the lagged values of X and Y , respectively, where the lagged values are denoted by τ in figure

13. The idea of creating shadow manifolds originates from Takens (1981) and was generalized

by Deyle and Sugihara (2011), where it is mathematically proven that by looking at one of the

projected time series of the original manifold, a shadow manifold can be created. So, the original

time series projection and its lagged values act as coordinates and construct a particular shadow

manifold, which shows similar trajectories as the original manifold as observable in figure 13. As an

example, Mx displays the shadow manifold for the time series X where each point on this shadow

manifold captures time segments and essentially shows the historical behavior of the variable X.

Furthermore, the shadow manifold remains to capture the essential mathematical properties of the

original manifold such as its topology. Hence, the strength of using shadow manifolds is that just

a single time series variable and its lags can be used to recover states from the original manifold

(Deyle and Sugihara, 2011).
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Figure 13: Here the Lorenz system is displayed as M which refers to the attractor Manifold.

However, Cross Convergent Mapping investigates the shadow manifolds of variables X and Y ,

referred to as Mx and My respectively. More specifically, the correspondence between Mx and My

is tested where the states of X might be estimated based on Y and the other way around

The idea of creating shadow manifolds is commonly known as (non-linear) state space recon-

struction which allows to work with low-dimensional proxies of the real system. Moreover, the key

idea is that points located on the shadow manifold of X (Mx) correspond to close by located points

on the shadow manifold of Y (My). This would be possible since the variables X and Y form, in

this example, a coupled system and refers back to equation 22. More specifically, this idea is further

illustrated in figure 13 where for example points located in the red circle on Mx correspond to points

located in the green circle on My and implies that these points will have the same values for t, so

the time indices. Hence, based on this idea the state of each variable can be estimated based on

the other, so Y can be utilized to estimate the states of X and vice versa. Next to the idea of cross

mapping, convergence also plays a vital role in the CCM method since convergence is the factor

that discriminates correlation from causation. More precisely, with more data (longer time series)

the cross-mapped estimations are more accurate due to the fact that the estimation error declines.

Another feature of the CCM method is that it deals with transitivity. More specifically, causation

is transitive and implies in the bidirectional case that U ⇔ V ⇔ W and in the unidirectional case

that U ⇒ V ⇒W . In other words, even though U and W do not directly interact with each other
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they are still causally linked to each other. However, the CCM method can differentiate between

coupled variables and variables that share a common driver, where two of such possible scenario’s

that CCM can deal with are illustrated in figure 14 (Sugihara et al., 2012).

((a)) CCM can identify that

W and V are actually decou-

pled and driven by U

((b)) CCM can also differentiate shared drivers from

coupled variables in large interaction networks.

Figure 14: CCM can differentiate between coupled variables and common drivers and can distin-

guish unidirectional from bidirectional relations. Adapted from Sugihara et al. (2012)

.

3.1.1 Cross Convergent Mapping Algorithm

After having discussed the key ideas and intuition of Cross Convergent Mapping (CCM), it

is now further elaborated how CCM is actually applied in an empirical setting. More precisely,

in practice empirical dynamic modelling is applied since explicit parametric equations cannot be

straightforwardly hypothesized due to the complexity of the system or due to the fact that the

underlying mechanisms are simply not known. Hence, time series data is used to construct an

empirical model which infers the patterns and captures the behavior of the system rather than that

equations have to be hypothesized. To actually do this, the R package called rEDM was developed

by the authors Ye et al. (2016), which contains various tools to model empirical dynamic models

including the CCM method.

To illustrate how the CCM algorithm works in practice, consider two time series variables X

and Y both with length L and are subsequently denoted as {X} = (X(1), X(2), . . . , X(L)) and

{Y } = (Y (1), Y (2), . . . , Y (L)), respectively. The first step is to create a set of vectors with lags,

which are referred to as a set of delayed embedded vectors. In other words, a set of delayed embedded
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vectors is constructed for the variable X and Y and are respectively denoted as xt and y
t

as shown

in equation 23 and 24.

xt = {Xt,Xt−τ ,Xt−2τ , . . . ,Xt−(E−1)τ} (23)

y
t

= {Y t,Y t−τ ,Y t−2τ , . . . ,Y t−(E−1)τ} (24)

Each respective set of delayed embedded vectors constructs the (delay) embedding or in other

words the so-called shadow manifold. This shadow manifold or equivalently the set of delayed

embedded vectors is a proxy of the underlying system hence the term shadow and shows that

based on just a single variable, such as X, the original system and thus its corresponding manifold

can be reconstructed. Hence, the process of creating a shadow manifold is referred to as state

space reconstruction and the fact that a single time series variable can be used as a proxy for the

underlying system captures the essence of Takens (1981) Theorem. So, the set of delayed vectors Xt

constructs the shadow manifold (delay embedding) for the variable X and is denoted as Mx. The

shadow manifold Mx is constructed as follows: each vector in the set Xt represents a dimension

and thus actually creates the state space (also called phase space) where simultaneously all the

points of all the respective vectors are plotted in this state space and would reveal the trajectories

of the variable X, which acts as proxy of the original system. Moreover, following exactly the same

rationale, the shadow manifold for the variable Y can be constructed and is denoted as My, which

is again equivalent to plotting the set of delayed embedded vectors Y t in state space.

To clarify this idea further, consider figure 15 which shows the Lorenz system. In this specific

example, the variable X is used to reconstruct the original manifold of the Lorenz system. More

specifically, it is assumed for the sake of illustration that we have a three-dimensional system

so that E = 3 and implies that the set of delayed embedded vectors can be denoted as follows

xt = {Xt,Xt−τ ,Xt−2τ}. Formulated differently, we have a vector with the present values of

X, a vector of X with a lag τ and a third vector of X with lag 2τ . Each delayed embedded

vector in the set Xt corresponds to a dimension as shown in figure 15 and thereby determines the

dimensionality of the state space. In this example, a particular point on the embedding Mx at

time t is a three-dimensional point and is denoted as Xt = [Xt, Xt−τ , Xt−2τ ]. In essence, these

three delayed embedded vectors capture the coordinates of all points that together construct the

shadow manifold (embedding). More generally, a particular point on an E-dimensional embedding

is an E-dimensional point, hence this state space is therefore sometimes also referred to as E-space

(embedding space) (Sugihara and May, 1990).
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Figure 15: Here the Lorenz attractor is illustrated as an example and shows how a single time series

variable can be used to retrieve the information of the system behavior following Takens (1981).

Instead of using all three variables X,Y and Z, this example shows that a single variable X with

its lags can be used to reconstruct the underlying system or in other words the original manifold.

In other words, information about all the other variables in the system can be recovered by just

looking at a single variable. Illustration is by Ye et al. (2016).

However, as can be observed from equation 23 and 24 there are two parameters, namely τ and

E. As aforementioned, E refers to the embedding dimension or simply the dimension of the state

space which is sometimes also called E-Space. An embedding with too few dimensions (lags) results

into having too many singularities. This means that the shadow manifold will have points that

are not well-behaved and have the implication that some points on the manifold actually relate to

different system states. For example, it could be the case that for a given value of today (xt) nu-

merous different values might be predicted for tomorrow (Xt+1) and thus relates to different states

and thereby creates ambiguity. On the other side, having too many dimensions will impact the pre-

diction accuracy negatively since useful information is diluted by unuseful information. In layman

terms, using the weather forecast as an example, using the weather of two weeks ago to forecast

the weather of tomorrow will dilute useful information such as what the weather was yesterday.

Therefore, the embedding dimension parameter E needs to be tuned, which is done by means of

simplex projection. Simplex projection is a (non-linear) nearest neighbor forecasting method which

was originally developed to distinguish chaotic time series from random noise (Sugihara and May,

1990). Based on simplex projection, points of interest on the embedding within state space can be

forecast by means of taking a weighted average of its nearest neighbors. In other words, a particular
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point of interest can be forecast based on similar past events/points. The crucial element here is the

dimension of the embedding, E, since this determines what events/points are considered as nearest

neighbors. Moreover, important to note is that nearest is used in the context of state space and

not in time and thus implies that a nearest neighbor is not necessarily close in time to the point of

interest. More technically, the first step is to construct the embedding with E dimensions based on

the variable of interest, such as y. A point of interest that is located on this embedding is now an

E-dimensional point and the goal is to find its nearest neighbors in order to compute a prediction

value for this point. Specifically, the neighborhood of points should be minimal which is defined

as finding the smallest simplex that is formed from its E+1 nearest neighbors which contains the

point of interest. The E+1 nearest neighbors are the vertices of the simplex and where this E+1

number is argued by Sugihara and May (1990) to result into the smallest simplex that can still

have an E-dimensional interior point. Subsequently, to actually obtain a prediction the domain of

the simplex is projected into its range which in essence means it is keeping track of where all the

points in the simplex are positioned after p time steps. Then, it is computed where this point of

interest has moved within the range of this simplex and exponential weights are assigned to the

original distances of its nearest neighbors. Consequently, the exponential weighted average will

yield a prediction value for the point of interest. So, for a particular point of interest yt on the

embedding of x, simplex projection will provide a prediction yt+1 given that the interest is in the

prediction for one period later for this particular point. Formally, the prediction for a particular

point of interest yt one period later can be denoted as

Ŷ t+1 =
E+1∑
i=1

WiXt(j) (25)

The parameter Wi denotes the weights and as aforementioned it utilizes an exponential weighting

scheme. Specifically, it depends on the distance between x(t) and its ith nearest neighbor on Mx

as shown in equations 26 and 27

Wi =
ui∑E+1
j=1 uj

(26)

where

ui = exp

(
−d[x(t), x(ti)]

d[x(t), x(t1)]

)
(27)

In other words, equation 27 shows that the distances are exponentially weighted, where d[x(q), x(r)]

denotes the euclidean distance between vectors q and r. In short, for a given E, simplex projection

can be deployed to obtain estimates of the points located in the corresponding embedding space.
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Consequently, for a given E, all the estimates can be compared to their corresponding observed

values to evaluate how accurate the predictions actually are. Specifically, this is done by computing

the correlation between the estimates and observed values which gives the so-called forecast skill

(ρ). Hence, we can apply simplex projection for different embedding dimensions E and plot these

embedding dimensions against their corresponding forecast skill. Then, the optimal embedding

dimension corresponds to highest forecast skill (ρ).

Next to tuning the embedding dimension E, the time delay (lag) τ parameter can also be in-

vestigated, although generally the default value of 1 is followed. The effect of τ on the shadow

manifold (delay embedding) depends on the nature and sampling frequency of the time series vari-

able. For example, consider a time series variable U that measures every second how many students

are sitting in the library of the Erasmus University. This would imply that many observations will

be similar, since it is not expected that the number of students sitting in the library will change

substantially over each second. Subsequently, if simultaneously a small time delay (lag) is consid-

ered of say τ = 1 then this has the implication that the system collapses to a one dimensional

diagonal line within state space. More specifically, if for example E = 3 then this means we have a

three-dimensional state space where the three respective axis are Ut, Ut−1 and Ut−2. The essence

here is that the observations between these three lagged vectors are not very different because as

argued before, it is not expected to observe substantial changes over each second since the value of

2 seconds ago will not be different from now. In other words, these three (lagged) vectors will have

quite some overlap and thus the same coordinates in state space and implies that it will collapse

to almost one dimension, a diagonal line. In such a setting, if τ is increased to for example 1 hour

then the points in state space will be more spread out throughout the space. In contrast, if the

time series variable would have been sampled very sparsely then a large τ is not desirable as the

points will already be relatively spread out in the state space and by increasing τ will aggravate

this, which is not desirable. The τ parameter is explicitly investigated in the Extended Cross Con-

vergent Mapping method by Ye et al. (2015) and is briefly discussed in the discussion but for now

this study follows the default value of τ = 1, since this also seems justifiable based on the nature

of the data which is further elaborated in the results section.
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So, after discussing the key ideas of how shadow manifolds are constructed and how the param-

eters τ and E are estimated, it is now discussed how cross mapping and convergence are used in

CCM to investigate causality. Each shadow manifold is a one-to-one map of the original manifold

and subsequently implies that each shadow manifold is a one-to-one map of the other respective

shadow manifolds. Therefore, the mapping between shadow manifolds can be tested to investigate

whether the respective variables, in this case X and Y , are interacting in the same system because

in dynamic systems theory two variables are causally related if the times series variables are cou-

pled and belong to the same dynamic system. Empirically, this can be tested by evaluating the

prediction accuracy of the mappings My to X and Mx to Y . Specifically, CCM tests how well

the local neighborhood on one shadow manifold corresponds to the local neighborhood on another

shadow manifold. So, the goal is to evaluate the prediction accuracy of Ŷ (t) | Mx and X̂(t) | My

where these notations respectively correspond to the cross-map estimates of Y and X.

Suppose the goal is to evaluate whether y causes x (y =⇒ x), then this implies that the goal

is to obtain the cross map estimate of y denoted as Ŷ (t) | Mx. Then the first step is to construct

the shadow manifold for variable x (Mx). Further suppose that there is a point of interest at time

t denoted as yt. The key idea here is that if the variable y causes x then this information must be

encoded in the shadow manifold of x (Mx). In other words, the value of x at a particular moment

in time in this state space should provide information about the variable y, since the state space

of x captures all the factors that are driving x. This implies that a particular position within x’s

state space should say something about the variable y if y causally drives x. Consequently, this

implies for the point of interest that each nearest neighbor point corresponds to a value of y that is

close to yt. Hence, a weighted average of these nearest neighbors would yield an estimate ŷt that is

close to the observed value yt. However, if all the nearest neighbor points are located further away

in state space from the point of interest, then this means that the estimate ŷt will be far off from

the observed value yt, which is likely when the variable y barely influences the variable x.

Ŷ (t) |Mx =

E+1∑
i=1

WiY (ti) (28)

In equation 28 the parameter Wi denotes the weighting, which depends on the distance between

x(t) and its ith nearest neighbor on Mx. Moreover, Y (ti) denotes the simultaneous values of Y .

The weights Wi are specifically defined as

Wi =
ui∑E+1
j=1 uj

(29)
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where

ui = exp

(
−d[x(t), x(ti)]

d[x(t), x(t1)]

)
(30)

In other words, equation 30 shows that the distances are exponentially weighted, where d[x(q), x(r)]

denotes the euclidean distance between vectors q and r. However, another way to explain exactly

the same idea is that if X and Y would be causally related then the nearest neighbors located on

Mx should identify corresponding nearest neighborhood points on My since they are one-to-one

maps. Nonetheless, the above equations 28 to 30 display the setting of cross mapping X to Y but

this is analogously defined for the cross mapping of Y to X. For the sake of completeness, the

cross mapping of Y to X is shown in equation 31. Naturally, also the equations 32 and 30 changes

correspondingly.

X̂(t) |My =

E+1∑
i=1

WiX(ti) (31)

However, important to note is that the explanation above demonstrates the key idea with just a

single point that is of interest, while this procedure is actually performed for all the points that are

present in the state space. More specifically, there are two criteria before it can be concluded that

there is causality. The first one is that there should be significant correlation between the observed

and predicted value. Secondly, there should be convergence. This concept of convergence is crucial

and distinguishes between a simple correlation and causation. In the beginning it was stated that

two time series were considered x and y of length L, but this length L plays an important role.

More precisely, the complete analysis as above discussed is applied for different time series lengths

L. This L is called the library size and is just a subsequence of the time series variable or in

other words it represents a certain window size. Suppose L = 3 then this means that for example

for the variable x only three observations from its time series are considered, which could be the

first three observations, the last three or any other subsequence. Given L = 3, then the CCM

analysis is performed for all three points, so for all the points in the shadow manifold, and would

therefore give three estimated values. Simply stated, the result would be a column vector with three

entries corresponding to the estimated values. Moreover, this column vector can be compared to

the column vector containing the corresponding observed values. Subsequently, the correlation

between these vectors is computed and would give a correlation (ρ) between the predicted and

observed values for the given time series length L. Additionally, for each time series length L about

100 samples are drawn where each sample would give a certain correlation and thus an average

correlation is computed for the given L. This is thereafter done for numerous different time series
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length L and per L the mean correlation between predicted and observed values is obtained.

However, the crucial concept here is convergence and relates to all these different time series

lengths L. Specifically, when the time series lengths L are plotted against their corresponding mean

correlations (ρ), which acts as an accuracy measure, convergence must be observed. This means

that when the time series length L increases, then the forecast skill ρ should increase as well. Only

if this can be observed in addition to a significant correlation, then it can be concluded that the

variables are causally driving each other. The idea behind convergence can be explained by the

fact that when the length of the time series L increases, then the manifolds become denser and

the neighborhood becomes smaller, implying that the distances among the nearest neighborhood

points also decreases. Hence, Ŷ (t) | Mx converges towards Y (t) and X̂(t) | My converges towards

X(t). Due to this convergence, it can be tested if the states of Mx correspond to the states on My.
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4 Data

This chapter introduces the data to be used to demonstrate the Cross Convergent Mapping

method in a marketing setting. A case study was already presented in chapter 2.3.3, but the

related data is presented in this part. So, the used data is from a large department store where

three products are considered, referred to as product01, product02 and product03. Subsequently, for

each product the following information is available: sales, price, advertising efforts and distribution.

The time series variables sales, price and advertising efforts are shown for each respective product.

Figure 16 shows the time series related to product one.

Figure 16: Here the sales, price and advertising budget are shown on a weekly basis for product

one. Noticeable are the spikes around week 200 for both the sales and price which seems to be, a

priori, a logic relation where a lower price and higher sales are correlated

Next to product one, figure 17 shows the relevant time series for product two. The course of

the time series for product two is to a great extent similar to that of for product one. Hence, a

priori, it is expected that these products are correlated and might even be causally related.
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Figure 17: Here the sales, price and advertising budget are shown on a weekly basis for product

two. Again, remarkable are the spikes around week 200 which, as for product one, makes sense

that sales and price are correlated.

Furthermore, figure 18 shows the respective time series for product three. However, for product

three there are no advertising efforts hence this time series variable is not shown for product three.

Another noteworthy observation is that the price of product three seems to follow a step function

compared to the prices of product one and two. The price of product three clearly decreases up

until around week 100 and again increases from week 140 onward.

Moreover, before conducting any analyses the correlations among the time series have been

inspected as shown in table 1. As expected, the correlations between sales and price are mainly

negative although for product three they are solely positive which seems counter intuitive at first.

Two other noteworthy observations are the high correlations between sales01 and sales02 with

ρ = 0.81 and the variables ads01 and ads02 with ρ = 0.96. For these respective correlations it

seems, a priori, that a causal relation would be plausible.
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Figure 18: Here the sales, price and advertising budget are shown on a weekly basis for product

three. Remarkable is the step function course of the price and also the sales are slowly increasing

over time.

Table 1: Correlation Table

Variable Sales01 Sales02 Sales03 Ads01 Ads02 Price01 Price02 Price03

Sales01 1

Sales02 0.81 1

Sales03 0.58 0.14 1

Ads01 0.21 0.25 -.01 1

Ads02 0.18 0.28 -0.05 0.96 1

Price01 -0.38 -0.58 0.15 -0.29 -0.29 1

Price02 0.13 -0.38 0.63 -0.15 -0.23 0.65 1

Price03 0.26 0.05 0.17 -0.01 0 0.53 0.38 1
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5 Results

The idea is to map the causal relations among the given variables sales, price and advertising

efforts by means of applying Cross Convergent Mapping. In the data there are three products,

which means that there are 9 variables in total where for example for product one there are the

variables sales01, price01 and Ads01 and the same holds for product two and three. For each

general variable, sales, price and advertising efforts, its causal network is mapped first. Thereafter,

all maps are merged into one figure to illustrate the complete causal network among all variables.

However, before showing all the causal maps, one example is first step-by-step discussed in order

to illustrate in detail how Cross Convergent Mapping works in practice.

5.1 Cross Convergent Mapping Results

So, the example that is step-by-step elaborated to show how CCM works with empirical data,

is concerned with the question whether the sales of product one causally drive the sales of product

two and vice versa. The first step is to create a set of vectors with lags, which are referred to as

a set of delayed embedded vectors. For this example, such a set is created for the variable Sales01

and denoted as Xt and the variable Sales02 denoted as Y t as shown in equation 32 respectively.

Xt =



Sales01t

Sales01t−τ

Sales01t−2τ

...

Sales01t−E1τ


Y t =



Sales02t

Sales02t−τ

Sales02t−2τ

...

Sales02t−E2τ


(32)

Each respective set of delayed embedded vectors constructs its delay embedding or in other words

the shadow manifold. So, the set of delayed vectors Xt constructs the shadow manifold (delay

embedding) for the variable Sales01 and is denoted as Mx. Furthermore, the set Y t constructs

the shadow manifold for the variable Sales02 and is denoted as My. Subsequently, both shadow

manifolds are respectively plotted in figure 19 to provide a notion of intuition. However, important

to note is that for the sake of illustration it has been assumed that E = 3 and τ = 1, while the

embedding dimension of three is not necessarily the optimal one. In this plotted example, the set

of delayed embedded vectors would contain three vectors with up to lag two and are subsequently

plotted to construct the shadow manifold in the state space.
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Figure 19: Two shadow manifolds are shown, the top figure corresponds to the shadow manifold

for the variable Sales01 and is denoted as Mx whereas the lower figure corresponds to the shadow

manifold of the variable Sales02 and is denoted as My. Note that E = 3 for the sake of illustration.

At first glance, the shadow manifolds in figure 19 seem not to be very clear, which can be partly

attributed to the scaling of the figure itself. However, with real data it should not be expected to

obtain a result as elegant as for example the famous Lorenz Attractor as was shown in figure 15.

Nonetheless, figure 19 gives a more intuitive idea of the concept of constructing a shadow manifold

in this case specifically for the variables Sales01 and Sales02. However, to get a sense of how the

time delay τ impacts the shadow manifold of the sales variables from figure 19, these plots have

again been plotted but now with a time delay equalling τ = 30 as shown in figure 20. As can be
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observed in figure 20, in both cases it seems that the points are more spread out through state

space. This behavior can be explained by the fact that the sales (observations) are measured on

a weekly basis and thus already contain quite some difference, implying it is already relatively

sparsely sampled. Hence, increasing τ just makes the points spread out even more in state space

and results into even stranger shapes.

Figure 20: Two shadow manifolds are shown, the top figure corresponds to the shadow manifold

for the variable Sales01 and is denoted as Mx whereas the lower figure corresponds to the shadow

manifold of the variable Sales02 and is denoted as My. For both shadow manifolds a time delay

of τ = 30 is considered to demonstrate the effect of the time delay (τ). The top and bottom

figure correspond respectively to the top and bottom of figure 20. Note that E = 3 for the sake of

illustration.
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For this study the parameter τ will be set to its default value 1 following Sugihara et al. (2012),

but also due to the fact that the time series data in this study are not sampled very frequently,

just once a week and would therefore mean that a lower τ is desirable. This implies that only E

has to be tuned. The optimal embedding dimension is found by means of simplex projection as

extensively earlier discussed. Optimal is defined as the embedding dimension that corresponds to

the highest forecast skill ρ, which is the correlation between the predicted and observed values. As

an example, figure 21 shows the plot for the variable sales01 and shows that E=8 is considered as

optimal since it corresponds to the highest forecast accuracy.

Figure 21: Here the embedding dimension E is plotted against the ρ which measures the forecast

skill or in other words measures the correlation between observed and predicted values. Here it is

shown for the sales01 variable where E=8 is considered as optimal.

Specifically, figure 21 demonstrates the simplex projection results for different embedding di-

mensions E. In this case, when using an embedding dimension of 8 the most accurate predictions

can be obtained. Moreover, the optimal embedding dimension has to be found per variable, because

simplex projection is just based on a single variable. In other words, there are in total 8 variables

(Ads03 is zero hence left out) each with a corresponding optimal embedding dimension which is

illustrated in table 2.
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Table 2: Optimal Embedding Dimension per Variable

Variable Optimal Embedding Dimension E

Sales01 8

Sales02 9

Sales03 6

Ads01 5

Ads02 4

Price01 3

Price02 3

Price03 1

After tuning the parameters, the actual analysis can be conducted. The CCM analysis is

conducted pair-wise and yields a plot showing the interactions between two time series variables.

Two of such CCM resulting plots are shown in figure 22 and 23. Figure 22 shows the plot for the

example that investigated whether the sales of product one causally drives the sales of product two.

Figure 22: Here the prediction accuracy (ρ) is plotted against the time series length L for the

variables sales01 and sales02. This plot shows that there is both interaction and convergence as L

increases.
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Regarding figure 22, there is a red and blue line where the red line line corresponds to the cross

map estimate of Sales02 and the blue line to the cross map estimate of Sales01. More precisely, the

term ”Sales01 xmap Sales02” implies that is tested whether the variable Sales02 causally drives

the variable Sales01. In other words, a shadow manifold for the variable Sales01 is constructed

(Mx) and utilized to predict the values for Sales02. If the variable Sales02 indeed causally drives

the variable Sales01 then the predicted values should be close to the observed values and would

result into a sufficient high correlation ρ (cross map skill). However, a crucial element here is that

also convergence should be observed since this convergence distinguishes a simple correlation from

causality. This implies that as the library size L increases that also the cross map skill ρ should

increase. Recall that the library size is another word for window size or taking a subsequence of the

original time series data variable. So, in this case the original variables Sales01 and Sales02 have

200 observations hence the maximum library size is set to 200. However, suppose L = 50, then

this means that a subsequence of 50 observations is sampled from the original time series variable

Sales01 or Sales02 which can be for example the first 50 observations, the last 50 observations or

any other subsequence. Furthermore, important to note is that 100 samples are drawn for each

library size L and thus implies that the correlation ρ that corresponds to a given L is actually the

average correlation for that L.

Analogously to the red line, the blue line corresponding to the statement ”Sales02 xmap Sales01”

implies that it is tested whether the variable Sales01 causally drives the variable Sales02. In other

words, a shadow manifold is constructed for Sales02 which was denoted as My and is used to predict

values for the variable Sales01. Subsequently, the correlation between the observed and predicted

values is computed for a given L and denoted as the cross map skill ρ. However, important to note is

that the blue line lies below the red line and implies that the causal relation Sales02 =⇒ Sales01

is stronger than Sales01 =⇒ Sales02. Nonetheless, there is a bidirectional causal relationship

between Sales01 and Sales02 (Sales01⇐⇒ Sales02).

In contrast to the example shown in figure 22, figure 23 shows an example where there is no

causality between two variables. Specifically, there is no causal relationship between the variables

Sales02 and Sales03 since the the cross map skill (ρ) is zero and logically there is also no conver-

gence.
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Figure 23: Here the prediction accuracy (ρ) is plotted against the time series length L for the

variables sales02 and sales03. This plot shows that there is neither interaction nor convergence as

L increases.

To conclude, it has been shown that the causal relation between the variables Sales01 and

Sales02 is bidirectional where the effect of Sales02 on Sales01 is stronger than vice versa. More-

over, it has also been demonstrated that there is no causal relation between the variables Sales03

and Sales02. However, to provide a clear summary, figure 24 maps all the causal relations among

the sales variables where additionally also the relation between Sales01 and Sales03 has been in-

vestigated and is mapped in this figure. Specifically, the arrows indicate how the causal relationship

flows and correspond to a particular number. This number represents the cross map skill (ρ) at

the full library size (L = 200) and thus shows the strength of the causal relation. Technically, this

number denotes the correlation between the observed and predicted values and logically a higher

number is an indication of a stronger causal relation since the predicted values are closer to the

observed value. However, recall that CCM follows a two-step causality condition, where the cross

map skill (ρ) should be significant and that convergence should be observed as the library size

increases. The significance of the found cross map skills for each relation are extensively discussed

in the next section, while all the CCM resulting plots that are used to determine if convergence is

present or not are presented in Appendix A. Next to the causal map for the sales variables as shown

in figure 24, also two causal maps have been respectively created for the variables advertising efforts

and prices. The causal map for the variable advertising efforts is shown in figure 25 and provides
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an overview on how the advertising efforts causally affect the different sales streams. Furthermore,

figure 26 shows how the pricing affects the sales of the three different products. Subsequently, all

three causal maps are integrated into one plot and is illustrated in figure 27.

Figure 24: Mapping the causal relationships between the three sales streams, sales01, sales02 and

sales03. The numbers denote the cross map skill (ρ) at its full library size (L = 200) and is an

indication for the strength of the causal relation. Here sales02 and sales03 do not causally force

each other. However, between the other variables there is bidirectional causality.

Next to the sales variables, the causal interactions between sales and advertising has been

investigated, as aforementioned, and is shown in figure 25. Most noteworthy and as expected, a

priori, is that advertising causally drives sales but it does not straightforwardly apply to the other

way around, so that sales also drive advertising. Specifically, in the case of product one there

is bidirectional causality between sales01 and ads01, although the effect of sales on advertising

is weaker than the effect advertising has on sales. Another remarkable observation is that the

advertising efforts for product one (Ads01 ) also impacts the sales of product two and subsequently

the advertising of product two (Ads02 ) causally influences the sales of product one. More precisely,

Ads01 has a stronger effect on Sales02 than on Sales01 which is remarkable. Furthermore, the

effect of Ads02 on Sales01 is equally strong as Ads01 on Sales01. In other words, there seems to

be some sort of spillover effect taking place in the advertising efforts with regards to the different

products and could possibly be due to the nature of the products. Another interesting phenomenon

that can be observed is that there is a very strong causal relation between Ads01 and Ads02 and
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implies that the different advertising efforts are strongly interacting with each other. This strong

interaction could potentially be an explanation for the observed causal relations between Ads01 and

Sales02 and the relation Ads02 and Sales01. Specifically, the strong interaction between Ads01

and Ads02 could be a common driver for the other relations. However, this is further investigated

in the next section. Additionally, as noted before, for product three the advertising efforts are zero

and therefore left out. Nonetheless, Sales03 still has some weak impact on the advertising efforts

of product one (Ads01 ).

Figure 25: Mapping the causal relationships between the sales and advertising efforts variables.

The numbers denote the cross map skill (ρ) at its full library size (L = 200) and is an indication for

the strength of the causal relation. However, note that there are no advertising efforts for product

three hence it is not included.

Besides the sales and advertising efforts, it is further investigated how the sales interact with

prices as shown in figure 26. A remarkable observation is that there is bidirectional causality

between sales and pricing, but particularly remarkable is that sales have a stronger causal effect

on the prices than vice versa. This seems counter-intuitive at first, but as shown in table 1 the

correlation between sales and pricing is negative for product one and two and thus implies that

higher amount of sales also results into lower prices. One possible (economic) explanation could be

due to economies of scale. Moreover, the sales of product two affects the prices of product one and

the sales of product one subsequently also impact the prices of product two. This could potentially

be explained by the fact that the sales of product one and two are causally related as shown in

figure 24 and therewith influence each others prices. The sales of product one and two are highly
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positive correlated (ρ = 0.81, table 1) and thus seems to be complementary in nature and could

be an explanation for the found causal relation between the prices and sales of the two different

products. Furthermore, no causal relations were found between the price of product three and

the sales of the other two products. As shown in 1 the correlation among the sales and prices of

products one and two are negative, which is as expected.

Figure 26: Mapping the causal relationships between the sales and Pricing variables. The numbers

denote the cross map skill (ρ) at its full library size (L = 200) and is an indication for the strength

of the causal relation. Noteworthy is that for all products the sales have a stronger causal impact

on advertising than the other way around.

So, figure 24 to 26 show different mappings of the causal relations among the different variables.

However, to provide a more concise overview of all the causal interrelationships, figure 27 contains

all the relations from figure 24 to 26 in one map and to some extent simplified. Specifically, an open

arrow indicates a weaker relation compared to a filled arrow. The most noteworthy observation is

that especially products one and two are interacting with each other in terms of sales, prices and

advertising efforts and that product three is actually less interacting with these products. Another

interesting observation is that the sales have a stronger impact on the price than the other way

around.
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Figure 27: Mapping all the causal relationships between the variables sales, prices and advertising

efforts for three products. No arrow implies no causal relationship while a filled arrow shows a

strong relationship and an open arrow refers to a weaker relation compared to a filled arrow.

Based on figure 27, it can be observed from the top that the advertising efforts for product one

and two causally force each other. Subsequently, these advertising efforts drive the sales where for

example the advertising efforts for product one impact the sales of product one but also the sales of

product two. This observation also applies for the advertising efforts of product two, which impacts

the sales of both product one and product two. Additionally, the sales of product one weakly drive

the advertising efforts of product one, while this relationship does not hold for the other products.

Furthermore, it can be observed that the sales causally drive the prices for all three products, while

the reverse effect is weaker as indicated by the open arrows. Moreover, the sales of product three

causally impact the sales of product one.
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5.2 Robustness Test for Cross Convergent Mapping

In the afore discussed figures, 24 to 27, all the causal interactions among the variables sales,

advertising efforts and pricing are showed and specified. However, although 100 samples are drawn

for each library size and thus the cross map skill constitutes of an average rather than it is based on

a single correlation, an additional robustness test can be desirable as it provides more confidence in

the found causal relationships. Specifically, a question that may arise is to what extent these cross

map estimates are observed by chance, or formulated differently are these estimates statistically

significant? To provide evidence for statistical significance, the actual cross map skill estimates at

its full library size are compared to corresponding cross map estimates that are based on a null

distribution which are referred to as null models. In this way it can be evaluated whether the

observed cross map skill ρ is statistically different from its corresponding cross map skill that is

essentially based on random data. So, after obtaining all the CCM results which were extensively

discussed in previous section (5.1), the first key step is to generate random data. More specifically,

surrogate time series are generated to preserve all the key statistical properties and seasonality while

the data are sufficiently randomized to be able to create a null distribution. Subsequently, the actual

cross map skill estimates (ρ) are compared to their corresponding cross map skill estimates that

are based on the surrogate time series data and provides an indication whether the observed cross

map estimate is statistically different from the null model.

To illustrate this idea in more detail, consider again the step-by-step example from previous

section where it is evaluated whether Sales01 causally drives Sales02 and vice versa. The first step

is to obtain the actual cross map estimates at the maximum library size. For this example, it was

found that the cross map skill estimate ρ for the variable Sales02 when L = 200 is ρ = 0.74 and

for the variable Sales01 it is ρ = 0.64. Thereafter, surrogate time series data needs to be generated

where the rEDM R package by Ye et al. (2016) offers a wrapper function for this task which

specifically also preserves seasonality. Subsequently, for each time series variable there are 1000

surrogate time series variables generated and thus for this example there will be 1000 surrogate time

series for both Sales01 and Sales02. Then, the CCM analysis is performed between Sales01 and the

1000 surrogate time series for Sales02 and also vice versa, so that CCM is also performed between

Sales02 and the 1000 surrogate time series for Sales01. This implies that there will be two surrogate

cross map skill estimate vectors with 1000 rows each that respectively correspond to the variables

Sales01 and Sales02. Subsequently, the initial observed cross map skill is compared to these 1000

62



surrogate cross map skill estimates to determine whether they are statistically significant where

α = 0.05 is used as threshold. Tables 3 to 5 summarise the findings respectively for the variables

Sales, Advertising efforts and Pricing.

Table 3: Significance of cross map estimates at full library size among sales variables

Causal Relation Optimal E Cross Map Skill ρ (L = 200) P-value Convergence1

Sales01 =⇒ Sales02 9 0.66 0.001∗∗∗ Yes

Sales02 =⇒ Sales01 8 0.74 0.001∗∗∗ Yes

Sales01 =⇒ Sales03 6 0.54 0.001∗∗∗ Yes

Sales03 =⇒ Sales01 8 0.56 0.001∗∗∗ Yes

Sales02 =⇒ Sales03 6 0 0.24 No

Sales03 =⇒ Sales02 9 0 0.07∗ No

Note: 1 See Appendix (A), ∗∗∗p< 0.01,∗∗p< 0.05,∗p< 0.10

As can be observed in table 3, clearly the causal relation Sales02 =⇒ Sales03 is not significant

(p=0.24) and Sales03 =⇒ Sales02 is slightly above the 0.05 threshold (p=0.07). However, the cross

maps skills (ρ) are both zero and logically also implies that no convergence can be observed. This

evidently indicates that no causal relation is present between the variables Sales02 and Sales03.

Hence, these relations were also not mapped in figure 24.

Next to the Sales variables, the significance of the causal relations between the Advertising and

Sales variables has been summarised in table 4. All causal relations are significant at the 0.05 level

except for two, which are Ads01 =⇒ Sales03 and Ads02 =⇒ Sales03. In other words, the effects

of the advertising efforts for product one and product two on the sales of product three do not seem

to differ significantly from random data.

Furthermore, important to note is that the relation Sales02 =⇒ Ads02 is significant (p = 0.013)

but that no convergence could be observed and thus fails to meet the two-step causality condition

and subsequently implies that it cannot be concluded that there is a causal relation. This exact same

idea also holds for the relations Sales01 =⇒ Ads02, Sales02 =⇒ Ads01 and Sales03 =⇒ Ads02.

Next to these, also the two clearly non-significant relations Ads01 =⇒ Sales03 and Ads02 =⇒

Sales03 (p = 1) have logically no convergence since the corresponding cross map skills are zero.

Hence, these aforementioned relations that fail to meet the two conditions for causality are not

mapped into figure 25.
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Noteworthy are also the very strong causal relations between the advertising efforts of product

one (Ads01 ) and these of product two (Ads02 ). At first, this relation could be an explanation

for the fact that it was observed that Ads01 causally influences Sales02 and that Ads02 causally

influences Sales01, since the advertising efforts of both products strongly interact with each other.

However, the causal relations between Ads01 and Sales02 and also between Ads02 and Sales01 are

both highly significant and thus are not driven by a common driver. In other words, the advertising

efforts are in itself causally interacting with each other, but also the advertising efforts with different

products and the one is not an explanation for the other. This implies that the strong relation

between Ads01⇐⇒ Ads02 is not a common driver and thus is not an explanation for the observed

relation between respectively Ads01 and Sales02 and also between Ads02 and Sales01.

Table 4: Significance of cross map estimates at full library size among Sales and Advertising

variables

Causal Relation Optimal E Cross Map Skill ρ (L = 200) P-value Convergence1

Ads01 =⇒ Sales01 8 0.40 0.001∗∗∗ Yes

Sales01 =⇒ Ads01 5 0.19 0.004∗∗∗ Yes

Ads02 =⇒ Sales02 9 0.55 0.001∗∗∗ Yes

Sales02 =⇒ Ads02 4 0.07 0.013∗∗ No

Ads02 =⇒ Sales01 8 0.4 0.001∗∗∗ Yes

Sales01 =⇒ Ads02 4 0.02 0.03∗∗ No

Ads01 =⇒ Sales02 9 0.53 0.001∗∗∗ Yes

Sales02 =⇒ Ads01 5 0.15 0.027∗∗ No

Ads01 =⇒ Sales03 8 0.00 1 No

Sales03 =⇒ Ads01 5 0.25 0.001∗∗∗ Yes

Ads02 =⇒ Sales03 8 0.00 1 No

Sales03 =⇒ Ads02 4 0.06 0.002∗∗∗ No

Ads01 =⇒ Ads02 4 0.91 0.001∗∗∗ Yes

Ads02 =⇒ Ads01 8 0.87 0.001∗∗∗ Yes

Note: 1 See Appendix (A), ∗∗∗p< 0.01,∗∗p< 0.05,∗p< 0.10

Besides the Sales and Advertising variables, table 5 summarises the significance of cross map

estimates among the Sales and Pricing variables. As can be seen, all cross map relations are

64



significant at the 0.01 level except for two, which is the relation between the price of product

three and the sales of product two. However, not all significant cross map estimates show con-

vergence which is a necessary condition for causality besides the significant relationship. The lack

of convergence is observed for: Price02 =⇒ Sales02, Price03 =⇒ Sales03, Price03 =⇒ Sales01

and Sales01 =⇒ Price03. Additionally, also for the clearly non-significant cross map estimates

Price03 =⇒ Sales02 and Sales02 =⇒ Price03 no convergence is observed as the cross map esti-

mates are zero.

Table 5: Significance of cross map estimates at full library size among Pricing and Sales variables

Causal Relation Optimal E Cross Map Skill ρ (L = 200) P-value Convergence1

Price01 =⇒ Sales01 8 0.27 0.001∗∗∗ yes

Sales01 =⇒ Price01 3 0.56 0.001∗∗∗ Yes

Price02 =⇒ Sales02 9 0.17 0.002∗∗∗ No

Sales02 =⇒ Price02 3 0.68 0.001∗∗∗ Yes

Price03 =⇒ Sales03 8 0.39 0.001∗∗∗ No

Sales03 =⇒ price03 1 0.56 0.001∗∗∗ Yes

Price02 =⇒ Sales01 8 0.46 0.001∗∗∗ Yes

Sales01 =⇒ Price02 3 0.65 0.001∗∗∗ Yes

Price03 =⇒ Sales01 8 0.21 0.001∗∗∗ No

Sales01 =⇒ price03 1 0.20 0.001∗∗∗ No

Price01 =⇒ Sales02 9 0.41 0.001∗∗∗ Yes

Sales02 =⇒ Price01 3 0.61 0.001∗∗∗ Yes

Price03 =⇒ Sales02 9 0.00 0.50 No

Sales02 =⇒ Price03 1 0.00 0.27 No

Note: 1 See Appendix (A), ∗∗∗p< 0.01,∗∗p< 0.05,∗p< 0.10
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6 Discussion

Regarding the specific case study that was discussed, it was shown that specifically the sales of

product one and product two are causally interacting with each other. However, to a slightly lesser

extent, also the sales of product one and of product three interact with each. In other words, any

factor that would change the sales of product one would also affect the sales of product three and

product two. This is especially relevant when management has to make a strategic decision that

affects the sales of product one, since this impact cannot be limited to solely the sales of product

one but is also spilt over to product two and three. Moreover, the correlation between Sales01

and Sales02 and Sales01 and Sales03 is both positive with respectively 0.81 and 0.58. This means

that if a decision impacts the sales of product one negatively, then this will also impact the sales

of product two and three negatively and thus could have to some extent a snowball effect.

Furthermore, the advertising efforts of product one and two are interacting with both the sales

of product one and two and shows again that especially product one and two are to some degree

dependent on each other. The advertising efforts of product one and product two showed a very

high correlation (0.96) and also displayed a very strong causal relation implying that they strongly

influence each other. So, a change in one of the advertising efforts budgets will result into a chain

reaction. More precisely, a change in the budget of the advertising efforts of product two will affect

the advertising efforts of product one, this subsequently affects the sales of product one but Ads01

also influences the sales of product two and thus will also be impacted. Additionally, Ads02 also

has a direct causal relation with Sales01 and Sales02 and thus these sales streams will again be

impacted. In other words, a change in the advertising efforts or sales seems to trigger a chain

reaction which can amplify the resulting effects and shows that a change in one variable cannot

be limited to that variable but results into a chain of reactions. Another key result is that also

the prices and sales of product one and two interact strongly with each other, but it is specifically

remarkable that for all three products the sales have a stronger effect on the prices than vice versa.

The correlations between prices and sales are negative and this could indicate that due to economies

of scale the prices can be lowered when sales increase.

After all, this case study demonstrated how variables are causally interacting with each other

and thereby creating a more complex system than initially thought of. Specifically, it shows that

only considering for example the relation Ads01 =⇒ Sales01 is not sufficient when a strategic

decision needs to be made, since a change in one variable actually leads to a chain of reactions and
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the impact cannot be limited to just one variable. Hence, mapping all the causal relations reveals

the underlying system that is present and allows to be better acted upon. However, important to

note for this case study is that the degree of non-linearity in the data is limited while CCM can

especially be exploited when non-linearity is present. Hence, this study just showed the possibilities

of a complexity theory approach but it is encouraged to further research this with marketing data

where strong non-linearity is present, where there are sufficient examples in the marketing literature

that show the presence of strong non-linearity.

Next to this, another potential limitation is regarding the CCM method. More specifically,

a problem of the CCM method is referred to as generalized synchrony. This specifically means

that CCM cannot distinguish well between a very strong unidirectional relation and a bidirectional

relation. In other words, if there is an exceptional strong unidirectional relation between two

variables then it might seem like if there is a bidirectional causal relation while this is not true.

Hence, the method Extended Cross Convergent Mapping (ECCM) solves this by means of explicitly

considering different time lags (τ). By plotting the CCM cross map skills against the time lags, it can

be observed whether a driving variable impacts a response variable with a delay and subsequently is

used to determine whether generalized synchrony is observed or a true bidirectional causal relation

(Ye et al., 2015). So, for further research it is interesting and advised to investigate this further to

ensure that generalized synchrony is not observed. Furthermore, next to CCM and ECCM, it is

recommended and interesting to look into the Reservoir Computing Causality Framework (RCC)

method by Huang et al. (2020), which argues to be able to detect causality between time series

by means of a machine learning framework while being more efficient than CCM and ECCM.

Additionally, RCC does not need to estimate the different parameters, the embedding dimension

(E) and time delay (τ). Also, it is argued that RCC is much more efficient and more robust against

noisy-data and works well with high-dimensional data.

7 Conclusion

This study first argued that obtaining causal estimations for all kind of different marketing-

rooted questions is of great interest but that classic approaches such as conducting experiments and

subsequently basing on the potential outcomes framework is a limited approach. Besides the fact

that it is time-consuming and expensive, such approaches cannot capture all the dynamic effects

that might be present, which are for example notable in pricing and advertising. Hence, it was
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argued that utilizing time series data can offer a solution to this limitation, but that at the same

time methods used for causal estimations for time series data also have their limitations. More

specifically, the most commonly applied methods like Granger Causality are linear methods and do

not work in settings that are characterized by more complex phenomena. Such complex phenom-

ena could be feedback effects, non-linearity or non-separability among others. Hence, instead of

linearizing complex settings this study argues that methods from complexity theory can be lever-

aged to more accurately model such complex settings and subsequently yield more accurate causal

estimations. Additionally, complexity theory methods are designed to capture complex systems

and thus allows to map the complete network instead of following a reductionist approach, as is

traditionally followed within marketing. Therefore, this research aimed to answer the question

of how complexity theory based methods can be leveraged to enhance causal estimations from time

series data for marketing mix related questions. In particular, this study extensively discussed

the Cross Convergent Mapping (CCM) method, which originates from complexity theory and is

a (non-linear) state space reconstruction method that utilizes the properties of delay embedding

to estimate causal relations between time series. Furthermore, to demonstrate how CCM can be

utilized for marketing time series data, a case study was presented. More precisely, a data set with

three products and for each product there was a variable regarding the sales, advertising efforts and

pricing. This study showed that by means of CCM, the complete causal network can be mapped

even when complex phenomena like non-linearity are present. Moreover, the strength of the causal

relations can be observed and the significance of these relations can also be evaluated. Subsequently,

by being able to map all causal relations even when the marketing setting seems complex helps

management in making more informed strategic decisions, since the consequences of decisions can

be better understood. In addition, the case study presented in this paper specifically showed that

even in a relatively straightforward setting with just three products that it can actually be more

complex than initially thought of. Specifically, it was shown that a change in particular variables

like advertising results into a chain of reactions. Traditionally, a marketeer would solely consider

the isolated effects and neglect the underlying system which might result into making different

decisions that are not optimal.

In short, this study showed how the toolbox of marketeers can be expanded by looking beyond

traditional approaches and to borrow methods from complexity theory. This allows marketeers to

model complex settings without the need to linearize these settings and subsequently result into

more realistic estimations, which helps in making better informed strategic decisions.
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A Appendix

Figure 28: Cross Convergent Mapping (CCM) resulting plots for the variables Sales01 and Advertis-

ing efforts, respectively Ads01 and Ads02. These plots are used to determine whether convergence

is present, implying that an upward trend should be observed given the increase in the library size.
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Figure 29: Cross Convergent Mapping (CCM) resulting plots for the variables Sales01 and pricing,

respectively Price01, Price02 and Price03. These plots are used to determine whether convergence

is present, implying that an upward trend should be observed given the increase in the library size.
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Figure 30: Cross Convergent Mapping (CCM) resulting plots for the variables Sales01, Sales02

and Sales03. These plots are used to determine whether convergence is present, implying that an

upward trend should be observed given the increase in the library size.
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Figure 31: Cross Convergent Mapping (CCM) resulting plots for the variables Sales02, Advertising

efforts, respectively Ads01 and Ads02. These plots are used to determine whether convergence is

present, implying that an upward trend should be observed given the increase in the library size.
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Figure 32: Cross Convergent Mapping (CCM) resulting plots for the variables Sales02, Pricing,

respectively Price01, Price02 and Price03. These plots are used to determine whether convergence

is present, implying that an upward trend should be observed given the increase in the library size.
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Figure 33: Cross Convergent Mapping (CCM) resulting plots for the variables Sales03, Ads02,

Ads01 and Price03. These plots are used to determine whether convergence is present, implying

that an upward trend should be observed given the increase in the library size.
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