2afnd

o« ERASMUS UNIVERSITEIT ROTTERDAM

MASTER THESIS
OPERATIONS RESEARCH AND (QUANTITATIVE

LOoGISTICS

ERASMUS UNIVERSITY ROTTERDAM
ERASMUS SCHOOL OF ECONOMICS
DECEMBER 30, 2021

Applying Convolutional Neural Networks
for determining the chromatic number of a
graph

Floris Koolen (569183)

Supervisor: dr. Olga Kuryatnikova
Second Assessor: dr. Wilco van den Heuvel

The content of this thesis is the sole responsibility of the author and does
not reflect the view of the supervisor, second assessor, Erasmus School of
Economics or Erasmus University.

Abstract

This thesis investigates whether deep learning models such as Convolutional Neu-
ral Networks could be applied for determining the chromatic number of a graph.
To do so, a data set of different types of random graphs is generated with their
corresponding chromatic numbers. The graphs are transformed to binary grids us-
ing their adjacency matrices such that patterns can be recognised by Convolutional
Neural Network models and used for determining their chromatic number. A model
that predicts chromatic numbers of graphs of size 100 with an accuracy of 85% is
obtained.

Contents

(I_Introduction and Literaturel 1
(L1 Introductionl 1
[L2 Titeraturd 2

2 Problem description| 3
[2.1 Integer Linear Programming formulation ot a graph coloring problem| . . . 3
[2.2 Extension of the formulation: eliminating symmetrical solutions| 4
2.3 Introduction on Neural Networks 5

[2.3.1 Deep Learning{.)
2.3.2 Convolutional Neural Networksl 6

[3 Methodology| 7

[3.1 Finding colorability bounds for graph data] 7
B.I1 Brooks"theoreml 8
BI12 Solverbounds 8
[3.1.3 Procedure for finding the best bound for a random graph| 8

[3.2 Input representation| Lo 9

(3.3 Neural Networks| 10
[3.3.1 Fully Connected Neural Networks| 10
[3.3.2 Convolutional Neural Networks 10
[3.3.3 Ordinal classification| 0oL 10
[3.3.4 Optimizing architecture] 11

[3.4 Using unlabeled data] 12

[3.5 Variation of input sizes| L Lo 13
[3.5.1 Image cropping and warping| 13
[3.5.2 Zero padding| 13

[4 Data generation| 14

[4.1 Generating random graphs|o 14
[4.1.1 Erdos Rényi 14
[4.1.2 Watts Strogatz] 14
4.1.3 Barabasi-Albertl.o oo 15

[4.2 Data augmentation|o Lo 15
[4.2.1 Data Augmentation general 16
[4.2.2 Data augmentation in the light of graph coloring 16

4.3 Datasets 17

4.4 K-fold cross validation|o 18

4.5 Performance measures| 18

6_Results 19
[>.1 Experiment 1: a Fully Connected Neural Network vs a Convolutional Neu- |

[ral networkl 19
[5.2 Experiment 2: testing classification against ordinal classification| 20
[5.3 Experiment 3: Classification vs Regression| 21
[>.4 Experiment 4: Optimizing the Neural Network Structurel 22

[5.4.1 Experiment 4.1: Convolutional layer structure] 22
[5.4.2 Experiment 4.2: Optimizing the filters| 23

(b.4.3 Experiment 4.3: Fully connected layers structure] 25

[>.5 Experiment 5: Difterent Input sizes| 000 26
[>.6 Experiment 6: Using unlabeled data) 28
[5.7 Experiment 7: Testing models on final dataset| 30
6 Conclusion 31
6.1 Main conclusions 31
6.2 Timitationsl 32
6.3 Further research directionslo 33

Bibliography| 34

1 Introduction and Literature

1.1 Introduction

In this thesis we want to investigate whether deep learning can be applied for determining
the chromatic number of a graph. Can deep learning models be trained to accurate
prediction models for graph coloring problems and, if so, what are the complications or
limitations of the resulting prediction models?

The problem considered in this thesis is a graph coloring problem. The mathematical
formulation of a graph coloring problem is the following:

Let G(V, E) be an undirected graph with a set of nodes V' and a set of edges F. A
k-coloring of graph G(V, E) is an assignment of one of & different colors to each node in V'
such that no two adjacent nodes have the same color assignment. The chromatic number
X(G) of a graph G is the smallest number & such that the graph can be k-colored. Finding
the number x(G) is denoted as a graph coloring problem. Checking if a graph G can be
colored with k colors is denoted as a k-colorability problem.

In [I] it is shown that finding the chromatic number y(G) of a graph G is NP-hard.
For k > 3 it holds that a k-colorability problem is NP-complete [2]. We provide the math-
ematical programming formulation of the problem and more details about our solution
methods in Section
Graph coloring problems are among the most studied topics within graph theory. The
problems and solutions can be used in application of timetabling, computer registration
allocation or electronic bandwith allocation [3]. Within modern computer science graph
coloring problems can be applied to data mining, image segmentation, clustering, image
capturing or networking for example [4]. Because of the many applications the search of
efficient algorithms to solve graph coloring problems is important.

In this research we will try to apply deep learning models such as Convolutional Neural
Networks on graph coloring problems for predicting the chromatic number of a graph.
During this process we will generate a training set and compare multiple structures of the
model to increase the performance.

The main research questions in this thesis are:

1. Can deep learning models be used for predicting chromatic numbers of graph color-
ing problems?

2. Is there a difference in performance of these prediction models for different types of
graphs?

3. What are limitations of a Convolutional Neural Network as a prediction model of a
chromatic number and possible ways out of them?

Brief descriptions of the corresponding answers that are also presented in the Conclusion
are:

1. Yes, when graphs are presented as binary pixel maps to Convolutional Neural Net-
works the resulting model is able to predict chromatic numbers. We obtained re-
sults of around 85-90% accuracy on the final testing set containing different types
of graphs and sizes of graphs, given that those types and sizes of graphs were used
in the training data.

2. Yes there is a difference in performance for different types of graphs if the model
is trained with a training set containing different types of graphs that are equally
represented. Our final out-of-sample experiments show that for some types as ran-
dom graphs as Barabasi-Albert or Watts-Strogatz it has accuracy’s of 96% where
for Erdos-Renyi random graphs it has only 74% accuracy.

3. The main limitation we found for a Convolutional Neural Network model as a pre-
diction model for chromatic numbers of graphs is that the model did not perform
well on the graphs types not used in training, such as graphs normally used in
testing graph coloring algorithms where it only has 31.43% accuracy. To improve
the performance on these type of graphs, it would be useful to include all online
available graph coloring instances in the training sample. However, in our model
the graph size was fixed, which was problematic as most of these graphs are too
large. Hence we suggest that an approach to deal with varying graph sizes, e.g.,
pyramid pooling, is incorporated in future models to improve the performance.

We have also observed that the data sample size could be increased using a data
augmentation technique that generates as many as possible isomorphic graphs to
those in the sample since the coloring numbers of such graphs are the same while
adjacency matrices differ. However, the chromatic number of one of these isomorphic
graphs needs still to be obtained before they can be added to the data and it may
be computationally hard to find the chromatic number of large graphs of some types
of graphs.

The setup of this thesis is as follows. First, we will introduce graph coloring problems and
briefly discuss relevant literature. Then we will discuss mathematical formulations that
we use for the graph coloring problem and we will introduce neural networks in general.
This will be succeeded by the methodology section in which we will discuss how we will
approach the application of deep learning on graph coloring problems. In the data gen-
eration section we will explain how we generated our data set and discuss some practical
implementation issues. After this we will discuss our experiments and results and we will
end with a conclusion.

1.2 Literature

In this section we will briefly discuss relevant literature to our research.

Due to its many applications, graph coloring problems are studied for several decades.
There are only a few attempts to solve graph coloring problems using Neural Networks
and none while using a Convolutional Neural Network.

A survey of recent advances in graph vertex coloring is given in [5]. Different coloring
heuristic advances using local search heuristics, evolutionary algorithms or independent
set extraction approaches are mentioned. This broad range of approaches illustrates the
relevance of graph coloring solutions techniques. Despite that most of these approaches
result in usable techniques, it is stated that there don’t exist neural network coloring
algorithms that are competitive.

In [6] a recurrent single layer Hopfield Neural Network model is used in an algorithm to
color graphs. Its performance for some types of graphs is not far behind on other state
of the art algorithms at that time and shows the potential of the applications of Neural
Networks to graph coloring problems.

A hybrid algorithm that partly uses deep learning is designed for coloring graphs in [7].
They use a Recurrent Neural Network as their deep learning model and obtain compet-
itive performance results. However, we aim at determining the chromatic number of a
graph without finding the corresponding coloring while [7] is interested in the coloring
instead of the minimum number of colors that is needed.

The approach in [8] uses Graph Neural Networks to predict the chromatic number of a
graph. It retrieves promising results (82% prediction accuracy on training data) with
which it outperforms other algorithms such as Neurosat, Tabucol and greedy baselines
for some distributions of graphs. The research shows the possibilities of Graph Neural
Networks and its application to graph coloring problems.

In [9] the artificial intelligence model AlphaGoZero is applied to a graph coloring problem.
AlphaGoZero is a combination of a deep Neural Network and a reinforcement learning
component. The training, test and validation set is partly randomly generated and derived
from an existing graph coloring instance library. The results obtained by AlphaGoZero
on graph coloring problems are very promising. The approach is different from this re-
search in the way that they have an existing deep learning model and try to apply it for
graph coloring where this research aims at finding a suitable deep learning model and
understanding the issues or limitations that come with it.

Boolean binary constraint satisfaction problems are transformed to binary matrices in
[T0] such that they are similar to binary pixel grids. A Convolutional Neural Network is
constructed for classifying the satisfiability of each boolean binary constraint satisfaction
problem. The resulting deep learning model yields a > 99.99% prediction accuracy on
random boolean binary constraint satisfaction problems.

We start our Convolutional Neural Networks experiments with model structures based on
the structures used in [I0]. We can transform our graphs to binary pixel grids and hence
have similar input at hand from which the model needs to extract patterns and use them
for classification or regression.

2 Problem description

In this section an Integer Linear Programming formulation is given. At the end, additional
constraints for removing symmetrical solutions are presented as proposed in [I1].

2.1 Integer Linear Programming formulation of a graph coloring
problem

A graph coloring can be formulated using the following Integer Linear Programming for-
mulation.

In this formulation, each node in the set of Nodes V' is indexed: V = {1,2,...,n} with a
total of n nodes. If each node is given a different color, the resulting coloring of the graph
is legal. Therefore, an upper bound on the number of colors that are needed is n, and
hence, for the highest possible value m of x(G), we have m = n. Each possible color in
the set of Colors C' is indexed: C'={1,2,...,m}.

Let the binary variables X;; denote if node ¢ € V is colored with color k& € C. Let X
be equal to 1 if color k is used in node ¢ and 0 if otherwise. Let the binary variables Wy
denote if color k € C' is used in the solution. If color k is used, W} is equal to 1 and 0 if

otherwise. We then have the following formulation:

X(G) = min) W, (1)
k=1
Subject to: ZX““ =1 VieV (2
k=1
Xk + X < Wy Wi, j} € E,Vke O (3)
Wk - {0, 1}” (4)
X € {0, 1} (5)

The objective of finding the lowest number of colors is stated by . The set
contains the constraints that ensure that only 1 color can be assigned to each node. The
adjacency constraints leading to legal colorings of adjacent nodes are given in .

2.2 Extension of the formulation: eliminating symmetrical so-
lutions

We are interested in solving graphs coloring problems as fast as possible with a solver
because we need to generate a data set consisting of graphs and their colorability if we
want to use deep learning. The formulation given in section including (1), and
embodies a complete graph coloring problem. Solutions using different colors but
with an identical coloring structure could possibly slow down the cutting plane algorithm
in a solver as feasible solutions of an integer programming formulation also suffer from
that symmetry drawback [II]. Hence, as is done in [I1I], the implementation of this
formulation in a solver could be improved by the extension of adding constraints that
reduce the number of symmetrical solutions.

We consider three sets of additional constraints. The first set of additional constraints
is constructed to remove symmetrical coloring solutions using colors with a label higher
than x. This means that for a coloring using m colors, only the colors with a label up to
m may be used. The corresponding set of additional constraints is:

We <) X Vk e C (6)
eV
Wi > Wi Vk e {1,2...,n —1}. (7)

The second set of additional constraints is created to eliminate some permutations of
symmetrical coloring solutions of the first m colorings:

ZXik > ZXik—l-l Vk € {1727 sy T — 1} (8)
i=1 =1

The third and last set of additional constraints corresponds to the permutations of colors
with the same cardinality in symmetrical coloring solutions. We remove these symmetrical
coloring solutions with the following constraints:

Xir =0 Vk>i+1 (9)
i—1

Xin <Y Xjpoa Vie V\{1},Vk € {2,3,...,i — 1}. (10)
j=k—1

After we include these three sets of additional constraints in the formulation, the
performance of the branch and bound algorithm in the solver could be faster. However,
including these additional sets leads to a large number of extra constraints. Therefore, a
trade off between the speed gained by elimination of symmetrical solutions and the speed
lost for including more constraints needs to be made. This trade-off is made when the size
of the graphs that need to solved is known. If the graphs that need to be solved exceed a
certain size, the additional constraints need to be dropped. However, in this thesis, this
is not the case and, therefore, the additional constraints are used.

2.3 Introduction on Neural Networks

In this section, firstly a short introduction on deep learning and Neural Networks is given
based on [12], Section 11]. Then we give a description of a Convolutional Neural Network
and its structure that we used for our research based on [13]. Finally we discuss possible
implementation issues with Neural Networks and how they can be solved.

2.3.1 Deep Learning

Deep learning is a family of machine learning models that uses Neural Networks consisting
of multiple layers. A Neural Network is a circuit of artificial neurons, based on the
working of the human brain. They are used in machine learning to construct non linear
functions that can be used for regression or classification problems. An example of a
Neural Network with a single hidden layer is given in figure . The vectors BV and 5
correspond to the unknown weight parameters. Node z; in the hidden layer has has value

h(>Y, ﬁj(zl)Xi + ﬁ]%)). The function h is an activation function, for example a sigmoid
h(z) = H% or a rectified linear unit (ReLu) h(z) = max(0,z). The resulting values
z; determine similarly the output variables . When the Neural Network is used for
classification, the softmax function

ek

o(ry) = =%

D1 €%

is a popular choice for the output unit activation function o.

The unknown weight parameters § in the Neural Network must be set to values such
that the Neural Network fits the training data well. Therefore, a loss function R() must
be defined and minimized. A default loss function that is used when a Neural Network is
used for classification is the cross-entropy function:

N K

R(B) == =) > yaxlog(iin(X, B))

i=1 k=1
with ¢, as the estimated outcome £ for the given observation 7. The generic approach for
minimizing the loss function is by gradient descent and is called back-propagation. Back-
propagation starts at the last layer of the feedforward Neural Network and calculates the
gradient of the loss function backward using the chain rule. In general a global minimum
is not always preferred because if a global minimum is obtained, there could be overfitting
of the training data [12].
The previously discussed components of a Neural Network can be extended to Neural
Networks with multiple hidden layers. An example of a Neural Network with multiple
hidden layers is illustrated in figure 2]

M (2) I = 9r(X, B)

Uk
21
_ s ___,___,_:::__::,__’::—;1 ?}1
){” | P _ M
(1) (1)) P
a; = Z»J’_;‘; Xi+ B Hidden Layer Qi = Z-’ﬂ; 4+ B2
i=1 JI:l
ZJI = h(”'_j:)- } = l ﬂ[J};\ = ﬂ'((!’{,—), Af =] _____ !\-
4
output unit _--“/

activation function

Figure 1: Example of a single hidden layer Neural Network with input variables X, output
variables §(X, 3) (depending on X and 3), hidden layer variables z, weights 3 and 3.
The activation functions are h and o.

2.3.2 Convolutional Neural Networks

A specific type of Neural Networks with multiple hidden layers are Convolutional Neural
Networks. Convolutional Neural Networks are designed to reduce the number of con-
nections and parameters with respect to fully connected Neural Networks without losing
their strength. Convolutional Neural Networks have three types of different layers: Con-
volutional layers, pooling layers and fully connected layers.

The convolutional layer connects each input node to hidden layer nodes that are only in
their region of the input. So if a Neural Network is for example dealing with a picture,
the input to the Neural Network will be pixels. The Convolutional layer connects each
source pixel only to hidden layer nodes of pixels close to the pixel instead of a connection
to all pixels. This is illustrated in figure [3] Another structural characteristic of the Con-
volutional layer is that the weight parameters of local connections are fixed. Fixing the
weights of local connections results in an opportunity to detect and recognize features re-
gardless of their positions in the image. The reduction of connection and fixing of weights
reduces the amount of connections and parameters.

The pooling layers reduce the dimensional size by combining a group of connected nodes
into a new one by taking for example the maximum or average of the original group of
connected nodes. If a Neural Network has pixel data as input, it can be seen as that the
pooling layers reduce the resolution of the data.

The last type of layer is the fully connected layer. These layers are general fully connected
Neural Network layers as explained in section [2.3.1

Multiple Hidden Layers

Figure 2: Example of a Neural Network with multiple hidden layers

Source
pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

Figure 3: Illustration of a convolutional layer mapping pixels ([13])

3 Methodology

One of the main questions in our research is to investigate if it is possible to apply a
Neural Network to the graph coloring problem. This means that we want to construct
a Neural Network that is able to solve graph coloring problems as good as possible. We
try to achieve this goal by experimenting with different Neural Network structures. This
section consists of three subsections: graphs, input representation and Neural Networks
respectively. In the first subsection we will discuss how we will obtain labels for all graphs
in our data. In the second subsection we will explain how the data will be represented so it
can be fed to our Neural Networks. In the third and last subsection we will discuss different
structures of Neural Networks that we will experiment with and some implementation
improvements.

3.1 Finding colorability bounds for graph data

For each random graph G that is created, a corresponding legal colorability number %
must be found to complete the instance. The optimal colorability number to use would
be x(G). However, as graph coloring problems are NP-hard, it might not be practically
possible to find x(G), we therefore search for the tightest possible bounds on x(G) that
we can use for labeling a graph in our data.

3.1.1 Brooks’ theorem

A general upper bound on the chromatic y(G) of an undirected graph G' was found by
Brooks in [14]:

Theorem 3.1 (Brooks’ theorem [14]). Let G be an undirected graph. We than have that
the chromatic x(G) has an upper bound:

1. A(G) if G is not an odd cycle or a complete graph
2. A(G) +1if G is an odd cycle or a complete graph.

The notation A(G) denotes the maximum degree (maximum number of connected

nodes to a node) of a graph GG. The time complexity of finding the maximum degree of a
graph is O(n?) and hence, polynomial.
For our three types of randomly constructed graphs we can easily check if they are an
odd cycle or a complete graph and apply Brooks’ theorem. Sometimes, a check is even
unnecessary depending on the model and parameters. For example, if a random graph G
is constructed with the Watts-Strogatz model with 4 < K < n — 2 we know that it is not
an odd cycle or a complete graph.

3.1.2 Solver bounds

Another set of practical bounds that could be useful for constructing an instance are the
bounds found by an Integer Linear Programming solver before the branch and bound
algorithm is fully terminated. If tight lower or upper bounds can be found in reasonable
time, these bounds can also be used for creating an instance. The speed of the solver can
potentially be increased by using the known upper bound (found by Brooks” Theorem for
example) as a maximum for the number of decision variables that are created.

As we have that the Linear Programming solution is always as least as good as its corre-
sponding Integer Linear Programming solution, we have that a lower bound can also be
found by using the Linear programming relaxation of the solution. This means that we
solve the formulation represented in section by replacing the constraints 4| and [5| that
ensures binary variables with:

Wy €0, 1] Vk e C (11)
X, € 10,1] Vie V,Vk e C. (12)
The resulting new formulation is a Linear Programming formulation and is easier to solve

then the first formulation. Assume that xpp(G) is the linear programming solution of a
graph G, we then have that [x;p(G)] is a lower bound on the colorability of G.

3.1.3 Procedure for finding the best bound for a random graph

We need to combine the different types of colorability bounds in a procedure for finding
the best lower and upper bounds. We therefore propose the following procedure:

Algorithm 1: Procedure for selecting bounds

Create a random graph G(V, E') with a random graph construction model;
Let L be the resulting lower bound and initialize L = 2 ;
Let U be the resulting upper bound and initialize U = n;
Solve the relaxed graph coloring problem of G with an LP solver with resulting
optimal value ypp ;
if [XLP(G)—I Z L then
‘ Set L = [x1p(G)];
end
if G is an odd Cycle or a complete graph then
| Set U =A(G)+1;
else
| Set U = A(G);
end
Try to solve the graph coloring problem of G with an ILP solver with a timelimit
tmaz and with set of colors C with |C| = U.
if ILP solver finds x(G) within timelimit then
‘ Set L =U = x(G) and terminate procedure;
else
Let Lip be the best lower bound found for x(G) by the ILP solver
Let Urpp be the best upper bound found for x(G) by the ILP solver
Set L = max(Lp, L) and U = min(Ujp,U) ;
end

Algorithm [1] provides tight lower and upper bounds for all graphs in our data set so
that each data point has labels and could potentially be used even when .

3.2 Input representation

If we want to feed graphs to a Neural Network we should transform them into data

structures that are accepted by a Neural Network. We want to represent each graph by
an image-like adjacency matrix because Neural Networks are known to perform well on
image-like data. We therefore choose the adjacency matrix consisting of binary entries as
our graph representation structure. A graph with n nodes can be represented by an n x n
adjacency matrix in the following way.
Each node i in the graph is linked to row ¢ and column i. If an edge between nodes ¢
and j exists in the graph, the matrix entries with index (i, j) and (j,7) are equal to 1. If
there exists no edge between nodes i and j, the matrix entries with index (7, j) and (7, 1)
are equal to 0. Note that the resulting matrix contains only binary values, is symmetrical
and has a diagonal consisting of zeros.

For example, the adjacency matrix of the graph illustrated in figure d|is:

O = === O
OO R OO
— = =0 O
—_— O O = =
OO O = O =
OO~~~ OO

oS0
RORO

Figure 4: Example of an undirected graph

3.3 Neural Networks

In this subsection different Neural Network structures and implementation issues and
improvements are discussed.

3.3.1 Fully Connected Neural Networks

The first, most basic, structures that can be considered are fully connected Neural Net-
works with one or multiple hidden layers. However, when the size of the fully connected
layers or the number of fully connected layers increases, the number of parameters of the
model increases drastically. The models complexity and its ability to recognise patterns
and use them for predicting the chromatic number of a graph is a complex problem that
could (if possible at all) require a practically impossible size of a fully connected Neural
Network. For this reason, we want to extend our experiments to a different type of Neural
Networks that are build with an architecture for pattern recognition.

3.3.2 Convolutional Neural Networks

In section we explained the class of Convolutional Neural Networks with a structure
that is highly compatible for pattern recognition. As we have our data represented in the
form of adjacency matrices that can be seen as black and white pictures, Convolutional
Neural Networks may be useful to extract significant information in the form of patterns
from the data. These extracted information may then be used to determine the presence
and/or absence of certain patterns to predict chromatic numbers.

3.3.3 Ordinal classification

When a graph coloring problem is approached as a classification problem, the classes are
not entirely independent as the classes are clearly ordered by number of colorability. The
problem is therefore called ordinal classification.

An efficient way to deal with ordinal classification is proposed in [15] and works as
follows:
Suppose the set of labels to be predicted is K = {1,2,3,4} where we have the ordinal
relations that class ¢ — 1 < ¢ for all . We define k,,,, = maxcx k. Each label in K is
converted to a k., dimensional binary vector:

10

1—(0,1,1,1)
2 —(0,0,1,1)
3 —(0,0,0,1)
4—5(0,0,0,0).

The output layer of the Neural Network must be a layer consisting of k., output
nodes. The activation function used at the output nodes should be a standard sigmoid-
function. After a prediction ¢ is made, the corresponding predicted class k can be obtained
by defining y; as the first entry y; with j € [1,2, ..., kyq,] for which it holds that y; > 0.5.
If there exists no y; then the prediction is equal to the maximum label k... If 3; exists
then we have that the prediction is:

~

k=1—-1

A problem that may arise when the graph coloring problem is treated as a classification
problem is that there may be 'missing’ labels in the data set that can never be predicted
by the model. A 'missing’ label can be explained as a value for the chromatic number of
a graph, for example 6, that is not included in the data while other surrounding values
(5 and 7) are included.

This problem could be solved practically by transforming some labels next to missing
labels to ranges that include the missing values. For example, if the label 5 is present in
the data but the label 6 is not, then the label 5 will become the label 5-6. This approach,
however, is not ideal as the corresponding models predictions are less meaningful for these
range labels.

Another way to solve the issue of ordinal classification is to model the graph coloring
problem not as a classification problem where each graph has one out of a finite set of
labels corresponding to its chromatic number, but by modeling it as a regression problem
instead. If the Neural Network is a regression model instead of a classification model, the
issue of order between classes is directly taken care of by the structure of the regression
model. But there is a new issue that arises in the context of graph coloring problems: the
chromatic values that should be predicted by the regression model are all integer while
a regression model predicts continuous values. This issue also leads to the fact that in a
regression model the accuracy of rightly or wrongly predicted chromatic values can not
be directly evaluated as the performance is given by the root mean squared error or an
equivalent numerical error size statistic. This can in its turn be solved by rounding the
prediction of the regression model and evaluate prediction accuracy again.

3.3.4 Optimizing architecture

We need to combine our knowledge about graph coloring problems and Convolutional
Neural Networks with the results of our experiments to find the optimal structure of the
Convolutional Neural Network for graph coloring problems. As a starting point for our
experiments, we took a similar structure to [10] for the Convolutional Neural Network
model as they consider Constraint Satisfaction Problems that are similar to Graph color-
ing problems. Our starting structure for the classification model is presented in Figure [5]

11

The first square in the Figure is the input (size 100x100), followed by three convolutional
(with 8, 16 and 32 filters of size 3x3) and pooling layers. The last three layers are the two
fully connected layers and the output layer. We then experiment with small deviations
from this structure while we keeping the rest of the structure equal. In our experiments
we will try variations in the number of convolutional layers and pooling layers, filter sizes
of convolutional layers, number of filters, number of fully connected layers and sizes of
fully connected layers.

32@13x13

1@100x100
e 1x100

AR 1%31
~

Figure 5: Starting structure of our Convolutional Neural Network

We expect to observe an optimal number of convolutional and pooling layers and an op-
timal filter size for our data set as this indicates that the patterns in adjacency matrices
that are necessary for predicting the corresponding chromatic number have a level of com-
plexity that can be recognised by the optimal number of convolutional layers. Increasing
the number of convolutional layers could possibly lead to a model that is able to recognise
patterns with a complexity level that is too high for graph coloring problems and can lead
to worse out-of-sample performance.

3.4 Using unlabeled data

One of the issues that arises when we create our data set consisting of graphs is that
we might not solve the colorability problem for each graph. However, for these unsolved
graphs, we have found a lower and upper bound on their chromatic number with Algorithm
[It would be nice to investigate whether the inclusion of these 'unlabeled’ graphs in
the data set results in an increasing performance of the prediction model. Not using
the 'unlabeled’ data points seems as a waste since they are already generated and could
potentially be a large part of the data set as solving the graph coloring problem is NP-hard.
The 'unlabeled’ data points will therefore consist mainly of graphs that are relatively large
and difficult to solve. Including information of difficult graphs into the training data set
leads to enriching the information that is fed to the Neural Network and hence increases
its performance.

To include the 'unlabeled’ data points we can use the regression-based Neural Network
structure and change the output structure of the regression Neural Network with one
output node to a structure with two output nodes. Each data point (labeled or unlabeled)

12

will have two output values: a lower and an upper bound. If algorithm [T however finds the
exact chromatic number then in this case both output values will be set to the chromatic
number.

3.5 Variation of input sizes

A technical issue for standard Convolutional Neural Networks as prediction models is that
it requires fixed input sizes. This means in the context of graph coloring problems that
all training and test graphs should have the same number of nodes. In this subsection we
first discuss image cropping and warping. These are the most typical techniques for data
augmentation for Convolutional Neural Networks, however, they turn out to be unsuitable
for graph coloring problems.

3.5.1 Image cropping and warping

Basic methods to fit images of arbitrary sizes to Convolutional Neural Networks are image
cropping and image warping. An illustration of these procedures and their place within
a Convolutional Neural Network are shown in figure [0

! image]—» crop / warp -{ conv layers H fc layers N output

Figure 6: Cropping and warping ([16])

Image cropping is the removal of unwanted outer areas of the image. Cropping is not
suitable for adjacency matrices of graphs as the entire adjacency matrix contains poten-
tially import information on the chromatic number. Image warping is the resizing of an
image to a new format but a disadvantage of image warping is that it could sometimes
result in unwanted geometric distortions when the image is resized. Image warping is a
technique that is constructed for resizing images consisting of pixels. If warping would
be applied to the adjacency matrix of a graph, the resulting resized adjacency matrix
could possibly not contain any of the old graphs structure. So it’s original chromatic
number could become totally undetectable from the resulted warped adjacency matrix.
And, therefore, we do not use either of these two standard data augmentation techniques
for Convolutional Neural Networks.

3.5.2 Zero padding

These standard image resizing techniques are not preferred for our adjacency matrices
as described above. We therefore search for resizing methods of adjacency matrices that
increase the size of an adjacency matrix (or graph) but don’t affect the chromatic number

13

of a graph. The first method that probably comes to mind is to extend the adjacency
matrix with rows and columns of zeros at the boundaries. We will call this method
zero padding. The resizing with zero padding can then be interpreted as adding new
unconnected nodes to the graph. It is easy to see that adding unconnected nodes to a
graph never affects the chromatic number of the original graph as each unconnected node
can be given the same color.

We apply the zero padding technique for increasing the size of adjacency matrices in the
following way. Assume that we have a data set consisting of graphs of different sizes
with their corresponding chromatic numbers. Let N be the size (number of nodes) of the
largest graph in the data set. For each adjacency matrix of a graph that has a smaller
size than N, we apply zero padding at the end of the adjacency matrix to resize the graph
up to size N. Our Convolutional Neural Network is constructed for adjacency matrices
of size N x N.

4 Data generation

A set of instances is required for training and testing a Neural Network. Each instance
consists of a graph and integer numbers L and U corresponding to the lower and upper
bound respectively. If L = U then we know the exact chromatic number of the graph:
x = L = U. The larger the size of the set of test and training instances is, the more
training can be performed on the Neural Network. By creating random instances for the
training and test set, we are free to decide the size of the set. In this section we will discuss
firstly the different types of random graphs that are used for the research, secondly data
augmentation for increasing the size of the data set. After this we will discuss the different
data sets that we use in our experiments and their specifics. Then, we will mention how
we performed K-fold cross validation in our experiments to receive more robust results
and finally we will discuss some performance measure issues that could occur during the
experiments and how we deal with them.

4.1 Generating random graphs

We consider three types of random graphs for our data set: random graphs constructed
by the Erdos—Rényi model, random graphs constructed by the Watts-Strogatz model and
random graphs constructed by the Barabasi—Albert model.

4.1.1 Erdés Rényi

The Erdés—Rényi model constructs random graphs as follows: a parameter for the desired
number of nodes n € N and a probability parameter p € [0, 1] are given as input for the
model. Then n nodes are constructed and for each possible pair of nodes, an edge is
constructed with probability p.

4.1.2 Watts Strogatz

In [I7] Watts and Strogatz found that many real life graphs have a connection topol-
ogy that lies between completely regular and completely random. These graphs are

14

highly clustered and have small characteristic path lengths and are therefore referred
to as ”"Small-world” graphs. They therefore created a model for constructing random
”Small-world” graphs that also have these properties and have a connection topology
that lies between completely regular and completely random as is illustrated in figure
The Watts-Strogatz model constructs random graphs in the following way: the desired
number of nodes n € N, the mean even degree K and the probability parameter p € [0, 1]
are given as input to the model. Construct a lattice with n nodes where each node is
connected to its K neighbour nodes. Then, for every node all its connected edges are
adjusted with probability p. If an edge from node 7 is getting adjusted, a random node
is picked with a uniform probability until a node is picked that is not equal to ¢ or does
not have an edge connected to i.

Regular Small-world Random

Increasing randomness

Figure 7: Watts-Strogatz model for interpolating between a regular ring lattice and a
random network as is done in [17].

4.1.3 Barabasi—Albert

In many real life networks there exists an inhomogeneous distribution of the degrees of
nodes. The Erdés-Rényi model and the Watts-Strogatz model do not construct graphs
with inhomogeneous degree distributions. We therefore consider a third type of model for
creating random graphs.

A third type of random graphs we consider for creating instances are graphs constructed
with the Barabdsi-Albert model ([18]). The idea behind this model is that in real life
networks, the degrees of nodes are often inhomogeneous distributed. A shortcoming of
the Barabasi—Albert model with respect to real life networks is that it constructs graphs
lacking the high level of clustering found in real life graphs and graphs constructed by the
Watts-Strogatz model.

The Barabasi—Albert model starts with a connected graph with my nodes where each
node has at least one edge. Then, at each time step, a node with m connecting edges to
the graph is added, with m < myg. The probability p(d;) that an edge of the new node

connects to node i depends on the degree d; of node i: p(d;) = ﬁ.
5 @5

4.2 Data augmentation

To improve the performance and robustness of a Neural Network, we consider an increase
in size of the data set. However, our method of generating data is time-expensive as it

15

could take up to a few minutes to solve the colorability problem of a single randomly
generated graph. We therefore consider data augmentation techniques to generate new
data with less time-expensive methods while we retain the same data-quality as with our
previous data generating method.

4.2.1 Data Augmentation general

The main assumption for considering data augmentation techniques is that more infor-
mation can be obtained from the existing data set through augmentation. As is explained
in [19], when deep learning is applied for image classification, there are two main data
augmentation techniques: data warping and oversampling. Data warping is a technique
that focuses on changing a data point while retaining its label. For image classification
this could mean that an image is rotated or a color filter is applied to the image. Over-
sampling augmentations are newly created data points by for instance combining two old
data points or performing feature space augmentations. Data warping and oversampling
can also be combined to augment a data set.

4.2.2 Data augmentation in the light of graph coloring

After a data augmentation technique is used to construct a new data point, the corre-
sponding label should also be known. For graph coloring problems it is therefore not
possible to apply oversampling data augmentation technique of combining two old data
points to construct a new point. The exact chromatic number of the label can not be
easily decided from the old two data points.

However, data warping is a technique for which graph coloring instances are highly suit-
able. To show this, we use the following definition for isomorphism between graphs:

Definition 4.1 (Graph Isomorphism ([20])). Two graphs Gi and Gy are isomorphic if
there exists a matching between their vertices so that two vertices are connected by an edge
in G if and only if corresponding vertices are connected by an edge in Gs.

We first note that two graphs that are isomorphic can be seen as two equal graphs
with a different labeling of the nodes. It can then be expected that as the labeling of
nodes in a graph does not influence properties such as the chromatic number of the graph.
This is proposed in the following theorem:

Theorem 4.1 (Chromatic number of isomorphic graphs). If two graphs Gy and Go are
isomorphic, then their chromatic numbers x(G1) and x(Gs) are equal: x(G) = x(H).

Proof. Suppose that the graphs G = (Vi, E3) and Gy = (V3, E3) are isomorphic. From
the definition of graph isomorphism we know that there exists a bijection f : V} — V5
such that (v,w) € Ej if and only if (f(v), f(w)) € Ex.

Let ¢; : Vi — {1,2,...,n} be a coloring of G; with n colors. We then have that the
coloring ¢y o f=1: V4 — m is a coloring of V5. This indicates that all colorings of V; can
be transformed to colorings of V5.

Let ¢ : Vo — {1,2,...,m} be a coloring of G5 with m colors. We then have that the
coloring cs o f : Vi — m is a coloring of V. This indicates that all colorings of V5 can
be transformed to colorings of V;.

As we have that the transformations between colorings of V; and V5 are each other’s inverse
as f and f~! are each other’s inverse we have that there exists a bijection of colorings of
G and G with a given number of colors. This means that x(G;) = x(Ga2). O

16

Theorem 7?7 can be used to augment graph coloring data in the following way: if we
can construct a new graph H that is isomorphic to an existing graph G in our data, the
new graph H has the same label as graph G. A method for constructing an isomorphic
graph H for a graph G is:

Assume we have a given random graph G of size n with chromatic number x(G) and with
node label set V' = {1,2,...,n}. We can construct a new graph H with the same number
of nodes and edges as G. We randomly re-assign each label in V' to a new label in V.
For each node in G we add a node to H. For each edge in G we add an edge to H such
that the nodes connected by the edge in GG correspond to the newly assigned labels of
these nodes in H. The resulting graph H is isomorphic to the graph GG and has, by using
Theorem 7?7, the same chromatic number as G.

If we apply this technique of data augmentation we can easily create a lot of new data
with corresponding labels. All these new graphs could have completely different adjacency
matrices compared to their original graphs. We could therefore potentially add new
adjacency matrix patterns to the data that could hypothetically indicate the chromatic
number of a corresponding graph.

4.3 Data sets

The number of nodes of instances of difficult graphs on which most coloring algorithms
are tested in the literature are between 450 and 4000. However, for the largest of these
graphs the chromatic numbers are not found but only upper bounds are found [5]. We
tested for different types of random graphs considered in this thesis for which size they
could ’easily’ (in +- 10 seconds) be solved by a solver (Gurobi). We found that Erdos-
Renyi graphs can be easily solved up to size 35, Watts-Strogatz graphs up to size 70 and
Barabasi-Albert also up to size 70. These small instance sizes illustrate the difficulty of
graph coloring problems and hence relevance of heuristics. We created a few different
data sets for our experiments: Data set 1, 2, 2.1, 3, 3.1, 3.2 and some different final test
sets 4.1, 4.2, 4.3 and 4.4.

Data set 1 has size 28636 and consists of graphs of size 50. For each graph in Data set
1 the exact chromatic number is found. The different types of random graphs are evenly
represented in Data set 1.

Data set 2 includes Data set 1 but also contains 38328 random graphs of sizes 50 to 100 for
which the exact label is known. However, in Data set 2 there are almost no Erdos-Renyi
random graphs as their exact number could not be easily found. Data set 2.1 is Data set
2 minus Data set 1.

Data set 3.1 consists of the graphs of Data set 1 but with all its labels doubled such that
each graph has an upper bound equal to its lower bound. Data set 3.2 consists of 10002
random graphs of sizes between 50 and 100 with bounds where the exact coloring number
is not always found. Data set 3 is the union of Data set 3.1 and Data set 3.2.

Data set 4.1 to 4.4 are data sets to test the final models on. They therefore consists
each of specific types of graphs. Data set 4.1 consists of 35 graphs up to size 100 that
we found online. These graphs have different structures and are used for determining the
effectiveness of graph coloring problem algorithms. Data set 4.2 and Data set 4.3 consist
each of 1000 random 50-100 size graphs of Watts-Strogatz and Barabasi-Albert types,
respectively. Data set 4.4 consists of 50 Erdos-renyi graphs of size 50.

17

4.4 K-fold cross validation

To evaluate the performance of a Neural Network for optimizing parameter settings and
model structures, a test data set is required next to the training data set. This, however,
may cause problems as the test data set could be imbalanced compared to the training
data set. We also have limited data available as our data generation method is computa-
tionally heavy. We therefore use the method of k-fold cross validation to overcome these
problems and obtain more general performances of our Neural Network models.

The method of k-fold cross validation works as follows. At the beginning the training
data set S that is used is randomly shuffled. Then, it is split in & disjoint sets .S; of size
% * |S| such that the union of these sets is equal to the training data set at the beginning:
Uk | S; = S. After these splits are done, the model is evaluated k times where in each
iteration ¢ with ¢ € {1,...,k} the training data set is equal to S\ S; and the test data
set is equal to 5;. Each iteration ¢ results in an accuracy d; and we compute the mean

_ — k
Y 0
accuracy 0 as 6 = %

4.5 Performance measures

For classification models the accuracy percentage of the model can be calculated relatively
straightforward. The class corresponding to the output node with the highest value is
chosen as the predicted class and the accuracy is calculated by dividing the number of all
rightly predicted classes of data points by the number of all data points in the test set.
This is however not possible for ordinal classification models and regression models.

Ordinal classification models return a vector with values in the interval [0, 1] as predic-
tions. We translate these resulting vectors to an integer value back in the following way:
let 5. be the ky, entry of the resulting prediction vector g for which it holds that g, > 0.5,
we then have that the chromatic number corresponding to prediction g is equal to k — 1.

Regression models predict a continuous number as the chromatic number of a graph
while we have only integer values as true labels in our data test. In our regression models
with one output node we solve this in the following way. After our regression model pre-
dicts the chromatic number we first round that number to the closest integer. Then we
compute the accuracy of all rounded predictions against the true labels that are known.
With this trick we are able to somehow compare classification and regression models with
each other. This rounding method also provides regression models that can be used in
practice to predict chromatic numbers as their outcome is then always integer.

Another performance measure that we take into account for evaluating a model is the
interval of the accuracy’s of the k-Fold cross validation. If this interval is relatively small,
the model accuracy is more stable regardless of how test and training data are split. If
the accuracy interval is relatively large, the model accuracy is more sensitive to different
splits in test and training data.

In Experiment 6 we will test a regression model with two output nodes for predicting
a lower and an upper bound of a graph. During this experiment we will test two different
rounding methods: the 'standard’ rounding method to the nearest integer and a rounding
method that rounds to the outside integer values. The second rounding method to the out-
side integers rounds the value of the predicted lower bound by applying the floor function

18

to it and it rounds the predicted value of the upper bound by applying the ceiling func-
tion to it. During this experiment the performance measurement is also different because
the model predicts bounds instead of the chromatic number. A lower (or upper)bound is
said to be predicted correctly if the bound is smaller (higher) or equal to the known bound.

5 Results

To compare different methods and Neural Network structures we performed several dif-
ferent comparative experiments. After each experiment, the results are evaluated and, if
a model improvement is found, the basic model for later experiments is adjusted.
Experiment 1 is performed for comparing a Fully Connected Neural Network to a Con-
volutional Neural Network. In Experiments 2 and 3 the two methods of incorporating
ordinal classification as explained in section [3.3.3 are tested and evaluated. Experiments
4 are for deciding on the optimal structure of the Convolutional Neural Network and are
split into 3 sub-experiments: Experiment 4.1 for optimizing the structure of the convo-
lutional layer part, Experiment 4.2 for optimizing the size and number of filters in the
convolutional layers and Experiment 4.3 to decide on the optimal structure of the fully
connected layer part of a Convolutional Neural Network. Experiment 5 aims at investi-
gating if a model can be adjusted to fit different input sizes and in Experiment 6 we try
to use unlabeled data. Finally, in Experiment 7 we test our best models to a range of
final unseen test sets.

Experiments 1, 2, 3, 4.1, 4.2 and 4.3 are all performed with a data set consisting of graphs
of size 50 for which the exact chromatic number is known. For each model that is tested
a 5-fold cross validation is performed to evaluate the model. The number of training
episodes for each split was 20.

The experiments were performed on a Intel(R) Core(TM) i7-9750H CPU using Python
3.8.8 in the environment Spyder 5.0.0. The solver that is used for generating the data
sets is Gurobi Optimizer version 9.1.0.

5.1 Experiment 1: a Fully Connected Neural Network vs a Con-
volutional Neural network

In our first experiments we compared the performance of a Fully Connected Neural Net-
work (1A) to the performance of a Convolutional Neural Network (1B). The architectures
of both networks are presented in Figure [§

19

1x100 1x100

S

Flattened-

1@50x50

(a) Structure 1A

32@12x12

o 8@50x50 16@25x25 B 00 1x100

— 3
—
s S

(b) Structure 1B

Figure 8: Neural Network structures for Experiment 1

The results of Experiment 1 are presented in Table [I. We observe that 1B has a
much higher mean accuracy and a lower accuracy variance. The higher mean accuracy
means that 1B does a better job on prediction on average than 1A. The smaller accuracy
interval is also preferable: it indicates that model 1B is more consistent over the data in
its predictions than model 1A. We conclude that, as expected, a Convolutional Neural
Network outperforms a Fully Connected Neural Network with our experiment settings.

‘ Number of parameters Mean accuracy Accuracy interval
Structure 1A | 263 028 63.78 [56.22 , 74.90]
Structure 1B | 134 116 73.20 [65.22 | 75.40]

Table 1: Results Experiment 1

5.2 Experiment 2: testing classification against ordinal classifi-
cation

An attempt to improve our model of a Convolutional Neural Network found in section
[5.1] can be made by implementing ordinal labels. These ordinal labels are implemented
as is explained in the beginning of section [3.3.3} all data labels are transformed to a
binary vector. The architecture of the model that makes use of ordinal labels is pre-
sented in Figure [9] The structure of the model is almost completely identical to that of
model 1B, the model that it is compared to, and differs only in the size of its output layer.

20

32@12x12
1@50x50 8@50x50 10@anes 1x100 1x100

—
f——
% Fe——

Figure 9: Neural Network structure 2B with ordinal classification for Experiment 2

The results of Experiment 2 are presented in table 2l We immediately observe that
our new model with ordinal classification implemented performs significantly better then
our original model. This is an expected outcome as the labels have a strict order in reality
and this order is now exploited by the structure of our model. We can conclude that our
new model with Structure 2B is better at predicting chromatic numbers than our previous
model with Structure 2A.

‘ Number of parameters Mean accuracy Accuracy interval
Structure 2A | 134 116 73.20 [65.22 | 75.40]
Structure 2B | 134 015 81.75 [79.45 , 83.48]

Table 2: Results Experiment 2

5.3 Experiment 3: Classification vs Regression

Another method to incorporate the natural order between labels is to use a regression
model instead of a classification model as is explained in section [3.3.3] This method is
experimented with in Experiment 3. The structures that are used for Experiment 3 are
structure 3A, identical to structure 2A and structure 3B that is also identical to structure
2A except for its single output node, making it a regression network. The regression
model 3B has a different loss function that optimizes the 'mean absolute error’ instead of
the ’sparse categorical cross entropy’ loss function that is used in structure 3A. To be able
to still compare the two models we round each prediction of the regression model to the
closest integer and take the rounded number as its prediction. In this way we can evaluate
the accuracy of the regression model and compare it to the accuracy of the classification
model (see Section [4.5).

The structure 3B is presented in Figure [10]

21

32@12x12

8@50x50

1x100 1x100

1@50x50

Figure 10: Neural Network structure 3B with regression for Experiment 3

The results of experiment 3 can be observed from Table |3, We see that incorporat-
ing the ordinal structure of the classes by creating a regression model leads to an even
better model than when ordinal classification is used. We will therefore continue with
experimenting with regression models to hopefully find an optimal model.

‘ Number of parameters Mean accuracy Accuracy interval
Structure 3A | 134 116 73.20 [65.22 | 75.40]
Structure 3B | 131 389 84.88 [84.39 , 86.07]

Table 3: Results Experiment 3

5.4 Experiment 4: Optimizing the Neural Network Structure

Experiment 4 consists of three sub experiments that are meant to obtain the optimal
structure of the Convolutional Neural Network. However, due to this thesis’ limited time
we only test regression models as they showed the best accuracy results. In general,
other structures should be tested for other models as well. In Experiment 4.1 models
with different numbers of convolutional layers are tested to find the optimal number of
convolutional layers. The effects of using different sizes and numbers of the filters that
are used in the convolutional layers are investigated in Experiment 4.2. And finally, in
Experiment 4.3 models with different structures in number and sizes of the fully connected
layers are tested and evaluated.

5.4.1 Experiment 4.1: Convolutional layer structure

The first architecture component of a Convolutional Neural Network that we want to
optimize is the number of convolutional layers. This is done in Experiment 4.1 in which we
have our existing ’basic’ Structure 4.1A with three convolutional layers and we experiment
with small deviations from this structure ceteris paribus. The deviations are displayed
in Figure [I1} Structure 4.1B contains one less convolutional layer compared to Structure
4.1 whereas Structure 4.1C has one extra convolutional layer.

22

32@12x12 16@25x25
7 8@50x50 1x100 1x100
1100 1x100 1@50x50

1@50x50 T) - 1x1
T N\ 1x1 -
=N e - =
b, T e J‘
p b Max-Pool Convolution Max-Pool
(a) Structure 4.1 A (b) Structure 4.1 B
64@6x6
1@50x50 \\\\ 1x100 1x100

e

(c) Structure 4.1 C

Figure 11: Convolutional Neural Network structures for Experiment 4.1

The results of all Structures of Experiment 4.1 are presented in Table (4] A decrease in

the number of convolutional layers leads to more model parameters due to a larger first
flattened layer in the fully connected structure component and an increase vice versa.
We observe that an increase or decrease of the number of convolutional layers leads to a
slightly worse mean accuracy. A significant increase in the size of the accuracy interval
is also a result of both deviations of Structure 4.1A. Both results are undesired: for an
optimal structure a highest possible mean accuracy with a smallest possible accuracy in-
terval is best.
We know that a model with more convolutional layers leads to a model that can po-
tentially recognise more complex structures than one with less convolutional layers. We
can conclude that the optimal number of convolutional layers for our structure with the
current data set is three.

‘ Number of parameters Mean accuracy Accuracy interval

Structure 4.1A | 131 389 84.88 [84.39 , 86.07]
Structure 4.1B | 241 949 82.44 [79.19 , 85.04]
Structure 4.1C | 92 285 81.42 [75.19 , 84.60]

Table 4: Results Experiment 4.1

5.4.2 Experiment 4.2: Optimizing the filters

In Experiment 4.2 we aim for optimization of the filters in the convolutional layers. The
two main structural components of the filters that can be adjusted are the filter size and
the number of filters in a convolutional layer. Some of the different structures that are
tested in Experiment 4.2 are presented in Figure [12]

23

32@12x12

8@50x50 16@25x25

1@50x50 1x100 1x100

(a) Structure 4.2 A

16@12x12
1@50x50 1@50x50 S@25%25 ,@ 1x100 - 1x100

— \ S 1x1
S
4
- s |
E % —~ “

(b) Structure 4.2 C

64@12x12

16@50x50
1x100 1x100

1@50x50

—

(c) Structure 4.2 D

Figure 12: Convolutional Neural Network structures for Experiment 4.2

Structure 4.2A is the same structure as Structure 4.1A that was found to be optimal
in Experiment 4.1. Structure 4.2B is equal to Structure 4.1A except for the fact that it
has filters of size bx5 instead of size 3x3. Structure 4.2C has less filters per layer than
Structure 4.2A and Structure 4.2D has more filters per layer.

The results of Experiment 4.2 can be observed from Table 5] We first observe that
Structure 4.2C has significantly less parameters than Structure 4.2A whereas Structure
4.2D has more than twice as many as Structure 4.2A. The mean accuracy of the ’basic’
Structure 4.2A is slightly superior over the adjusted structures. The accuracy intervals of
the measured accuracy’s is better for Structure 4.2A. We therefore remain with Structure
4.2A as our ’basic’ structure for later experiments.

Number of parameters Mean accuracy Accuracy interval
Structure 4.2A | 131 389 84.88 [84.39 , 86.07]
Structure 4.2B | 141 757 83.34 [81.25 , 84.95]
Structure 4.2C | 69 159 81.57 [77.86 , 83.27]
Structure 4.2D | 263 997 81.67 [78.12 , 85.21]

Table 5: Results Experiment 4.2

24

5.4.3 Experiment 4.3: Fully connected layers structure

The last sub experiment that is performed to determine an optimal structure for our
Convolutional Neural Network model looks at the structure of the fully connected layers
in our model. There can be two types of variations: variations in the number of fully
connected layers and variations in the size of fully connected layers. All structures that
are used in Experiment 4.3 are presented in Figure [13|

32@12x12
8@50x50 16@25x25 [y
1@50x50 . P, 1x100 1x100
= 1
(a) Structure 4.3 A
32@12x12
1@50x50
(b) Structure 4.3 B
32?12X12 i35G 1200
8@s0x50 16@25x25 Mg T —
1@50x50
(c) Structure 4.3 C
2@12x12
s@soxso 16@2525 M
1@50x50 U
—_—
(d) Structure 4.3 D
32@12x12
16@25%25
8@50x50
1@50x50 L 00 00 10

(e) Structure 4.3 E

Figure 13: Convolutional Neural Network structures for Experiment 4.3

25

Structure 4.3A is our resulting 'basic’ structure from Experiment 4.2. Structure 4.3B
contains only one fully connected layer of size 100. Structure 4.3C has the same number
of fully connected layers as Structure 4.3A but of size 200 instead of 100. Structure 4.3D
has also the same number of layers but has smaller layers of size 50 and Structure 4.3E
has 3 layers of size 100.

All results from Experiment 4.3 can be observed from Table [f, For the number of pa-
rameters we observe that the number of parameters structures 4.3A, 4.3B and 4.3E are
relatively close while Structure 4.3C has significantly more parameters and Structure
4.3D has significantly less parameters. The mean accuracy’s are almost the same for all
structures with slightly higher accuracy’s for 4.3A, 4.3C and 4.3D. We observe that the
accuracy intervals for these three structures are also slightly smaller.

As the results for Structures 4.3A, 4.3C and 4.3D are relatively close, we will keep the
three models as successful models for the final tests in Experiment 7. However, for further
experiments we will continue with only one of them and that is 4.3A.

Number of parameters Mean accuracy Accuracy interval
Structure 4.3A | 131 389 84.88 [84.39 , 86.07]
Structure 4.3B | 121 289 83.50 [79.59 , 85.32]
Structure 4.3C | 276 889 85.02 [84.44 , 85.84]
Structure 4.3D | 66 139 84.94 (84.01 , 85.65]
Structure 4.3E | 141 489 84.00 [81.84 , 85.28]

Table 6: Convolutional Neural Network structures for Experiment 4.3

5.5 Experiment 5: Different Input sizes

In Experiment 5 we investigate whether it is possible to adjust our model such that it
is able to receive graphs with different sizes as input. In Experiment 5.1 we performed
5-fold cross validation on Data set 2. In Experiment 5.2 we trained the same model with
Data set 2 but now we evaluated the resulting trained model with different data sets 1
and 2.1. On all adjacency matrices in the data sets that are smaller then 100 by 100 we
applied the zero padding technique as is explained in section The structure of the
Convolutional Neural Network model that is used in Experiment 6 is given in Figure [14]
The main differences with the models from previous experiments are due to its 100x100
input size in the first convolutional layer.

26

32@25x25

8@100x100 18@50x50

1@100x100

1x100 1x100

——

Figure 14: Convolutional Neural Network structure for Experiment 5

The results of Experiment 5.1 are presented in Table [/} Making the model suitable
for graphs up to size 100 has increased the number of parameters significantly. The mean
accuracy is slightly higher then the best models found in Experiment 4.3. However, Data
set 2 contains relatively less Erdos-Renyi random graphs as their exact label is difficult
to find for larger graphs we must be careful with drawing conclusions. We therefore
perform Experiment 5.2 were we investigate the performance on two different data sets:
Data set 1, containing only graphs of size 50 and Data set 2.1, containing graphs between
size 50 and 100. The results of Experiment 5.2 are shown in Table [§] We observe that

‘ Number of parameters Mean accuracy Accuracy interval
Experiment 5.1 \ 476 989 88.93 [86.27 , 91.22]

Table 7: Results Experiment 5.1

there is a significant difference in testing accuracy between the two test sets. The high
performance on large graphs is caused by an ’easier’ Data set 2.1 containing almost no
Erdos-Renyi random graphs. Despite this difference between the data sets these results
are still useful for our main question that we investigated in Experiment 5, namely, can
a Convolutional Neural Network model for determining the chromatic number of a graph
be adjusted such that it is able to process graphs of different input-sizes? The conclusion
that we can draw of the results of Experiment 5.1 and 5.2 is that this adjusting is possible
by using the zero padding technique that is discussed in Section [3.5 This result is in
line with our theoretical expectations; pattern recognition by a Convolutional Neural
Network is a process that is independent of the size of an image (or adjacency matrix in
our case). However, practical problems that arise when our Convolutional Neural Network
is adjusted is that the number of parameters within the model increases rapidly as does
the time that is needed for the training phase. Another practical issue is that the memory
size of the data set increases and that it may be difficult to include certain types of graphs
in the data set because finding their exact label requires too much time.

‘ Size test set Testing accuracy
Experiment 5.2A: testing on small graphs | 28 636 81.83
Experiment 5.2B: testing on large graphs | 38 328 95.63

Table 8: Results Experiment 5.2

27

5.6 Experiment 6: Using unlabeled data

Experiment 6 aims at investigating if unlabeled data , i.e. data for which the exact chro-
matic number is not known but an upper and lower bound are known, can also be used
for improving a Convolutional Neural Network model for predicting chromatic numbers
of graphs.

For Experiment 6 we use Data set 3. In section 4.3| it is explained that this data set
consists of graphs of size 50 - 100 with two labels per graph: an upper bound and a lower
bound on the chromatic number of the graph. If the chromatic number of the graph is
known, these two labels are equal to each other. The data sets consists of graphs and
two bounds and, hence, the model will also predict two bounds. We therefore have a
different situation than all previous experiments because we have a model that is used for
predicting bounds instead of chromatic numbers.

The structures that is used in Experiment 6 is presented in Figure [I5, We consider
two different models, Model 6A and Model 6B that are only different in their rounding
method of a prediction to an integer. The rounding method that is applied to a prediction
in Model 6A is 'standard’ rounding to the nearest integer. The rounding method that is
used in Model 6B is different for the prediction of the lower bound and upper bound: for
the lower bound the prediction is rounded by the floor function and for the upper bound
it is rounded by applying the ceiling function. The performance is measured as follows:
if the rounded predicted lower bound is not higher than the known lower bound and the
rounded predicted upper bound is not lower than the known upper bound, we say that
the prediction is correct.

32@25x25

8@100x100

1@100x100
1x100 1x100

Figure 15: Convolutional Neural Network structure for Experiment 6

The results of Models 6A and 6B on Data set 3 are presented in Table [9] The ac-
curacy of model 6B is higher than the accuracy of model 6A as could be expected by
the difference in rounding methods as predictions are found to be correct as least as
much by Model 6B as by Model 6A. Model 6A will despite that it is less accurate pro-
vide bounds that are closer to each other than the bounds predicted by Model 6B. A
choice between both models could be made based on a trade-off between correctness of
the bounds and absolute difference between the bounds. We also observe that for both
models the upper bound is more difficult to predict than the lower bound. This could

28

be caused by several things. One possibility is that a predicted upper bound is too low
because the upper bound is actually lower and the model is right about this prediction.
Unfortunately, there is no way we can test these cases and we therefore say that the upper
bound is wrongly predicted. In such a case, the wrongly predicted upper bound is of a
graph for which the exact number is not known (there is a gap between the known upper
bound and lower bound) and the model might be able to predict it smaller than the labels
due to other exact data points that contain the same patterns as this unknown data point.

| Mean accuracy accuracy interval | % wrong up-bound | % wrong low-bound
Model 6A | 82.34 [76.11 , 86.79] 11.21 6.88
Model 6B | 92.82 [89.74 , 94.53] 5.13 2.26

Table 9: Results Experiment 6.1

An interesting test to see whether this might be the case is testing the models 6A
and 6B on a test set that contains only exact labels of size 50, Data set 3.1, and a test
set that contains both exact and unknown labels, Data set 3.2 (see Section for more
information about these data sets). So the new experiment consists of the same training
set as in Experiment 6.1 but now the test sets are different. The resulting experiment is
Experiment 6.2.

The results of Experiment 6.2 are presented in Table [I0] For both test sets it holds
again that the second rounding method of Model 6B provides higher accuracy’s. We now
observe that for the test set that has exact labels with graphs of size 50, the percentage of
wrongly predicted upper bounds and lower bounds are closer to each other than for the
test set that also contains unknown labels. We expect that this is caused by the unlabeled
data points that are only used in the experiment with graphs of size 51-100.

test set test accuracy % wrong up-bound % wrong low-bound
Model 6.2A graphs size 50 88.51 5.08 6.40
Model 6.2B 97.57 1.88 0.56
Model 6.2A graphs size 51-100 | 79.61 14.98 7.34
Model 6.2B 87.73 10.59 2.35

Table 10: Results Experiment 6.2

To check whether the predicted bounds of Model 6A and 6B are useful we also compare
them with their trivial bounds. The trivial lower bound for each graph is 2 and the trivial
upper bound for each graph is its maximum degree. We check if the predictions are higher
(or lower) for these trivial lower (or upper) bounds. If the predicted interval includes the
trivial bounds, the prediction model is not useful as these bounds can be found in less
complex ways than our prediction model.

The results of this comparison are presented in Table [[I, We see that there is never a
prediction worse (lower) than the trivial lower bound 2. This does not hold for the upper
bound as we see that for both models there are predictions that are above the trivial
upper bound. If a prediction is equal or above the trivial upper bound the upper bound
prediction is useless. We see that the predicted lower bounds for Model 6A are in 93.81 %

29

better than the predicted lower bound. For predicting lower bounds we have that Model
6A is prefered over Model 6B. This is not the case for the upper bounds as both models
retrieve almost the same results when their upper bound predictions are compared to the
know trivial upper bounds.

lower bound upper bound

% > than TB % < than TB | % < than TB % > than TB
Model 6A | 93.81 6.19 70.94 0.86
Model 6B | 78.53 21.47 70.79 0.48

Table 11: Comparison predictions Experiment 6.1 to trivial bounds (TB)

5.7 Experiment 7: Testing models on final data set

As a final experiment, we want to test a few of our previously successful models on some
final test sets and evaluate their performance. The difference in test sets is described in
Section [4.3] Model 7.1A is the same as the model used in [Experiment 5.1] (see Figure [14).
Model 7.1B and 7.1C differ only from 7.1A in their fully connected layer structure: Model
7.1B has instead of two layers of size 100 two layers of size 50 and Model 7.1C has two
fully connected layers of size 200. We try these three structures as we found that they all
performed well in [Experiment 4.3 Model 7.2 is an ordinal classification model instead of
a regression model and is similar to but is now adjusted to fit size 100. All
models are trained with [data set 2

Accuracy

Set 4.1 Set 4.2 Set 4.3 Set 4.4
Model 7.1A | 31.43 96 96.5 74
Model 7.1B | 17.14 96 96.5 56
Model 7.1C | 31.43 96 96.5 72
Model 7.2 | 17.14 95.9 95.5 62

Table 12: Results Experiment 7

The performance of our final models on the test sets are presented in Table [12] We
see that all models perform extremely well on [Set 4.2 and Set 4.3 On the graphs found
online captured in Test set 4.1 the performance is disappointing. However, this could be
expected as they are not represented in the training data set. The two models that have
the highest accuracy on the graphs of Test set 4.1 have also the highest accuracy on the
Erdos-Renyi graphs from Test set 4.4. These models differ by being regression models
and/or having larger fully connected layers. They could therefore be able to combine
recognised patterns in more complex or more different ways which could be necessary to
classify these types of graphs. We can therefore conclude that the structure of the graphs
matters for the prediction accuracy of the models.

We also tested IModels 6.2A and 6.2Bf on Test set 4.1 to check whether it was able to
predict useful bounds for these difficult graphs. The results are presented in Tables
and [14. We see that both models have precisely the same performance on the Test set.

30

So all predictions of Model 6A that are wrong can not be fixed by the 'outside’ rounding
method of Model 6B. This indicates that it is not useful to use the Model 6B for these
graphs as it never leads to better predictions. When we look at the comparison between
predictions and trivial bounds we see that Model 6A is preferred over Model 6B as it pre-
dicts fewer bounds which are outside the trivial bounds interval. It seems that at least for
some graphs the predicted bounds are useful as they are different than the trivial bounds.

‘ Accuracy % wrong upper bound % wrong lower bound
Model 6.2A | 65.71 28.57 5.71

Model 6.2B | 65.71 28.57 5.71

Table 13: Performance results bound prediction model on Test set 4.1

lower bound upper bound

% > than TB % < than TB | % < than TB % > than TB
Model 6A | 93.81 6.19 70.94 29.06

Model 6B | 78.53 21.47 70.79 29.21

Table 14: Comparison predictions on Test set 4.1 to trivial bounds (TB)

6 Conclusion

6.1 Main conclusions

In the introduction we mentioned the main research questions of this thesis:

1. Can deep learning models be used for predicting chromatic numbers of graph color-
ing problems?

2. Is there a difference in performance of these prediction models for different types of
graphs?

3. What are limitations of a Convolutional Neural Network as a prediction model of a
chromatic number?

To answer these questions, we started with testing two types of deep learning models: a
fully connected Neural Network and a Convolutional Neural Network. We represented
each graph in our data sets with its adjacency matrix, such that it can be seen as a
binary picture consisting of zeros and ones. The Convolutional Neural Network outper-
formed the fully connected Neural Network with 73.20% against 63.78% accuracy. This
could be expected as Convolutional Neural Networks are known to perform well in image
classification tasks. Our graph coloring problem can also be seen as some type of image
classification task as we presented our graphs in adjacency matrix and the model could
recognise certain patterns in these binary pictures that indicate features that are impor-
tant for the chromatic number of a class.

As the results of the Convolutional Neural Network model were promising we experi-
mented with different structures of the Convolutional Neural Network. We first tried to

31

take advantage of the known order between classes. We tried to incorporate this by creat-
ing an ordinal classification model and a regression model, two model structures that can
both exploit this feature. The results improved for both models with 81.75% accuracy for
the ordinal classification model and 84.88% accuracy for the regression model.

We therefore continued with experiments aimed at finding the optimal Convolutional
Neural Network structure of our regression model for our data set with an accuracy of
85%.

To receive a more practical model that could be used in practice we tested whether we
could adjust our model such that it could fit and predict graphs of different sizes. We
tested this by applying zero padding to all smaller adjacency matrices in our data set
such that they all would have the same size (100x100). We then tested and evaluated
the results and found that the model performed still reasonably well with an accuracy of
88.93%. However, the higher performance is due to relatively less Erdos-Renyi random
graphs in the data set as it is hard to generate data points of large Erdos-Renyi graphs.
When we generated our graph data with corresponding chromatic numbers there were a
lot of graphs (especially larger graphs) for which we could not find the exact chromatic
number. However, for these graphs we did find a lower and upper bound on the chromatic
number. In Experiment 6 we tested if we could use these unlabeled graphs by changing
our regression model with one output node to a regression model with two output nodes.
The new model is a model that does not predict the exact chromatic number as the other
models, but it predicts an upper and a lower bound for each graph. The performance of
the new models was fine with accuracy’s of 82.34% and 92.82% of correct bounds, but it
is less strong as it predicts bounds that could have a large gap between them instead of
the prediction of one chromatic number. We compared the bound predictions with the
trivial bounds of the graphs and we found that the predicted bounds are better than the
trivial bounds for most of the predictions: up to 93.81% for the lower bounds and 70.94%
for the upper bounds. It therefore seems that the bound predictions and corresponding
models can be useful as they provide new information.

In Experiment 7 we tested three regression models and one ordinal classification model
on different unseen test sets. The best performance on Test set 4.1, consisting of differ-
ent graphs found online used for testing graph coloring algorithms, was not that good
with 31.43% accuracy. The performance on the Erdos-Renyi Test set 4.4 could also be
improved as it is now a 74% accuracy. We can conclude that the type of graph matters
for the performance of our prediction models.

Our main conclusion is that it is definitely possible to use deep learning models for de-
termining the solution of a graph coloring problem. A Convolutional Neural Network is a
structure that performs well on graphs represented by their adjacency matrix as they are
image-like. However, generating training data is difficult as for each graph that is ran-
domly generated the chromatic number must be found as its label. Especially for large
graphs or certain types of random graphs (Erdos-Renyi) it is not possible to solve their
graph coloring problem exactly and add the graph and corresponding solution to the data
set. For difficult graphs a model that predicts bounds on the chromatic number instead
of the exact chromatic number may be considered.

6.2 Limitations

There are some limitations for this research and its resulting models that are listed below:

e As Neural Network models’ performances benefit from large data sets, it would be

32

ideal to generate a large number of data points. Unfortunately, it is computationally
difficult to retrieve a data set that contains a large number of large graphs with
corresponding chromatic numbers. Techniques such as data augmentation can help
for creating more data points but despite these techniques it is still hard to retrieve
large graph data.

e The models considered in this thesis were only used for predicting chromatic num-
bers of bounds on chromatic numbers. However, in most practical situations a
coloring of the nodes corresponding to the chromatic number is wanted. An estima-
tion of the chromatic number may help other algorithms to obtain a coloring but
only an estimation of the chromatic number is not always useful in practice.

e The retrieved models attempt to exploit patterns found in the training data to
determine chromatic numbers. Different types of graphs contain different patterns
in their adjacency matrices. The resulting models only perform well on graphs that
are included in the training data.

6.3 Further research directions

In this subsection we will mention some possible further research directions.

1. In practice, a model would only be useful if it is able to receive large graphs as input.
An interesting further research direction might therefore be to investigate whether
it is possible to construct a model that can predict the chromatic number of large
graphs of a large size n without having graphs of size n in the training data. Imple-
menting techniques such as Spatial Pyramid Pooling [16] could be investigated for
graph coloring problems. Spatial Pyramid Pooling adds a spatial pyramid pooling
layer between the convolutional layers and the fully connected layers of a Convo-
lutional Neural Network such that the input size for the fully connected layers is
fixed.

2. An interesting research direction would be to investigate whether our resulting mod-
els can be combined with existing algorithms to create improved heuristics for graph
coloring. They could, for example, be implemented in algorithms that decompose
graphs into smaller subgraphs. Our models could then maybe be used to determine
the chromatic number of subgraphs.

3. As a set of isomorphic (non trivial) graphs can be represented by multiple adjacency
matrices (see Section , Theorem but has one chromatic number, the patterns
that can be recognised from one of these graphs adjacency matrix could be totally
different from another adjacency matrix representation of a graph that is isomorphic.
An idea for improvement may be to use as many reshufflings of adjacency matrices
as possible such that all patterns of adjacency matrices are included in the data. A
further research direction may therefore be to investigate how to extract as much
information as possible from permutations of adjacency matrices without generating
all permutations. This could lead to an advanced data augmentation technique that
would be useful to create a more complete data set for pattern recognition. It could
also be helpful by creating more data samples from a small number of existing
difficult graphs with a known chromatic number.

33

Bibliography

1]

2]

[11]

[12]

[13]

[14]

[15]

Harry R Lewis. Computers and intractability. a guide to the theory of np-
completeness, 1983.

Richard M Karp. Reducibility among combinatorial problems. In Complezity of
computer computations, pages 85-103. Springer, 1972.

Anuj Mehrotra and Michael A Trick. A column generation approach for graph col-
oring. informs Journal on Computing, 8(4):344-354, 1996.

Shamim Ahmed. Applications of graph coloring in modern computer science. Inter-
national Journal of Computer and Information Technology, 3(2):1-7, 2012.

Ivan Zelinka, Vaclav Snasael, and Ajith Abraham. Handbook of optimization: from
classical to modern approach, volume 38. Springer Science & Business Media, 2012.

Arun Jagota. An adaptive, multiple restarts neural network algorithm for graph
coloring. European Journal of Operational Research, 93(2):257-270, 1996.

Dibyendu Das, Shahid Asghar Ahmad, and Kumar Venkataramanan. Deep learning-
based hybrid graph-coloring algorithm for register allocation. arXiv preprint
arXiv:1912.03700, 2019.

Henrique Lemos, Marcelo Prates, Pedro Avelar, and Luis Lamb. Graph colouring
meets deep learning: Effective graph neural network models for combinatorial prob-
lems. In 2019 IEEFE 31st International Conference on Tools with Artificial Intelligence
(ICTAI), pages 879-885. IEEE, 2019.

Jiayi Huang, Mostofa Patwary, and Gregory Diamos. Coloring big graphs with al-
phagozero. arXiww preprint arXiw:1902.10162, 2019.

Hong Xu, Sven Koenig, and TK Satish Kumar. Towards effective deep learning
for constraint satisfaction problems. In International Conference on Principles and
Practice of Constraint Programming, pages b88-597. Springer, 2018.

Isabel Méndez-Diaz and Paula Zabala. A cutting plane algorithm for graph coloring.
Discrete Applied Mathematics, 156(2):159-179, 2008.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer Science & Business Media,
2009.

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a con-
volutional neural network. In 2017 International Conference on Engineering and
Technology (ICET), pages 1-6. Teee, 2017.

Rowland Leonard Brooks. On colouring the nodes of a network. In Mathemati-
cal Proceedings of the Cambridge Philosophical Society, volume 37, pages 194-197.
Cambridge University Press, 1941.

Jianlin Cheng, Zheng Wang, and Gianluca Pollastri. A neural network approach to
ordinal regression. In 2008 IEEFE international joint conference on neural networks
(IEEE world congress on computational intelligence), pages 1279-1284. IEEE, 2008.

34

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. IEEFE transactions on pattern
analysis and machine intelligence, 37(9):1904-1916, 2015.

[17) Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’ networks. nature, 393(6684):440-442, 1998.

[18] Réka Albert and Albert-Lészlé Barabasi. Statistical mechanics of complex networks.
Reviews of modern physics, 74(1):47, 2002.

[19] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation
for deep learning. Journal of Big Data, 6(1):1-48, 2019.

[20] Emanuel Lazar. Lecture notes in ideas in mathematics, Spring 2016.

35

	Introduction and Literature
	Introduction
	Literature

	Problem description
	Integer Linear Programming formulation of a graph coloring problem
	Extension of the formulation: eliminating symmetrical solutions
	Introduction on Neural Networks
	Deep Learning
	Convolutional Neural Networks

	Methodology
	Finding colorability bounds for graph data
	Brooks' theorem
	Solver bounds
	Procedure for finding the best bound for a random graph

	Input representation
	Neural Networks
	Fully Connected Neural Networks
	Convolutional Neural Networks
	Ordinal classification
	Optimizing architecture

	Using unlabeled data
	Variation of input sizes
	Image cropping and warping
	Zero padding

	Data generation
	Generating random graphs
	Erdos Rényi
	Watts Strogatz
	Barabási–Albert

	Data augmentation
	Data Augmentation general
	Data augmentation in the light of graph coloring

	Data sets
	K-fold cross validation
	Performance measures

	Results
	Experiment 1: a Fully Connected Neural Network vs a Convolutional Neural network
	Experiment 2: testing classification against ordinal classification
	Experiment 3: Classification vs Regression
	Experiment 4: Optimizing the Neural Network Structure
	Experiment 4.1: Convolutional layer structure
	Experiment 4.2: Optimizing the filters
	Experiment 4.3: Fully connected layers structure

	Experiment 5: Different Input sizes
	Experiment 6: Using unlabeled data
	Experiment 7: Testing models on final data set

	Conclusion
	Main conclusions
	Limitations
	Further research directions

	Bibliography

