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1 Introduction

The problem’s relevance and description are detailed in this section, along with the three

research questions.

1.1 Veneficus

This thesis is written at Veneficus, a consultancy firm that aims to help its clients make better

decisions by providing data-driven insights. The firm, which was founded in 2007 by three

econometricians, currently employs about 35 people. The majority of Veneficus’ employees

have an econometrics background. The four sectors in which Veneficus operates are retail,

real estate, insurance, and the public sector (Veneficus, 2021). The firm offers solutions in

traditional consultancy project format, but they also offer platform-based solutions. Veneficus

has developed the Houzr platform for the real estate sector, allowing residential real estate

developers to model and optimize new building projects more effectively. Machine learning

algorithms are utilized in the prediction of property values based on home characteristics and

location factors. This thesis aims to improve the underlying model that is used to forecast

property prices.

1.2 Relevance

Real estate valuation is the process of estimating the price of real estate, the accuracy of

which is essential for a multitude of reasons. For mortgage lenders, the valuation can make

or break the sale of a house, depending on how it compares to the offer price. Furthermore,

the banks use the appraisal to calculate the mortgage amount for their customers, which

needs to be accurately given. Additionally, the valuation of newly built real estate is relevant

for project developers to estimate the project’s profitability.

Moreover, transactions in real estate often require appraisals as every property is unique,

given its characteristics, condition, and location. Many factors determine the price of a house.

For example, suppose five terrace houses lie next to each other, all of which are of the same

type and thus have identical characteristics. The leftmost house is situated next to a busy

road, and the rightmost house is adjacent to a quiet canal. Although the functionalities of
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these two houses are the same, the prices will likely differ, as the demand for the rightmost

house will be higher since it is positioned next to the canal. Veneficus currently employs a

model for real estate valuation that values these two houses at the same price, which does

not correspond to reality, as illustrated by the aforementioned example.

Several methods can be employed for predicting house prices. Park and Bae (2015) state

that there are two main research trends, namely using hedonic-based regression approaches,

such as the Hedonic Pricing Model (HPM), or machine learning methods, such as a feedfor-

ward Neural Network, to develop real estate price-prediction models. Literature related to

these methods is discussed in Section 2.

Machine learning methods require careful tuning of their hyperparameters. In this thesis,

Bayesian Hyperparameter Optimization is proposed, which is explained in Section 4.5.

1.3 Problem Description

The data used in this thesis consists of existing and newly built house data. Predicting house

prices, specifically the square meter price, differs between existing and newly built houses.

From now on, the price per square meter will be referred to as the m2 price. Additionally,

house markets differ from apartments markets and can differ per city, meaning that market

heterogeneity exists. Machine learning methods presume that the training and test data have

equivalent distributed features. However, this is not the case with market heterogeneity. It

would imply that the existing house data cannot effectively predict m2 prices of newly built

houses in machine learning. Nonetheless, this data may contain helpful information. Ideally,

one would like to develop a model to account for this market heterogeneity and exploit this

information.

Another difficulty that arises is that the data of the newly built houses have a different

feature space compared to the existing house data. This means that the data of newly built

houses contains additional features about the house’s location, such as whether the backyard

points towards the sun. These extra features are used to predict newly constructed houses

on a building number level, making a separate prediction for each property. Having different

feature spaces causes problems when employing traditional machine learning techniques, as

the input data must have the same dimension.
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In this thesis, the focus is on the valuation of newly built houses. This valuation will

depend on all the house characteristics and idiosyncratic factors that vary for similar types

of houses. To perform the valuation, newly built and existing house data are used, to learn

from the relations present in it. This would preferably result in better model performance.

Additionally, market heterogeneity and the difference in feature space need to be accounted

for and are discussed in Section 4.

1.4 Research Questions

As mentioned before, Veneficus uses a model that values the same types of houses at the same

price. Therefore, a new model is constructed in this thesis that accounts for this issue. Due

to market heterogeneity, the assumption that the train and test set features follow the same

distribution does not hold. Standard machine learning methods cannot deal with differences

in feature spaces in the data, so one needs to account for these issues, which is done using

transfer learning. With transfer learning, the existing house data can be used to predict the

m2 price of the newly built houses more accurately. Currently, Veneficus uses grid-search for

tuning its models’ hyperparameters, which is an inefficient method. Therefore, it is valuable

to analyze a more advanced hyperparameter tuning method. For Veneficus, it is crucial to

provide a clear interpretation of the results of their models so that their clients can understand

what drives these results. From this, the following research questions can be derived:

• Is it possible to estimate the m2 price of a newly constructed house (i.e., on a building

number level) accurately using transfer learning while dealing with market heterogene-

ity and differences in feature space, compared to baseline methods?

• How does adopting Bayesian Hyperparameter Optimization affect model performance,

and will it result in a more efficient algorithm in terms of running time?

• How can one provide an interpretation of the model results? What are the features

most influential in the valuation?
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2 Related work

In this section, literature related to this research is discussed. Firstly, several real estate

valuation methods are described. After this, Bayesian Hyperparameter Optimization is dis-

cussed. In the third paragraph, transfer learning applications are given, and finally, literature

related to the interpretation of machine learning models is discussed.

2.1 Real Estate Valuation Methods

Several methods can be used for real estate valuation. The most traditional approach is the

Hedonic Pricing Model (Sirmans et al., 2005). This method is ubiquitous in existing research

and considers several internal and external features in the estimation of the price of a house

through a regression (Miller Jr & Markosyan, 2003). In the real estate setting, the internal

features are the different characteristics of a house, such as the size, the number of rooms, or

the construction year. The external features relate to the neighborhood or environment of the

property, such as whether there is a school nearby or the average income per neighborhood.

The internal and external features together define the hedonic price of the property.

Pagourtzi et al. (2003) provide a brief overview of some widely used methods in real estate

valuation. They state that the above-mentioned HPM method is relatively straightforward

and that deep learning methods such as a Neural Network (NN) belong to the more advanced

methods. Peterson and Flanagan (2009) state that relative to hedonic pricing models, Neu-

ral Networks generate significantly lower dollar pricing errors and have greater out-of-sample

pricing precision. In addition, they extrapolate better from more volatile pricing environ-

ments when predicting house prices, as multiple layered Neural Networks can model complex

non-linearities.

Selim (2011) examined house prices in Turkey and compared a hedonic property valuation

method with a NN. The authors chose this method as it can identify potential non-linear

patterns. The study demonstrated that the NN resulted in better prediction performance

relative to the hedonic regression.

Limsombunchai (2004) also conducted a comparison between the predictive power of a

hedonic price model and an NN, using a sample of 200 houses in New Zealand. The out-
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of-sample forecasts of the hedonic pricing models were poorer than the NN models, so they

did not outperform them. They speculate that the poor performance of the hedonic price

models is due to the non-linear relationship between features and house prices. Furthermore,

hidden layers of a NN are commonly referred to as ‘black-box,’ which in their opinion is an

unfavorable characteristic since this may cause problems regarding the interpretability of the

model.

Furthermore, other machine learning techniques are used for real estate appraisal. Zhao

et al. (2019) use deep learning combined with eXtreme Gradient Boosting (XGBoost) for

making price predictions in real estate, as they analyze historical sale records to make a

house price prediction. XGBoost has become a prevalent machine learning method over

the last few years and is recognized for its good performance. The research demonstrates

that replacing the last output layer with XGBoost improves the performance of house price

prediction accuracy. According to this literature, Neural Networks and XGBoost models are

more efficient than traditional methods like HPM when predicting real estate prices.

However, not all studies point in the same direction. Worzala et al. (1995) doubt whether

Neural Networks are reliable when they are used for real estate appraisal. The authors claim

that even though the same data is utilized, the results from various NN software packages

might differ. Also, regression models are not always outperformed by NN models. Lenk

et al. (1997) found that the hedonic models and NN models showed similar results, which

contradicts some previous research that argues for the supremacy of Neural Networks. It may

be dependent on the available data which method shows the best performance in predicting

house prices.

2.2 Bayesian Hyperparameter Optimization

Hyperparameters in machine learning must be pre-set before the learning process begins,

and they must be tuned carefully (Snoek et al., 2012). Zhang et al. (2020) declare that

grid-search is commonly used to tune them but that the number of model evaluations in-

creases exponentially as more hyperparameters are taken into account. Zhang et al. (2020)

recommend Bayesian Hyperparameter Optimization (BHO) as an alternative for grid-search.

BHO uses previous model evaluations to find the best set of hyperparameters that minimizes
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the objective function. This optimization approach uses fewer iterations and results in bet-

ter performance of the models, as it iteratively focuses on the hyperparameter spaces where

previous sets of hyperparameters yielded good performance (Bergstra et al., 2013). Veneficus

mostly uses grid-search to tune the models’ hyperparameters. BHO is implemented in this

thesis to tune these hyperparameters.

2.3 Transfer Learning

Pan and Yang (2009) emphasize that the training and test data must span the same feature

space and have the same distribution, which is a crucial assumption in many machine learning

applications. However, this assumption may not hold in many real-world examples. In this

research, one deals with market heterogeneity and differences in feature spaces of the data.

Transfer learning can address this problem, as it allows the feature spaces and the data

distributions to differ. The analysis of TL is inspired by the fact that people can apply

previously acquired knowledge to solve new problems quicker or more precisely. TL aims to

take information from one or more source tasks and apply it to a target task. In this thesis,

the source data is the existing house data, while the target data is the newly built house data.

Ideally, one wants to use relevant information from the former data to make more accurate

predictions on the latter.

There are different types of transfer learning, such as instance-based approaches and

feature-based approaches (Weiss et al., 2016). In the instance-based method, each training

instance’s effect in the target data is estimated using a pre-defined model learned on the

source data. Based on this influence, it is determined whether a training sample is used or

not in the target data. The general idea is thus to take instances from the source data that

are relatively close to the target domain data and use these to make predictions on the target

data. Feature-based approaches aim to minimize the difference in the domain between the

source and target data. The instance-based approach can be used in situations with market

heterogeneity. The feature-based approach is suitable in situations where there is a difference

between feature spaces in the data. This thesis must find a method that can deal with both

market heterogeneity and different feature spaces.

Desautels et al. (2017) conducted a study using TL where they predicted in-hospital
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mortality. The researchers utilized a publicly available dataset as their source material,

including over 50.000 critical care unit stays from 2001 to 2012. The target data consists of

110.000 inpatient contacts from a San Francisco hospital. The wards and departments from

which these datasets are derived differ in a variety of ways. While retaining high predictive

accuracy, the researchers emphasize that the TL approach significantly decreases the target

data collection workload. They used weighted combinations of source and target data to

train the classifier. As a result, the performance of the classifier based on the target data

was significantly enhanced.

Fawaz et al. (2018) use transfer learning for a time series task with deep Neural Networks.

The researchers performed experiments with 85 datasets to investigate the potential of TL.

They pre-trained a model on each dataset and then fine-tuned it on the other datasets,

yielding 7.140 different deep Neural Networks. They note that TL can both improve or

degrade the model predictions, depending on the dataset. Using inter-dataset similarities,

they designed a method that chooses the best source dataset for a target dataset, which

improves accuracy on 84% of the datasets.

2.4 Model Interpretation

Lundberg and Lee (2017) state that understanding why a model makes specific predictions

is in many applications equally crucial as the prediction’s accuracy. The highest accuracy

for large modern datasets is often achieved by complex models that are hard to interpret,

such as machine learning models. This phenomenon creates a trade-off between accuracy and

interpretability. They present a framework that can be used for interpreting predictions called

SHAP (SHapley Additive exPlanations). This framework assigns a value to each feature used

in a particular model, which describes its importance. These values measure the change in

the prediction of the expected model conditional on that feature. In this way, predictions

from complex models can be related to human intuition. These SHAP values are exploited

in this thesis as complex deep learning models are used, and the outcomes of these models

should be interpretable for the clients of Veneficus.
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3 Data Exploration

This section describes the data that is used in this thesis and how the data is collected.

Moreover, it is described how outliers are treated, and a dependent variable analysis is

conducted. Finally, correlations between the m2 price and some independent variables are

presented.

3.1 Data Description

The primary data that is used in this research consists of existing and newly built house data.

The existing house data consists of all data that is not from newly built house projects.

The data ranges from 2019 up until the present. The existing house data and the newly

built house data consist of approximately 154.000 observations and 14.000 observations, re-

spectably. This data is scraped from several websites. The existing house data is scraped

from http://www.jaap.nl, and the newly built house data is scraped from:

• http://www.nieuwbouw-nederland.nl/gemeenten;

• http://www.nieuwbouw-nuenenwest.nl;

• http://www.am.nl;

• http://woningaanbod.heijmans.com;

• http://www.vanwanrooij.nl;

• http://www.vorm.nl;

• http://www.bergenopzoom.hetnieuwbouwplatform.nl;

• http://www.{amsterdam, utrecht, breda, groningen, meppel}woont.nl.

However, some observations from both datasets are not helpful, so the data must be

filtered first. The two datasets consist of various types of houses, with all their respective

characteristics. These include, for example, the m2 price, the size of the floor space, and

the number of bedrooms. The newly built house data is enriched with extra features of the
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houses or apartments that can not be scraped accurately. For that reason, these features are

added manually to the data. These include, for example, whether a house has a backyard

and in which direction it points, or whether an apartment has a balcony or a terrace, and

how many square meters it is. Other data used for both the existing and newly built house

data is neighborhood data obtained from Centraal Bureau Statistiek (CBS). CBS is an office

that keeps track of disparate kinds of statistics in the Netherlands. The CBS data used

includes all characteristics of a particular neighborhood, such as a school, a sports club, or

a supermarket nearby the house or apartment. Hereafter, feature engineering is applied to

create dummies for the house type and whether the city is Amsterdam.

Moreover, based on the scraped date, all house m2 prices are adjusted with the quarterly

house inflation rate per province. The data mentioned above is available in the SQL database

of Veneficus. An overview of the features that are available for the existing and newly built

house data is presented in Table 1 in the Appendix. The data pipeline for the existing and

newly built house data is shown in Figure 1:

Figure 1: Data pipeline for existing and newly built house data

3.2 Outliers

For outlier detection, the lowest or highest quantiles are removed from the data for four

crucial features, which significantly influence the employed models. The following criteria

are used to remove outliers:

• The latitude should be between 50.7 and 53.6

• The longitude should be between 3.09 and 7.3
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• The living area should be between 25 and 250

• The price should be between 75.000 and 1.500.000

Table 1 shows the number of observations that are left after applying these criteria:

Table 1: Remaining observations after data cleaning for both existing and newly built house data.

Existing Newly built

Houses 154.310 11.247

Features 23 37

3.3 Dependent Variable Analysis

This thesis aims to predict the m2 price of newly built houses, implying that the m2 price

is the dependent variable. Figure 2 displays the density plots of the m2 price for both the

existing and newly built house data. It is observed that in general, the newly built houses

have a higher price per square meter.

Figure 2: Density plots of the m2 price for existing (red) and newly built (green) house data.

The data distributions of the m2 price seem to differ between the existing and the newly

built house data. Table 2 highlights the descriptive statistics for the two datasets. The

kurtosis indicates how tall and sharp the central peak is in the m2 pricing distribution.

Furthermore, the skewness indicates how much the data distribution is symmetrical, where
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the density plots in Figure 2 suggest that the data is skewed to the right. Table 2 shows

that the skewness of the existing house data is 1.4, and 1.74 for the newly built house data,

which confirms that the data is skewed to the right, as both are different from zero. One

may consider a data transformation, such as taking the natural logarithm, which results in

a more symmetrical distribution of the dependent variable.

Furthermore, one notices that the minimum and the maximum m2 prices are higher

for newly built houses than existing ones, as is the case for the mean, median, and mode.

The standard deviation is greater for the newly built houses, which can be elucidated in

Table 1. With 154.310 observations, the dataset of existing houses is significantly more

extensive relative to the 11.247 observations of the newly built houses. Since the spread of

the observations is narrower for larger samples, the standard deviation of the sample mean

decreases.

Table 2: Descriptive statistics for the existing and newly built house data.

Existing Newly built

Mean 2.768 3.579

Standard deviation 850 980

Median 2.641 3.379

Mode 2.500 3.000

Skewness 1.40 1.74

Kurtosis 4.38 6.20

Mimimum 670 705

Maximum 10.761 12.987

Moreover, the correlation between the m2 price and the independent features is calcu-

lated. As these features seem to influence the price of the house, it is expected that these

features are essential drivers for the model predictions, which is discussed in Section 5.4.

The correlations between some crucial features and the m2 price are shown in Table 3. No-

ticeably, the sign of the correlations is the same for the existing and the newly built house

data. However, the magnitude of the correlations differs. ‘gem woningwaarde 2019’ and

‘inkomen gem per inwoner 2017’ are indicators for the average house price in 2019 and the
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average income in 2017. These features seem to significantly impact the m2 price, as the

magnitude of its correlations is the largest for both the existing and newly built house data.

Table 3: Correlations between the m2 price of the house and some crucial features for the existing and newly built house data.

Feature Existing Newly built

latitude 0.04 0.15

longitude -0.30 -0.26

property type vrijstaand 0.17 0.23

kaveloppervlakte m2 0.15 0.26

afstandtotbelangrijkoverstapstation -0.19 -0.35

adressendichtheid 2019 0.20 0.18

bevolkingsdichtheid 2019 0.17 0.04

dummy amsterdam 0.19 0.37

gem woningwaarde 2019 0.61 0.43

inkomen gem per inwoner 2017 0.51 0.48

prc oppervlakte water 2019 0.10 0.21

distance shoreline -0.09 -0.31

The main differences between the existing and newly built house data are reflected in

the m2 price and the number of features. It is expected that data containing more features

has more predictive power. Transfer learning may be used to create a model that predicts

prices using both datasets, which is further discussed in Section 4.8. The differences in m2

price can be explained by the construction year of the data. As mentioned in Section 3.1, the

newly built data is scraped from 2019 until the present, which means that this data spans a

relatively short period. In the past, many circumstances influenced the housing market, such

as the Second World War creating a decline in house prices. Figure 3 shows the average m2

price of houses from 1920 until 2021, and observably, the m2 price has fluctuated over the

years. Moreover, around 1960, many new houses were built, resulting in a significant dip in

house prices, but over the last 40 years, house prices upsurged tremendously. However, a dip

in house prices was noticed around 2010 as a result of the Great Recession. The differing

construction years in the two datasets can therefore be an explanation for the difference in
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the density plots in Figure 2.

Figure 3: The average m2 price of houses in the period 1920-2021.

4 Methodology

In this section, the methodology is discussed that answers the research questions. Firstly, the

generalization performance is deliberated. Secondly, model selection, regression and classifi-

cation approach, and scaling, are debated. Hereafter, Bayesian Hyperparameter Optimiza-

tion is explained. The following section describes how Neural Networks, boosting methods,

transfer learning, and Heterogeneous Feature Augmentation work and how these methods

are implemented. Lastly, SHAP values are discussed.

4.1 Generalization Performance

The generalization performance of the models in the regression context is measured using the

Mean Squared Error (MSE) and Mean Average Percentage Error (MAPE). These metrics are

defined as follows:

MSE = 1
n

n∑
i=1

(
Yi − Ŷi

)2
,
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MAPE = 1
n

n∑
i=1

∣∣∣∣∣Yi − ŶiYi

∣∣∣∣∣ ,
where n stands for the number of observations, Yi for the actual m2 price of the property, and

Ŷi for the predicted m2 price of the property. The Mean Squared Error (MSE) measures the

average squared difference between the actual and the predicted prices. The MAPE measures

the average percentage absolute price error. When the MSE is minimized, observations with

a significant error due to the square are given relatively more weight. Both metrics are widely

used and are desired to be as small as possible (Hyndman et al., 2006). The MSE is scale-

dependent, so it does not make sense to compare accuracies on different scales. Furthermore,

from the business perspective, MAPE is popular, as percentage errors are easy to interpret.

For the classification context, the generalization performance is measured using the ac-

curacy and the macro F1-score. Recall that accuracy is defined as the number of correct

predictions divided by the total number of predictions. Furthermore, the F1 score for class i

is defined as:

F1i = 2 · recalli · precisioni
recalli + precisioni

.

The macro-F1-score is the average of the F1 scores over all K classes as 1
K

∑K
i=1 F1i. The

macro-F1-score is utilized, as predicting each class is considered equally important.

4.2 Model Selection

As the NN and the XGBoost model cannot deal with different feature spaces, the existing

and newly built house data are merged into one dataset that contains the features of the

existing house data and hence does not contain the extra features that are used in the TL

model. This dataset is divided into a training set, containing 80% of the data and a test

set, containing 20% of the data. Observations from the same building project in the training

and the test data may cause a prediction bias. This is the case since these houses have

similar characteristics and prices and are therefore relatively easy to predict in the test set

if the models are trained on the train set. Therefore, for constructing the training and test

set, it is ensured that observations from the same building project are either in the train

set or in the test set. In order to select the best sets of hyperparameters for the models,
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five-fold cross-validation is used. In k-fold cross-validation, the training data is divided in

k equally sized folds. Following that, k rounds of training and validation are carried out,

with each iteration holding out a different fold of the data for validation and the remaining

k−1 folds being utilized for learning (Refaeilzadeh et al., 2009). Hence, five different folds of

the training data are used as a validation set for hyperparameter tuning of the models. The

tuning of the hyperparameters is carried out using Bayesian Hyperparameter Optimization

and Grid-Search as baseline method, these methods are discussed in Section 4.5.

For the heterogeneous transfer learning model, which is discussed in Section 4.8.2, it is

preferable to exploit all observations of the existing house data (source data) as training

data, along with 80% of newly built house data (target data). Hence, only 20% of the newly

built house data is used as test data. Here, it is also the case that the test and training data

do not contain observations from the same building project. Figure 4 shows a visualisation

of the model selection process, based on the complete data and the subset of the data. The

generalization performance is measured on the test set to prevent bias for the regression

and classification approaches. However, it turned out that using all the observations in the

heterogeneous transfer learning model was not computationally feasible, the reason for this

non-feasibility is clarified in Section 4.8.2. Therefore, the following sub-sample of the data

is taken for the heterogeneous transfer learning method: the source data consists of 8.000

observations, the target data of 4000 observations, and the test data of 300 observations.

This method is compared with the NN and the XGBoost model using the same sub-sample

of the data.

Figure 4: Model selection process for Neural Network and XGBoost, using the complete dataset (left), and for Heterogeneous

Feature Augmentation, Neural Network, and XGBoost, using a subset of the data (right).

4.3 Regression and Classification Approach

This thesis aims to predict newly built house prices, which corresponds to a regression prob-

lem, as a numerical value is predicted. This prediction is carried out by adopting a NN and
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an XGBoost model, described in detail in Sections 4.6 and 4.7, respectively. These methods’

hyperparameters are tuned using BHO and Grid-Search, which are described in Section 4.5.

In Heterogeneous Feature Augmentation (HFA), which is described in detail in Section

4.8.2, Shi et al. (2010) propose a framework where HFA is applied in a classification context,

and the global solution is found using Support Vector Classification (SVC). The authors

state that HFA can be ”readily incorporated into different methods, such as Support Vector

Regression (SVR)”. However, putting this method into practice in a regression environment

was not as simple as described. After putting in much effort, the underlying mathematics

turned out to be too complicated to derive. Therefore, HFA is utilized in a classification

context. The m2 prices of each observation are assigned to m ordered buckets, where the

buckets are ordered, and bucket zero corresponds to the observations with the lowest m2

price. Bucket m corresponds to the observations with the highest m2 price. Hereafter, HFA

is applied, and it is evaluated whether this method assigns the observations into its actual

buckets, this process is executed using 5, 8, and 11 buckets. HFA is compared with NN

and XGBoost in the classification context by looking at the accuracy and the micro F1-score,

which is done using a sub-sample of the data as described in Section 4.2. The hyperparameters

of the NN and XGBoost model are tuned using BHO. Table 4 shows how the buckets are

composed, which is based on the distribution of the m2 price shown in Figure 2.

4.4 Scaling

In Section 3.3 it is concluded that the m2 price of the houses is skewed to the right. Therefore,

this variable’s natural logarithm is taken to make the data distribution more symmetrical in

the regression context. Furthermore, in the regression and classification context, the data is

normalized, as Al Shalabi et al. (2006) mentioned that normalizing the data improves model

performance for machine learning methods. They tested two normalization methods which

are Z-score normalization and min-max normalization. The min-max method demonstrated

the best performance, so this method is used in this thesis for scaling the data. Each feature

is scaled as follows so that every observation has values between one and zero:

xi −min(x)
max(x)−min(x) ,
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Table 4: Composition of the m buckets, with m = 5, 8, 11

Five buckets Eight buckets Eleven buckets bucket

m2 price (0, 1500] (0, 1500] (0, 1500] 1

(1500, 2500] (1500, 2000] (1500, 1900] 2

(2500, 3500] (2000, 2500] (1900, 2300] 3

(3500, 4500] (2500, 3000] (2300, 2700] 4

(4500, ∞] (3000, 3500] (2700, 3100] 5

(3500, 4000] (3100, 3500] 6

(4000, 5000] (3500, 3900] 7

(5000, ∞] (3900, 4300] 8

(4300, 4700] 9

(4700, 5500] 10

(5500, ∞] 11

where xi is a value of a feature vector x with length n. The scaling is executed for all p feature

vectors for the NN, XGBoost, and HFA. However, XGBoost is unaffected by monotonic

feature transformations, so establishing a split on one scale results in a similar split on the

transformed scale (Meng et al., 2020). Thus, scaling has no effect for XGBoost, but the

features of all methods are scaled for simplicity.

4.5 Bayesian Hyperparameter Optimization

The key goal of hyperparameter optimization is to find the best set of hyperparameters

for which the highest generalization performance on the validation set is obtained. For

optimization of the hyperparameters, the following objective value f(x) is minimized on the

validation set with respect to its hyperparameters:

x? = arg min
x∈X

f(x). (1)

In this case, x denotes the set of hyperparameters while X denotes the hyperparameter

space, and x∗ indicates the hyperparameters for which the lowest mean squared error on

the validation set is obtained. Grid search, which is currently exploited at Veneficus, is

17



a method for determining the best hyperparameters by experimenting with various sets of

hyperparameters that the researcher specifies. However, the method is inefficient as it is not

informed of the previous evaluations of the sets of hyperparameters. As a result, grid search

is a tedious method as it attempts to try sets of hyperparameters with low generalization

performance making it a time-consuming approach. On the other hand, BHO algorithms

iteratively focus on hyperparameter spaces that produce strong results.

However, it may be the case that BHO focuses too much on promising regions. In contrast,

the unpromising regions are left unexplored, where in theory, the global minimum may happen

to lie there. However, as stated by Zhang et al. (2020), BHO produces promising results, and

therefore, the hyperparameter tuning for the NN, the XGBoost model, and the HFA model is

done using BHO. Most of the hyperparameter optimization algorithms minimize the objective

function, therefore the MSE is provided to the algorithm. The sets of hyperparameters that

provide the minimum MSE score on the validation set are selected. The HyperOpt package

in Python is used to implement BHO.

In the regression approach in this thesis, the NN and the XGBoost models’ hyperpa-

rameters are tuned using both Grid-Search and BHO. The hyperparameter spaces of BHO

and Grid-Search contain the same extreme values per hyperparameter, but BHO contains all

numbers in the span between these extremes, while Grid-Search contains sets of pre-selected

values. The performance, the time, and the number of function evaluations are compared for

both the hyperparameter optimization methods. These results are discussed in Section 5.3.

Evaluating the objective function f(x) in (1) is computationally expensive. To evaluate

the function, the algorithm must be trained using the hyperparameter set x ∈ X . This

means that the algorithm needs to be trained from scratch for evaluating each different

set of hyperparameters. Therefore, BHO uses a surrogate function Ω that is less costly to

optimize relative to the original objective function f(x). It is possible to represent Ω as

a probabilistic model defined as Ω = p(y|x) with y the objective value and x the set of

hyperparameters. Subsequently, the Ω function is used to build the selection function S for

finding the most promising collection of hyperparameters. This is accomplished by using the

Sequential Model-Based Optimization (SMBO) algorithm (Bergstra et al., 2011). Moreover,

the Tree-structured Parzen estimator serves as the surrogate function S.
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4.5.1 Sequential Model-Based Optimization

The SMBO algorithm builds the selection function S by using the initial selection function

Ω0, whereafter the set of hyperparameters xi is picked that minimizes the selection function.

Hereafter, the objective function value for iteration i is computed using the computationally

costly objective function f(xi). It is expensive to compute the objective value with a fresh

set of hyperparameters since it necessitates training the algorithm from scratch. Optimizing

the selection function allows examining only the most promising sets of hyperparameters. At

each iteration i, the generalization performance and the corresponding hyperparameters are

stored, and Ω is updated according to the posterior beliefs. Finally, the algorithm saves the

values y and the hyperparameters x, and the collection of hyperparameters that yield the

best results is chosen. A hypothetical example illustrates this process. Suppose that there is

an objective function c(x), given some input x that needs to be minimized. The true shape

of this function is hidden from the optimizer, where a surrogate function is formed based

on some sample points, shown in Figure 5a. Based on this surrogate function, points that

are promising minima are identified, and hereafter, more points in the promising regions are

sampled, and the surrogate function is updated accordingly, which is shown in Figure 5b.

(a) First iteration of the algorithm. (b) Second iteration of the algorithm.

Figure 5: The objective function, denoted in blue, and the surrogate function, denoted in dashed and light-blue. The circled

points denote the promising minima. The surrogate function is updated from the left graph to the right graph.

4.5.2 Tree-structured Parzen Estimator

The surrogate function Ω is the probabilistic representation of the objective function f ,

and it needs to be computationally cheap. As mentioned above, this surrogate function is

updated at each iteration with the posterior beliefs. Surrogate functions often utilized include

Gaussian Processes, Random Forests, and the Tree Parzen Estimators (TPE). The latter is
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used in this thesis, as suggested by Bergstra et al. (2011). This estimators models p(y|x) by

utilizing Bayes’ law:

p(y|x) = p(x|y)p(y)
p(x)

In every iteration of the SMBO algorithm, the set of hyperparameters that minimizes S is

evaluated using the objective function f . One of the most popular options for S is Expected

Improvement and is used in this thesis (Bergstra et al., 2011). The SMBO algorithm places a

greater emphasis on the hyperparameter space where previous hyperparameters demonstrated

exemplary performance. Thus, the algorithm incorporates knowledge from earlier iterations

and concentrates on the hyperparameter space with the highest potential.

4.6 Neural Network

The Universal Approximation Theorem states that a NN can approximate any continuous

function with a sufficiently sizeable hidden layer (Hornik et al., 1989). Neural Networks can

capture complex relationships in the data. For estimating house prices, a NN is employed

since it can deal with potential non-linear patterns in the data. The NN together with BHO

is implemented by combining the Keras and HyperOpt packages in Python. The following

three subsections discuss the design that is chosen for the NN.

4.6.1 Architecture

Géron (2019) states that a feedforward NN can model almost every continuous function

by using only one or two hidden layers. The feedforward NN architecture has an input, a

hidden, and an output layer. In the input layer, the data is fed to the network. The number

of neurons in the input layer equals the number of features that the input data contains.

Weights are assigned to the input data by the hidden layer, which then delivers them to the

output layer through activation functions. Moreover, by using an activation function, the

output layer generates the final prediction. Figure 6 highlights an example of a feedforward

NN design in a regression context, which contains one input layer with four neurons, one

hidden layer with five neurons, and one output layer with one neuron. In practice, Géron

(2019) emphasizes that using more layers and neurons than one requires, in combination
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with regularization approaches, prevents the model from overfitting. Typically, the number

of hidden layers ranges from one to two, and the number of neurons per hidden layer ranges

from ten to a hundred. These are included in the hyperparameter space, which is shown in

Table 5 (Géron, 2019).

Figure 6: Architecture of a feedforward NN in a regression context.

4.6.2 Activation Functions

In a feedforward NN, activation functions are utilized in the hidden layer(s) and output

layer. When the network is given input data X = X1, ..., Xk, with k neurons, the inputs are

multiplied with the coefficients, and these serve as input for the first hidden layer:

aj =
k∑
i=1

β
(1)
ji Xi + β

(1)
j0 ,

where β(1)
ji is the coefficient from input neuron i to hidden neuron j, and β(1)

j0 is the bias term.

These inputs for the hidden layer aj are transformed through the activation function h, after

which the output zj from the hidden layer is obtained:

zj = h (aj) , j = 1, . . . ,M,

where zj is the output of the j-th neuron in the hidden layer and M the number of neutrons

in the hidden layer. In the case of only one hidden layer, zj is multiplied by the second set

of coefficients and forms the output layer’s input:

ak =
M∑
j=1

β
(2)
kj zj + β

(2)
k0 ,
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where ak is the input for the output layer. In the final step, ak is imputed in the output layer

activation function, denoted by σ, where the final prediction is made:

ŷ = σ(a).

The output activation function has a direct link to the problem objective. For numerical

prediction, the linear activation function is used in the output layer:

σ(a) = a.

For multiclass prediction, the softmax activation function is used in the output layer:

σ(a)i = eai∑K
i−1 e

aj
for i = 1, . . . , K,

where K stands for the number of classes.

The Rectified Linear Unit (ReLU) is regarded as an activation function for hidden layers

since it is one of the most often employed activation functions. The ReLU activation function

is defined as follows:

hReLU(a) = max(0, a).

However, this function is not flawless, as it may suffer from the dying ReLU problem, which

states that specific neurons always present a zero as output. This is because the weighted

sum of the neuron inputs is negative for all occurrences in the training set. This means that

Gradient Descent does not change the fact that the neurons keep outputting zeros since the

ReLU’s gradient is zero when its input is negative (Géron, 2019). Clevert et al. (2015) suggest

the Exponential Linear Unit (ELU) activation function as a solution to this challenge, which

shortened training time and demonstrated fewer mean squared errors in their studies when

compared to the ReLU function. Moreover, the ELU function has a nonzero gradient for

a < 0, which solves the dying ReLU problem. The ELU activation function is defined as

follows:

hELU(z) =

 exp(a)− 1 if a < 0;

a if a ≥ 0.

Both the ReLu and ELU activation functions are included in the hyperparameter space

that is shown in Table 5.
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4.6.3 Hyperparameters

Besides the architecture and the activation function hyperparameters, Géron (2019) states

that the learning rate, the optimizer, and the batch size are the essential hyperparameters

to tune. The NN is trained by optimizing the coefficients. To do so, the gradients of the

coefficients need to be obtained. The backpropagation algorithm is used to calculate these

gradients. The details of this algorithm can be found in the paper by Rumelhart et al. (1986).

Furthermore, Adaptive Moment Estimation (Adam) and Nesterov-accelerated Adaptive

Moment Estimation (Nadam) are included in the hyperparameter space as optimizers, as

suggested by Géron (2019). These algorithms are used for updating the coefficients and

thus for the training of the NN. Each time the model weights are updated, the learning rate

determines how much the model is altered in response to the predicted error. The batch

size controls the accuracy of the estimate of the error gradient. See Table 5 for the list of

hyperparameters of the NN that is optimized with BHO.

4.6.4 Regularization

The overfitting problem is a severe issue when training Neural Networks. When a model

learns the details and noise in the training data to the point where it degrades the model’s

performance on new data, this is known as overfitting. One can reduce the risk of overfitting

by applying regularization techniques. The dropout method is one of the most popular and

effective regularization algorithms for training Neural Networks, according to Géron (2019).

In the dropout method, each neuron has a chance p that it is ignored in a training step. This

hyperparameter p needs to be tuned. Therefore, the dropout hyperparameter is also included

in the hyperparameter space.

Furthermore, the early stopping method is used as another method to avoid overfitting.

If the loss function does not decrease after ten iterations, the training of the algorithm is

stopped. The entire hyperparameter space that is used for hyperparameter optimization is

shown in Table 5.
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Table 5: Hyperparameter space for the Neural Network for Bayesian Hyperparameter Optimization.

Hyperparameter Range Description

num.dense.layers [1, 2] Number of hidden layers

num.dense.nodes unif(10, 100) Number of neurons for each hidden layer

learning.rate unif(0.0001, 0.2) Learning rate for optimization algorithm

batch.size unif(1024, 5120) Number of samples that are propagated

activation.function [ReLU, ELU] Activation functions for the hidden layer

dropout.rate unif(0, 0.5) Probability of being temporarily dropped out

optimizer.name [Adam, Nadam] Optimization algorithm

As mentioned earlier, the hyperparameters are also tuned using Grid-search. The combi-

nations of hyperparameters that are evaluated using Grid-Search are listed in Table 6. Note

that per hyperparameter, the lowest and highest value of the hyperparameter space of BHO

is included in the Grid-Search hyperparameter space. The description of the features is the

same as in Table 5.

Table 6: Hyperparameter space for the Neural Network for Grid-Search.

Hyperparameter Values

num.dense.layers [1, 2]

num.dense.nodes [10, 55, 100]

learning.rate [0.0001, 0.001, 0.01, 0.02]

batch.size [1024, 2048, 3072, 4096, 5120]

activation.function [ReLU, ELU]

dropout.rate [0.1, 0.25, 0.5]

optimizer.name [Adam, Nadam]

4.7 Boosting Methods

Boosting is an ensemble learning method that combines several weak learners into a strong

learner. Weak learners are known for their limited predictive ability and are often decision

trees with a limited depth. Boosting combines their strengths into a more robust model with

a strong performance relative to the weak learners. Three boosting methods are discussed,

which are AdaBoost, Gradient Boosting, and XGBoost. The following subsections briefly
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explain how boosting methods work, and these subsections work towards the explanation

of Extreme Gradient Boosting. This thesis utilizes only Extreme Gradient Boosting since

XGBoost is an optimized version of Gradient Boosting. However, XGBoost is based on

Gradient Boosting, and Gradient Boosting is based on AdaBoost. Therefore, all these three

methods are described.

4.7.1 Relevance

Boosting methods can be used in a regression setting, in which numerical values are pre-

dicted. The idea of boosting is to train weak learners by focusing on observations where

the model showed poor performance. Hence, the previous model is boosted or updated.

Therefore, compared to single machine learning approaches, boosting represents a significant

improvement.

4.7.1.1 AdaBoost

Freund and Schapire (1997) suggested the AdaBoost boosting algorithm. AdaBoost is a

boosting method that adopts single split decision trees as weak learners. Besides classifica-

tion, AdaBoost can also be used for regression purposes. This is done by minimizing the mean

squared error loss function. The regression problem is then reduced to a binary classification

problem. For classification purposes, the accuracy is minimized. The algorithm is consid-

ered fast and straightforward to implement. However, AdaBoost is sensitive for outliers, as

it builds each tree on previous trees’ errors. This means that excessive weight is assigned

to these outlying observations (Freund & Schapire, 1997). AdaBoost can be generalized by

considering it as an additive model, where a prediction f̂(x) is constructed as a weighted

sum of weak learners:

f̂(x) =
M∑
m=1

βmb (x, γm) ,

where βm’s are the expansion coefficients, and b (x, γm)’s are weak learners with parameter

γm. In every iteration i, βm, and γm are calculated to minimize the exponential loss function

when imputed in the former model. The complete AdaBoost algorithm can be found in the

work of Freund and Schapire (1997).
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4.7.1.2 Gradient Boosting

As mentioned before, Gradient Boosting is based on AdaBoost. The main idea of Gradient

Boosting is to obtain an improved model based on an initial guess by deploying the Gradient

Descent algorithm. Using the gradient of the loss function, which is approximated by the

first-order Taylor expansion, a regression tree can be fitted on observations computed in

the gradient. Here, a constant can be computed that optimizes the loss function in the

former model. Hence, the model is updated using these optimized constants, after which the

procedure is repeated. Furthermore, Gradient Boosting deploys a general loss function, which

implies more flexibility than AdaBoost, which uses an exponential loss function. Gradient

Boosting also pays less attention to observations with a significant error and is, for that

reason, more robust to outliers (Hastie et al., 2001).

4.7.1.3 Extreme Gradient Boosting

Extreme Gradient Boosting is introduced by Chen and Guestrin (2016) and is an extended

version of the aforementioned Gradient Boosting. In XGBoost, regression trees are similarly

fitted to the gradient as in Gradient Boosting. The second-order Taylor expansion is adopted

in XGBoost to produce a more precise approximation of the gradient. The primary difference

is that XGBoost finds an optimum using the hessian rather than the gradient, making it more

accurate. XGBoost also provides more possibilities for regularization, the training is fast,

and it can deal with missing values, the complete XGBoost algorithm can be found in the

work of Chen and Guestrin (2016).

4.7.2 Implementation

XGBoost together with BHO is implemented by combining the XGBoost and the HyperOpt

packages in Python. Again, the hyperparameters are tuned using BHO. These include the

tree booster, the learning task, the maximum depth, and α. A smaller value of the learning

task prevents overfitting. Setting a maximum depth of the tree also prevents overfitting. α

functions as a regularization term on the weights, where a higher value for α leads to a more

conservative model.

Furthermore, early stopping is implemented. If the loss function on the validation set does
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not decrease for ten iterations, the training is stopped. The remaining hyperparameters are

set at their default value. Furthermore, the MSE function is used as the objective function

in the regression context, and the accuracy in the classification context. See Table 7 for the

hyperparameter space of the XGBoost model, which is optimized with BHO.

Table 7: Hyperparameters space for XGBoost for Bayesian Hyperparameter Optimization.

Hyperparameter Range Description

max depth unif(2, 10) Maximum depth of a tree

learning rate unif(0.05, 0.5) Step size shrinkage to prevent overfitting

reg alpha unif(0, 50) L1 regularization term on weights

Moreover, the hyperparameters are tuned using Grid-search, and the combinations of

hyperparameters that are evaluated using Grid-Search are listed in Table 8. Note that again

the lowest and highest value of the hyperparameter space of BHO is included in the Grid-

Search hyperparameter space. The description of the features is the same as in Table 7.

Table 8: Hyperparameters space for XGBoost for Grid-Search.

Hyperparameter Range

max depth [2, 4, 6, 8, 10]

learning rate [0.05, 0.2, 0.35, 0.5]

reg alpha [0, 10, 20, 30, 40, 50]

4.8 Transfer Learning

Almost all machine learning models are built under the assumption that the feature space

of the training and test data are equal and that they follow the same distribution. The

abovementioned assumption is unrealistic in many real-world situations (Pan & Yang, 2009).

In such cases, transfer learning can be applied.

When a machine learning model that has already been trained is utilized to address a

different but related problem, it is referred to as transfer learning. The following example
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demonstrates this: If a simple classifier is trained to predict if a picture contains a dog, the

model’s knowledge may be used to distinguish other animals such as a cat. In TL, it is the

aim to use the information learned in one task to boost generalization in another task. The

weights that are learned by a network in task 1 are transferred to a new task 2. Hence, TL

approaches strive to transfer information from primary tasks to a target task, while standard

machine learning approaches aim to learn each task from scratch (Pan & Yang, 2009).

Wu et al. (2017) state that transfer learning can be split into two main categories: ho-

mogeneous and heterogeneous transfer learning. It holds that the data distributions of the

source and target data set are different for both categories, the feature spaces of the source

and target data are equal in homogeneous transfer learning. For heterogeneous transfer

learning, the dimensions of the feature spaces differ. Day and Khoshgoftaar (2017) state

that heterogeneous transfer learning can be applied in many real-world examples. This data

heterogeneity is challenging to deal with since one must devise a mechanism for bridging the

different feature spaces and data distributions. They present an overview of current method-

ologies that deal with these kinds of situations. In TL, the source tasks must be somehow

related to the target task. Negative transfer learning occurs when the information on the

source data affects the predictions on the target data in a negative way. In such a case, the

source task is irrelevant for the target task. For example, a data collection comprising of

bird images will not assist in predicting the nationality of photographs of humans worldwide.

The model that was trained on bird data will not enhance the picture data set predictions

but may even impair it.

4.8.1 Heterogeneous Transfer Learning

Heterogeneous transfer learning is characterized by different feature spaces in the source and

target domains, but it can also be coupled with other problems like different data distri-

butions. This thesis deals with both disparities in feature space and data distributions, so

heterogeneous transfer learning is applied.

Day and Khoshgoftaar (2017) provide an overview of existing heterogeneous transfer

learning methods. The authors distinguish between methods based on whether the source

and target data are labeled. This label can be a class value in a classification context and a
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numerical value in a regression context. The authors discuss several types of heterogeneous

transfer learning. They begin to discuss supervised heterogeneous transfer learning methods

that require labeled source data and limited labeled target data. There is no strict rule on

the minimum number of observations for which the target data is considered ‘limited’.

Moreover, semi-supervised approaches that do not require labeled target data are dis-

cussed. Methods with restricted target labels and no source labels are also examined. Lastly,

unsupervised approaches, which do not require labeled source and target data, are described.

Each observation in the data utilized in this thesis has a label, which is the house’s m2 price.

As all observations are labeled, only supervised heterogeneous transfer learning methods are

considered that require labeled source data and limited labeled target data. The method

that is used in this thesis is called Heterogeneous Feature Augmentation, which is described

in detail in Section 4.8.2

4.8.2 Heterogeneous Feature Augmentation

Li et al. (2013) introduced a heterogeneous transfer learning method called Heterogeneous

Feature Augmentation (HFA). Firstly, the main idea of HFA is discussed, after which the

method’s theory is explained in detail. The authors published an example script of the code in

MATLAB. As Veneficus prefers to have their code in Python, much time is spent implementing

this method in Python. To accomplish this, it was necessary to understand the method

thoroughly. As this took considerable time, the theory of HFA is discussed in this much

detail in Section 4.8.2.2

4.8.2.1 Main Idea

This method transforms the data from the source and target domains into a common sub-

space by using two different projection matrices P and Q. After that, two feature mapping

functions are proposed to augment the transformed data with their original features and

zeros. The zeros are used to match the different dimensions between the source and target

data features. As a result, the differences in dimensions between the two feature spaces are

matched. The projection matrices are learned using Support Vector Machines (SVM). This

is an optimization problem that is simplified by introducing a transformation metric H that
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combines P and Q. Here H is decomposed into a linear combination of a set of rank-one

positive semi-definite (PSD) matrices so that the problem is reformulated into a convex opti-

mization problem. This is similar to a Multiple Kernel Learning (MKL) problem, for which

the global optimum can be found by using existing MKL solvers.

4.8.2.2 Theory

In this thesis, the same notation is used as proposed by Li et al. (2013). In the notation

for HFA, an apostrophe is used to denote the transpose of a vector or a matrix. The n × n

identity matrix is defined as In and the n × m matrix of all zeros as On×m. Furthemore,

0n,1n ∈ Rn are defined as the n × 1 column vectors of zeros and ones, respectively. The `p
-norm of a vector a = [a1, . . . , an]′ is defined as ‖a‖p = (∑n

i=1 a
p
i )

1
p , and ‖a‖ is used to denote

the `2 -norm. The inequality a ≤ b means that ai ≤ bi for i = 1, . . . , n. Moreover, a ◦ b

denotes the element-wise product between the vectors a and b, i.e., a o b = [a1b1, . . . , anbn]′ .

And H � 0 means that H is a PSD matrix. In their work, it is assumed that there is

only one source domain and one target domain, which corresponds to the setting in this

thesis, where there is a source domain of existing house data and a target domain with

newly built house data. The set of labeled training samples from the source domain is

denoted by {(xsi , ysi )|
ns

i=1} and the limited number of labeled samples from the target domain

by {(xti, yti)|
nt

i=1}, where ysi and yti , in this case the property prices, are the labels of the

samples xsi and xti, respectively, and ys
i , y

t
i ∈ R≥0. The dimensions of xsi and xti are denoted

by ds and dt, respectively. Note that ds 6= dt, since one deals with heterogeneous transfer

learning. Moreover, Xs =
[
xs1, . . . , x

s
ns

]
∈ Rds×ns and Xt =

[
xt1, . . . , x

t
nt

]
∈ Rdt×nt are defined

as the matrices that represent the source and target domains, respectively. Daumé III (2009)

proposed Feature Replication to augment the original feature space Rd into a larger space

R3d by replicating the source and target data for homogeneous TL. Specifically, for any data

point x ∈ Rd, the feature mapping functions ϕs and ϕt for the source and target domains

are defined as ϕs(x) = [x′,x′, 0′d]
′ and ϕt(x) = [x′, 0′d,x′]

′. It is not useful to use this exact

method by adding zeros to match the different feature dimensions of the source and target

data, as in that case there would be no correspondences between the heterogeneous features.

To successfully utilize the heterogeneous features from the two domains, a common subspace
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is first generated for the source and target data so that the heterogeneous features from the

two domains may be compared. The common subspace is defined as Rdc , and using two

projection matrices P and Q, any source sample xs and target sample xt can be projected

onto it, where P ∈ Rdc×ds and Q ∈ Rdc×dt , respectively. Motivated by Daumé III (2009), the

original features are also incorporated and any source and target domain samples xs ∈ Rds

and xt ∈ Rdt are augmented by using the augmented feature mapping functions ϕs and ϕt in

the following way:

ϕs (xs) =


Pxs

xs

0dt

 , ϕt
(
xt
)

=


Qxt

0ds

xt

 .

The feature weight vector w is defined as [w′c,w′s,w′t]
′ ∈ Rdc+ds+dt for the augmented

feature space, where wc ∈ Rdc ,ws ∈ Rds and wt ∈ Rdt are also the weight vectors that are

defined for the common subspace, the source domain and the target domain, respectively.

Hereafter, the projection matrices P and Q are learnt as well as the weight vector w by

minimizing the structural risk functional of SVM. As a result, the HFA method is presented

as follows:

min
P,Q

min
w,b,ξS

i ,ξ
t
i

1
2‖w‖

2 + C

(
nS∑
i=1

ξsi +
nt∑
i=1

ξti

)
, (2)

s.t. ysi (w′ϕs (xsi ) + b) ≥ 1− ξSi , ξSi ≥ 0; (3)

yti
(
w′ϕt

(
xti
)

+ b
)
≥ 1− ξti , ξti ≥ 0; (4)

‖P‖2
F ≤ λp, ‖Q‖2

F ≤ λq,

where C > 0 is a trade-off parameter that balances the model complexity on the training

samples from both the domains. λp, λq > 0 control the complexities of P and Q, and are

predefined parameters. Hereafter, the dual form of optimization problem (2) is derived by

introducing dual variables {αsi |
ns

i=1} and {αti|
nt

i=1} for constraints (3) and (4), respectively.

Furthermore, the derivatives of the Lagrangian of (2) with respect to w, b, ξsi , ξti are set to

zero, so that the Karush-Kuhn-Tucker conditions are obtained, such that the dual problem

becomes:

min
P,Q

max
α

1′α− 1
2(α ◦ y)′KP,Q(α ◦ y), (5)
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s.t. y′α = 0,

0 ≤ α ≤ C1,

‖P‖2
F ≤ λp, ‖Q‖2

F ≤ λq,

where α =
[
αs1, . . . , α

s
ns
, αt1, . . . , α

t
nt

]′
∈ Rns+nt is a vector of the dual variables. y = [y′s,y′t]

′

is the label vector of all training samples, ys =
[
ys1, . . . , y

s
ns

]′
is the label vector of samples

from the source domain, yt =
[
yt1, . . . , y

t
nt

]′
is the label vector of samples from the target

domain, and KP,Q =

 X′s (Ids + P′P) Xs X′sP′QXt

X′tQ′PXs X′t (Idt + Q′Q) Xt

 ∈ R(ns+nt)×(ns+nt) is the

derived kernel matrix for the samples from both domains. An intermediate variable H is

introduced that is defined as H = [P,Q]′[P,Q] ∈ R(ds+dt)×(ds+dt). H is chosen this way, as

the projection matrices P and Q always appear in the forms of P′P, P′Q, Q′P, and Q′Q so

that optimization problem (5) is reformulated as:

min
H�0

max
α

1′α− 1
2(α ◦ y)′KH(α ◦ y), (6)

s.t. y′α = 0,

0 ≤ α ≤ C1,

trace(H) ≤ λ,

where KH = X′(H + I)X, X =

 Xs Ods×nt

Odt×ns Xt

 ∈ R(ds+dt)×(ns+nt) and λ = λp + λq.

Instead of learning two projection matrices P and Q, only a transformation metric H has

to be learned. Thus, only H and α have to be optimized. In the next part, kernelization

is applied, so that optimization problem (6) can be solved in a kernel space by learning a

non-linear transformation metric with its size independent from the feature dimensions. This

is done since H is linear, and it can be computationally expensive to learn the linear metric

H when the dimensions of the source and target data, ds and dt, grow.

4.8.3 Non-linear Feature Transformation

In this part, it is shown that by using kernelization, the transformation metric H is unaffected

by the feature dimension and grows solely in proportion to the quantity of training data from
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both domains. The kernel of the source domain is defined as Ks = Φ′sΦs ∈ Rns×ns where Φs =[
φs (xs1) , . . . , φs

(
xsns

)]
, with φs(.) being the non-linear feature mapping function induced by

Ks. The kernel of the target domain is defined similarly. the dimensions of the non-linear

features φs (xs) and φt (xt) are denoted as d̃s and d̃t. Based on these, a similar optimization

problem as in (6) can be derived, where a transformation metric H ∈ R(d̃s+d̃t)×(d̃s+d̃t) is

solved that maps the different non-linear features from two domains into a common feature

space. However, the dimensions of H cannot be determined, as the explicit forms of the non-

linear feature mapping functions are unknown. For that reason, a non-linear transformation

matrix H̃ ∈ R(ns+nt)×(ns+nt) is defined, which satisfies that H = ΦK− 1
2 H̃K− 1

2 Φ′, where

K =

 Ks Ons×nt

Ont×ns Kt

 ∈ R(ns+nt)×(ns+nt) and K 1
2 is the symmetric square root of K.

Thus, the kernelization version of (6) can be derived as an optimization problem on H̃

instead of H. Hereafter, the reformulation of optimization problem (6) is as follows:

min
H̃�0

max
α

1′α− 1
2(α ◦ y)′KH̃(α ◦ y), (7)

s.t. y′α = 0,

0 ≤ α ≤ C1,

trace(H̃) ≤ λ.

The main differences with the optimization problem (6) are thus that H̃ is optimized, which

depends on the number of training samples, instead of H, which depends on the number of

feature dimensions. However, this implies that one needs to calculate an enormous kernel if

the data consists of many samples. As discussed in Section 4.2, this would imply calculating

a kernel with dimensions (ns + nt) × (ns + nt), where ns is equal to 154.310 and nt to

11.247 ∗ 0.8 ≈ 9.000. This kernel could by far not be calculated on the laptop provided by

Veneficus, and on any other ‘normal’ laptop, due to a lack of memory. A solution might be

to run this operation in a cloud that has more memory. However, this kernel is also used to

fit the SVM in each iteration, a non-parallelizable operation. Therefore, it would take too

much time per iteration to fit such a big kernel matrix to the SVM model. This is the reason

that a sub-sample of the data is taken to execute this method, as discussed in Section 4.2.
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In order to solve the optimization problem in (7) for H̃ and α, a couple of steps are taken

that are not discussed in this thesis, as it would adversely affect the readability. However,

the intuition that comes along with these steps is discussed.

The optimization problem (7) is reformulated into a convex MKL problem by replacing

the Ivanov regularization with the Tikhonov regularization. After this, H is decomposed as

a linear combination of a set of PSD matrices. After this, the problem is reformulated as

an Infinite Kernel Learning (IKL) problem, where a closed-form solution can be obtained by

using the cutting plane algorithm. Please see the work of Li et al. (2013) for the mathematical

details of these steps. After obtaining the optimal solution for H and α, any test sample x

from the target domain can be predicted with the following target decision function:

f(x) = (α ◦ y)′K 1
2 (H + I)

 Ons×nt

K−
1
2

t

kt + b,

where kt =
[
k (xt1,x) , . . . , k

(
xtnt

,x
)]′

and k (xi,xj) = φt (xi)′ φt (xj) is a predefined kernel

function for two data samples xi and xi in the target domain.

There are a few hyperparameters in HFA that need to be set. These hyperparameter

include tau, max iter, Cs, and Ct. tau determines how strict the stopping condition is for

the algorithm, max iter stands for the maximum number of algorithm iterations, and Cs and

Ct stand for the cost hyperparameters for training the SVM on respectively the source and

target dataset. These hyperparameters are left at their default values, which are 0.001, 100,

1, and 1, respectively. This decision is made, as training the HFA model takes quite some

time, and with grid search, one needs to train the algorithm from scratch for every unique

set of hyperparameters. Besides, it is challenging to implement BHO into this method, as

the code for HFA is written from scratch, and there are no pre-built packages that make it

relatively easy to implement BHO.

4.9 SHAP values

SHAP values are exploited to give an interpretation to machine learning models. These values

show how much each feature contributes to the models’ prediction by calculating the change

in the expected model prediction when conditioning on a particular feature (Lundberg &
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Lee, 2017). The authors state that the base value of a model is equal to E[f(x)], where f is

the original prediction model. E[f(x)] is the value that would be predicted if one does not

know the features to the current output f(x). In this explanation model, simplified inputs

x′ are used. These inputs relate to the original inputs through a mapping function that is

defined as follows:

x = hx(x′),

where the input data is denoted by x. These type of models assign an effect φi to each feature.

Taking the sum of the base value E[f(x)] and all the effects φi for i = 1, . . . ,M for all M

features, approximates the output f(x) of the original model, that is: ∑M
i=1 φi + E[f(x)] =

f(x) (Lundberg & Lee, 2017).

Starting from the base value E[f(x)], one conditions on each feature, one by one, to see

how the base value changes. However, the order in which the features are added is influential

for non-linear models or dependent features. Therefore, the SHAP values are calculated

by taking the average contribution of feature i in each permutation. See Figure 7 for a

visualisation of this idea (Lundberg & Lee, 2017).

Figure 7: Visualization of SHAP values. E[f(z)] denotes the base value, φi denotes the contribution of feature i to the base value

when conditioning on that feature. When one conditions on all the four features in this example, E[f(z)|z1,2,3,4 = x1,2,3,4] =

f(x).

Furthermore, an example is presented to illustrate the idea of SHAP values further.

Suppose one wants to predict whether a soccer team contains the man-of-the-match player.

One could then wonder how much this prediction is driven by a team scoring two goals.

However, with SHAP values, one approximates how much a prediction is driven because the

team scores two instead of some baseline number of goals. Suppose that the baseline chance

that a team contains the man-of-the-match player is 0.498. Figure 8 shows the contribution

of all the different features to obtain the output value of the model. Thus, the two goals that
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the team scored positively affected the chance of having the man-of-the-match player, while

the 38% ball possession had a negative effect on the chance. By taking the sum of all the

impact φi for i = 1, . . . ,M , and adding the sum to the baseline chance of 0.498, one comes

to the output value of the model, which is 0.700.

Figure 8: Example that illustrates the process of SHAP values where the predicted value, equal to 0.498, is obtained from the

base value, equal to 0.700, by adding the contributions of all the different features to the base value.

5 Results

In this part, the models’ findings are discussed. In the context of regression and classification,

the results of the approaches are compared in terms of MSE, MAPE, accuracy, and the macro

F1-score. The first research question is addressed in this way. Secondly, to answer the second

research question, model performance is assessed using the two hyperparameter optimization

methods in terms of MAPE, running time, and the number of objective function evaluations.

Finally, the interpretation of the best-performing model, the XGBoost model, is explored.

This is executed with the help of SHAP values, which corresponds to the third research

question.

5.1 Individual Regression Model Results

Table 9 highlights the outcomes of the Neural Network (NN) and XGBoost models employed

in the regression context. The natural logarithm of the dependent variable is taken, and

the features are standardized using min-max scaling, as described in Section 4.4. The best

BHO results for the NN and XGBoost models are based on 25 algorithm iterations, implying

that the objective function is evaluated 25 times. The results of Grid-Search for the NN

and XGBoost model are based on 600 and 3600 fits of various sets of hyperparameters,

meaning that the objective function is evaluated 600 and 3600 times, respectively. The

hyperparameter optimization results are further discussed in Section 5.3. Noticeably, the
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XGBoost model outperforms the NN model since the MSE and the MAPE are significantly

lower for BHO. The MAPE is lower for XGBoost in grid-search, whereas the MSE is lower

for NN. The lowest MSE and MAPE, equal to 0.08 and 2.502, respectively, are obtained for

the XGBoost model using BHO. Therefore, the XGBoost model appears to be most suitable

for forecasting house prices, and further evaluations are described in Section 5.3 and 5.4.

Table 9: Mean Squared Error and Mean Average Percentage Error for the Neural Network and XGBoost model, for Bayesian

Hyperparameter Optimization and Grid-Search, in the regression context.

BHO Grid-Search

MSE MAPE MSE MAPE

Neural Network 0.158 3.686 0.051 3.365

XGBoost 0.080 2.502 0.074 2.714

5.2 Individual Classification Model Results

Table 10 presents the outcomes of the NN model, the XGBoost model, and the Heterogeneous

Feature Augmentation model, employed in the classification context, based on a sub-sample

of the data, and the results of the NN and the XGBoost model based on the complete data.

The models’ hyperparameters are optimized using BHO with 25 iterations, as it demonstrated

better performance and is more time-efficient compared to Grid-Search. Section 5.3 delves

into the efficiency of the optimization methods in terms of running time and model perfor-

mance. The XGBoost model, once again, displays the best overall performance. The model

constructs the most promising results for buckets 5 and 11. However, for the setting with 8

buckets, the NN exhibits higher accuracy but a lower macro F1-score. Thus, in comparison

to XGBoost, NN and HFA fall short and conceive inferior results. However, the results are

based on a relatively small sample of the data, so whether these are reliable is debatable.

Moreover, a reason for this difference in results can be perhaps resulted by outlying obser-

vations within the test set. Nevertheless, the results are not promising, as XGBoost scores

more promising results on the same sub-sample of the data. As a consequence, integrating the

manually added features that were utilized for HFA did not improve model performance. By

combining existing and newly built housing data into a single dataset, the NN and XGBoost
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models disregard market heterogeneity, resulting in superior model performance relative to

HFA.

Predictably, the results of the NN and the XGBoost model based on the complete data

demonstrate that most accuracies and macro F1-scores are greater for both models. This is

due to the fact that these models are trained on a dataset consisting of roughly 163.000 data

points instead of the 12.000 data points in the sub-set. As a result, the models are more

accurately trained and better understand the available data patterns.

Table 10: The accuracy and the F1-score for the Neural Network, XGBoost, and Heterogeneous Feature Augmentation model,

for Bayesian Hyperparameter Optimization, in the classification context, based on a sub-sample of the data, and the results of

the Neural Network and the XGBoost model based on the complete data.

Five buckets Eight buckets Eleven buckets

Accuracy macro F1-score Accuracy macro F1-score Accuracy macro F1-score

Sub-sample

Neural Network 0.572 0.254 0.502 0.120 0.104 0.027

XGBoost 0.689 0.368 0.314 0.246 0.338 0.300

HFA 0.359 0.240 0.173 0.115 0.082 0.060

Complete data

Neural Network 0.54 0.46 0.29 0.21 0.22 0.18

XGBoost 0.70 0.63 0.49 0.50 0.46 0.42

5.3 Hyperparameter Optimization

The optimal sets of hyperparameters in the regression context for the NN and XGBoost

model are presented in Table 11. These sets of hyperparameters are based on 25 iterations

of the BHO algorithm and 3600 and 600 fits of different sets of hyperparameters for the

Grid-Search algorithm, for the NN, and XGBoost model, respectively.
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Table 11: Optimized hyperparameters of the Neural Network and XGBoost model for Bayesian Hyperparameter Optimization

and Grid-Search, in the regression context.

Model Hyperparameters BHO Grid-search

Neural Network num dense layers 1 1

num dense nodes 89 100

learning rate 0.020 0.02

batch size 3566 1024

activation function ELU ReLu

dropout rate 0.006 0.25

optimizer Nadam Adam

XGBoost max depth 7 10

learning rate 0.379 0.2

reg alpha 1.900 0

The number of objective function evaluations and the running time in minutes of the

two optimization methods for varying iteration values in the regression context are shown

in Table 12. It is worth noticing that with BHO, 25 iterations are sufficient to achieve

a relatively low MSE and MAPE. Running the algorithm for 50 iterations is more time-

consuming while having no significant increase in the models’ performance. This is best

illustrated by looking at the difference in MAPE for NN with 25 and 50 iterations of the

BHO algorithm. The MAPE remains the same, but the running time has more than doubled.

As a result, in the context of this thesis, 25 iterations of the BHO algorithm appear to be

sufficient. Furthermore, it is concluded that BHO outperforms Grid-Search, in terms of model

performance. Grid-Search is commonly known to be an inefficient method, but as Veneficus

still employs this method, it was only fair to compare it with BHO. Therefore, it might

be valuable to consider another hyperparameter optimization method like BHO. However,

it should be emphasized that Grid-Search outperforms BHO in some circumstances. This

happens for 3600 objective functions evaluations of Grid-Search. The MAPE, equal to 3.365,

is lower than the MAPE for 50 iterations of the BHO algorithm. This is most likely due

to BHO’s overemphasis on promising regions of hyperparameters rather than examining all

regions. BHO may overlook an unpromising region where the global optimum may be found.

Grid-Search, on the other hand, does not skip unpromising regions because it tries all sets of
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hyperparameters in the pre-defined space, which is most likely the cause of this outcome.

Additionally, it is noticed that BHO outperforms Grid-Search in terms of running time.

BHO is faster in every case, except for 600 objective function evaluations of Grid-Search,

compared to 50 iterations of BHO. However, as 25 iterations of BHO seems sufficient for

outperforming Grid-Search, this result is negligible. Noticeably, BHO takes less running

time in almost every case. However, when comparing the number of function evaluations,

one might expect a more significant difference in running time between BHO and Grid-

Search. It takes 11 minutes to conduct 50 BHO objective function evaluations, but only four

times as long to do 3600 Grid-Search objective function evaluations, which are 72 times as

many objective function evaluations. One probable cause is that in the context of this thesis,

assessing the Tree Parzen Estimator, the surrogate function utilized for BHO, takes longer

than expected. (Bergstra et al., 2011) recommended this surrogate function, although BHO

may be quicker if Gaussian Processes or Random Forests were used instead.

The different number of objective function evaluations of the algorithm provides the same

results for XGBoost utilizing Grid-Search. This is the case, as the optimal hyperparameters

correspond to the extremes in the hyperparameter space, included in all three regions to

make a fair comparison.

Table 12: The number of objective function evaluations and running time in minutes for the Bayesian Hyperparameter Opti-

mization and Grid-Search algorithms for different iteration values.

BHO Grid-Search

Model Function evaluations Running time MAPE Function evaluations Running time MAPE

Neural Network 10 2 8.306 1.080 14 9.645

25 4 3.686 2.160 31 10.096

50 11 3.686 3.600 45 3.365

XGBoost 10 25 2.504 135 40 2.714

25 77 2.502 320 99 2.714

50 180 2.709 600 175 2.714

5.4 Model Interpretation

The best-performing model is XGBoost, which hyperparameters are tuned using 25 itera-

tions of the BHO algorithm. This model is extensively evaluated using SHAP values. With
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these values, one can investigate which contribution each feature has in the models’ predic-

tions. Figure 9 shows the feature contributions of the first m2 price prediction in the test

set, utilizing SHAP values. Here, the base value E[f(x)] that corresponds to the expected

prediction of the model is equal to 3.115 euro per m2. The features shown in blue and red

contribute positively and negatively to the m2 price prediction and hence contain a positive

and negative SHAP value, respectively. Seemingly, the construction year, being equal to 2021

for this observation, contributes positively to the model’s price prediction as it is shown in

red in Figure 9.

Figure 9: Feature contributions from base value, equal to 3115, to m2 price prediction of the XGBoost model, equal to 3545.82,

for the first observation in the test set. The predicted m2 price is obtained by adding the contributions of all the different

features to the base value.

Depending on the value of that feature for a particular observation, it can affect the

model’s prediction. For example, a high value of ‘inkomen per inwoner 2017’, which specifies

the average income per capita in 2017, may positively contribute to the model’s prediction

and vice versa. An overview of how each feature value affects the model’s prediction is

presented in Figure 10. The different features are listed in the rows, where each dot represents

an observation used to calculate the SHAP value. If the dot is blue, the feature value is

relatively low and relatively high if the dot is red. The horizontal axis indicates whether

a feature contributes negatively or positively to the model’s price prediction. Most of the

dots of ’gem woningwaarde 2019’, which stands for the average price of a home in 2019,

correspond to a positive SHAP value. Therefore, it seems that this feature contributes on

average favorably to the model’s price forecast.

In Section 3.3, a couple of features’ correlations with the m2 price were investigated.

The features ‘gem woningwaarde 2019’ and ‘inkomen gem per inwoner 2017’ were deemed

significant predictors, as the magnitude of its correlations was the highest. As the SHAP

values are relatively high, Figure 10 reveals that, in particular, ‘gem woningwaarde 2019’ is

indeed a crucial predictor.
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Figure 10: Summary plot of the SHAP values of the XGBoost model. The different features are listed in the rows, where each dot

represents an observation used to calculate the SHAP value. If the dot is blue, the feature value is relatively low and relatively

high if the dot is red. The horizontal axis indicates whether a feature contributes negatively or positively to the model’s m2

price prediction.

Moreover, Figure 11 depicts the average relevance of each feature to the model. The

average magnitude of the SHAP values per feature is taken across the dataset, plotted as a

bar chart. One notices that ‘gem woningwaarde 2019’ and ‘kaveloppervlakte m2’, ‘latitude’,

‘longitude’, and ‘living area m2’ have the SHAP values with the largest absolute magnitude.

The exact definitions of these features can be found in Table 1 in the Appendix. It is worth

noting that just because a feature has a lower magnitude does not mean it is irrelevant, given

the possibility that low- and high magnitude features are correlated. This is further discussed

in Section 5.5.
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Figure 11: Feature importance of the XGBoost model, which shows the average relevance of each feature to the model’s m2

price prediction.

The contribution of each feature to the models’ prediction is investigated in more detail.

Expectations concerning the impact of specific features were offered in Section 3.3, based on

the magnitude of their correlation with the m2 price. Figures 12a and 12b show the depen-

dence plots of ‘latitude’ and ‘longitude’ between the contribution to the models’ prediction

and the feature values. A dependence plot is a scatter plot that illustrates the impact of

a single feature on the model’s m2 price prediction. The higher the ‘latitude’ is, the more

north to the equator the place is located. Figure 12a depicts that for low and high latitude

values, one notices low SHAP values, where for average latitude values, one notices high

SHAP values. This is clarified by the fact that the largest cities in the Netherlands, where

the m2 price is high, are located in the center of the country. For the longitude, one notices

a negative linear pattern. How further away one moves to the east of the country, how lower

the SHAP values are. This corresponds to the lower m2 prices in the east of the country.
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(a) Latitude (b) Longitude

Figure 12: Dependence plots of ‘latitude’ and ‘longitude’ features in the XGBoost model, which illustrate the features’ contri-

butions to the model’s m2 price prediction.

Furthermore, the features ‘gemiddelde woningwaarde 2019’ and ‘living are m2’ are high-

lighted. Their dependence plots are presented in Figures 13a and 13b. There is a clear

positive correlation between the value of ‘gemiddelde woningwaarde 2019’ and its SHAP val-

ues, which implies that high values for ‘gemiddelde woningwaarde 2019’ indicate a significant

positive contribution to the model’s prediction, this relationship is rather intuitive. However,

from Figure 13b it is clear that ‘living area m2’ demonstrates a negative relation with the

SHAP value, which perhaps appears counter-intuitive, as its correlation with the m2 price is

positive, as demonstrated in Section 3.3. The order in which the features were implemented

might play a role here. For example, the features ‘kaveloppervlake m2’ and ‘living area m2’

are positively correlated, with a correlation of 0.43. For determining the SHAP values, this

implies that the latest added feature of these two has a relatively small contribution to the

m2 price prediction. The dependency plots of the remaining features can be found in Figures

1-8 in the Appendix.
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(a) Gemiddelde woningwaarde 2019 (b) Living are m2

Figure 13: Dependence plots of ‘gemiddelde woningwaarde 2019’ and ‘living are m2’ features in the XGBoost model.

5.5 Sensitivity Analysis

The influence of features on the model’s prediction is the subject of sensitivity analysis. Sen-

sitivity analysis is performed on the best predicting model, which is the XGBoost model.

This analysis is performed using two methods, which are feature importance and feature

ablation. The outcome of the feature importance method is presented in Figure 11. The fea-

tures ‘gem woningwaarde 2019’ and ‘kaveloppervlakte m2’, ‘latitude’, ‘longitude’, and ‘liv-

ing area m2’ have the highest absolute magnitude and are therefore the most important

features. Feature ablation measures the contribution of each feature by excluding each fea-

ture from the data once. Hereafter, the algorithm is trained on the data without that feature,

and the prediction is made on the test set, from which the MAPE is obtained. This is done for

every feature, and the higher the MAPE is compared to the MAPE with all features, which

is 2.502, the higher the contribution of that particular feature is. The three features for

which the MAPE increased the most when that feature is excluded from training the model

are: ‘kaveloppervlakte m2’ (3.127), ‘contruction year’ (2.803), and ‘gem woningwaarde 2019’

(2.687). This is in line with the results of the importance plot, except for ‘latitude’ and ‘lon-

gitude’. A possible explanation is that ‘latitude’ and ‘longitude’ share a correlation of 0.25.

This implies that if one of them is deleted, its information is partly captured by the other.
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5.6 Impact Added Features

Venficus specifically requested to provide an interpretation regarding the impact of the man-

ually added features. However, HFA did not prove to be a success. NN and XGBoost did not

employ the manually inserted features. To explain the impact of these features, an XGBoost

model is trained on newly built house data so that the SHAP values can be calculated for

the manually added features. Veneficus’ interest in the impact of the m2 price is due to the

varying features that change the worthiness of a house. These features include a house with

a garden pointing to the south, a garage, a built-in kitchen and bathroom, or being energy-

neutral. However, the predictive power of these features turned out to be negligible. The

abovementioned features’ importance is so insignificant that they are not even included in

the feature importance plot, which can be found in Figure 9 in the Appendix. Figure 14a and

14b illustrate that no conclusions about these features can be drawn, as the magnitude of the

SHAP values is negligible. Figure 14b emphasizes a minimal positive effect on the model’s

prediction of having a garage. However, Figure 14a depicts that having an energy-neutral

house negatively contributes to the price prediction, which seems counter-intuitive.

(a) Energy neutral manual (b) Garage manual

Figure 14: Dependence plots of ‘energy neutral manual’ and ‘living area m2’ features.
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6 Conclusion

From Veneficus’ perspective, it is best to utilize an XGBoost to predict the m2 price of

newly built houses relative to Neural Network (NN) and Heterogeneous Feature Augmenta-

tion (HFA). XGBoost is the best performing method with a MAPE of 2.502 in the regression

context, using 25 iterations of the Bayesian Hyperparameter Optimization (BHO) algorithm.

Additionally, NN and XGBoost are compared with HFA in a classification context, as putting

HFA into practice in a regression environment was not as simple as the authors of HFA de-

scribed. Moreover, a subset of the data was used, as HFA took significant time to execute,

which made it unfeasible to use the entire data. Unfortunately, HFA showed poor perfor-

mance relative to NN and XGBoost. XGBoost was again the best performing method in

the cases where the m2 prices were divided into 5, 8, and 11 different buckets. NN and

XGBoost were also compared based on the complete data, where XGBoost showed the best

performance for all the tested buckets. Regarding the research question, this means that the

m2 price could not be predicted accurately using transfer learning. Therefore, the manually

added features could not be utilized for predicting the m2 price of newly built houses, as

XGBoost outperforms HFA without using these extra features.

Furthermore, it is suggested to utilize BHO instead of Grid-Search for tuning its models’

hyperparameters, as BHO is faster and shows better performance in terms of MAPE. Thus,

BHO affects running time and model performance positively and results in a more efficient

algorithm. In this thesis’ setting, it is sufficient to use only 25 iterations of the BHO algorithm

because the performance did not increase further by using more iterations. However, this

may differ per dataset.

Finally, the interpretation of the model results is obtained by exploiting SHAP values, and

the features having the most considerable contribution to the XGBoost model’s predictions

are found. Based on feature importance and ablation, essential predictors turned out to be

the average price of a home, the plot area, the living area, the longitude, and the latitude.

Furthermore, these features showed logical relations with the SHAP values. Houses located

in major cities result in higher m2 prices, and the same holds for cities with a high average

house price.
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7 Limitations and Further Research

One might further consider investigating putting HFA in a regression context. Creating

buckets to predict the m2 price is cumbersome, instead, one wants to estimate the m2 price

directly. The fact that HFA did not perform well in a classification context does not imply

that it provides poor performance in a regression context, so it might be worth investigating.

A flaw encountered while running the models was the lack of computing power and laptop

memory, as it was not sufficient to perform HFA on the complete data. This was a weakness

as the HFA may have resulted in better predictions. For future calculations, it can be

considered to run the model in a cloud. However, this approach would still be costly and

take considerable time.

Furthermore, although HFA did not turn out successful in this thesis, heterogeneous

transfer learning (HTL) has excellent potential to advance further and be applicable in a

more general way. Other HTL methods not considered in this thesis may outperform HFA,

which should be investigated. As of now, HTL is mainly used in the field of image recognition,

but many real-life scenarios deal with circumstances in which HTL can offer a solution, such

as predicting newly built house prices.

Finally, from Veneficus’ perspective, it is encouraged to extend the manually enriched

dataset further. Although this is a costly and time-consuming process, it creates a unique

dataset, which serves the opportunity to outperform other companies operating in the same

field. This dataset could be used for other HTL methods than HFA, which have a shorter

running time and can utilize the complete enriched dataset.
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Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter

optimization. 25th annual conference on neural information processing systems (NIPS

2011), 24.

Bergstra, J., Yamins, D., Cox, D. D., et al. (2013). Hyperopt: A Python Library for Opti-

mizing the Hyperparameters of Machine Learning Algorithms. Proceedings of the 12th

Python in science conference, 13–19.

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 785–794.

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network

learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.
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8 Appendix

Table 1: Features which are available for the existing and newly built house data, together with the variable type and a

description of each feature.

Existing Newly built Type Description

price per m2 adjusted price per m2 Float The square meter price of a house, adjusted for inflation

latitude latitude Float How far north or south of the equator a place is located

longitude longitude Float How far east or west of the equator a place is located

poperty type hoekwoning poperty type hoekwoning Float Dummy that indicates a type of house

property type twee onder een kap property type twee onder een kap Float Dummy that indicates a type of house

property type vrijstaand property type vrijstaand Float Dummy that indicates a type of house

living area m2 living area m2 Float Living area in square meters

kaveloppervlakte m2 kaveloppervlakte m2 Float Plot area in square meters

afstandtotbelangrijkoverstapstation afstandtotbelangrijkoverstapstation Float Distance to station (km)

distance supermarket distance supermarket Float Distance to supermarket (km)

adressendichtheid 2019 adressendichtheid 2019 Float Address density in 2019

bevolkingsdichtheid 2019 bevolkingsdichtheid 2019 Float Population density in 2019

dummy amsterdam dummy amsterdam Integer Dummy that indicates whether the city is Amsterdam

gem woningwaarde 2019 gem woningwaarde 2019 Float Average price of a home in 2019

inkomen gem per inwoner 2017 inkomen gem per inwoner 2017 Float Average income in 2017

prc oppervlakte water 2019 prc oppervlakte water 2019 Float Water area in square meters

distance prim school distance prim school Float Distance to primary school (km)

afstandhoreca min afstandhoreca min Float Distance to hospitality industry (km)

construction year construction year Float Construction year

pc2 pc2 Integer Two-digit postal code

distance shoreline distance shoreline Float Distance to the shoreline (km)

noise noise Integer Dummy that indicates whether noise is above a threshold

project name label project name label String Label that indicates the name of the project

kitchen manual Integer Dummy that indicates whether the kitchen is included in the price

bathroom manual Integer Dummy that indicates whether the bathroom is included in the price

energy neutral manual Integer Dummy that indicates whether the house provides its own energy

front orien Category Direction which the frontyard faces

back orien Category Direction which the frontyard faces

huiz parking Category Feature that says what the parking opportunities of the house are

garage Integer Dummy that indicates whether the house has a garage

number of floors Integer Number of floors of the house

outhouse Integer Dummy that indicates whether the house has a outhouse

achterom Integer Dummy that indicates whether the house can be entered from the back

corner Integer Dummy that indicates whether the house lies in a corner position

next to Category
Feature that tells what the most important factor is near the house,

which can be water, green, street, and walkway

backyard Integer Dummy that indicates whether the house has a backyard

frontyard Integer Dummy that indicates whether the house has a frontyard
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Figure 1: Dependence plots of ‘hoekwoning’ and ‘twee onder een kap’ features.

Figure 2: Dependence plots of ‘vrijstaand’ and ‘kaveloppervlakte m2’ features.

Figure 3: Dependence plots of ‘afstand tot station’ and ‘distance supermarket’ features.
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Figure 4: Dependence plots of ‘adressendichtheid’ and ‘bevolkingsdichtheid’ features.

Figure 5: Dependence plots of ‘dummy amsterdam’ and ‘noise’ features.

Figure 6: Dependence plots of ‘inkomen per inwoner’ and ‘oppervlakte water’ features.
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Figure 7: Dependence plots of ‘distance school’ and ‘afstand horeca’ features.

Figure 8: Dependence plots of ‘construction year’ and ‘distance shoreline’ features.
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Figure 9: Feature importance of the XGBoost model with the extra features.
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