
ERASMUS UNIVERSITEIT ROTTERDAM

Erasmus School of Economics

Master Thesis Econometrics - Quantitative Marketing and Business Analytics

Personalizing Stool-based Screening of Colorectal Cancer Using

Multi-Objective Reinforcement Learning

Michael Simon van der Zwan

434569

Supervisor: Prof.Dr.ir. R. Dekker

Second assessor: Dr. P.C. Bouman

Supervisor Erasmus MC: L.A. van Duuren, MSc

December 14, 2021

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor,
second assessor, Erasmus School of Economics or Erasmus University.



Abstract

Colorectal cancer (CRC) is one of the most diagnosed cancer types and ranks second in

terms of mortality. Studies have shown that a person’s hemoglobin concentration indicates

the risk of CRC, which can be measured by a Faecal Immunochemical Test (FIT). There-

fore, different screening programs using this test are used worldwide to reduce mortality.

The Dutch screening program is currently population-based, while it can be improved by

personalizing the strategies.

This thesis evaluates two different multi-objective reinforcement learning algorithms to

optimize personalized screening strategies based on someone’s measured hemoglobin (Hb)

concentrations. The algorithms are implemented in the MISCAN-Colon micro-simulation

model to learn the optimal strategies and evaluate the related costs and Quality Adjusted

Life Years gained.

In the first algorithm, we found two issues that the authors did not take into account.

Even after solving these issues, the algorithm could not solve our problem. The second

algorithm did find strategies that dominate the current Dutch screening strategy, and these

strategies are not dominated by the strategies advised in a recent report for the United States

Preventive Services Task Force. However, the algorithm does not converge to the optimal

strategies but mostly finds non-optimal strategies.
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1 Introduction

In 2020, over 1.9 million new colorectal cancer (CRC) cases and 936,000 deaths were estimated

worldwide, meaning that CRC ranks third in most commonly diagnosed cancer types and is

even the second cancer type in terms of mortality [Sung et al., 2021]. Usually, colorectal cancers

are preceded by irregularities in the colon, called adenomas. Studies have shown that CRC can

be prevented by screening the population to detect and remove these related adenomas [Levin

et al., 2008], [Pignone et al., 2002], [Hewitson et al., 2008]. Adenomas can be removed relatively

easily, preventing them from developing into harmful cancer [Lansdorp-Vogelaar et al., 2011],

[Schreuders et al., 2015]. Hence, screening for having adenomas is an effective strategy.

Currently, endoscopic tests such as colonoscopy are the golden standard of colorectal cancer

tests. During this test, the colon and rectum are visualized by a surgeon and found adenomas

are removed directly. However, this test is also costly and invasive. Therefore, another type of

test is often first used to determine the risk of having adenomas. The most used test is the Fecal

Immunochemical Test (FIT), which is a stool-based test and has proven itself to be one of the

least invasive and least expensive CRC screening tests [Robertson et al., 2017] [Day et al., 2013].

It measures the concentration of hemoglobin (Hb) in a patient’s stool sample. An increased Hb

concentration is associated with an increased risk of having adenomas and developing CRC in

the future [Grobbee et al., 2017].

Many countries use the FIT qualitatively [Schreuders et al., 2015]. Currently, the applied

screening strategy in The Netherlands is a biennial FIT. If a person’s concentration of Hb is

above a certain threshold (cutoff), he is referred to a hospital for a colonoscopy. Otherwise, the

person is scheduled to get a new FIT after two years. The 2-year screening interval is fixed for all

screening participants, while studies have shown that it may be cost-efficient to personalize this

interval to a patient’s FIT concentrations measured in the past [Grobbee et al., 2017]. Therefore,

screening can be optimized by personalizing the strategies, since Grobbee et al. [2017] did not

determine what is the optimal strategy. In this research, we will answer the following question:

To what extent can the Dutch colorectal cancer screening program be improved by optimizing

personalized screening strategies?

A suitable screening interval is determined based on a participant’s history of FIT mea-

surements (captured in one “risk estimator”) and age. This research aims to find optimal
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personalized screening strategies based on the benefits and harms of the screening strategy.

The benefits and harms of screening strategies are measured in Quality Adjusted Life Years

gained (QALYs). One QALY represents the value of living one year without complications due

to CRC. Besides the benefits, screening also comes with harms, the burdens of a patient to un-

dergo a test (like the uncertainty of the outcomes or the need to go to the hospital), which can

be represented by a reduction in QALYs. Furthermore, screening also has financial costs (costs

of the tests and treatment itself). We aim to maximize the effects and minimize the costs. As

these quantities are conflicting, a trade-off has to be found. We have to optimize two objectives,

resulting in the Pareto optimal frontier, i.e., all incomparable optimal solutions that maximize

the QALYs for given costs. From this frontier, the National Institute for Public Health and the

Environment, in Dutch called the ‘RIVM’, can eventually choose its preferred strategy itself.

An optimal strategy specifies an optimal screening action for all possible states of an individ-

ual. Each screening action will result in a particular reward (benefits and costs), depending on

the individual’s state and might be estimated. Based on these (estimated) rewards, the best ac-

tion can be chosen. This type of optimization can typically be translated into a (multi-objective)

reinforcement learning optimization. Due to the promising results of reinforcement learning in

previous studies, we will use this machine learning technique and answer the following question:

What is the performance of multi-objective reinforcement learning techniques when optimiz-

ing personalized screening strategies?

In this thesis, two multi-policy multi-objective reinforcement learning methods are exam-

ined. The first method, named MPQ-learning (Multi-Pareto Q-Learning) [Ruiz-Montiel et al.,

2017], adapted the original Q-learning algorithm [Watkins and Dayan, 1992] to deal with multi-

objectives, and it was shown for some cases that it is able to approximate the complete Pareto

front. The second method, envelope Q-learning [Yang et al., 2019] includes deep learning by

using a neural network to represent value functions over the entire space of preferences. Both

methods are implemented in the MISCAN-Colon micro-simulation model [Habbema et al., 1985]

to learn and evaluate optimal screening strategies.

The following section starts with relevant background knowledge about CRC development

and the screening tests used in this thesis. Furthermore, the MISCAN model [Habbema et al.,
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1985] is introduced, which is used for the simulation study. Section 3 describes the current

literature on reinforcement learning. The models that are used and the implementation of the

simulation study are explained in Section 4 and 5. Next, in Section 6 we show the results of

our simulation study, whereafter a discussion of the results if followed, including the limitations.

Finally, in Section 8 we end with the conclusion of this thesis.

2 Background Knowledge

2.1 Colorectal cancer and colorectal cancer screening

Colorectal cancers are usually preceded by irregularities in the colon called adenomas. An ade-

noma is a type of polyp, a small cluster of cells that forms on the colon lining. Having adenomas

is not unusual; approximately 40% of the Western population will develop at least one adenoma

[Leslie et al., 2002]. However, not all adenomas are malignant. Around 3% will eventually de-

velop cancer. Furthermore, the CRC incidence increases with age, meaning that a person at a

higher age will have a higher risk of CRC [Brenner et al., 2007].

Adenomas grow into cancer through three stages based on their size. Small adenomas are

smaller or equal to 5 mm. When their size becomes larger than 6 mm, they are called non-

advanced adenomas, and when they exceed a size of 10 mm, they are called advanced adenomas

[Brenner and Werner, 2017]. If the adenomas are not treated, they might develop into cancer,

usually taking about ten years [Holme et al., 2013].

When an adenoma eventually is formed into cancer but still not detected, the cancer is

called preclinical. Once the cancer is detected, it is called clinical. The cancer is divided into

four stages based on the development of the cancer. The higher the stage, the more the CRC

is developed. A person then might get symptoms, whereafter he will be treated. Screening can

be defined as a strategy to detect an unrecognized disease among individuals without symptoms

[Gini, 2020].

Since not all adenomas develop into cancer, we can distinguish between two types of ade-

nomas. The ones that develop into cancer are called progressive. Otherwise, they are called

non-progressive. Unfortunately, the differences between these two cannot be seen, meaning that

screening techniques cannot take this difference into account.

Generally, there are two types of screening techniques used in CRC screening programs.
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The most effective but most invasive technique is an endoscopic technique, called colonoscopy

[Kooyker et al., 2020]. The colon and rectum are visualized and observed by a surgeon, and any

adenoma (lesion) is removed immediately. This is very effective but comes with high costs. Due

to the relatively high costs and burdens, another technique is often used in advance. This is a

stool-based test, called a Fecal Immunochemical Test (FIT), which is used to indicate the risk of

having any adenoma. According to Robertson et al. [2017] and Day et al. [2013], this is the least

invasive and least expensive. The test measures the Hemoglobin (Hb) concentration in a per-

son’s stool sample since it is shown that this concentration increases when having an (advanced)

adenoma [Digby et al., 2013], [Van Doorn et al., 2015]. If the measured blood concentration is

above a certain threshold, the person is redirected to the hospital to undergo an endoscopy test.

Performing this FIT in advance can reduce the number of unnecessary colonoscopies.

Currently, the Dutch program implies a biennially FIT from the age of 55 until 75. The FIT is

used qualitatively, meaning that it is evaluated as positive when the measured Hb concentration

exceeds a certain threshold (currently 47 µg per gram feces) and negative otherwise. If the test

is positive, the person is redirected to the hospital to undergo a colonoscopy. Since the FIT is

not 100% accurate, the colonoscopy might also be negative, meaning no adenomas were found.

In this case, the person gets a pause for ten years of screening, whereafter again, the biennially

FIT will be applied. In case of a positive colonoscopy, the person will be removed from the

screening program and will follow a surveillance program since it is known that people having

adenomas removed have a 30-35% chance of growing new adenomas within four years [Leslie

et al., 2002].

2.2 MISCAN-Colon microsimulation model

To evaluate the performance of a specific screening strategy, one might apply it to a population

and monitor the results. This can be compared to a population without screening to see the

effects of the program. However, such randomized controlled trials are time-consuming, and

when many different policies have to be evaluated, this is not feasible in practice. To tackle this

problem, Habbema et al. [1985] developed a microsimulation model that simulates a population

of which a fraction develops a specific disease. By simulating this population under different

screening strategies, the effects of these different strategies can be compared.

The structure of the input of the MISCAN model consists of three layers. The first layer

concerns population-based parameters such as birth and life tables, representing mortality due

to causes other than the simulated disease. The second layer defines a specific disease with pa-
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rameters like the risk of developing the disease and symptoms, speed of developing the disease,

and possibly death as a consequence. The last layer concerns the properties of the screening

program, including the properties of different tests.

MISCAN-Colon is the version of the model adapted to specifically evaluate colorectal cancer

screening [Loeve et al., 1999]. A simulated individual may develop one or multiple adenomas.

These adenomas grow independently, and some develop into cancer, depending on the individ-

ual’s age and a risk factor, and the adenoma location. The risk factor is a random number

drawn at the birth of the individual. Each adenoma is modeled as an independent Semi-Markov

process, meaning that a person is a collection of multiple stochastic processes. Their state space

is shown in Figure 2.1. The disease state of an individual is characterized by the state of the

individual’s most advanced adenoma or cancer.

Figure 2.1: Model structure used in MISCAN-Colon with adenoma-carcinoma sequence for pro-
gressive adenomas and non-progressive adenoma sequence
Adapted source: Gini [2020]

For this study, MISCAN-Colon was extended with a preliminary module to simulate indi-

vidual FIT concentrations based on the outcomes of two rounds of the Dutch national screening

program [Toes-Zoutendijk et al., 2017], which is described in Van Duuren [2021]. The details

of this distribution can be found in Appendix A. In short, the concentrations are drawn from
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a zero-inflated negative binomial distribution. Suppose the individual is in a healthy stage. In

that case, the probability of measuring a zero concentration is 0.840, which decreases to 0.644 or

0.032 when in an adenoma or preclinical stage, respectively. Otherwise, a value is drawn from

a negative binomial distribution. The mean of this distribution increases with age and cancer

stage and depends on gender and an individual’s risk factor, representing whether someone has

consistently high or low blood concentrations in their stool. Hence, this factor is responsible for

the correlation between the blood concentrations of an individual himself.

3 Literature Review

In this section, a short review of the relevant literature is given, starting with previous studies of

personalized cancer screening. Next, the use of reinforcement learning in health care is reviewed,

and finally, studies based on multi-objective reinforcement learning are discussed.

3.1 Personalizing cancer screening

Dunnewind [2020] already evaluated multiple different multi-objective genetic algorithms (NSGA-

II, SPEA2, PESA-II, and IBEA) to find the cost-effective frontier for colorectal cancer screening

strategies, based on the financial costs and life-years gained. However, the evaluated strategies

were still population-based. Van Duuren [2021] also used a genetic algorithm to find individual

strategies based on age and, at most, the last two FIT results. Three case studies are demon-

strated, where the most prominent problem allows for an interval between two FITs of one,

two, or three years and eleven different possible fixed cutoffs for the FIT. However, including

two or three FITs instead of one to determine the risk of CRC did not affect the performance,

which might contradict the literature [Grobbee et al., 2017]. The authors hypothesize that this

is caused by their preliminary model used to simulate FIT-values rather than the algorithm.

Furthermore, only the results of FITs were incorporated for the decision on a screening interval,

whereas a negative colonoscopy result may be very influential on choice for an optimal interval.

Tomer et al. [2019] use joint models for time-to-event and longitudinal data to get personal-

ized schedules for surveillance of low-risk prostate cancer. They focus on risk prediction, while

this will not be the focus of our research. Besides, the loss function has one dimension: finding

cancer as soon as possible, once it exists, while the costs of screening are not considered.
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3.2 Reinforcement learning in health care

In the last couple of years, reinforcement learning also has found its way into health care. While

this machine learning technique is often used for computer games or robotics, Zhao et al. [2009]

developed a reinforcement learning method (Q-learning) for discovering effective therapeutic

regimens in clinical trial design. Based on simulated data, they have found that reinforcement

learning can identify individualized optimal regimens in clinical trials that consist of multiple

courses of treatment. Furthermore, in Liu et al. [2019] and Liu et al. [2020], potential (deep)

reinforcement learning techniques, like deep Q-networks, are suggested for lung-cancer detection

and treatment. Ou et al. [2021] use reinforcement learning for multi-round active screening

for recurrent diseases. Lu et al. [2020] perform a sensitivity analysis on a state-of-the-art RL

algorithm (Dueling Double Deep Q-Networks) applied to hemodynamic stabilization treatment

strategies for septic patients in the ICU. However, varying the settings of their model resulted in

significantly different policies, suggesting a need for caution when interpreting RL agent output

and especially following a found policy. Another field in medical treatment that often uses RL

is problems related to maximizing the effectiveness of the treatment while minimizing the side

effects [Lizotte et al., 2010], [Laber et al., 2014], [Jalalimanesh et al., 2017].

3.3 Multi-objective reinforcement learning

Since RL has shown promising results, the literature is growing fast. The idea of learning from

a reward is known for a long time, like training a dog by giving a reward when he responds

appropriately to orders. Watkins [1989] started to use this idea in artificial intelligence. Next,

he also proposed the algorithm Q-learning [Watkins and Dayan, 1992], which became one of

the most popular RL algorithms. However, this algorithm had some limitations, such as the

limitation of having one objective. In single-objective RL problems, we have one optimal value,

and it might be that multiple different (optimal) policies all will have this value. The goal is

to learn one of these optimal policies. Parallel to single-objective RL, there is multi-objective

RL (MORL). In MORL, we aim to optimize more than one objective. Usually, these objectives

are conflicting, and an improvement in one often results in a loss in another objective. With-

out any additional information on the user’s utility, there can be many possible optimal value

vectors. Therefore, we now have to work with sets of optimal value vectors with corresponding

policies. If the user’s utility is known or some assumptions can be made, the simplest solution is

to extend single-objective methods like Q-learning. Then, the method should be adjusted such

that the Q-values can be stored as vectors instead of scalars. A scalarization function should be

incorporated that matches the user’s utility to identify the greedy actions in each state. This

7



is often a linear scalarization function [Perez et al., 2009], [Guo et al., 2009], [Shabani, 2009].

However, without any assumption of the user’s utility, this might not be suitable. Then multi-

policy approaches can be considered.

Roijers and Whiteson [2017] describe two classes of multi-policy approaches: outer loop and

inner loop methods. An outer loop method operates on series of single-objective problems. in

contrast, inner loop methods adapt the inner workings of a single-objective method to work with

multi-objective solution concepts.

The simplest outer loop method iterates over a series of different user’s utility function pa-

rameters and reruns a single-policy MORL algorithm for each setting. In Parisi et al. [2014],

two different Multi-Objective Reinforcement-Learning (MORL) approaches are presented, called

radial and Pareto following, that, starting from an initial policy, perform gradient-based policy-

search procedures aimed at finding a set of non-dominated policies.

Pareto-Q-Learning [Van Moffaert and Nowé, 2014] and MPQ-Learning [Ruiz-Montiel et al.,

2017] adjusted the inner Q-learning method, making it applicable to multiple objectives. It

learns multiple different Pareto optimal policies at the same time. Pareto-Q-Learning is model-

based because it stores the expected immediate reward and transition probabilities of all visited

transitions during learning and needs to store sets of optimal values from state s to s′ using

action a at time step t. Ruiz-Montiel et al. [2017] instead only store the sets of values from

state s to state s′, without explicitly keeping track of the transition probabilities. Since their

algorithm is model-free, it does need less storage.

Another limitation of the original Q-learning algorithm is the size of the state-space. Q-

learning uses a table with a cell for each state-action pair, and this table is potentially huge.

Mnih et al. [2015] came up with the idea of combining Deep Learning with reinforcement learn-

ing and use a Neural Net, termed a deep Q-network, to replace the Q-table. As a result, very

large state spaces could still be solved. However, this idea was based on the original Q-learning

technique, meaning that it only uses one objective [Sewak, 2019].

In Reymond and Nowé [2019], PDQN is proposed, a combination of PQL [Van Moffaert and

Nowé, 2014] and a deep RL method to solve multi-objective problems. This is the first time

an inner-loop method was devised for a deep reinforcement learning setting. This method was
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able to approximate the Pareto front of an often-used benchmark problem, Deep Sea Treasure.

They also created a more complex state-space by creating a traffic intersection, where the traffic

lights were considered as the agent. However, solving this problem did not provide a believable

estimate. Due to the convergence of the network and the plausible waiting time, they still believe

that the method could be further improved for solving high-dimensional state-space problems.

In Mossalam et al. [2016], Deep Optimistic Linear Support Learning (DOL) is introduced,

which combines linear scalarization with deep Q-learning. When the relative importance of the

objectives is unknown, they vary the weights for the scalarization whereafter the neural network

is optimized, resulting in an optimal frontier. For each policy, they store the weights of the

network, and for better efficiency, they propose to reuse the weights of previous policies for

preferences that are similar to each other. Abels et al. [2019] extended this to use a single neural

network to represent value functions over the entire space of preferences. However, scalarized

updates are not sample efficient and lead to sub-optimal MORL policies [Yang et al., 2019].

Yang et al. [2019] introduced a new algorithm envelope Q-learning, which utilizes the convex

envelope of the solution frontier to update parameters of the policy network. This is still a

single-policy algorithm, but it leads to faster convergence when compared to scalarized updates

for a given user preference.

Suppose the optimization problem, in particular the state-action space, is not too large.

In that case, Deep Reinforcement Learning techniques might be too advanced and probably

even computationally more expensive since of the need to optimize the neural network. Then,

algorithms like Pareto-Q-Learning [Van Moffaert and Nowé, 2014] and MPQ-Learning [Ruiz-

Montiel et al., 2017] might be better. Since it is unknown to what size of the state-action

space these algorithms will be successful, we will experiment using one of these algorithms.

Furthermore, since Ruiz-Montiel et al. [2017] claim to need less storage, and is unnecessary

to explicitly learn the transition probabilities of all visited transitions, done by Van Moffaert

and Nowé [2014], the MPQ-Learning algorithm is evaluated. Additionally, we will use a deep

learning method called envelope Q-learning [Yang et al., 2019] to evaluate if a more complex

method will improve the performance. Envelope Q-learning is one of the latest multi-objective

deep reinforcement learning algorithm and they claim it has a relatively fast convergence.
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4 Methodology

To understand MPQ-Learning (Multi-Pareto Q-learning) and Envelope Q-learning, it is of

essence to know the main principles of reinforcement learning (RL). After the introduction

of RL, a detailed explanation of the used methodology is given.

4.1 Reinforcement learning

The main idea behind Reinforcement Learning is that an agent learns by taking actions in an

environment. A Reinforcement Learning environment can typically be described by means of a

Markov Decision Process (MDP), which can be described as follows. Let S = {s1, ..., sN} be the

state space containing all states the agent can be in and A = {a1, ..., ar} be the set of actions

the agent can take. In each state s ∈ S, action a ∈ A brings the agent to a new state s′ with

probability P(s′|s, a).

Depending on the transition from state s to s′ due to action a, the agent will get a reward.

After this transition, the agent has to select the next action, which also result in a reward and

so forth. Therefore, we can divide the reward into two types: the immediate reward and the

future reward. The immediate reward, denoted as Rt(s, a), is the reward the agent gets directly

after performing the action, while the future reward Rt+j(s
′, a) for j = {1, 2, ..., n} is based on

the rewards the agent obtains from the future actions after his transitions to the new states.

The agent does not know which action is best, but instead, he has to discover which actions

will yield the highest reward by trying them [Sutton and Barto, 2018]. He will learn from his

actions, and by repetition of a situation, he will decide upon his action based on the previous

learnings. A visualization of the process is shown in Figure 4.1.

Figure 4.1: Visualisation of the process of Reinforcement Learning

The goal is to learn a deterministic stationary policy π, which maps each state to an ‘optimal’
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action, such that the expected return received from the current time step t and onwards, is

maximized. Here deterministic means that each state is mapped to a specific action, which is

not stochastic. Furthermore, a stationary policy means that the policy does not change over

time. The total expected (discounted) return from state s depends on the policy π and is called

the value function V π(s). The formal definition of the state-dependent value function is defined

as:

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s
}
, (4.1)

where γ ∈ [0, 1] is the discount factor and rt the reward at time step t. When there is more than

one objective, the rewards are vectors instead of scalars. This is usually called a Multi-Objective

Markov Decision Process (MOMDP).

An essential part of this machine learning technique is the way the agent learns. Watkins

[1989] proposed Q-Learning, a method that learns the value of each action for each state, which

will converge to the optimum action-value as long as all actions are repeatedly sampled in all

states and the action-values are represented discretely [Watkins and Dayan, 1992]. This method

stores all current estimates of the state-action values in a table (Q-table), where the value of

action a ∈ A at state s ∈ S is denoted as

Q(s, a) := r(s, a) + γ
∑
s′∈S
P(s′|s, a) · V π(s′). (4.2)

This standard Q-learning algorithm then utilizes the Bellman optimality operator T :

(TQ)(s, a) := r(s, a) + γEs′∼P(·|s,a)(HQ)(s′), (4.3)

where (HQ)(s′) := supa′∈AQ(s′, a′) is an optimality filter over the Q-values for the next state

s′, i.e., the highest (expected) reward by means of selecting the best action in the next state s′.

After an action has been performed and the new state has been visited by the algorithm, the

corresponding cell of the Q-table is updated as follows:

Q̂(s, a)← (1− αt)Q̂(s, a) + αt(r(s, a) + γ(HQ̂)(s′)), (4.4)

where αt is a learning rate that can vary over time. This parameter determines how much the

new experienced reward influences the previous experienced rewards. If αt is large, the new

rewards have high impact. However, the duration of this impact is short. There is no general

optimal value for αt, such that the algorithm learns as fast as possible. Different options should

be considered to determine a suitable value.
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During learning, the agent needs to choose between performing the current best action

(exploitation) and another action (exploration). To select between these two options, the agent

uses an action selection strategy, such as ε-greedy, where a random action is selected with

probability ε and the greedy action with probability (1− ε). Again, there is no general optimal

value for ε and different values should be considered.

4.2 MPQ-learning

MPQ-learning [Ruiz-Montiel et al., 2017] is a multi-objective RL algorithm. It aims to find all

deterministic Pareto-optimal policies for a MOMDP simultaneously. The reward r of equation

(4.4) is not a scalar anymore but becomes a vector ~R : S×A×S → R2. The two components of

a reward vector ~r = ~R(s, a, s′) both stand for one of the scalar reward received after performing

action a in state s and reaching state s′. The rewards in our problem are (1) the financial costs

and (2) the QALYs.

Since there is more than one optimal combination of the objectives in multi-objective op-

timization, we keep track of multiple non-dominated vectors simultaneously. Parallel to the

Q-table in the single-objective case, we keep track of a Q-table. For each state-action pair (s,a),

Q(s,a) contains all non-dominated reward vectors found so far. Elements in Q(s, a) are pairs

(~q, P ), where ~q is one of the non-dominated reward vectors. P is a set of indices that tracks

how the vector ~q has been obtained. Recall that each vector ~q is obtained by a past transition

(s, a, s′) by the agent. Therefore each element p ∈ P is a pair (s′, i) that indicates the state s′

that was transitioned to when ~q was learned. i Stands for the element in V(s′) that was used to

calculate ~q. Parallel to V(s) in the single-objective case, we define the set V(s) as the set having

all non-dominated expected discounted returns in state s, which is as follows:

V(s) = ND
⋃
a∈A

{
~q | (~q, P ) ∈ Q(s, a)

}
, (4.5)

where ND stands for non-dominated, meaning that the set only contains the vectors that are

not dominated by any other vector in the set. A vector ~a is dominated by a vector ~b if for all ele-

ments a(i) it holds that b(i) ≥ a(i), and that for at least one element a(i) it holds that b(i) > a(i).

Q(s, a) are initialized as Q0(s, a) = {~0,∅}, ∀a ∈ A, ∀s ∈ S. During the learning process,

Q(s, a) is updated as follows:
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Qn(s, a) =


Nn−1(s, a) ∪ Un−1(s, a) ∪ En−1(s, a) if s = sn ∧ a = an

Qn−1(s, a) otherwise,

(4.6)

where we introduce three different sets: N (New), U (Updated), and E (Extra). These sets

contain new reward vectors that are included in Qn(s, a). In MPQ-learning, there are two dif-

ferent updating procedures, which depend on the transition state, and therefore determine the

composition of the sets N, U, and E. The updating procedures are:

1. Creating new vector estimates every time a state s′ is reached for the first time from s

after performing action a. In this case, only the set N contains vector estimates, while U and E

are empty.

2. Updating the vector estimates in Q(s, a) when transition state s′ is already explored from

s after action a. This includes updating, creating, and deleting particular vector estimates.

During this procedure, N is empty, while U and E may have vector estimates.

We first discuss the first case, which means that state s′ has not been reached yet from state

s after performing action a. In other words, the transition (s, a, s′) is new in the current time

step. The sets U and E remain empty, and only the set N is filled, according to the following

definition:

Nn−1(s, a) =
{

((1− αn)~q + αn

[
~rn + γ~vj

]
, P ∪

{
(s′, j)

}
)
∣∣∣

(~q, P ) ∈ Qn−1(s, a) ∧ ~vj ∈ Vn−1(s′) ∧ s′ 6@ Qn−1(s, a)
}
. (4.7)

First, consider the conditional part on the right side of the definition. The most right con-

dition indicates that state s′ has not been reached from the state action pair (s, a). The other

two conditions imply an iteration over all currently non-dominated reward vectors in Qn−1(s, a)

and all non-dominated vectors in Vn−1(s′). In each iteration, we update a current reward vector

~q with the direct reward ~rn obtained by the action and a non-dominated reward that could

be obtained from state s′, represented by vector ~vj . Simultaneously, we add state (s′, j) to

the set P to indicate that state s′ can be reached with (s, a) and that the calculated rewards

were obtained with vector ~vj . Since we loop over all elements in Q(s, a) and V(s′), N contains

|Vn−1(s′)| · |Qn−1(s, a)| elements.

In the second case, state s′ has already been reached from state s after performing action
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a. In other words, the transition (s, a, s′) is known in the current time step. In this case, N is

empty, and the sets U and E are filled. Since it is not the first time the agent has done this

transition, at least one vector of Qn−1(s, a) can be linked to an expected discounted reward

vector ~vj ∈ Vn−1(s′). Therefore, the vectors in Qn−1(s, a) that are linked should be updated

with their linked ~vj , which is captured in the set U as follows:

Un−1(s, a) =
{

((1− αn)~q + αn

[
~rn + γ~vj

]
, P )

∣∣∣
(~q, P ) ∈ Qn−1(s, a) ∧ (s′, j) ∈ P ∧ ~vj ∈ Vn−1(s′)

}
. (4.8)

Again, if we look at the conditional part on the right side of the definition, the first and the

last condition imply an iteration over all currently non-dominated reward vectors in Qn−1(s, a)

and all non-dominated vectors in Vn−1(s′). The middle condition makes sure that only the

vectors of Qn−1(s, a) are used if linked to the transition to s′, and that they are related to the

corresponding discounted reward vector ~vj . Then the update is done by the weighted sum of the

already learned expected reward ~q and the new immediate reward plus the discounted expected

future reward (~rn + γ~vj).

It might be that after the last time that the transition (s, a, s′) took place, new reward

vectors ~vj ∈ V(s′) are learned. This implies that new non-dominated expected rewards can also

be achieved from state s after performing action a. In this case, we have extra discounted reward

estimates ~vj ∈ V(s′), which are not yet linked to any expected reward ~q ∈ Q(s, a). We have to

start from the initial value ~0 to determine the value in the new pair that is being inserted in

Qn(s, a). However, we can use the already established pairs of indices from the estimates we

already had for the new vector ~vj . Therefore, given a new vector ~vj , we insert a new vector in

Qn(s, a) for each vector in Qn−1(s, a), using the same set of indices without the indices (s′, k)

(whatever k is) and add the pair (s′, j). These cases are included in E as follows:

En−1(s, a) =
{

(αn

[
~rn + γ~vj

]
, (P \ s′) ∪

{
(s′, j)

}
)
∣∣∣

~vj ∈ Vn−1(s′) ∧ s′ @ Qn−1(s, a) ∧ (s′, j) 6@ Qn−1(s, a)

∧ ∃~q (~q, P ) ∈ Qn−1(s, a)
}
. (4.9)

The first condition in the conditional part of the definition implies an iteration over all non-

dominated vectors in Vn−1(s′). The second condition makes sure that the transition (s, a, s′)

is not new, while the third condition makes sure that only the vectors ~vj are selected that are
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not linked yet to any ~q ∈ Qn−1(s, a). Finally, the last condition iterates over all P , so for each

vector estimate that already was in Qn−1(s, a) a new vector is added. However, the links to s′

in P are replaced with the new (s′, j).

The union of these three sets will eventually be the new Qn(s, a). A practical example of

the MPQ-learning updates based on these three sets can be found in Ruiz-Montiel et al. [2017]

Section 2.4. Since the sets V (s′) only take the non-dominated vector estimates (as described in

equation 4.5), a dominated vector estimate in Qn−1(s, a) will not be found in Qn(s, a) anymore.

Hence, MPQ-learning keeps a vector in Q(s, a) for each possible combination of non-dominated

vectors from the state-vector sets of reachable states. However, they do not limit the number of

these vectors, which depending on the problem might become extremely large.

In Ruiz-Montiel et al. [2017] the action selection during the learning process is based on a

probability that is proportional to the number of vector estimates of Q(s, a) that are also inside

V(s). This implies that an action having more non-dominated vectors has a higher probability

of being selected. The probabilities are defined as:

Pr
{
an = a|sn = s

}
=

∣∣∣{~q : ~q ∈ Vn−1(s) ∧ ∃P : (~q, P ) ∈ Qn−1(s, a)
}∣∣∣

|Vn− 1(s)|
. (4.10)

We will use an ε-greedy mechanism, meaning that a random selection is chosen with proba-

bility ε, and an action is chosen according to Expression 4.10 with probability (1− ε).

4.3 Envelope Q-learning

The second algorithm that is used is called envelope Q-learning [Yang et al., 2019], which is also

developed for MORL1. In contrast to the previous algorithm, this can be seen as an outer-loop

method. The goal of this algorithm is to learn all optimal policies over the entire preference

space by varying linear relative preferences w to scalarize the objectives.

Since the Belmann optimality operator T of equation (4.3) can only be used for the single-

objective case, we first define a multi-objective evaluation operator Tπ. Given a policy π and

sampled transitions τ , this operator is defined as:

(TπQ)(s, a,w) := r(s, a) + γEτ∼(P,π)Q(s′, a′,w), (4.11)

1The code of Yang et al. [2019] can be found at https://github.com/RunzheYang/MORL
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where Q(s, a,w) are the Multi-Objective Q-estimates (MOQ) of expected total rewards under

m-dimensional preference vectors w. We use τ ∼ (P, π), since the transitions given an action

can be stochastic, following a probability distribution P. Furthermore, the selected ( future)

actions depend on the policy π.

We then define an optimality filter H for the MOQ function as

(HQ)(s,w) := argQsupa∈A,w′∈Ωw
ᵀQ(s, a,w′),

where the argQ takes the multi-objective value corresponding to the supremum (i.e., Q(s, a,w′)

such that (a,w′) ∈ arg supa∈A,w′∈Ωw
ᵀQ(s, a,w′)). In other words, (HQ)(s,w) is the optimal

expected multi-objective reward in state s for preference w. Note that the return of argQ

depends on the chosen preference w for scalarization. Now, we can define a multi-objective

optimality operator T as:

(TQ)(s, a,w) := r(s, a) + γEs′∼P(·|s,a)(HQ)(s′,w). (4.12)

For proof of the feasibility of using this optimality operator, I refer to Yang et al. [2019].

Instead of using a Q-table for all state-action pairs, we use a deep neural network with the

state s and preference w as input and |A| × m Q-values as output. Using double Q learning

with target Q networks following Mnih et al. [2015] we minimize the following loss function at

each step k:

LAk (θ) = Es,a,w

[
‖yk −Q(s, a,w; θ)‖22

]
, (4.13)

where y = Es′ [r + γ argQ maxa,w′ wᵀQ(s′, a,w′; θk)], which empirically can be estimated by

sampling transitions (s, a, s′, r) from a replay buffer, whitch is a batch of stored transitions that

have occurred in the past. In other words, the loss function uses the previous optimization result

as an initial guess in each step.

However, the optimal frontier contains many discrete solutions, which makes the landscape

of the loss function substantially non-smooth. Therefore, optimizing LAk directly is challenging

in practice, so we make use of the method known as homotopy optimization [Watson and Haftka,

1989] by using an auxiliary loss function LBk :

LBk (θ) = Es,a,w[|wᵀyk −wᵀQ(s, a,w; θ)|]. (4.14)
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Figure 4.2: Visualization of the shift of LAk to
LBk by increasing λ from 0 to 1 using 1,000,000
Episodes.

First, LAk ensures that the prediction of Q

is close to any real (perhaps not optimal) ex-

pected total reward, while later LBk can pro-

vide an auxiliary force to pull the current

guess along the direction with better utility,

since we include the preference w. In LAk the

objectives have the same ‘weight’. However,

in LBk we optimize the scalarization of the ob-

jectives, which depends on the preference.

Therefore, the final loss function is a com-

bination Lk(θ) = (1 − λ) · LAk (θ) + λ · LBk (θ),

where λ is a weight to trade-off between losses

LA and LB. By slowly increasing the value of λ from 0 to 1, we shift our loss function from LAk

to LBk . A visualization of the shift used in this research is shown in Figure 4.2, but other shifts

might also be suitable.

The loss functions in (4.13) and (4.14) have an expectation over w. Note that w influences

the agent’s preferred actions but does not influence the transitions and the rewards. This means

that the same transitions can be used using different preferences (w) for learning. Therefore,

we can increase sample efficiency by using a scheme similar to Hindsight Experience Replay

(HER) [Andrychowicz et al., 2017]. In this paper, an agent performs in each episode actions

according to different random goals. When updating, they use the previous transitions for the

current update with multiple different goals in parallel. Although the context of their and our

application are completely different, a similar idea of this scheme can be used to update our

multi-objective Q-network.

This is done as follows: in each episode, we sample a random preference w from a distribution

Dw, which is used for the standard learning phase. The transitions (st, at, rt, st+1) are stored

in a replay buffer Dτ . When updating the multi-objective Q-network, we select a mini-batch

of size Nτ of transitions randomly from Dτ and each transition is associated with Nw different

preferences {w1, ...,wNw}, which are also randomly sampled from Dw. Finally, the Q-network

will then be updated using a total batch of Nτ ×Nw samples. The skeleton of the algorithm is

shown in Algorithm 1.
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Algorithm 1: Envelope MOQ-Learning
Adapted source: Yang et al. [2019]

Input : a preference sampling distribution Dw, path
pλ for the balance weight λ increasing from
0 to 1.

Initialize replay buffer Dτ , network Qθ, and λ = 0.
for episode = 1,...,M do

Sample a linear preference w ∼ Dw
for t = 0, ..., N do

Observe state st.
Sample an action ε-greedily:

at =

{
random action in A, w.p. ε;

maxa∈Aw
ᵀQ(s, a,w; θ), w.p. 1− ε.

Receive a vectorized reward rt and observe
st+1.

Store transition (st, at, rt, st+1) in Dτ
if update then

Sample Nτ transitions
(st, at, rt, st+1) ∼ Dτ .

Sample Nw preferences W = {wi ∼ Dw}.
Compute yij = (TQ)ij =
rj , for terminal sj+1;

rj + γ argQ max
a∈A,
w′∈W

wᵀ
iQ(sj+1, a,w

′; θ), o.w.

for all 1 ≤ i ≤ Nw and 1 ≤ j ≤ Nτ .
Update Qθ by descending its stochastic
gradient according to equations 4.13 and
4.14:
∇θL(θ) = (1− λ) · ∇θLA(θ) + λ · ∇θLB(θ).
Increase λ along the path pλ.

Since Envelope Q-learning in-

cludes the preference (w), the multi-

objective rewards of actions can eas-

ily be transformed into a single ob-

jective. Therefore, the action se-

lection mechanism is similar to the

ε-greedy strategy used in single-

objective Q-learning. Each episode,

a random w is selected, and based

on this preference and the current

state, the best action is determined

using the current multi-objective Q-

network. With probability 1-ε, the

agent chooses this best action. How-

ever, with probability ε, the agent

performs a random action, which

still can be the best option.

4.4 State-action space

The (discrete) state-space is based

on the characteristics of the pa-

tients. The characteristics used are the age and the screening history, which are the results

of the screening tests that a person already has done. We will experiment using different state

spaces. In the initial case, we will use the same state-space used in Van Duuren [2021]. The

screening will be done in the age between 40 and 85 years, and we split the range into cohorts

of 5 years, which result in T := {40, 45, ..., 80}. Furthermore, we use a risk estimator of having

CRC. We assume that a concentration above 100µg/g implies a risk of 1. Therefore the risk

estimator is defined as:

Rk := min
[ 1

100k

k∑
i=0

Sn−i, 1
]
,

where Sj is the participant’s jth quantitative FIT-result, i.e., the measured Hb concentration.

We use k = 1, since variation of k did not improve the quality of the policies in Van Duuren

[2021] and averaging the Hb concentrations would also decrease the extreme Hb values. The

risk is discretized as R := {0, 0.125, 0.25, ..., 1}.

Therefore, this primary case will have two dimensions T × R and a total of 9 · 9 = 81 in-
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dividual states. Since the MISCAN-Colon micro-simulation does not distinguish yet between

males and females when simulating CRC, we do not differentiate in gender and select the male

version of the simulation of Hb concentrations, which is already prepared for differentiation in

gender in the MISCAN simulation.

Many variations in state spaces can be evaluated. The cohort sizes of R and T can be ad-

justed. A larger history of quantitative FIT results, including the second and third last FIT

results, can be added to the state-space, and the result of a colonoscopy could be incorporated.

During the research, the use of specific variations in state spaces has to be decided.

The actions represent the screening strategy. An action determines the next screening de-

cision, having three options: Stop screening, FIT after x years or undergo a colonoscopy. De-

pending on the different options of x, which will be between one and ten years, the agent has at

most 12 different actions. For the primary situation, we use x = {1, 2, 3}, and exclude the option

‘Stop screening’, resulting in a total of four different actions: A := {COL,FIT1, F IT2, F IT3}.

The entire state-action space is T ×R×A, having 324 unique state-action pairs.

The (negative) rewards related to the actions depend on the actual costs of screening and

the surveillance or treatment costs as a consequence of the the selected screening action, which

is explained in the next section.

5 Implementation in MISCAN

Our algorithm is designed to optimize FIT-based screening programmes. In such programmes,

individuals take a FIT test with a certain interval. Once the blood concentration measured by

the FIT is above a prespecified cutoff, the participant is redirected to a hospital for a follow-up

colonoscopy. Our algorithm aims to personalize the cutoff and screening interval.

To learn and evaluate the long- and short-term harms and benefits of the algorithm’s screen-

ing policies, the algorithm was built into MISCAN-Colon. Figure 5.1 shows the structure of the

combination.
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Figure 5.1: Flowchart of the learning process implemented in MISCAN

Participants undergo their first FIT once they reach the first screen-eligible age (the first

element in T ). Combined with the measured blood concentration, we obtain the participant’s

state s ∈ {T ×R}, from which the first action a ∈ A can be determined.

If the selected action a is a FIT after x years, the MISCAN simulation continues in com-

bination with the RL algorithm, and after x years, the new FIT is performed, whereafter we

know the new state s′ ∈ {T × R}. Now we know the transition (s, a, r, s′), where r is reward

vector, containing long and short term estimates of the financial costs and QALYs of this ac-

tion. Using this transition, we can update the Q-table and the multi-objective Q-network in the

MPQ-learning and Envelope Q-learning algorithms respectively.

If the chosen action is a colonoscopy, the patient is directly referred to a hospital for a

colonoscopy. After a positive colonoscopy, the person will go to a surveillance program. This

program is fixed because it is not part of the optimization problem to which the algorithm

is applied. The Q-table/network is updated with the costs and QALYs associated with the

surveillance when the person dies. If the colonoscopy is negative, a new FIT after a fixed period

is planned, whereafter the new state of the person can be decided. Then we can perform an

update, where r consists of both the short- and long-term costs and QALYs of the colonoscopy

and the FIT. This period is defined before the simulation starts. The Dutch screenings strategy

uses a period of ten years, while Van Duuren [2021] used five years. To compare our results with

Van Duuren [2021], we will also use a period of five years.
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Note that if a person dies before the screen-eligible age, the person does not begin the RL

process, since the agent has not chosen any action yet. This means that during the life of this

individual nothing is learned and we do not count this as an episode. Furthermore, when a

person dies after the screen-eligible age, this is denoted as the final state. The final reward

is calculated, which depends on the caused death and possible surveillance or treatment costs.

The QALYs in the final update are based on the life expectancy of the individual without CRC,

his other cause (OC) death. If a person dies, the difference between the OC death and the

CRC death is added to the QALYs as a penalty. Details of the specific rewards are included in

Appendix B.

The MISCAN-Colon micro-simulation is programmed in Python, where we incorporated the

RL algorithms. Therefor, the screening process is adjusted to allow dynamic strategies, instead

of static strategies. Originally, a strategy is completely defined before the simulation starts,

meaning that all FITS, having a fixed cutoff, are scheduled beforehand. Now, each next FIT

is scheduled after the last FIT, while the cutoffs varies over age and changes during training.

Furthermore, the costs and effects are normally calculated afterwards based on all events and

durations that are stored. During training, we also calculate the costs and effects per individual,

which is needed for the updates.

Common seeds are used for reproducability and to compare the results of different strategies.

For testing we used the same (MISCAN-Colon) simulation without updating the MPQ-table or

Q-network, but only selecting the optimal action for each state. For speeding up the process of

testing the envelope Q-learning algorithm, we created a table with the optimal action for each

state based on the output of the neural network, whereafter the neural network is not needed in

the simulation.

6 Results

In this section we start with the results of MPQ-learning, whereafter Envelope Q-learning is

evaluated. We evaluate the strategies that we have found and compare the best strategies with

the current Dutch screening strategy and the strategies advised by Knudsen et al. [2021] to the

United States Preventive Services Task Force (USPSTF) in October 2020.
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6.1 MPQ-learning

Currently, there is no package of MPQ-learning and the authors did not provide any codes.

Therefore, we implemented the algorithm ourselves. For validation of a correct implementation

of the algorithm, we started by replicating the example in Section 2.4 of Ruiz-Montiel et al.

[2017]. We were able to successfully reproduce each step. Furthermore, we were able to continue

the learning process and converge to the optimal Q-table.

However, when implementing this method in MISCAN, it appeared that two situations

were not accounted for. The first problem was that it is possible that completely identi-

cal reward vectors are created in the same state-action pair, resulting in unnecessary extra

storage and calculations. We explain this using a made-up example shown in Figure 6.1.

Figure 6.1: Example of problem 1 of MPQ-
learning

Suppose after a few transitions we have

found two reward vectors in V(s1) and both

are related to V(s2) and V(s3). Next,

After some more transitions, where s2 is

reached from other states than s1, we have

obtained a new non-dominated vector v3.

Note that V(s2) does not contain a vec-

tor v1 nor v2. Apparently they were both

dominated by v3 and therefore removed

from V(s2). Consequently, the two vec-

tors in V(s1) refer to non-existent vectors in

V(s2). Figure 6.1 shows the situation at this

point.

When a new episode starts and we again get the transition (s1, a1, s2), the transition is not

new, so N = ∅ and because v1 and v2 are not related to an existing vector, it also means that

U = ∅. As a consequence, v3 in V(s2) is an ‘extra’ vector, that will create two new vectors in

the set E as described in Section 4.2. However, based on equation (4.9) the two new vectors will

become identical: the reward vector is αn

[
~rn+γ~vj

]
. Furthermore, P ← (P \s′)∪

{
(s′, j)

}
. This

means that for v1 in V(s1) we create a new vector by replacing (s2, 1) with (s2, 3) and we keep

(s3, 1), which together results in v3 =
(
αn

[
~rn + γ~v3

])
(s2, 3)(s3, 1) in V(s1). For v2 we replace

(s2, 2) by (s2, 3) and keep (s3, 1), which together results in v4 =
(
αn

[
~rn + γ~v3

])
(s2, 3)(s3, 1)

in V(s1). Even though the reward values of v1 and v2 were different, the created vectors in E
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are identical and they will always be updated the same way and create the same vectors. If

this happens often, the sets grow exponentially fast. Since, identical vectors do not add any

information, we decided to always drop vectors if they were identical.

The second problem is related to the vector (vj) identification numbers j. In this algorithm

it is possible to create two different vectors with the same number j for the same state-action

pair. Again, we evaluate a made-up example, which is shown in Figure 6.2. In this example we

ignore the reward values, since these are not relevant to the problem.

Figure 6.2: Example for problem 2 of MPQ-learning

In this example we have learned some vectors in V(s2) and V(s3) and now it is the first time

that we get the transition (s2, a2, s3). Therefore, we know that U = E = ∅ and we only have to

look at the set N, which is formed according to equation (4.7). As described in section 4.2, N

contains |Vn−1(s′)| · |Qn−1(s, a)| elements, so N consists of four new vectors: all combinations of

one element of V(s2) and one element of V(s3). The number j of the vectors in V(s2) are kept

the same, since these values are used to link the vectors in V(s1) to those in V(s2). This link

should still be held, which can also be seen in the example of the original paper [Ruiz-Montiel

et al., 2017]. However, we cannot give two vectors in one state the same number j. On the

other hand, if we give the vectors a new number j, the link with s1 does not exist anymore, so

we throw away some information. Ideally, we also create two new vectors in s1 per situation,

but this results in inefficiencies in the backtracking procedure. Therefore, we decided to let one

vector keep its original number j and to give the other vectors a new number. Consequently,

these are not linked to vectors in other V(si) sets. Therefore, when state s2 is visited next, these

vectors end up in the E set.

The solution to the second problem, led to a third problem: storage errors. Since the MIS-
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CAN simulation is very stochastic, the algorithm often encountered ‘extra’ vectors in V(sj)

that were used to create the E-set according to Equation (4.9). However, per ‘extra’ vector

|Qn−1(s, a)| new vectors are created. This grows exponentially fast, resulting in a storage error.

Even if only the non-dominated vectors are kept, infinitely many non-dominated rewards can

still be found during learning.

We emailed the authors asking about the difference in storage space of the algorithms Pareto

Q-learning [Van Moffaert and Nowé, 2014] and MPQ-learning [Ruiz-Montiel et al., 2017], one

of the authors of MPQ-learning mentioned the following (The complete reply can be found in

Appendix C):

About 40 years ago, White analyzed the problem of multi-objective dynamic pro-

gramming and proposed an exact algorithm. However, I am not aware of any practi-

cal applications of that algorithm. Why? Probably because even very simple MORL

problems can have an exponential (or even infinite) number of solutions, which makes

it impractical to apply exact algorithms. Both PQ and MPQ address this same prob-

lem (in the case where transition probabilities are unknown), and so are likely bound

to have similar limitations in practice. (L. Mandow, personal communication, July

13, 2021)

In the literature, there is not much experienced yet with MPQ-learning. However, Hasan

et al. [2019] mentioned that MPQ-learning requires high convergence time. Mandow and Pérez-

de-la Cruz [2018] came up with MPQ2, which is an adjustment of MPQ-learning and should need

less training, but this method will take more space than the original method. Besides, they tested

the methods on the well-known MORL benchmark Deep See Treasure (DST) [Vamplew et al.,

2011], in which an agent controls a submarine searching for treasures in a 10 × 11-grid world,

while trading off time-costs and treasure-values. This is a much simpler problem compaired to

our personalized screening optimization due to the stochastic nature of the MISCAN simulation.

Based on the reply of L. Mandow and our findings, we concluded that MPQ-learning is

not suitable for solving our problem and decided to switch to the second method, Envelope Q-

learning, which is not precisely the scalarization method that L. Mandow suggested. However, it

incorporates the linear weights, where scalarization is often based on, to find optimal strategies

over the whole preference space.
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6.2 Envelope Q-learning

The multi-objective Q-networks were implemented using the same hyperparameters as used in

Yang et al. [2019] for all cases except the ‘Multi-Objective SuperMario Game’: we used four

fully connected hidden layers with [16, 32, 64, 32] × (dim(S) + m) hidden nodes respectively,

where dim(S) is the dimensionality of the state space (Age and Risk) and m the number of

objectives (costs and QALYs), both equal 2. This means that in our tests the number of hidden

nodes were [64, 128, 256, 128] in total respectively. The input of the network is a concatena-

tion of state representation (i.e., the age and the risk of the individual) and (linear) preference

weights. The output layer is of size m× |A|, which represents the multi-objective expected to-

tal reward for each action a ∈ A given the input state s ∈ S for each preference weights w ∼ Dw.

We started with multiple runs using the state-action space as described in Section 4.4. How-

ever, due to a mis-specification2 of the complete preference space, the results were not useful and

are excluded in this thesis. In addition, we learned that the RL algorithm slows down MISCAN

significantly with a factor 700-7000. Since a minimum of 1,000,000 episodes is preferred such

that the outcomes fully represent a population, this resulted in more than 10 days of training per

case. Based on the first runs, we therefore decided to reduce the size of the state-action space.

This increases the speed of the simulation in two ways. First in each episode less actions and

updates are performed, second the convergence requirements denoted by Watkins and Dayan

[1992] are met more quickly because a reduction of the number of state-action pairs implies that

they are sampled more often.

The results shown in this thesis are based on this reduced state-space. The risk is dis-

cretized as R := {0, 0.125, 0.250, 0.375, 0.5}. If an individual’s risk is 0.5 or above, a colonoscopy

is always performed. Furthermore, the screen-eligible ages are reduced to 55 to 75 years, i.e.

T := {55, 60, 65, 70}. In total the state-space was reduced from 81 to 16 unique states. We

also stopped the surveillance at an age of 76. Since Van Duuren [2021] evaluated all feasible

strategies for this state-action space by enumeration3, we planned to validate our results to

this benchmark. We are aware that the used costs, shown in Appendix B slightly differ from

Van Duuren [2021], which means that our results will always deviate from his results.

2We initially used a preference space based on a willingness-to-pay for a QALY between 10,000 and 100,000
dollars. However, the weights should have been based on the costs of each extra QALY compared to a reference
strategy.

3He only calculated the strategies following the impact ordening assumption (Assumption 5.2 in the respective
thesis): Given two individuals with the same age, the one with a higher risk of CRC must get an action with
equal or higher impact. A colonoscopy has the highest impact and an increasing FIT interval corresponds with a
decreasing impact.
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The used preference-space Dw is also based on the results of Van Duuren [2021]4. We

selected the Pareto optimal strategies with the lowest and highest costs and calculated the

extra costs per extra QALY gained for both strategies compared to the reference strategy,

also called the Absolute Cost-Effectiveness Ratio (ACER). In this thesis, we used a universe

without screening as a reference. This resulted in a minimum (ACER) of 57.830 and a maxi-

mum of 117.694. During training the ACER is randomly sampled from a uniform distribution

ACER ∼ U(57.830, 117.694). Next, the weights of the objectives ([QALY, Costs]) are calculated

as
[

ACER
1+ACER ,

1
1+ACER

]
respectively.

We started with four tests using different parameters, shown in Table 1. Due to extremely

slow performance of the algorithm in combination with MISCAN and the need of many episodes

for learning, we were unable to perform a decent test to find optimal parameter values5. There-

fore, we based our parameter values on Yang et al. [2019] and deviate a little to look for possible

improvements.

Although we expected to deviate from Van Duuren [2021], the results differed much more

than expected. After evaluating the outcomes thoroughly, we found a difference in the simulation

after performing a colonoscopy. Originally, the screening strategy is implemented statically in

MISCAN, meaning that the strategy is completely defined before the simulation starts. There-

fore, we had to adjust this structure to a dynamic strategy, i.e., after each action a new action

will be determined depending on the state. However, after a colonoscopy the next step is still

fixed: start with surveillance program after a positive colonoscopy or plan a new FIT over five

years after a negative colonoscopy. It appeared that the latter was not set correctly, meaning

that the next FIT is not planned after a negative colonoscopy. Due to the (new) dynamic nature

no more future FITs are scheduled anymore. This can happen quite often depending on how

often a colonoscopy is prescribed in the policy. Nevertheless, using ε = 0.5 for the ε-greedy

action selection, means that each time an action is selected, there is at least 25% change of

selecting a colonoscopy, whereafter screening stops.

Table 1 summarizes the parameter values used in the four different tests. These param-

eters were described extensively in Section 4.3. Both the value of ε and the option to decay

4All feasible strategies for the used state-action space are shown in Figure 6.2 of Van Duuren [2021].
5We used an Intel(R) Core(TM) i5-10500T CPU (6 cores) @ 2.30GHz, and 8GB memory without using a

GPU, while the authors of envelope Q-learning had a GeForce GTX TITAN X GPU and 32GB memory and for
the SuperMario experiments even a cluster with twenty 2080 RTX GPUs and 200GB memory.
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Table 1: Used parameters for the four different runs

Parameter Case 1 Case 2 Case 3 Case 4

γ 0.99 0.97 0.99 0.97
Memory size 1000 2000 4000 2000
Nτ (Batch size) 64 128 256 128
Nw (Weight numbers) 8 16 32 16
ε 0.5 0.5 0.5 0.5
ε decay FALSE FALSE FALSE FALSE
Update frequency 100 100 100 1000
Optimizer Adam Adam Adam Adam
Learning rate 1.00E-03 5.00E-04 1.00E-05 0.05
Homotopy TRUE TRUE TRUE TRUE
Episodes 1.00E+07 1.00E+06 1.00E+07 1.00E+07

(ε-greedy selection) are not adjusted, since the environment is highly stochastic and we need to

keep exploring. Furthermore, we always used the Adam optimizer [Kingma and Ba, 2017] for

optimizing the neural networks and we always applied the homotopy optimization. The number

of episodes is adjusted in one case only. However, due to the excessive running time, all tests

were stopped before reaching this number, meaning that Episodes is not the actual number of

episodes. Consequently, this number is used for increasing λ only, as described in Section 4.3.

Since an annual discount factor of 3% is commonly used in cost-effective analyses of health

care, we used a discount factor of 0.97 per update for γ. However, in the original paper [Yang

et al., 2019], γ = 0.99 was used by default, and since many costs are included in the last update

of an episode, we also tested the effect of using this value. Furthermore, we varied the memory

and batch size and the number of sampled weights. Increasing these parameters slows down

the algorithm significantly, but might result in better learning. Finally, we used different values

for the Learning rate used for updating the Q-network, which might have much impact in the

performance of our training. In the original paper a learning rate of 1e-3 was used by default,

but this does not mean that this is suitable for our problem. Therefore, we tried four different

values.

Case 1

The first case was stopped after 3,240,000 episodes. Every 10,000 episodes, we calculated the

QALYs and costs of the strategy learnt up to then to monitor the algorithm’s progress. Using

MISCAN, we evaluated the strategy for a preference of 86.265 with a population of 1,000,000

individuals. Each point in Figure 6.3 represents one of these strategies. Its colour shows in what
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episode it was obtained. Since we are maximizing the QALYs and minimizing the costs, we

expect the lightest dots to be in the left upper corner of the plot. However, this is not the case.

The strategies in the left upper corner were found early in the learning process. The algorithm

appears to end up in three different other areas, having higher costs but lower QALYs, meaning

that they are dominated for every possible preference weights.

Figure 6.3: Scatter plot of the QALYs and costs of the strategies with preference weight of
86.265, obtained after each 10,000 episodes of training. The colour indicates at what point in
the learning process the strategies were obtained, e.g., the colour at number 50 is the strategy
after 50 × 10,000 episodes of training. Costs and QALYs were estimated using a MISCAN
simulation with 1,000,000 individuals.

To take a closer look at the progress of the objectives, we plotted the weighted sum of the

objectives each 10,000 episodes in Figure 6.4a. The weighted sum is calculated as

86.265

87.265
· QALY s+

1

87.265
· − costs.

Due to some ‘extreme’ values, it is not clearly visible if the algorithm still improves before it

was stopped. However, Figure 6.4b shows the observations without values larger than -3.4. Still

no trend can be seen. Therefore, we conclude that using the parameters shown in Table 1 the

algorithm is not able to converge to the optimal policies.
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(a) All values (b) The vertical axis is limited to -3.4

Figure 6.4: For each policy after 10,000 episodes of training, the weighted sum of the costs and
QALYs are shown.

Case 2

In the second test, we decreased the total number of episodes, affecting the homotopy opti-

mization as described in Section 4.3. Furthermore, we increased the memory and batch size,

slowing down the method, but potentially speeding up the learning process. We also adjusted

the learning rate of the neural network. The simulation is stopped after 910,000 episodes and

we evaluate the results up to this point.

Figure 6.5 shows a scatter plot of the QALYs and costs of the optimal policy for a preference

weight of 86.265, each 10,000 episodes of training. It is similar to the figure obtained in the first

test: the costs and QALYs are comparable and the algorithm converges to non-optimal strategies.

Despite the weighted sum of the objectives shows a slight increase over the iterations, as shown

in Figure 6.6b, this increase is negligible compared to the peaks in Figure 6.6a.
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Figure 6.5: Scatter plot of the QALYs and costs of the strategies with preference weight of
86.265, obtained after each 10,000 episodes of training. The colour indicates at what point in
the learning process the strategies were obtained, e.g., the colour at number 50 is the strategy
after 50 × 10,000 episodes of training. Costs and QALYs were estimated using a MISCAN
simulation with 1,000,000 individuals.

(a) All values (b) The vertical axis is limited to -3.4

Figure 6.6: For each policy after 10,000 episodes of training, the weighted sum of the costs and
QALYs are shown.

Case 3

The parameters of the third test are most similar to the parameters used in Yang et al. [2019],

only the learning rate of the neural network was adjusted. This test had the worst computa-

tional performance. The scatter plot in Figure 6.7 shows that the model has not converged

yet contrasting tests one and two. Figure 6.8 does not show an increasing trend, merely large,
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random variation.

Figure 6.7: Scatter plot of the QALYs and costs of the strategies with preference weight of
86.265, obtained after each 10,000 episodes of training. The colour indicates at what point in
the learning process the strategies were obtained, e.g., the colour at number 50 is the strategy
after 50 × 10,000 episodes of training. Costs and QALYs were estimated using a MISCAN
simulation with 1,000,000 individuals.

(a) All values (b) The vertical axis is limited to -3.4

Figure 6.8: For each policy after 10,000 episodes of training, the weighted sum of the costs and
QALYs are shown.

Case 4

Case four uses a significantly larger learning rate and an increased update frequency for Double

Q-network. Figure 6.9 shows less random variation compared to the other cases. Moreover, the

algorithm converges to the same local optima as found in test one. Figure 6.10 does not show
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a clear increasing trend. Note that the peaks in this graph are lower compared to those cases

one, two and three.

Figure 6.9: Scatter plot of the QALYs and costs of the strategies with preference weight of
86.265, obtained after each 10,000 episodes of training. The colour indicates at what point in
the learning process the strategies were obtained, e.g., the colour at number 50 is the strategy
after 50 × 10,000 episodes of training. Costs and QALYs were estimated using a MISCAN
simulation with 1,000,000 individuals.

(a) All values (b) The vertical axis is limited to -3.4

Figure 6.10: For each policy after 10,000 episodes of training, the weighted sum of the costs and
QALYs are shown.

Case 5

None of these four test cases showed an increasing trend in objective throughout the learning

process. Therefore we set up a fifth case, doubling the ACER, meaning that
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ACER ∼ U(57.830, 235.388). We expected that this may result in another type of strategies.

Furthermore, we added an extra hidden layer to the neural network. However, these adjustments

did not result in different (more expensive) strategies. At that time, we were not aware that

in our implementation of MISCAN, screening was stopped after a negative colonoscopy. This

resulted in strategies with much lower costs than expected. Therefore, increasing the maximum

preference weight had no effect. The results of case five are included in Appendix D.

6.3 Obtained screening strategies

In this section, we show the actual policies obtained by the first four cases. Figure 6.11(a)-(d)

show the best strategy of each case based on a preference weight of 86.265. Figure 6.11(e) shows

the strategy with highest QALYs out of all four cases. Figure 6.11(f)-(h) show one strategy from

the three local optima obtained in cases one, two and four.

Strategies are used as follows. Directly after an individual is tested with a FIT, their risk

score is calculated (see Section 5). Based on the individual’s risk score (vertical axis) and age

(horizontal axis), an action is prescribed. The actions FIT x prescribe another FIT after x

years, the action COL prescribes a colonoscopy. Note that, due to our choice of parameters, a

colonoscopy is prescribed for risk values greater than 0.5.

Figure 6.11: Eight different strategies obtained in cases one to four using preference weight
86.265. Directly after a FIT is performed, someone’s risk value is calculated. Based on the
person’s risk value (vertical axis) and age (horizontal axis), an action is chosen. With actions
FIT x, the individual is invited for another FIT after x years. With action COL, the individual
is directly referred to a hospital for a colonoscopy.
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Starting with the strategies shown in figures (a) to (d), we see that a colonoscopy is pre-

scribed very often. With strategy (d), all participants get a colonoscopy at the age of 50, and

consequently quit screening or participate in surveillance. This strategy is much more expensive

compared to strategy (c) (56.5%), while the QALYs do not increase much. It is unclear why this

strategy maximizes the QALYs gained. It prescribes many colonoscopies, but at some points

performs a FIT, resulting in a small increase of 0.003 QALYs (4.5%). The difference in costs is

larger (29.2%). Comparing (c), (e) and (d) shows that performing a FIT instead of a colonoscopy

clearly reduces costs, but does not necessarily change the QALYs. This difference of the costs

can be explained by the fact that a colonoscopy is significantly more expensive compared to a

FIT (see Appendix B). However, the FIT is less accurate meaning that an increase in QALYs

is less reasonable.

Note that the action FIT 1 for the age of 70-75 at a risk between 0.125-0.5 in Figure (e)

is irrelevant. The individuals that are still in the screening program at an age of 65 all get a

colonoscopy, whereafter screening stops. Therefore, the difference between (d) and (e) is only

the FIT 1 at the age of 55-65 for a risk between 0-0.125. Intuitively, these strategies prescribe

a colonoscopy at the age of 65, but once an individual has a risk above 0.125, the colonoscopy

is planned earlier in strategy (d). Various explanations of the difference in costs between (d)

and (e) can be devised. It can be that more individuals had a positive colonoscopy, which

caused a decrease in surveillance or treatment costs compared to what they would have been if

they had stopped screening after a negative colonoscopy earlier. But it is also possible that the

surveillance programme has higher costs than when it starts at a later age (without a significant

difference in QALYs).

The last three strategies shown (f)-(h) are selected from the three non-optimal areas of case

one, two and four, and often found by the RL algorithm. These strategies always prescribe

the same screening interval, despite the FIT result. Note that these strategies were dominated

by others. It is likely that these strategies often occur because of a large learningrate of the

Q-network. The learningrate is the largest in case one and four, and the three areas are most

evident. We assume that the rewards of a specific action have such a high effect on the Q-

network, resulting in (almost) always the same action after updating.

Another interesting point in the strategies is the order of impact assumption introduced by

Van Duuren [2021]. Normally (after learning), we expect that more invasive screening actions
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are prescribed for increasing risk. For example, the strategy shown in Figure 6.11(a) adheres to

this assumption for the ages 60-64: a person with a risk of 0-0.124 gets a FIT 3 planned, while

for a higher risk between 0.125-0.374 it becomes a FIT 2 and eventually for a risk above 0.375 a

direct colonoscopy is selected. Van Duuren [2021] assumed that strategies are infeasible if they

do not adhere to this assumption. However, since screening of a person stops after a negative

colonoscopy, it is more difficult to determine the invasiveness of the colonoscopy. It is the most

invasive action of the four, but it also can result in no future screening and no surveillance costs,

which makes it in total much less invasive. Since we are not sure the order of impact assumption

still holds, we adjust the strategies in Figure 6.11, where the order of impact assumption is

violated and calculate its costs and effects. This applies to strategies (a), (b), (c) and (e). The

strategies can be adjusted in two ways: (1) we fix the action at risk zero and adjust the actions

for increasing risks to actions with equal or higher impact, or (2) fixing the action at a risk of

0.5 and adjusting the actions for lower risk values. These adjustments result in (1) an increase

of colonoscopies or (2) a decrease in colonoscopies respectively. The costs and QALYs of the

new strategies are shown in Table 2.

Table 2: Results of adjusting the strategies (a)-(c) and e of Figure 6.11 by ensuring the order
of impact, where ‘Original’ is the learned strategy as shown in Figure 6.11. The results are
estimated using a population of 10,000,000 individuals.

Original Order by impact increasinga Order by impact decreasingb

QALYs Costs Weighted QALYs Costs Weighted QALYs Costs Weighted

a 0.05903 33.09 -0.3208 0.05929 30.00 -0.2851 0.05887 32.73 -0.3169
b 0.05921 28.24 -0.2651 0.05921 28.37 -0.2665 0.04085 319.50 -3.6209
c 0.06161 31.08 -0.2953 0.06161 31.08 -0.2953 0.04341 323.58 -3.6651
e 0.06397 93.56 -1.0089 0.06405 93.88 -1.0125 0.06398 97.61 -1.0553

a Starting from a risk of 0.0, increasing the risk should result in an equal or more intense screening action
b Starting from a risk of 0.5, decreasing the risk should result in an equal or less intense screening action

As can be seen in the table, adjusting the strategies to ensure the order of impact does not

ncecessarily result in a better strategy. In one case, strategy (a), it improved the strategy, but

for all other strategies, this is not the case. This is in line with the idea that a colonoscopy in

our research has a more complicated effect.

Although our settings differ from Van Duuren [2021] and the algorithms we used do not

converge to an optimal point, we can still evaluate the performance of the strategies we found. We

do this by comparing the strategies with the current Dutch screening strategy [Toes-Zoutendijk

et al., 2017], and the strategies advised by Knudsen et al. [2021] to the United States Preventive

Services Task Force (USPSTF) in October 2020. These strategies are population-based, meaning
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that the action only depends on age, and the FIT is always positive above 20µg/g. A scatter

plot is shown in Figure 6.12a, where we only show the non-dominated and the last strategy

found for each case (including the fifth case). First of all, we have discovered new strategies

not dominated by either the Dutch or the USPSTF strategies. However, for all cases, we

end up in a worse strategy with about the same costs as the Dutch strategy, but either more

QALYs or less. It is remarkable that we only found strategies having cost less than $400 per

individual, while Knudsen et al. [2021] also advised strategies resulting in much more costs and

also more QALYs. This likely is because, in our strategies, we stop screening after a colonoscopy.

To indicate that this has much impact, we applied the same rule to the Dutch and USPSTF

strategies and calculated again the costs and QALYs belonging to each strategy, which is shown

in Figure 6.12b. It can be seen that indeed the costs are significantly reduced, and they still

do not dominate our best-found strategies. However, some USPSTF strategies still have twice

as many costs, and a few strategies also have more QALYs. If we look at the three strategies

having QALYs above 0.075 per individual, we see that these consist of a yearly FIT varying the

screen eligible age: all start at 45, while screening stops at 75, 80, or 85 years. In our tests we

only screen between 55 and 75 years, meaning that our algorithm could not find these USPSTF

strategies. This does not mean that using our settings, there are no more expensive strategies

possible, and further experiments are needed to investigate this.

(a) Normal strategies (b) No screening after negative colonoscopy

Figure 6.12: Scatter of the QALYs and Costs of the dominating strategies and the last strategy
found in each case compared to the Dutch strategy and the strategies of the USPSTF. × denotes
the last strategy found in that case.

On the other hand, we do have found strategies that are still non-dominated by these USP-

STF strategies and they seem to be quite good. This implies that personalizing indeed improves

the QALYs for given costs. Furthermore, the option to stop screening from a certain point also
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has a high impact, which could have caused that these strategies perform well. However, to

make strong conclusions, also further investigation is needed.

7 Discussion

In this section, we discuss and compare the performance of the two algorithms introduced in

this thesis, called MPQ-learning [Ruiz-Montiel et al., 2017] and envelope Q-learning [Yang et al.,

2019].

First, both algorithms are not published with a code package, for example for python. In

fact, the authors of MPQ-learning do not even provide example code. Consequently, a lot of

time was spent on programming and debugging the algorithms, making these methods less rec-

ommended from a practical point of view. Besides, both algorithms are relatively new, so there

is no literature that validates these models.

MPQ-learning did not get a result as we encountered two problems. The first issue, memory

issues due to duplicate reward vectors being created, could be solved easily. The second issue,

the exponential growth of reward vectors, was more complicated to tackle and partly causes the

model to fail. It appears that the highly stochastic nature of our environment is the reason that

this algorithm fails: the number of intermediate non-dominated reward vectors exceeds its lim-

its. Since we cannot control the number of vectors, this results in a storage error. Our solution

to overcome the second problem is not optimal, and the algorithm needs further investigation.

However, one of the authors indicated that this model is likely bound to have limitations in

practice as it may find an exponential or even infinite number of solutions. Hence, this algo-

rithm is unsuitable for our problem.

Most challenging about implementing envelope Q-learning was to understand the code of

the authors, to extract the relevant parts, and to implement those in MISCAN. The authors

use the Python package PyTorch [Paszke et al., 2019] which activates the GPU, known to do

fast calculations with neural networks.. However, PyTorch is based on CUDA [NVIDIA et al.,

2020], meaning that the GPU can only be used with a decent, suitable NVIDIA graphics card,

which was unavailable within our resources. Therefore, we could not use this advantage, making

envelope Q-learning more than 500 times slower than MPQ-learning (depending on the used pa-

rameters). We do not know to what extent this would improve the computational performance.

Also, once both algorithms had been trained, selecting the best action out of the multi-objective
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Q-network instead of choosing an action out of a table increases the computing time about 35

times. Nevertheless, the algorithm did give a result in contrast to MPQ-learning.

Due to the slow performance of the algorithm in combination with the large number of

parameters of the algorithm itself and the neural network, it was not possible to perform a

decent parameter optimization. We tested the algorithm with five different parameter sets with

execution times varying from a few days to more than two weeks. Each case resulted in com-

parable strategies. This indicates that the choice of parameters does not greatly influence the

algorithm’s performance. However, it might be worth testing different parameter values than

those considered in this thesis. One important parameter to highlight is the preference space we

used. Since we expected our strategies to be in the same QALY and costs range as those found

by Van Duuren [2021], we based our preference space on their results. However, by accident,

the structure of our strategies was different from those in Van Duuren [2021]. In the strategies

found by our algorithm, participants quit screening after a negative colonoscopy. This difference

resulted in a whole different range of qualifying preference weights. If we consider the two best

incomparable strategies of the four cases in this thesis, i.e. the one with the highest QALYs

and the one with the lowest costs, the range of the preference weight is between 58.531 and

59.500, whereas our algorithm searched in the range between 57.830 and 117.694. Even though

the smaller range is included in the search range, it can be assumed that using a smaller range

would have resulted in better learning.

Unfortunately, we must conclude that envelope Q-learning using our settings does not con-

verge to an optimal strategy. However, we cannot claim that reinforcement learning is not

suitable for solving our problem, and further research should be done. Since the natural history

of colorectal cancer is highly stochastic between individuals, we look for the average best ac-

tions for the entire population while learning per individual. However, an individual’s optimal

strategy may not be optimal for the entire population. Furthermore, the most relevant rewards

(costs) are at the end of an episode, which is also more challenging for learning. On the other

hand, it should be able to learn the average rewards, when having a sufficient learning rate. The

methods in this research are complex and multi-objective based. Besides, we used a neural net-

work since the state-action space can be significantly more extensive than when using a Q-table.

Due to our limited sources, we could not use a large state-action space, meaning that we had to

deal with the burdens of deep learning without using the benefits.
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One advantage of the MISCAN-Colon simulation model is that is is designed to work in par-

allel, but we could not use this advantage in combination with the RL algorithms. We assume

that envelope Q-learning is an algorithm that can also be used in parallel, since it uses hindsight

experience replay in combination with double Q-learning. However, the current architecture of

the algorithm implemented in Python is not suitable yet for parallel computation, meaning that

much more programming is needed. Therefore, we could not test this during this thesis, but

this might be investigated in future research.

We suggest that further research takes a step back, starting to examine if reinforcement learn-

ing is possible in this environment. The multi-objective nature makes it much more complex,

but scalarization is a suitable solution since it is common to represent a QALY by a monetary

value in health. If there is proof that a simple RL algorithm can optimize a strategy (for a given

preference), then if needed, a step further can be retaken to find an optimal Pareto front, taking

into account the computational performance of RL.

7.1 Limitations

First of all, it is essential to note that the results strongly depend on the model of the simulated

blood values. Our model uses the same preliminary, unvalidated model to simulate these blood

values as used in Van Duuren [2021], while they stated that the results conflict with Grobbee

et al. [2017] and emphasize the need for further research or calibration. The same applies to the

risk estimators. A more accurate risk estimator may improve the policies significantly. Since the

goal of this research was mainly focused on the learning algorithms and was aimed at comparing

our algorithms with the genetic algorithm used in Van Duuren [2021], we used the same unvali-

dated models. However, we assume that an improved blood simulation model and risk estimator

would also improve the learning process of our RL algorithms. Since then, the ‘estimated’ states

have been more accurate, meaning that the rewards related to that state will vary less between

different episodes. Eventually, we were not able to compare our results with Van Duuren [2021]

since we unintentionally stopped screening after a negative colonoscopy. This highly influenced

our results and resulted in unrealistic policies, and therefore we could not validate the perfor-

mance of our algorithm well. However, some strategies were non-dominated compared to the

USPSTF strategies and the Dutch strategy, which suggests that the option to stop screening at

specific points might have promising results. This should certainly be further examined.

Since MPQ-learning failed in the simulation, we mainly focus on envelope Q-learning. One of
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the most significant limitations was the computational performance. Without carefully chosen

parameter values, the algorithm is likely to perform non-optimal. However, using our computers,

we were not able to decently optimize the parameter values. Furthermore, it is unknown how

many episodes are needed to fully learn the environment. Normally, 1,000,000 to 10,0000,000

individuals are needed to correctly simulate a population. Therefore at least this number of

episodes would be needed for the agent to learn, but it could also be that a multiplication is

needed. Then, computation time becomes an even greater issue.

Another limitation was that we had to define the preference space before the simulation

started. Since we were unaware that screening stopped after a negative colonoscopy, our prefer-

ence space was almost three times larger than eventually the range of the preferences based on

our results. A better specification could also have improved the performance.

8 Conclusion

In this thesis, two different multi-objective reinforcement learning algorithms are evaluated to

find optimal personalized strategies for stool-based screening programs for colorectal cancer

(CRC). We used the MISCAN-Colon simulation model [Loeve et al., 1999] to simulate CRC in

a population and to evaluate the effects of selecting a screening interval based on individuals’

age and result of their previous screening test. The first algorithm, MPQ-learning [Ruiz-Montiel

et al., 2017], stores non-dominated vector sets for each state-action pair. However, it did not

succeed in completing the learning process. We found two issues that the authors of the algo-

rithm did not take into account. We gave a solution for both problems, but one of the solutions

still does not entirely solve the problem. Finally, the algorithm does not control or limit the

total (non-dominated) reward vectors, resulting in a storage error.

The second algorithm, envelope Q-learning, replaces the Q-table with a neural network. By

varying the preference weights of the two objectives, the Q-network learns optimal strategies

over the entire preference space. We performed five tests using different parameter values with

execution times varying from a few days to more than two weeks, but none of the tests converged

to an optimum. The obtained screening strategies could not be compared to those obtained by

Van Duuren [2021] because we found a significant difference in the structure of our screening

strategies, only after performing the tests. However, during training, we found some strategies,

which are not dominated by the strategies evaluated by Knudsen et al. [2021] for the United

States Preventive Services Task Force (USPSTF) in October 2020 and even dominate the cur-
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rent Dutch screening strategy [Toes-Zoutendijk et al., 2017].

After all, we did not find a complete Pareto front of optimal strategies using these two RL

algorithms. Therefore, we cannot give a satisfying answer to our research questions. We proved

that the current Dutch strategy can indeed be improved by personalizing the strategies, which is

also the conclusion of Van Duuren [2021]. However, the algorithms did not converge to ‘optimal’

strategies. Therefore, we conclude that using our settings, the algorithms are not suitable to

solve the problem. However, we still believe that RL is a powerful algorithm that should be

able to learn optimal strategies. Further research is needed to strongly conclude the success or

failure of reinforcement learning for this problem.
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Appendices

A Probability distribution of haemoglobin concentrations

(Adapted from Van Duuren [2021])

As described in Section 2, the FIT test returns the haemoglobin concentration in a patient’s

stool. To incorporate this in our simulation, we developed a probability distribution for the Hb

concentrations. The Hb concentration depends on the a patient’s age, gender, and individual

risk factor and the cancer stage in X u the patient is in. The Hb concentrations were modelled

by a mixed-effects zero-inflated negative binomial model (ZINB), expressed by:

P(Sn|xn) ∼


NB(Sn|xn), if u ≥ ϕ(x STAGE)

0, otherwise.

(A.1)

Here Sn is the Hb value obtained at the nth test and xn = [x AGE, x GENDER, x STAGE]

is the vector that contains the age, gender and cancer stage of the patient respectively at the

moment of the test. The model is called zero-inflated because it contains a lot of zeroes compared

to a regular negative binomial distribution. The number of zeroes is determined by the value

ϕ(x) ∈ [0, 1] which depends on the patient’s current state x ∈ X u. A standard uniform random

variable u is drawn at every FIT to determine whether the new Hb value is a zero or is to be

drawn from the NB distribution.

The pdf of this NB distribution is specified as follows:

f(Sn|xn) =
Γ(Sn + θ)

Sn!Γ(θ)
∗
(

θ

θ + µn

)θ
∗
(

µn
θ + µn

)Sn

(A.2)

with θ the dispersion factor, constant throughout the algorithm, and Γ(.) the gamma function.

The mean µn is defined by

µn = µ(xn) = exp{bINTERCEPT + γ + bAGE ∗ x AGE + bMALE ∗ I(x GENDER = MALE)+

bA ∗ I(x STAGE = A) + bPC ∗ I(x STAGE = PC)}. (A.3)

Here bi stands for the weights of each of the properties in xn and the intercept, I(.) represents

the indicator function which equals one if the statement between brackets holds true and zero

otherwise. A and PC stand for the adenoma and preclinical stages respectively. γ is an individual

risk factor, a random value that is drawn for all patients individually and remains constant during

their lives. It is responsible for the correlation between the Hb concentrations obtained in the
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same patients. Its distribution is γ ∼ N (0, σ).

Table 3 gives an overview of the calibrated values. Figure A.1 displays histograms of the

theoretical Hb concentration distribution for each of the three stages for a fixed age and gender.

Note that the distribution is highly zero-inflated, especially for the healthy and adenoma stages.

Therefore, the histograms are also shown for larger Hb values. In turn, the distribution for

the preclinical stage is highly skewed: the three theoretical distributions generate maximum Hb

values of 632, 1406 and 4968590 respectively.

Table 3: Overview of the variables in the model for Hb concentrations and their values.

Symbol Description Value

ϕ(H) Probability of inflated zero for healthy stage 0.840
ϕ(A) Probability of inflated zero for adenoma stage 0.644
ϕ(PC) Probability of inflated zero for preclinical stage 0.032
bINTERCEPT Intercept 1.481
bAGE Weight of age factor 0.0181
bMALE Weight of gender factor 0.2832
bAGE Weight of adenoma stage 0.609
bPC Weight of preclinical stage 8.74
θ Dispersion factor 0.262
σ Standard deviation of individual risk factor distribution 0.1120

Figure A.2 shows the Hb value distribution for a given cancer stage as observed in the Dutch

screening programme. We observe that the theoretical distribution needs further calibration,

especially the preclinical cancer stage, since it is not similar to the observed distribution. This

is also confirmed by the maxima of the distributions mentioned above as the observed Hb values

merely exceed 300µg/g.
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Figure A.1: Histograms of the simulated ZINB-distributions for each of the three cancer stages
with the given parameters. The upper plot displays the Hb concentrations between 0 and 100,
the bottom plot shows them between 50 and 500. The age is set constant at 55 and gender is
fixed at male. Each of the histograms was generated with 1e7 individuals.

Figure A.2: Histograms of the observed Hb concentration given the result of a consequent
colonoscopy in the Dutch screening programme. From left to right, the states healthy, ade-
noma and preclinical cancer are displayed. The horizontal axis represents the observed Hb value,
ranging from 50 to 300µg/g. The vertical axes show the density, ranging from 0 to 0.0150. Only
Hb values above 50µg/g are shown: we only observe a patient’s cancer stage with a colonoscopy
after the patient tested positive, i.e. obtained a concentration above 47µg/g.
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B Rewards used in RL algorithm

Our RL algorithm is based on maximizing the reward, where the Quality Adjusted Life Years

(QALYs) gained are maximized, and the Costs are minimized. The screening tests that are used

have fixed QALYs and Costs, which are extracted from Peterse et al. [2021] and can be found

in Table 4.

Table 4: Used (negative) rewards per screening test

Test QALYs Costs

Negative FIT -0.000063 $ 40.00
Positive FIT -0.00133 $ 40.00
Negative Colonoscopy -0.000496 $ 1,279.00
Positive Colonoscopy -0.001401 $ 1,656.00

When CRC is detected, we get treatment or surveillance costs, which are also incorporated

in the rewards. These costs depend on the state of the person’s disease (see Figure 2.1) and

the time a person is in these states. The used costs can be found in Table 5, which are also

extracted from Peterse et al. [2021].

Table 5: Used (negative) rewards per year that a person is in a specific state

Initial care a Continuing care b

QALYs Costs QALYs Costs

Clinical/Screen-detectable 1 -0.12 $ 42,763.00 -0.05 $ 4,301.00
Clinical/Screen-detectable 2 -0.18 $ 58,796.00 -0.05 $ 4,944.00
Clinical/Screen-detectable 3 -0.24 $ 83,247.00 -0.24 $ 7,456.00
Clinical/Screen-detectable 4 -0.7 $ 121,828.00 -0.7 $ 34,017.00

Terminal care c Terminal care, other cause d

QALYs Costs QALYs Costs

Clinical/Screen-detectable 1 -0.7 $ 82,519.00 -0.05 $ 25,450.00
Clinical/Screen-detectable 2 -0.7 $ 92,366.00 -0.05 $ 26,997.00
Clinical/Screen-detectable 3 -0.7 $ 96,461.00 -0.24 $ 35,026.00
Clinical/Screen-detectable 4 -0.7 $ 119,979.00 -0.7 $ 77,051.00

a The first year after CRC is found
b The years between the first year and last year of the person after CRC is found
c The last year before the person dies of CRC
d The last year before the person dies to an other cause

In training, it is not simply possible to calculate the QALYs gained of a postponed death due

to the screening program since we do not know when the person would have died if he did not

participate in the screening program. This is because cancer gets an entirely different simulation

if screening is incorporated. However, we do know when the person would have died without
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CRC since this was determined before the simulation. Therefore, we know if the person died

earlier due to CRC, which we see as a loss in QALYs. Assuming that screening would reduce

this loss, we take this as a negative reward, which then can be maximized.

C Conversation storage problem MPQ-learning

“Dear Prof. Mandow,

Currently, I am writing my master thesis and I have read your paper “A temporal difference
method for multi-objective reinforcement learning”. I believe MPQ-learning is a really interest-
ing method and I consider using it in my thesis. However, I initially considered Pareto Q-learning
of Van Moffaert and Nowé, 2014.

In your research it is claimed that MPQ-learning need less storage space:

“However, in [18] memory requirements are likely to be larger, due to: (i) the need to keep track
of the expected rewards and transition probabilities of all transitions visited during the learning
phase, and (ii) the need to store sets of optimal values NDt(s, a, s ) for all transitions from
a state s to s through action a at time step t, rather than the sets of optimal values per state
s calculated by our Q-learning approach, that are typically a subset of the optimal values of all
transitions to s . ” - Ruiz-Montiel et al., 2017

However, there is no concrete comparison between the two methods and I wonder if you could
explain to me why MPQ-learning is better. Is the difference mainly storage without loss in per-
formance or is there a trade-off between these two? In both researches I cannot find anything
about the size of state-spaces the methods are capable of solving, so it is hard to decide when
storage actually becomes an issue.

Perhaps you have experienced more in practice and you could help me by deciding which method
to choose. I am eager to receive your reply.

Sincerely,

Michael van der Zwan

(Erasmus University Rotterdam)”
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“Dear Michael,

Thank you for reading our paper. Any comments and/or suggestions will be welcome.

Let me try to answer your question from two perspectives: theoretical and practical.

From a theoretical point of view, MPQ and Pareto Q (PQ) are actually different kinds of algo-
rithms. In my humble opinion, the best way to understand PQ is as a multiobjective extension
of Value Iteration (rather than Q-learning). I am not sure I recall all the specific details of PQ
right now, but I think the paragraph you mention refers to the fact that PQ needs to store more
heavy data sets (the ND sets) than MPQ for each visited transition.

About 40 years ago, White analyzed the problem of multi-objective dynamic programming and
proposed an exact algorithm. However, I am not aware of any practical applications of that
algorithm. Why? Probably because even very simple MORL problems can have an exponential
(or even infinite) number of solutions, which makes it impractical to apply exact algorithms.
Both PQ and MPQ address this same problem (in the case where transition probabilities are
unknown), and so are likely bound to have similar limitations in practice. If you want to figure
out how complex it is to approximate the full Pareto set even in simple MORL instances, you
may want to take a look at,

https://arxiv.org/abs/2009.08198

Therefore, my experience and advice is that, unless your problem instance is really really simple
and really really limited, your best chances of success are probably to resort to either,

- A scalarized approach, i.e. reducing the problem to the optimization of some scalar multi-
attribute utility function.

- Some kind of approximation (as opposed to exact) algorithm, in case you really need to ap-
proximate the problem’s Pareto front.

I hope you will find these comments useful. Please, let me know if I can be of further help.

Best,

Lawrence

L. Mandow

Dpto. Lenguajes y Ciencias de la Computación

Universidad de Málaga (Spain)”
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D Results case 5

For the fifth case we added an extra hidden layer, resulting in a Q-network of five hidden
layers with {64, 128, 256, 128, 128} nodes. Furthermore, the used parameter values are shown
in Table 6. The simulation is stopped at 80%, which was after 1,510,000 episodes (excluding
individuals who died before the screening eligible age). The weighted sum in Figure D.2 is
calculated as 86.265

87.265 · QALY s+ 1
87.265 · − costs.

Table 6: Used parameters for the fifth
run

Parameter Case 5

γ 0.97
Memory size 3000
Nτ (Batch size) 192
Nw (Weight numbers) 24
ε 0.5
ε decay FALSE
Update frequency 500
Optimizer Adam
Learning rate 0.05
Homotopy TRUE
Episodes 2.00E+06

Figure D.1: Scatter plot of the QALYs and costs of
the strategies with preference weight of 86.265, ob-
tained after each 10,000 episodes of training. The
colour indicates at what point in the learning process
the strategies were obtained, e.g., the colour at num-
ber 50 is the strategy after 50 × 10,000 episodes of
training. Costs and QALYs were estimated using a
MISCAN simulation with 1,000,000 individuals.

(a) All values (b) The vertical axis is limited to -3.4

Figure D.2: For each policy after 10,000 episodes of training, the weighted sum of the costs and
QALYs are shown.
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