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1 Introduction

Tsiligirides (1984) describes the origin of the Orienteering Problem (OP) coming from the sport of ori-

enteering, more specifically in the form of a score orienteering event. This event has its participants

navigate through a forest using a map and compass, arriving at an end point before a given time and

obtaining points by visiting control points of different worth. The aim of the participants is to determine

which control points are feasible to visit within the given time limit, while maximising their obtained

total score in order to win the event.

The Team OP (TOP) was first examined by Butt and Cavalier (1994), although defined as the Multiple

Tour Maximum Collection Problem. This problem generalises the OP by requiring multiple distinct

tours to be determined. The inspiration for examining the MTMCP was the recruitment program for

the football team of Earlham College in Richmond, U.S.A. A proven approach for recruitment was to

meet with senior members of the teams from other schools. Earlham college wanted to visit as many

schools as possible within a 100-mile radius while maximising its recruitment potential. The recruiter

was not allowed to stay the night, and thus had to start and end the tour of the day at the same lo-

cation, i.e. the depot. Students were only available for contact during school hours, resulting in an

upper bound on the amount of visiting hours on a day. Lastly, the recruiter only had a limited number of

days for visitation, which in the context of the MTMCP means that multiple tours have to be determined.

In the context of OP with Service-Time-Dependent Profits (OPSTP), Erdoǧan and Laporte (2013) dis-

cuss its applications in various sectors. This problem generalises the OP by letting collected profits being

dependent on the duration of the visit at each of the nodes. In the fishing industry, fish populations

may vary per location and fishing itself is a time-consuming operation, with additionally there often

being a legal time limit on fishing. Another example is given for the entertainment industry, where var-

ious attractions can be visited on a day and thus, the satisfaction gained can safely be assumed to be

time-dependent. One example from the literature comes from J. Yu, Aslam, Karaman, and Rus (2015),

discussing optimal schedules for mobile sensing robots. In this problem, the routing of a mobile sens-

ing robot through geographic Points Of Interests (POIs) needs to be determined. As these robots have

limited fuel capacity and both traveling and information gathering cost time, a balance has to be struck

between traveling to nodes and spending time at nodes. As Gunawan, Ng, Kendall, and Lai (2018) note,

the aforementioned examples can easily be justified in the context of the Team OPSTP (TOPSTP) as well.

In this research, a new generalisation of the TOP is investigated, namely the TOPSTP with Time Win-

dows (TOPSTPTW). Individually, the TOPSTP and the TOP with Time Windows (TOPTW) have

been researched in the academic literature to varying degrees, but a conjunction of the two has not yet

surfaced. Introducing time windows to the TOPSTP could have interesting theoretical implications, and

could also be seen as a natural assumption in some applications. Consider the entertainment industry

example from before, it may realistically be assumed that the operating hours of attractions may differ
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from one another. Would it be worth it to arrive too early and have to wait before being able to enter

an attraction, even though you could have just as well visited another attraction during that time? Or

does the addition of time windows significantly simplify the decision of which attraction are to be visited

and in which order, or more importantly for how long. The aim of this research is to construct a solution

method for the TOPSTPTW which is able to find solutions of good quality for large benchmark instances

within a reasonable amount of time.

Given that research on the TOPSTPTW does not exist yet, benchmark instances have to be generated.

Following Erdoǧan and Laporte (2013) and Gunawan et al. (2018), TOPSTP instances are generated

from available instances of Traveling Salesman Problem (TSP). Then, time windows are added following

the procedure of Kantor and Rosenwein (1992), resulting in TOPSTPTW instances.

A mathematical formulation for the TOPSTPTW is presented, inspired by the works of Erdoǧan

and Laporte (2013), Gunawan, Lau, and Lu (2015b), Gunawan et al. (2018), and Labadie, Mansini,

Melechovsky, and Calvo (2012). Moreover, a Hybrid Adaptive Large Neighbourhood Search (HALNS)

heuristic is proposed as a solution approach, taking inspiration from Gunawan et al. (2018), Hammami,

Rekik, and Coelho (2020), Labadie et al. (2012), Q. Yu, Adulyasak, Rousseau, Zhu, and Ma (2021),

and Q. Yu, Fang, Zhu, and Ma (2019). The HALNS framework divides the problem into a routing and

scheduling problem, where the former determines which locations are visited in which order, while the

latter determines how long each of the selected locations should be visited. The Service-Time Scheduling

Problem (SSP) is solved using the general purpose solver CPLEX and an adjusted version of the Modified

Coordinate Search (MCS) heuristic proposed by Q. Yu et al. (2021).

It is found that the HALNS solution approach where the SSP is solved exactly is a reliable method to

solve the TOPSTPTW, and finds improved solutions compared to CPLEX for virtually all test instances

within four minutes. The HALNS algorithm where the SSP is solved with the MCS heuristic is a quick

solution method, finding solutions within 30 seconds for instances with 25 or more nodes. However, the

solution quality is far more inferior than when the SSP is solved exactly. Additionally, the MCS heuristic

is not successful for instances with less than 25 nodes, showing significantly increased solving times for

some instances. Due to the computational difficulty of the TOPSTPTW, the upper bounds obtained by

CPLEX are rather weak, and thus no real conclusions can be made about the relative optimality gap of

the obtained solutions.

This paper is outlined as follows. A detailed description of the TOPSTPTW is given in Section 2, followed

by a discussion of the relevant literature in Section 3. Subsequently, the mathematical formulation and

heuristic solution approaches are presented in Section 4, and Section 5 provides an explanation on the

generation procedure of the required benchmark instances. Then, the obtained results are presented and

discussed in Section 6, after which Section 7 concludes the paper with conclusions and a discussion.
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2 Problem Description

A broad description of the goal of the TOPSTPTW would be to determine multiple distinct tours over

a subset of nodes in a graph, each starting and ending at the depot and being restricted by a maximum

travel time. Simultaneously, the visitation duration at each of the visited nodes has to be determined in

order to maximise obtained profit, and additionally each of the nodes has a time window during which

profits can be collected.

To be more precise, let us first represent the problem on an undirected graph G = (V,E), where

V = {1, 2, . . . , |V |} denotes the set of nodes and E denotes the corresponding set of edges. The set of

nodes V \ {1} can potentially be visited, while node 1 functions as the depot. Each edge (i, j) ∈ E

is associated with a travel cost tij ≥ 0, which are assumed to satisfy the triangle inequality and to be

symmetrical, i.e. tij = tji. Each node i ∈ V \ {1} is associated with a maximum attainable profit ri ≥ 0,

a profit collection parameter βi ≥ 0, an earliest available time ei ≥ 0, and a latest available time li ≥ ei.

Upon visiting a node, a percentage of the maximum attainable profit ri is collected dependent on the

profit collection function fi(zip), where zi ≥ 0 denotes the duration of the visit at node i ∈ V \ {1} for

tour p ∈ P . To clarify, the set P consist of the required amount of tours which need to be determined,

and each tour p ∈ P should adhere to the imposed time limit Tmax ∈ N. The choice has been made for the

concave increasing function fi(zi) = 1− e−βizi , which captures the desired characteristic of diminishing

returns over time. Due to the time windows, a theoretical upper bound on zi is imposed, i.e. zip ≤ li−ei.

Ultimately, for each tour p ∈ P it has to determined which nodes it should visit and for how long such

that the travel and visitation time does not exceed Tmax, while maximising the profits obtained over all

visited nodes of all tours in P and adhering to the imposed time windows at each of the nodes. Note

that each tour must start and end at the depot, and all nodes in V \ {1} can be visited at most once.

3 Literature Review

The specific topic of the TOPSTP is a recent development in the academic literature, and consequently

rather scarce. The OPSTP was first introduced in 2013 by Erdoǧan and Laporte (2013), and the TOPSTP

was only just introduced in 2018 by Gunawan et al. (2018). Subsequently, this literature review will also

cover the Orienteering Problem (OP) and its generalisations, in order to get a better grasp of the subject

and its history. Section 3.1 introduces the classical OP, and its generalisation where multiple tours are

considered. Subsequently, Section 3.2 covers literature on the generalisation of the (T)OP where the

collection of profits is dependent on the amount of time spent at each of the nodes. Section 3.3 extends

on its preceding section by discussing literature where it is additionally imposed that the collection of

profits is dependent on the arrival time at each of the nodes. Lastly, Section 3.4 treats literature where

the collection of profits is not dependent on service time or arrival time, yet at each of the nodes time

windows are present within which profit can be collected.
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3.1 (Team) Orienteering Problem

The first mention of the OP may be attributed to Tsiligirides (1984), and it is still relevant to this

day due to its proposed benchmark instances. Tsiligirides (1984) argues that the OP is similar to a

Generalised Traveling Salesman Problem (GTSP), where not all cities have to be visited and the sales-

man can only travel a certain distance. Each city is associated with an expected amount of sales the

salesman can make there, and the objective is to maximise the total amount of sales. Assuming travel

time varies proportionally with distance, this GTSP formulation may be used to express the OP. Note

that the GTSP is NP -hard, and subsequently the OP is NP -hard as well (Golden, Levy, and Vohra, 1987).

Tsiligirides (1984) provides two heuristic methods to solve the OP. A stochastic algorithm is proposed,

which relies on a Monte Carlo method to generate routes. The second solution method is a determinis-

tic algorithm based on a procedure for the vehicle-scheduling problem proposed by Wren and Holliday

(1972). This approach restricts routes to sectors, within which the aim for a route is to visit all nodes,

while minimising the total distance traveled and not violating the maximum allowed travel distance. The

results of Tsiligirides (1984) show that the stochastic algorithm outperforms the deterministic algorithm.

With the implementation of a three-step improvement phase, both algorithms show similar results and

runtimes.

Research on the OP was kick-started at this point, such as Golden, Wang, and Liu (1988) incorporating

the stochastic concept of Tsiligirides (1984) and centre of gravity idea of Golden et al. (1987), while

simultaneously introducing learning capabilities. Exact methods for the OP also started to gain traction,

with Laporte and Martello (1990) being the first using a branch-and-bound method, and Pillai (1992)

claiming to be able to find the optimal solutions to the benchmark instances of Tsiligirides (1984) with

her branch-and-cut framework. Perhaps more notable were Chao, Golden, and Wasil (1996a), introducing

new benchmark instances and proposing a new improved heuristic.

The OP is a special case of the TOP in which only a single tour is considered, and as such the TOP is

also NP -hard. Due to this difficulty, exact solution approaches have been relatively scarce. Butt and

Ryan (1999) were the first with a set-partitioning formulation, which was solved using a combination of

column generation and constraint branching. The other main approaches throughout the years have been

branch-and-price (Boussier, Feillet, and Gendreau, 2007; Keshtkaran, Ziarati, Bettinelli, and Vigo, 2016),

branch-and-cut (Bianchessi, Mansini, and Speranza, 2018; Dang, El-Hajj, and Moukrim, 2013), cutting

planes (El-Hajj, Dang, and Moukrim, 2016), and branch-cut-and-price (Pessoa, Sadykov, Uchoa, and

Vanderbeck, 2019; Poggi, Viana, and Uchoa, 2010). However, even in the most recent works, the exact

algorithms are still time-consuming and resource-hungry. Moreover, numerous well-performing heuristic

approaches have been proposed throughout the years, ranging from tabu searches (Archetti, Hertz, and

Speranza, 2007; Tang and Miller-Hooks, 2005), to variable neighbourhood searches (Archetti et al., 2007;

Vansteenwegen, Souffriau, van den Berghe, and van Oudheusden, 2009), ant colony optimisation (Ke,

Archetti, and Feng, 2008), memetic algorithms (Bouly, Dang, and Moukrim, 2010), simulated anneal-
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ing (Lin, 2013), and greedy randomised adaptive search procedures (Souffriau, Vansteenwegen, van den

Berghe, and van Oudheusden, 2010), just to name some.

Butt and Cavalier (1994) construct an Integer Program (IP) and a heuristic for the Multiple Tour Max-

imum Collection Problem. The heuristic considers node pairs instead of single nodes. Each node pair is

assigned a weight defined by a convex combination of two different weight criteria, which is then used in

generating the routes.

In order to determine the quality of the solutions obtained with the heuristic, the IP was solved to

obtain optimal solutions. The heuristic was able to obtain the optimal solution for 76% of the instances

for which an exact solution was obtained, and the worst-case optimality gap was 5.7% for the remaining

the instances. Overall, the heuristic was able to obtain a solution for instances with up to 100 nodes

within approximately 70 seconds.

Although Butt and Cavalier (1994) did solve the TOP, they did not publish their test instances. Thus

Chao, Golden, and Wasil (1996b) generated and published TOP instances by taking OP instances of

Tsiligirides (1984) and Chao et al. (1996a) and dividing the time limit by m ∈ {2, 3, 4} team members.

Dang, Guibadj, and Moukrim (2013b) propose a Particle Swarm Optimisation (PSO) inspired algo-

rithm, based on the PSO memetic algorithm for the TOP by Dang, Guibadj, and Moukrim (2013a).

For their algorithm they report a relative percentage error of only 0.0005% on the set of known test

instances by Chao et al. (1996b). Consequently, it seemed like there was not much room for algorithmic

improvement for these cases, and as such Dang, Guibadj, et al. (2013b) introduce larger test instances

with more nodes to accommodate future research on the topic. These larger benchmark instances are

based on a subset of OP instances of Fischetti, González, and Toth (1998), and use the transformation

procedure of Chao et al. (1996b) to obtain the desired TOP instances.

Ke, Zhai, Li, and Chan (2016) provide an interesting Pareto Mimic Algorithm (PMA) for the TOP,

utilising Pareto dominance (Voorneveld, 2003) and the newly introduced mimic and swallow operators.

Ke et al. (2016) show that their PMA is on a par with the PSO-inspired algorithm by Dang, Guibadj,

et al. (2013b), with PMA finding all previously known best solutions, while also being able to find 10

new best known solutions. Additionally, average results over 10 execution runs are in favour of PMA in

regards of objective value and running time.

A more recent attempt at solving the TOP comes from Hammami, Rekik, and Coelho (2020), proposing

a Hybrid Adaptive Large Neighbourhood Search (HALNS). Their approach is to hybridise an Adaptive

Large Neighbourhood Search (ALNS), which on its own is an extension of a Large Neighbourhood Search

(LNS) for the Vehicle Routing Problem (VRP) (Shaw, 1998). Hybridisation is achieved by introducing a

Sub-Route Optimisation Problem (SROP) to find a more profitable (sub)sequence in a given constructed

route, which corresponds to solving an OP. The algorithm is further hybridised by solving a Set Packing

Problem (SPP) to determine the combination of distinct routes resulting in the highest profit among all

generated routes. First, nodes are eliminated which on their own in a tour already exceed the time limit,
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which is done using a procedure proposed by El-Hajj et al. (2016). An initial solution is obtained using

the nearest neighbour algorithm of Keller et al. (1985). The structure of the rest of the algorithm consists

of run segments, in which the ALNS procedure takes place.

Hammami et al. (2020) compare the performance of their HALNS algorithm to 26 other TOP al-

gorithms from the academic literature, and report promising results. The HALNS algorithm was able

to find all best-known solutions for the small-scale instances of Chao et al. (1996b), and even find a

new best-known solution for the large-scale instances of Dang, Guibadj, et al. (2013b). Perhaps more

importantly, HALNS showed to be significantly faster in solving the smaller instances compared to other

competitive state-of-the-art heuristics. Additionally, it was able to find the best-known solutions the

quickest for 78% of the larger instances.

3.2 (Team) Orienteering Problem with Service-Time-Dependent Profits

Erdoǧan and Laporte (2013) were the first to touch upon the OP with Service-Time dependent Profits

(OPSTP), which generalises the OP such that the collection of profits is dependent on the duration of

a visit at a node. Mathematical formulations are presented for discrete and continuous interpretations,

where the former relies on passes to model the duration of time. A pass is defined as a specified amount

of time, and multiple passes can be made at a node to signify a longer visit. The proposed continuous

formulation results in a nonlinear program, which for their branch-and-cut algorithm is linearised to allow

the dynamic addition of valid inequalities. Due to the inherent characteristics of profits being collected

at nodes as a nonlinear function of time, methods developed for the (T)OP cannot be applied directly to

solve the problem.

Being the first to discuss the OPSTP, Erdoǧan and Laporte (2013) present schemes to transform

Traveling Salesman Problem (TSP) instances obtained from TSPLIB to OPSTP instances. It is shown

that the Mixed Integer Programming (MIP) formulation with discrete passes is able to solve all instances

with up to 100 nodes within 5 minutes. For the continuous interpretations, this drops to 94% and 86%

of the instances in the case of a concave and convex profit functions, respectively. Additionally, the

latter case takes approximately three times as much computational time than the former, showcasing the

difficulty of properly linearising the convex case.

Sometime later, Guitouni and Masri (2014) formulate a Search And Rescue (SAR) problem as an OP-

STP, which is then solved using the LINGO solver. The only noteworthy difference of their formulation

compared to that of Erdoǧan and Laporte (2013) is that they model the subtour elimination problem

using the Miller-Tucker-Zemlin formulation (Miller, Tucker, and Zemlin, 1960). However, the LINGO

solver appears to struggle to further improve potentially optimal solutions past 98%, after which each

of the remaining percentage points shows a significantly increased runtime. Guitouni and Masri (2014)

admit that linearisation of the problem as done by Erdoǧan and Laporte (2013) and the use of the CPLEX

solver may possibly reduce runtime.

J. Yu et al. (2015) discuss the OPST in the context of scheduling for mobile sensing robots, proposing both
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primal and dual MIP formulations supporting arbitrary profit functions through piece-wise linearisation.

It is shown that a (1 + ε/2) piece-wise linear approximation of any arbitrary profit function results in

(1 + ε)-optimal solution to the original primal problem, given ∀ε ∈ R+.

J. Yu et al. (2015) test their formulations on two sets of instances. The first set of instances consist

of POIs located on the lattice points of a rectangular grid, while the second one consists of POI locations

randomly generated in a rectangle using a uniform distribution. The latter set of instances appears to

be more difficult to solve, with up to 40 POIs being attainable for those instances, while for the former

set of instances up to 200 POIs is still feasible.

Q. Yu, Fang, Zhu, and Ma (2019) propose a two-phase matheuristic for the OPSTP. The problem is

decomposed into routing and scheduling subproblems, which are solved iteratively. The goal of the routing

problem is to determine the subset of nodes to be visited and the corresponding sequence. Consequently,

the Service-Time Scheduling Problem (SSP) has to determine the optimal service time at each of the

nodes in a given route. The SSP is similar to a continuous knapsack problem with nonlinear objective, and

Q. Yu et al. (2019) develop an exact polynomial-time algorithm with the use of the Karush-Kun-Tucker

conditions. The proposed algorithm consists of a tabu search to find feasible solutions for the routing

problem, and the SSP is solved either with the nonlinear solver IPOPT or the proposed polynomial-time

algorithm. The LS deterministic-removal operator is specifically designed for the OPSTP, as it removes

any node having an optimal service time of zero. Due to the many executions of the SSP, it is important

that it can be solved quickly for the entire algorithm to be efficient.

Results are compared to the algorithm of Erdoǧan and Laporte (2013), and due to developments in

general purpose solvers also a reimplementation thereof. The proposed two-phase matheuristic is able to

obtain results for all instances with up to 100 nodes within 30 seconds. At times the (reimplementation

of the) algorithm of Erdoǧan and Laporte (2013) has a better objective, but that comes at the cost of

a significantly higher runtime. On the other hand, Q. Yu et al. (2019) are able to obtain results for all

instances within two minutes, with a maximum optimality gap of 10.7%. The algorithm is also compared

to that of J. Yu et al. (2015) on their proposed test instances, and it shows that the two-phase matheuris-

tic is able to outperform it in terms of obtained objective values and in runtime. Demonstrating the

efficiency of their proposed polynomial-time algorithm for the SSP, its average runtimes are compared

to that of IPOPT and shown to be equal to approximately a fraction of a second and seven seconds,

respectively.

Only recently has research on the Team OPSTP (TOPSTP) surfaced, with the proposal of an ILS

algorithm by Gunawan et al. (2018). The TOPSTP is first formulated as an IP, inspired by the discrete

model by Erdoǧan and Laporte (2013). The ILS follows the same structure and operators as that of

Chao et al. (1996b). The most efficient criterion is introduced just for the TOPSTP, and is used to

construct new tours during the initialisation and reinitialisation phases, and the first LS operator, as well

as during the second LS operator to determine how many discrete passes should be made at a node. As

this formulation is dependent on discrete passes, there is no SPP as with Q. Yu et al. (2019).
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Since the TOPSTP has not been researched before, benchmark instances needed to be generated. As

such, Gunawan et al. (2018) present formulae to transform the OPSTP instances of Erdoǧan and Laporte

(2013) to TOPSTP instances. In order to determine the relative performance of the ILS procedure, the

proposed IP is solved with CPLEX with a time limit of 1,000 seconds to obtain upper bounds. The ILS

procedure was able to obtain results for all instances with up to 200 nodes within approximately 12

seconds, having a maximum gap with respect to the upper bound of 37.92%.

3.3 Team Orienteering Problem with Service- and Arrival-Time-Dependent

Profits

Under the umbrella of (T)OP with variable profits also falls the (T)OP with Arrival-Time Dependent Prof-

its ((T)OPATP). Research on the (T)OPATP has been around for a longer time, with Erkut and Zhang

(1996) introducing the OPATP, and Tang, Miller-Hooks, and Tomastik (2007), Ekici and Retharekar

(2013) and Afsar and Labadie (2013) discussing the TOPATP. However, Q. Yu, Adulyasak, Rousseau,

Zhu, and Ma (2021) propose a combination of the TOPATP and TOPSTP, ergo the TOP with Service-

and Arrival-Time-Dependent Profits (TOP-TTP). The motivation for this specific problem comes from

SAR operations, where the probability of finding survivors depends on when a SAR team arrives at a

location and how long the team searches that location. Q. Yu et al. (2021) formulate a Mixed Integer

Non-Linear Program (MINLP), propose a Benders Cranch-and-Cut (BBC) algorithm to solve it, and also

provide an ILS approach. Just as Q. Yu et al. (2019), an SSP has to be solved during the procedure,

and thus Q. Yu et al. (2021) propose a heuristic Modified Coordinate Search (MCS) algorithm for the

SSP. This derivative-free method iteratively attempts to find and move to a search direction which will

improve the objective value of a given solution.

TOP-TTP benchmark instances did not exist yet, so Q. Yu et al. (2021) used a subset of the Vehicle

Routing Problem with Time Window (VRPTW) instances of Solomon (1987) to generate them. These

instances have up to 25 nodes (excluding depots) and up to 5 vehicles, i.e. tours. The instances are

also divided into two sets, based on the nodes being cluster-located or random-located. Q. Yu et al.

(2021) show that their ILS with MCS is generally able to find better solutions than their proposed BBC

algorithm, and in considerably less computational time as well. For the larger instance, BBC has runtimes

of up to more than two hours compared to ten minutes for the ILS with MCS. In addition, an optimality

gap of 181.51% is observed for the BBC for the largest instance, while this is merely 32.04% for the ILS

with MCS. Looking at the SSP, the proposed MCS is able to construct solutions of similar quality as the

IPOPT solver, but only needs 2.74% of the computational time.

3.4 (Team) Orienteering Problem with Time Windows

Kantor and Rosenwein (1992) were first to discuss the OPTW, proposing a tree search-based heuristic and

an insertion heuristic, where the latter is an extension of the heuristic developed by Laporte and Martello

(1990) for the OP. In order to test the performance of the proposed heuristics, Kantor and Rosenwein

(1992) provide formulae to generate OPTW instances from the OP instances of Tsiligirides (1984). Given
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that the tree-search based heuristic explores a larger solution space, it proved to provide better results

than the insertion heuristic, with acceptable runtimes for heavily-constrained, moderately-sized problems.

Labadie et al. (2012) propose an LP-based Granular Variable Neighbourhood Search (VNS) for the

TOPTW. An insertion heuristic based on a custom criterion is used to generate an initial solution. The

first VNS neighbourhood consist of classical routing operators to reduce travel time, while the second

one aims to replace a sequence of visited nodes by unvisited ones in order to increase profitability. The

LP-based Granular component of the proposed heuristic involves the dual formulation of an assignment

problem to identify more promising edges, in order to reduce the size of the second VNS neighbourhood.

Gunawan et al. (2015b) present an ILS for the TOPTW. A greedy construction heuristic is proposed to

obtain an initial solution, making use of an insertion benefit ratio. The LS component consists of six

operations, both inter- and intraroute, in order to reduce travel time and improve the objective. The

perturbation component consists of a route exchange and a shake procedure aims to escape local min-

ima. Additionally, an intensification strategy is implemented, which reinitialises the algorithm using the

best-found solution if no improvement has been found for a predetermined amount of iterations. This

ILS framework is extended by Gunawan, Lau, and Lu (2015a) to incorporate an SA component, result-

ing in the possibility of worse solution being accepted based on a SA criterion, further aiding escaping

local minima. The SA ILS shows promising results compared to other competitive algorithm from the

literature, while also being able to find new best-known solutions for the TOPTW.

This chapter discussed the OP and some of its various generalisations. In the next chapter, the

(linearised) objective function for the OPSTP put forward by Erdoǧan and Laporte (2013) will form the

basis of the TOPSTPTW formulation. Accommodating multiple routes in the TOPSTPTW formulation

follows follows the structure of the TOPSTP formulation of Gunawan et al. (2018). Incorporating time

windows in the formulation of the TOPSTPTW is inspired by the formulations for the TOPTW by

Gunawan et al. (2015b) and Labadie et al. (2012). Subsequently, the HALNS framework for the TOP

proposed by Hammami et al. (2020) will form the the basis for the heuristic solution method. To

incorporate service-time-dependent profits, the construction of an initial solution takes inspiration from

Q. Yu et al. (2021), Q. Yu et al. (2019). Due to presence of time windows, the proposed local search

procedure takes notes from Gunawan et al. (2015b). The SSP is also present in the HALNS framework

for the TOPSTPTW. An exact mathematical formulation for the SSP is proposed, as well as an MCS

heuristic based on that of Q. Yu et al. (2021).

4 Methodology

This section will first introduce a mathematical formulation for the Team Orienteering Problem with

TOPSTPTW inspired by the works of Erdoǧan and Laporte (2013), Gunawan et al. (2015b), Gunawan

et al. (2018), and Labadie et al. (2012). A solution approach based on the HALNS framework for the TOP
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of Hammami et al. (2020) is discussed. This framework is modified for the TOPSTPTW, taking notes

from Gunawan et al. (2015b) and Q. Yu et al. (2021), Q. Yu et al. (2019). Furthermore, a mathematical

formulation is presented for the SSP, and an adjusted version of the MCS proposed by Q. Yu et al. (2021)

is introduced in order to solve it heuristically.

4.1 Mathematical Formulation

Given that we have to keep track of when service time starts at a node, it is necessary to define a virtual

copy of the depot 1, denoted by v. To that extent, let us define the set of nodes containing both depots

as V̂ = V ∪ {v}, and the corresponding new set of edges Ê (Labadie et al., 2012). Furthermore, this

brings the need to define the ei = 0, li = Tmax for the nodes i ∈ {1, v}, as well as t1v =∞. Additionally,

for convenience we set tij =∞ if ei + tij > lj .

max
∑

p∈P

∑
i∈V \{1}

fi(zip) (1)

s.t.
∑

j:(1,j),(v,j)∈Ê

∑
p∈P

x1jp = |P | (2)∑
i:(i,v),(i,1)∈Ê

∑
p∈P

xivp = |P | (3)∑
p∈P

yip ≤ 1 ∀i ∈ V \ {1} (4)∑
j:(k,j)∈Ê,j 6=k

xkjp = ykp ∀k ∈ V \ {1}, p ∈ P (5)∑
i:(i,k)∈Ê,i6=k

xikp = ykp ∀k ∈ V \ {1}, p ∈ P (6)∑
(i,j)∈Ê

tijxijp +
∑

i∈V̂
(zip + wip) ≤ Tmax ∀p ∈ P (7)

Tip + zip + tij − Tjp ≤M1
ij(1− xijp) ∀(i, j) ∈ Ê, p ∈ P (8)

Tjp − (Tip + zip + tij) ≤M2
j (1− xijp) + wjp ∀(i, j) ∈ Ê, p ∈ P (9)

eiyip ≤ Tip ≤ liyip ∀i ∈ V̂ , p ∈ P (10)

0 ≤ zip ≤ li − Tip ∀i ∈ V̂ , p ∈ P (11)

yip = 1 ∀i ∈ {1, v} (12)

wip ≥ 0 ∀i ∈ V̂ , p ∈ P (13)

yip ∈ {0, 1} ∀i ∈ V̂ , p ∈ P (14)

xijp ∈ {0, 1} ∀(i, j) ∈ Ê, p ∈ P (15)

Equations (1)-(15) represent the mathematical formulation for the TOPSTPTW. The decision variable

Tip denotes the start of service time at node i on tour p; zip denotes the service time duration at node

i for tour p; yip is equal to one if node i is visited on tour p, zero otherwise; xijp is equal to one when

node j is visited directly after node i on tour p, zero otherwise. To incorporate a tour arriving at a node

before the earliest available time, wip denotes the waiting time of a tour p before entering node i in case it

arrives before the earliest available time ei (Gunawan et al., 2015b). The MINLP represented in equations

(1)-(15) may be solved using a Non-Linear solver such as IPOPT. However, it may be more efficient to

linearise the MINLP following Erdoǧan and Laporte (2013) and solve it with the general purpose solver

CPLEX.
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The objective function (1) maximises the total collected profit according to the service time at all visited

nodes in all tours, where fi(zip) = ri(1 − e−βzip). Constraints (2) and (3) ensure that all tours start

and end at the depot, respectively. Constraints (4) states that each node, with exception of the depot,

can at most be visited once. Constraints (5) and (6) enforce connectivity between edges and vertices.

Constraints (7) ensure that the travel, service and waiting time of each tour does not exceed the given

time limit. Constraints (8) ensure that the consecutively visited nodes have their starting times of service

updated correctly. Similarly, constraints (9) ensure that the waiting time at a node is updated correctly,

if it arrives before the earliest available time (Gunawan et al., 2015b). The aforementioned two sets of

constraints also eliminate the creation of subtours, similar to the Miller-Tucker-Zemlin formulation for

subtour elimination (Miller et al., 1960). Constraints (10) enforce the time windows at each of the nodes.

Constraints (11) impose bounds on the service times. Lastly, constraints (13) ensures non-negativity of the

waiting time, and constraints (14)-(15) are integrality constraints. Taking inspiration from Labadie et al.

(2012), M1
ij is set according to a theoretical upper bound on the left hand side of inequalities (8) for each

(i, j) ∈ Ê. This yields a stronger formulation compared to the case where arbitrarily high M-values are

chosen. Subsequently, its values areM1
ij = 2li+tij , since Tip+zip+tij−Tjp ≤ li+(li−ei)+tij−ej ≤ 2li+tij ,

for each (i, j) ∈ Ê. Analogously, it may be deduced for inequalities (9) that M2
j = lj , for each (i, j) ∈ Ê.

4.2 Linearisation

In order to solve the TOPSTPTW with the general purpose solver CPLEX, the introduced formulation

has to be linearised. Following the linearisation for the OPSTP proposed by Erdoǧan and Laporte (2013),

the auxiliary variable uip is added, accompanied by the valid inequalities shown in (16)-(17). The decision

variable uip denotes the ratio of profit to be collected at node i for route p. Inequalities (16) define the

tangents of each of the profit collection functions, defined for each integer value of the parameter z∗ip on

the interval [0, li − ei], for each i ∈ V {1}, p ∈ P . As Erdoǧan and Laporte (2013) argue, this approach

accurately approximates the chosen nonlinear profit collection functions. Additionally, inequalities (17)

impose an upper bound on each of the profit collection functions according to the corresponding time

windows.

uip ≤ βie−βz
∗
ipzip + 1− βie−βz

∗
ip − z∗ipβie−βz

∗
ip ∀i ∈ V \ {1}, p ∈ P, z∗ip ∈ [0, li − ei] (16)

uip ≤ (1− e−β(li−ei))yip ∀i ∈ V \ {1}, p ∈ P (17)

Then, the linearised formulation for the TOPSTPTW consists of

max
∑

p∈P

∑
i∈V \{1}

riuip (18)

s.t. 0 ≤ uip ≤ 1 ∀i ∈ V \ {1}, p ∈ P (19)

and (2)-(17), where ri denotes the profit associated with visiting node i ∈ V \ {1}.
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4.3 Hybrid Adaptive Large Neighbourhood Search

The HALNS procedure consists of node selection strategies and removal/insertion operators, each of

which is adaptively chosen based on past performance. Each strategy or operator k is associated a score

πkq during each run segment q of the algorithm, set equal to one for q = 1, and updated following

πk(q+1) = λπkq/nk + (1− λ)πkq. A run segment is defined as a subsection of the algorithm during which

Nmax iterations of ALNS is performed, and the scores of each operator and strategy are updated per

run segment. nk denotes number of the times during a run segment q that a strategy or operator k has

been chosen, πkq the observed score, and λ ∈ (0, 1) a specified reaction factor. The observed score πkq is

initially set to zero and incremented according to ρ as per (20). Ultimately, each strategy and operator

is chosen using roulette wheel selection, i.e. according to the probability πkq/
∑m
l=0 πlq, where m denotes

the total available strategies/operators with respect to k.

ρ =


ρ1 if new solution is a new best

ρ2 if the new solution value is better than the last admissible solution

ρ3 if the new solution does not improve the last admissible solution

(20)

A general outline of the used HALNS framework is given in Algorithm 1. Iteratively, a random amount

of nodes Γ to be removed from a current solution P according to the selected operator. Subsequently,

a random amount of nodes ∆ is selected and inserted according to the chosen selection strategy and

operator. If the objective value of a modified solution P is greater or equal to the objective value of the

admissible solution Padm, a local search is performed with the aim to reduce travel time and increase

obtained profits. A Simulated Annealing (SA) temperature parameter S is also employed to occasionally

admit a solution with a worse objective value than the admissible solution. The SA parameter is initialised

to S0, and updated through multiplication of a cooling factor c during each ALNS iteration. If a new best

solution is found, Pbest is updated and the counter of consecutively generated non-improving solutions

nbest is reset, otherwise the counter is incremented. If a modified solution P is admitted, Padm is

updated to it, regardless of whether it is a new best or not. Additionally, if the SA parameter value falls

below a specified minimum Smin, a Set Packing Problem (SPP) is solved in order to determine the best

combination of tours among all generated tours up to that point. The algorithm stops when no improved

best-known solution has been found for Nbestmax
iterations, or when Qmax run segments is reached. Then

the SPP is solved one last time and the best-known solution is given as output. Note that the SSP is

solved each time a solution is modified in order to obtain the corresponding objective value, and the

objective value of a solution P is denoted by v(P ).
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Algorithm 1: HALNS Framework for the TOPSTPTW

1 NodeElimination

2 P ← TourInitialisation

3 P ← SolveSSP(P)

4 Pbest ← P, Padm ← P, S ← S0, q ← 0, nbest ← 0
5 ScoreInitialisation

6 while q < Qmax and nbest < Nbestmax
do

7 n← 0
8 while n < Nmax do
9 P ← Padm

10 Generate Γ, ∆
11 Select node selection strategy γ
12 Select removal and insertion operators R and I
13 Remove Γ nodes in P using R
14 Insert ∆ nodes in P using I according to γ
15 P ← SolveSSP(P)

16 Generate random number δ ∈ (0, 1)

17 if v(P ) ≥ v(Padm) or δ ≤ e(v(P )−v(Padm)/S then
18 P ← LocalSearch(P)

19 P ← SolveSSP(P)

20 if v(P ) > v(Pbest) then
21 Pbest ← P, nbest ← 0
22 else
23 nbest ← nbest + 1
24 Padm ← P

25 else
26 nbest ← nbest + 1
27 ObservedScoreUpdate

28 if S ≤ Smin then
29 S ← S0

30 P ← SolveSPP

31 if v(P ) > v(Pbest) then
32 nbest ← 0
33 Pbest ← P, Padm ← P

34 S ← S · c, n← n+ 1

35 ScoreUpdate

36 q ← q + 1

37 Pbest ← SolveSPP

38 return Pbest

4.3.1 Initialisation

The method NodeElimination eliminates nodes which on their own in a tour already exceed the time

limit, i.e. nodes i ∈ V s.t. t1i+tiv ≥ Tmax. An initial solution is then generated in the TourInitialisation

method, in which |P | tours are constructed simultaneously (Q. Yu et al., 2021). To incorporate vari-

ations in profit collection rates and travel distances, each node is associated with a score defined by

ζip = riβi(li− ei)/∆tip, taking inspiration from Q. Yu et al. (2019). ∆tip corresponds to the incremental

increase in travel time of adding node i at the end of route p. An example would be that of adding node

i to tour p = {1, . . . , k, v}, resulting in tour p = {1, . . . , k, i, v}. In that case, ∆tip = tki + tiv − tkv.

This method gives a higher priority to nodes having a larger profit, profit collection rate and/or time

window, or those which minimally increase the total travel time. Each of the |P | tours is first set to only
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contain the depot as start and end nodes, i.e. ∀p ∈ P : p = {1, v}. Then, iteratively it is tried to insert

a node i with the highest score ζip to each of the tours p ∈ P . If insertion results in an infeasible route

exceeding the time limit without considering service time of node i, that route is considered complete.

We may assume that service time at a node should be greater than zero, and Q. Yu et al. (2021), Q. Yu

et al. (2019) argue that setting it to collect 50% of the available profit is reasonable during initialisation.

Consequently, in initialising the service times, zip is set such that fi(zip) = 0.5 if the time limit or time

window permits it, otherwise zip is set to the remaining available time with respect to the time limit or

time window. If the arrival time of a node is not within its time window, the next node with the highest

score will be sought which does satisfy the time window. If no such node can be found, the node having

the lowest waiting time among the non-inserted nodes is considered for insertion.

4.3.2 Node Selection Strategy & Removal/Insertion Operators

Hammami et al. (2020) propose and argue the effectiveness of four node selection strategies and five

insertion/removal operators for their TOP HALNS algorithm. Subsequently, these options are considered

in this HALNS implementation as well, and are expected to work properly after adjusting for time windows

and profit collection rates where necessary. The four considered node selection strategies are as follows:

1. NS1: This strategy extends ζip to incorporate adding node i into a solution such that total

travel time is minimally increased. To that extent we introduce D(P+i), which denotes the to-

tal travel time of inserting node i into solution P such that increase in the total travel time is

minimal (Hammami et al., 2020). Then, the first node to be selected is node i∗ ∈ V̂ \ VP : i∗ =

argmaxi∈V̂ \VP
riβi(li − ei)/D(P+i), taking time windows and profit collection rates into account.

2. NS2: This strategy prioritises nodes having the highest obtainable profit according to time windows

and profit collection rates, riβi(li− ei). Selection is made using a roulette wheel procedure in order

to avoid cycling, giving higher probabilities to nodes with higher profits.

3. NS3: This strategy randomly selects nodes in order to diversify the search.

4. NS4: This strategy selects nodes which have been removed from previous solutions the last, in order

to give them a chance at getting reinserted at better positions.

The five removal operators are as follows:

1. R1: This operator randomly removes nodes from the current solution in order to diversify the

search.

2. R2: This operator removes the nodes having the smallest obtainable profit according to time

windows and profit collection reates, riβi(li−ei). Selection is made using a roulette wheel procedure

in order to avoid cycling, giving higher probabilities to nodes with smaller profits.

3. R3: This operator, similarly to NS1, defines D(P−i) as the largest decrease in travel time if node

i is removed from solution P . Then, nodes are removed using roulette wheel selection based on
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the largest saving in travel time, giving higher probabilities to nodes having a higher value for

D(P )−D(P−i).

4. R4: This operator randomly selects and removes all nodes in a tour p ∈ P in order to diversify the

search.

5. R5: This operator removes a sequence of subsequent nodes of random length αp in a randomly

selected tour p ∈ P , in order to create room for potentially more profitable sequence of non-inserted

nodes.

Lastly, the five considered insertion operators are as follows:

1. I1: This operator iteratively inserts nodes at the earliest feasible position in a tour.

2. I2: This operator iteratively inserts nodes at the latest feasible position in a tour.

3. I3: This operator iteratively inserts nodes in a randomly selected feasible position.

4. I4: This operator iteratively inserts nodes at a feasible position minimising total travel time.

5. I5: This operator iteratively inserts nodes at a feasible position minimising the sum of travel time

between the considered node and its predecessor and between the considered node and its successor

within a route.

To clarify, an insertion is feasible if it respects time windows and does not exceed the time limit. Re-

specting time windows entails that it is possible for the tour to arrive at the inserted node before its

latest available time, and that it is able to arrive before the latest available time of each of the subsequent

nodes in the tour, disregarding service times. This has serious implications for the algorithm, since it is

not unreasonable to assume that a large proportion of the nodes selected for insertion cannot be feasibly

inserted. Subsequently, the ∆-parameter should always be larger than the Γ-parameter to ensure that

generated routes do not continuously decrease in size.

4.3.3 Local Search

The LS procedure consists of two swap operators, a complete 2-opt procedure, and a move operator

(Gunawan et al., 2015b). The first swap operator exchanges two nodes within a single tour, starting with

the tour having the lowest remaining available service time T̂ . The second swap procedure extends the

first one to swap two nodes within two tours, starting with those tours having the lowest and second

lowest values for T̂ . The 2-opt procedure starts by selecting the tour having the lowest value for T̂ . The

move operator reallocates a node from one tour to another. All aforementioned operators consider all

possible combinations of differing nodes, and apply changes only if it results in an increase in T̂ and

does not violate any constraints. For each of the tours p ∈ P , these procedures are iteratively executed

until no further improvement is found. Lastly, the I5 operator is used to try to insert non-inserted nodes

into the current solution according to NS1 until an infeasible insertion is encountered, as proposed by

Hammami et al. (2020).
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4.3.4 Service-Time Scheduling Problem

When a route is modified at any point in the HALNS framework, the service times at each of its nodes

has to be determined in order to obtain the corresponding objective value. Let us define Vp the set of

nodes visited by tour p, and Ep the corresponding set of edges between consecutive nodes. Decision

variables are identically defined as in model (1)-(15). For each tour p ∈ P , the SSP is formulated as per

equations (21)-(27).

max
∑

i∈Vp\{1,v}
ri(1− eβizip) (21)

s.t.
∑

(i,j)∈Ep

tij +
∑

i∈Vp\{1,v}
(zip + wip) ≤ Tmax (22)

Tip + zip + tij − Tjp ≤ 0 ∀(i, j) ∈ Ep (23)

Tjp − (Tip + zip + tij) ≤ wjp ∀(i, j) ∈ Ep (24)

ei ≤ Tip ≤ li ∀i ∈ Vp (25)

0 ≤ zip ≤ li − Tip ∀i ∈ Vp \ {1, v} (26)

wip ≥ 0 ∀i ∈ Vp (27)

The objective function (21) maximises the total collected profit according to the service time at all vis-

ited nodes of the considered tour. Constraints (23) ensure that the consecutively visited nodes have their

starting times updated correctly. Similarly, constraints (24) ensure that the waiting time at a node is up-

dated correctly, if it arrives before the earliest available time. Constraints (25) enforce the time windows

at each of the nodes. Constraints (26) impose bounds on the service times. Lastly, constraint (27) ensures

non-negativity of the waiting time. Given that the objective function is equivalent to to that of model

(1)-(15), the same linearisation scheme by Erdoǧan and Laporte (2013) can be applied. Subsequently, the

implemented model consists of objective (18) subject to (16), (17), (19), and (22)-(27) for a given tour

p ∈ P and corresponding set of nodes Vp and set of edges Ep. The version of the HALNS algorithm where

the SSP is solved exactly with the general purpose solver CPLEX using the aforementioned formulation

will be denoted by HALNS-E.

The SSP will have to be solved numerous times during the HALNS algorithm. Subsequently, an MCS

heuristic will be implemented, with the aim to decrease overall solving time while not substantially dimin-

ishing solution quality. Q. Yu et al. (2021) propose an MCS heuristic to solve the SSP for the TOP-TTP,

which is adjusted to ignore arrival-time dependent profits and incorporate time windows. The outline of

the MCS heuristic is shown in Algorithm 2.

The MCS method starts from an initial service time solution, and iteratively generates improved solutions

according to a search direction. The search direction is based on the product of two factors, where the first

one depends on objective values of neighbour solutions with respect to the current solution, and the second

one depends on the distance between a neighbour solution and the current solution. If a modification
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results in the violation of the time limit, or time windows for that matter, a repair procedure is executed,

reducing service times until the solution is feasible again.

Algorithm 2: Modified Coordinate Search

Input: Sequence of nodes U = {u1, . . . , um}
1 z0 = {z01 , . . . , z0m} ← ServiceTimeInitialisation

2 k = 0, z∗ = zk

3 while ε > εmin do
4 Generate Dk = {zk + ei : i = 1, . . . ,m}
5 Calculate ~h as per (29)
6 Compute s′ as per (28)
7 for node ui ∈ U do
8 if aui

< eui
according to s′ then

9 wui = eui − aui

10 Tui = eui

11 else if aui
≤ lui

according to s′ then
12 Tui

= aui

13 else
14 ∆T = aui − lui

15 for j ← i− 1 to 1 do
16 ∆z′j = min{z′j ,∆T}
17 z′ = {z′1, . . . , z′j −∆z′j , . . . , z

′
m}

18 UpdateTimes(j,i)
19 ∆T = aui

− lui

20 if ∆T ≤ 0 then
21 Tui = aui

22 break;

23 ẑ′i = min{z′i, lui
− Tui

}
24 s′ = {z′1, . . . , ẑ′j , . . . , z′m}
25 if v(z′) > v(zk) then
26 z∗ = z′, k = k + 1, zk = s′

27 else
28 ε = ε/2, k = k + 1

29 return z∗

We denote the ordered set of nodes of a route p by U = u1, . . . , um, wherein the depots are excluded.

Then, the method ServiceTimeInitialisation tries to initialise the service times of each node ui ∈

U, i = 1, . . . ,m such that zi = (Tmax −
∑

(i,j)∈Ep
tij)/m. Due to the time windows, this allocation is

not feasible in most cases, and as such the same method as in lines (7)-(24) of Algorithm 2 will be used

to ensure feasibility. Let us first consider generating a trail solution s′. A set of candidate solutions is

constructed such that Dk = {zk + ei : i = 1, . . . ,m}. Then the trail solution is generated according to

(28), where ~d corresponds to ~h/‖~h‖.

s′ = sk + ε~d (28)

The vector ~h is generated according to (29), consisting of the two factors wl and ~πl defined for each

candidate solution zl ∈ Dk. The first factor wl is based on a weighted difference in objective value for

each of the candidate solutions zl ∈ Dk with respect to the current MCS solution zk. The second factor

~πi is defined by a weighted difference in solution distance for each of the candidate solutions zl ∈ Dk with
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respect to the current MCS solution zk. Q. Yu et al. (2021) remark that the trail solution is guaranteed

to find an improved solution, although some constraints may be violated.

~h =
∑m

l=1
wl ~πl (29)

wl =
v(zl)− v(zk)∑m

q=1 |v(zq)− v(zk)|
∀zl ∈ Dk (30)

~πl =
zl − zk

‖zl − zk‖
∀zl ∈ Dk (31)

Subsequently, a repair method is used in order to ensure feasibility, taking place in lines (7)-(24) of Algo-

rithm 2. For each node ui ∈ U , the arrival time aui
is determined using the service start time of, service

time of, and travel time from its predecessor node. If its arrival time is before its earliest available time,

waiting time wui and service start time Tui are updated accordingly. If its arrival time is within the time

window, only the service start time has to be updated, assuming that waiting times are initialised to

zero. Lastly, if its arrival is later than its latest available time window, the solution has to be repaired.

∆T denotes the needed reduction in service time in order to make the solution feasible again. Then,

the repair method iteratively visits nodes preceding the current one in a backward fashion, maximally

reducing the service time at those nodes. After the service time at a node is adjusted, the UpdateTimes

method updates the waiting and service start times of nodes affected by the change. This is necessary to

calculate ∆T again afterwards, as a modification in service times at preceding nodes may not translate

entirely to the arrival time at the considered node due to the time windows. When overall service time

has been reduced such that the arrival at node ui is feasible, the repair method is terminated. Due to how

the routes are constructed to be feasible in the HALNS framework when no service times are considered,

the aforementioned procedure always terminates. Given that the arrival at node ui is feasible, its service

time is then updated based on the minimum of the trail solution service time z′i and available service

time lui −Tui . The version of the HALNS algorithm where the SSP is solved heuristically with the MCS

will be denoted by HALNS-MCS. Note that the SSP is solved exactly with CPLEX once the algorithm

terminates in order to obtain the correct objective value of the routes.

Q. Yu et al. (2021) make use of a greedy repair method in their MCS implementation, maximally reducing

service times at preceding nodes yielding the smallest difference in objective value. However, due to the

presence of time windows, this approach has deliberately been put aside. To illustrate, assume that the

greedy approach dictates that the service time at the node 1 needs to be reduced by ∆T in order to arrive

feasibly at node i. The result of executing this decision may be that waiting time needs to be incurred

at a next node, due to its arrival being too early with respect to the time window. Then, reducing the

service time by ∆T at node 1 does not reduce the arrival time at node i by ∆T , and subsequently no

termination is guaranteed. This greedy approach may result in an unnecessary amount of reduction in

service times across all nodes in the route. The proposed repair method aims to avoid just that. It

may be possible to incorporate a greedy repair method in the MCS for the TOPSTPTW, but it will

require additional thought on how a service time reduction at preceding nodes affects the arrival time
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at the desired node. The question then still is if the potentially improved solution quality justifies the

additionally needed computations and likely increased solving times.

4.3.5 Set Packing Problem

As mentioned in the general outline of the HALNS framework in Section 4.3, the SPP may be used

to optimally select |P | routes among all generated routes, maximising the collectively collected profit

(Hammami et al., 2020). Let G denote the set of all distinct tours generated during the ALNS iterations,

which entails that Vg 6= Vh for each g, h ∈ G. Each tour g ∈ G has an associated profit φg equal to the

sum of all profits collected at the visited nodes. Let us define the parameter aig, which is equal to one if

node i ∈ V \ {1} is contained in tour g, zero otherwise. The decision variable θg is equal to one if tour

g is chosen, zero otherwise. Then, the SPP is formulated as per equations (32)-(35), and may be solved

using the general purpose solver CPLEX.

max
∑

g∈G
φgθg (32)

s.t.
∑

g∈G
aigθg ≤ 1 ∀i ∈ V \ {1, } (33)∑

g∈G
θg = |P | (34)

θg ∈ {0, 1} ∀g ∈ G (35)

The objective function (32) maximises obtained profits over selected tours. Constraints (33) ensure that

across all selected tours each of the nodes is visited at most once. Constraint (34) ensures that the exactly

|P | tours are selected. Lastly, constraints (35) enforce binarity of the decision variables.

This chapter has discussed the necessary information to solve the TOPSTPTW either exactly or

heuristically. Section 4.1 introduces a mathematical formulation, while Section 4.2 puts forward a lin-

earisation of its nonlinear objective function. The linearised formulation may be solved using the general

purpose solver CPLEX. Section 4.3 introduces the HALNS framework, while its subsections describe its

various components. Section 4.3.1 discusses how an initial solution for the TOPSTPTW is derived, while

Section 4.3.2 introduces the various node selection strategies and removal/insertion operators which are

used to modify said solution. Section 4.3.3 presents a LS procedure, which aims to reduce total travel

time and increase the objective value of a solution. Section 4.3.4 discusses an exact mathematical formu-

lation and an MCS heuristic for the SSP. Lastly, Section 4.3.5 describes a mathematical formulation for

the SPP, which is used to find a set of non-overlapping tours maximising the objective value. With this

information, all solution methods can be implemented in the programming language of choice. However,

benchmark instances will have to be generated first, since there are none available at time of writing

this.
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5 Data

The only known benchmark instances for the TOPSTP come from Gunawan et al. (2018), which are

generated according to the procedures of Chao et al. (1996b) and Erdoǧan and Laporte (2013). As such,

the TSP instances kroA100, kroB100, kroC100, kroA200 and kroB200 from TSPLIB will be transformed

to TOPSTP instances according to the formulae of Erdoǧan and Laporte (2013) and Gunawan et al.

(2018). Subsequently, time windows are constructed for each of the nodes following Kantor and Rosenwein

(1992) in order to obtain TOPSTPTW instances. Complications arising from dependencies in the data

are not expected for the generated instances. Firstly, without time windows the instances are valid

TOPSTP instances. Secondly, the constructed time windows may influence the nodes to be visited and

the amount of time spent at the nodes. However, given the structure of the problem, constructing a route

is always feasible.

The locations of the nodes in the TSP instances are randomly generated in a plane, and consist of

either 100 or 200 nodes, as indicated by the names of the instances. The TOPSTP instances will contain

the first k ∈ {25, 50, 75, 100} nodes of the TSP instance in case of it having 100 nodes, while this is equal

to the first k ∈ {125, 150, 175, 200} nodes in case of it having 200 nodes. This is due to the fact that the

larger instances are extensions of the smaller instances, and as such duplicate computational results are

avoided (Gunawan et al., 2018). The first node of each instance is set to be the depot, and |P | ∈ {2, 3, 4}

tours are considered.

As discussed in Section 2, the problem may be represented on a graph G = (V,E). Each node i ∈ V

has an x-coordinate Xi and y-coordinate Yi. Travel cost tij for each edge (i, j) ∈ E are based on the

Euclidean distance between the corresponding nodes i, j ∈ V, i 6= j. In this case, distance is assumed to

equal travel time, and as such no specific unit of measurement will be provided for it.

ri = 10 + (Xi + Yi) mod 90
βi = (10 + (((Xi + Yi) mod 20)/20) · 90)/20000
Tmax = b2.5 · (Xmax −Xmin + Ymax − Ymin)/|P |c
ei ∈ [0, Tmax/2]
li ∈ [ei,min(ei + 2Tmax/3, Tmax)]

Table 1: Summary of TSP-to-TOPSTPTW Transformation Formulae

In determining the values of the relevant parameters, we’ll first introduce Xmax, Xmin, Ymax, Ymin as

the maximum and minimum x- and y-coordinates of all nodes in an instance. Then, the formulae for

transforming TSP instances to TOPSTPTW instances are summarised in Table 1 (Erdoǧan and Laporte,

2013; Gunawan et al., 2018; Kantor and Rosenwein, 1992). For each node i ∈ V , ri is contained on the

interval [10, 100), and for βi this is [0.0005, 0.005). The time window parameters ei and li are determined

using a uniformly distributed random variable on the intervals shown in Table 1 (Kantor and Rosenwein,

1992). Using the aforementioned instance characteristics, a total of 80 distinct instances are generated

and available for this research. The value of Tmax depends on the characteristics of the instance, but is

contained on the interval [3358,7401] for all instances.
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Additionally, small-scale TOPSTPTW instances are created from TSP instances kroA100 and kroB100,

with |P | ∈ {1, 2, 3} and containing the first k ∈ {5, 10, 15} nodes. In case |P | = 1, Tmax ∈ {5000, 7500,

10000, 12500}, else Tmax ∈ {5000, 7000, 9000} (Gunawan et al., 2018). These 60 instances are small

enough for a general purpose solver such that a general purpose solver can solve them to optimality,

and as such provide the opportunity to verify obtained results of the proposed methods with optimal

solutions. All generated benchmark instances are available on GitHub.

6 Results

All computations have been performed on a workstation equipped with an Intel i5-10600K @4.1-4.8GHz

and 32GB of RAM memory, running the Windows 10 operating system, and all code implemented in

Java along with the use of the CPLEX 12.10.0 library. For ease of notation, let us refer to an instance

where |P | = p, |V | = v, and Tmax = t generated from TSP instance X by X-p-v-t. As an example, the

instance generated from the TSP instance kroB100 with |P | = 2, |V | = 10, and Tmax = 9000 will be

referred to as kroB100-2-10-9000

6.1 Parameter Settings

Setting the HALNS parameters required some thought and tweaking, and the chosen values are shown

in Table 2. The value of α remains unchanged compared to that of Hammami et al. (2020), while the β

parameter was not even present in their work. The reasoning behind always having a higher value for

β than α comes from the fact that node insertion only occurs when it is feasible. Given the additional

difficulty imposed by time windows, this choice ensures that route size does not continually decrease over

the iterations due to the inability to insert selected nodes. Note that V + and V − denote the set of used

and unused nodes, respectively. This terminology is extended in the case of αp, where V +
p denotes the

set of used nodes in a given route p.

Parameter Description Value

Q Maximum number of run segments 20
Nmax Maximum number of iterations per run segment 20
Nbestmax

Maximum number of iterations without improvement 100
α Random number of nodes to remove from current solution α ∈ [1, b0.25|V +|c]
β Random number of nodes to add to current solution β ∈ [α, α+ b0.25|V −|c]
S0 SA initial temperature 95
Smin SA minimum temperature 0.1
c SA cooling rate 0.9
ρ1 Operator score increment case 1 20
ρ2 Operator score increment case 2 5
ρ3 Operator score increment case 3 1
λ Reaction factor adaptive weighting 0.85
αp Random size of sequence to remove αp ∈ [b0.4|V +

p |c, b0.6|V +
p |c

ε Step size 5
εmin Minimum step size 1
‖ei‖ Neighbour distance 0.1

Table 2: HALNS and MCS Parameter Values
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The HALNS loop parameters Q, Nmax, and Nbestmax
appear relatively low, yet a choice had to be made

between solution quality and solving times. The chosen values appear to achieve satisfactory results

within reasonable computational time. The increase in solution quality obtained by increasing the values

of these loop parameters did not appear to justify the increase in solving times. Additionally, due to the

choice of these loop parameters, the SA parameters needed to be adjusted as well compared to Hammami

et al. (2020), in order for the SPP to be executed at all. Regarding the MCS parameters, the value

of ε is halved compared to Q. Yu et al. (2021), and ‖ei‖ multiplied by a factor of 10. These adjusted

values improved computational times in the case of the TOPSTPTW, while having minimal effect on the

solution quality.

6.2 Performance Evaluation

In order to evaluate the performance of the proposed methods against optimal solutions, the small-scale

instances with up to 15 nodes and up to 3 routes are solved using all methods, as shown in Table 3 and

4. Table 5 summarises some performance metrics over all considered instances. CPLEX is able to obtain

optimal solutions for all instances within 1,800 seconds. In some individual cases, CPLEX is quicker in

solving the instance, but on average HALNS-E is the faster method. This is evident when looking at the

average solving time over all instances, which is 87.88 seconds for CPLEX and 20.94 seconds for HALNS-E.

CPLEX HALNS-E HALNS-MCS

Instance |P | |V | Tmax Obj. Val. Time (s) Obj. Val. Time (s) Gap % Obj. Val. Time (s) Gap %

kroA100 1 5 5,000 53.57 0.05 53.57 1.43 0.00 53.57 0.02 0.00
1 5 7,500 140.88 0.26 140.88 3.12 0.00 98.74 0.05 29.91
1 5 10,000 136.24 0.14 136.24 5.06 0.00 135.06 0.07 0.87
1 5 12,500 223.10 0.42 194.98 18.94 12.60 81.27 0.08 63.57
1 10 5,000 162.95 0.55 143.99 14.72 11.64 145.22 0.08 10.88
1 10 7,500 244.37 3.95 225.70 22.55 7.64 216.87 0.10 11.25
1 10 10,000 269.39 6.21 258.09 25.34 4.19 217.50 18.84 19.26
1 10 12,500 326.28 19.75 299.22 18.85 8.29 256.13 0.36 21.50
1 15 5,000 189.68 5.77 183.13 6.97 3.45 117.11 0.08 38.26
1 15 7,500 238.11 7.62 238.11 14.25 0.00 136.46 0.04 42.69
1 15 10,000 319.53 89.19 274.85 16.30 13.98 220.57 12.67 30.97
1 15 12,500 385.72 166.80 356.76 32.03 7.51 297.14 594.27 22.97
2 5 5,000 93.24 0.13 93.24 5.20 0.00 88.51 0.04 5.07
2 5 7,000 233.84 1.22 233.84 10.11 0.00 167.80 0.09 28.24
2 5 9,000 240.60 0.69 240.60 10.03 0.00 208.35 0.08 13.40
2 10 5,000 307.37 2.39 300.38 11.87 2.27 175.24 0.10 42.99
2 10 7,000 387.21 17.89 383.31 26.20 1.01 232.68 5.94 39.91
2 10 9,000 393.95 36.20 389.94 34.03 1.02 312.80 80.93 20.61
2 15 5,000 317.94 29.35 317.94 35.86 0.00 245.72 0.30 22.72
2 15 7,000 323.51 1.96 323.51 32.16 0.00 239.83 0.06 25.86
2 15 9,000 584.62 1,400.94 578.61 42.77 1.03 429.12 10.05 26.60
3 5 5,000 197.06 1.44 197.06 8.16 0.00 164.55 0.10 16.49
3 5 7,000 210.11 2.04 210.11 9.25 0.00 200.14 0.12 4.75
3 5 9,000 236.41 2.54 236.41 38.56 0.00 193.27 0.14 18.25
3 10 5,000 339.74 29.86 339.74 17.00 0.00 312.99 0.11 7.87
3 10 7,000 382.12 21.18 382.12 16.23 0.00 317.24 0.20 16.98
3 10 9,000 442.42 90.01 442.42 43.39 0.00 368.50 0.68 16.71
3 15 5,000 455.57 77.62 455.57 16.98 0.00 299.65 0.66 34.23
3 15 7,000 501.62 132.52 501.62 35.09 0.00 479.03 0.47 4.50
3 15 9,000 610.69 545.47 577.44 61.96 5.44 415.33 0.48 32.00

Mean 298.26 89.80 295.45 21.14 2.67 227.55 24.24 22.31

Note: Best HALNS-MCS result over 10 runs reported. Overall time limit of 1,800 seconds imposed.

Table 3: Performance Evaluation Results for kroA100
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This is largely due to CPLEX struggling with some specific instances, such as kroA100-2-15-9000, showing

significantly increased solving times. For those instances however, HALNS-E is able to find a near-optimal

solution in a fraction of the computational time, and in addition shows a maximum computational time

of 107.48 seconds. Overall, HALNS-E is able to find the optimal solution for 53.3% of the instances,

and shows an average optimality gap of 6.43% for the remaining instances. The maximum optimality

gap obtained by HALNS-E for these instances is 15.54% for instance kroB100-1-5-10000, which can be

acceptable, yet still being large.

CPLEX HALNS-E HALNS-MCS

Instance |P | |V | Tmax Obj. Val. Time (s) Obj. Val. Time (s) Gap % Obj. Val. Time (s) Gap %

kroB100 1 5 5,000 89.96 0.20 89.96 3.40 0.00 76.89 0.04 14.52
1 5 7,500 211.26 0.42 211.26 4.97 0.00 160.29 0.05 24.12
1 5 10,000 163.52 0.25 163.52 7.09 0.00 115.15 0.15 29.58
1 5 12,500 173.30 0.43 157.65 7.78 9.03 155.93 0.06 10.02
1 10 5,000 176.11 0.49 149.76 14.33 14.96 136.24 0.06 22.64
1 10 7,500 222.34 2.98 215.57 12.08 3.04 190.53 0.07 14.31
1 10 10,000 352.14 3.52 297.40 15.76 15.54 241.44 0.46 31.44
1 10 12,500 404.30 12.38 404.30 36.21 0.00 317.96 200.44 21.35
1 15 5,000 226.71 3.13 226.71 8.96 0.00 162.58 0.06 28.29
1 15 7,500 270.93 6.49 247.38 24.00 8.69 217.38 0.05 19.77
1 15 10,000 381.47 145.26 360.11 24.51 5.60 263.09 1.62 31.03
1 15 12,500 418.54 230.27 416.49 40.14 0.49 250.23 1,919.17 40.21
2 5 5,000 128.64 0.09 128.64 3.41 0.00 96.45 0.05 25.02
2 5 7,000 236.80 0.77 236.80 10.36 0.00 236.80 0.10 0.00
2 5 9,000 242.95 0.76 242.95 17.68 0.00 173.93 0.10 28.41
2 10 5,000 325.07 4.19 321.44 13.43 1.12 249.18 0.28 23.35
2 10 7,000 434.80 20.40 370.14 11.78 14.87 334.61 8.03 23.04
2 10 9,000 412.98 15.22 358.71 14.94 13.14 362.15 625.20 12.31
2 15 5,000 250.57 33.51 250.57 12.00 0.00 196.12 0.37 21.73
2 15 7,000 246.94 1.59 246.94 8.94 0.00 223.13 0.08 9.64
2 15 9,000 612.08 774.50 595.53 34.38 2.70 480.10 2.69 21.57
3 5 5,000 151.38 0.78 151.38 6.77 0.00 150.32 0.13 0.70
3 5 7,000 263.71 3.09 258.27 21.94 2.06 243.61 149.34 7.63
3 5 9,000 248.52 1.73 248.52 22.94 0.00 234.81 1.80 5.52
3 10 5,000 393.46 27.80 393.46 16.57 0.00 370.90 2.53 5.74
3 10 7,000 498.47 41.47 464.84 30.62 6.75 468.41 52.62 6.03
3 10 9,000 532.37 128.19 530.38 107.48 0.37 532.37 454.70 0.00
3 15 5,000 325.96 38.69 325.96 20.27 0.00 316.72 0.56 2.84
3 15 7,000 599.91 366.42 599.91 31.63 0.00 538.01 0.21 10.32
3 15 9,000 581.44 713.62 572.58 37.42 1.52 520.39 1,809.95 10.51

Mean 319.22 85.95 313.53 20.73 3.33 267.79 174.36 16.56

Note: Best HALNS-MCS result over 10 runs reported. Overall time limit of 1,800 seconds imposed.

Table 4: Performance Evaluation Results for kroB100

Noteworthy is that HALNS-MCS has some unexpected results for these instances. Due to the SSP being

solved heuristically in this method, it was expected that the solution quality would degrade to some

extent. This is apparent in the fact that only 5% of the instances can be solved to optimality, with an

average optimality gap of 20.54% for the remaining instances. Moreover, the maximum optimality gap

is reported as 63.57% for instance kroA100-1-5-12500, which is unfortunately significantly larger than

that of HALNS-E. What is unexpected is that HALNS-MCS on average takes more computational time

than the other methods to solve the instances, namely 99.30 seconds. This discrepancy is mainly due

to a minority of the instances taking more than 400 seconds to solve, or even reaching the imposed

overall time limit of 1,800 seconds in the case of the instances kroB100-1-15-12500 and kroB100-3-15-

9000. As will be shown in Section 6.3.2, such outliers do not appear in the larger instances. Subsequently,
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it seems that the MCS method is struggling when it has a small amount of available nodes to choose from.

Given that averages may give a distorted view due to the presence of outliers, Table 5 shows some

additional metrics over all of the small-scale instances. The median solving time for HALNS-E is 16.43

seconds, which is fairly close to the average solving time of 20.94 seconds. CPLEX and HALNS-MCS show

very different results. The median solving time of HALNS-MCS is 0.18 seconds, while that of CPLEX is

4.98. The respective average solving times are 99.30 and 87.88 seconds. Subsequently, when looking at

these numbers, several observations can be made. HALNS-E is the most reliable method of the three,

as the solving times do not fluctuate severely across the instances. HALNS-MCS does not appear to be

performing that well according to the average solving time, but its median solving time is significantly

lower than the other methods. Additionally, it attains the lowest solving time across all three methods for

81.67% of the instances. CPLEX’ median solving time is lower than that of HALNS-E, but the significantly

higher average solving time indicates a notably higher degree of fluctuations in solving times.

CPLEX HALNS-E HALNS-MCS

Average Solving Time 87.88 20.94 99.30
Median Solving Time 4.98 16.43 0.18

% Lowest Solving Time 6.67 11.67 81.67
% Optimal Solution 100.00 53.33 5.00

Table 5: Summarised Performance Evaluation Results for kroA100 and kroB100

Figure 1 and 2 visualise the optimal solution obtained for the instance kroA-2-10-5000. In each of the

figures the horizontal axis shows the time stamps of events occuring in the route, with the accompanying

text describing the event. The time windows for each of the visited nodes can be seen in the upper left

corner of each of the figures. The figures depict that the service start times and leaving times of a solution

respect the time windows, and Figure 2 shows us that waiting time is incurred when arriving too early

at a node.

Figure 1: Route 1 of Optimal Solution for kroA-2-10-5000
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Figure 2: Route 2 of Optimal Solution for kroA-2-10-5000

6.3 Computational Results

The nature of the HALNS framework is inherently probabilistic, among others due to its use of random

numbers in order to determine which selection strategy or operator is used. Due to this characteristic,

solutions may vary per execution of the algorithm, not excluding the assumption that a different seed

may be used for the random number generation per run. These facts led to the decision to execute each

of the HALNS methods ten times in order to get their average performance, while additionally being able

to extract the best possible solution among these separate runs. Subsequently, Table 10 and Table 11 in

Appendix A show the average computational results for the considered instances.

6.3.1 Exact Approach

As a baseline, all instances are solved with CPLEX under a time limit of 1,800 seconds, such that an upper

bound on the objective value and a best feasible solution is obtained. These results are shown in Table 6,

and showcase the computational difficulty of solving the TOPSTPTW in an exact manner. Still, for

some of the smaller instances, namely kroA100-4-25-3553, kroB100-4-25-3358 and kroC100-4-25-3510, an

optimal solution has been found. But the optimality gap of the best feasible solution with respect to

the obtained upper bound is 781.15% and 2,630.99% on average for instance sets with up 100 and 200

nodes, respectively. Looking at maximum optimality gaps, this becomes 4,015.93% and 8,458.66% for

the respective sets of instances. The HALNS methods are nevertheless compared to the obtained upper

bounds, but that should be done with a careful eye.

The upper bound on the objective value may be rather weak for increased instance sizes, as may be

deduced from the aforementioned optimality gaps for the best found feasible solution. Hence, the opti-

mality gap with respect to the upper bound obtained by CPLEX can be seen as itself an upper bound on

the optimality gap. A stronger upper bound for the TOPSTPTW may be obtained by increasing the

imposed time limit of CPLEX, or possibly more sophisticated methods may be developed specifically for

the TOPSTPTW. That is however not the main focus of this research. Besides the optimality gap, the

objective value of the HALNS methods will be compared to the best feasible solution found by CPLEX in

order to show how much of an improved solution these methods can obtain in less than 1,800 seconds.
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Instance |P | |V | Tmax UB Best Obj. Instance |P | |V | Tmax UB Best Obj.

kroA100 2 25 7,106 725.60 690.45 kroA200 2 125 7,345 3,221.13 298.07
2 50 7,308 1,414.97 214.94 2 150 7,380 3,221.13 298.07
2 75 7,351 1,933.05 248.67 2 175 7,380 4,197.46 69.92
2 100 7,351 2,450.11 85.73 2 200 7,380 4,715.54 107.58
3 25 4,737 686.55 617.60 3 125 4,896 3,177.23 0.00
3 50 4,872 1,341.53 206.30 3 150 4,920 3,808.46 245.85
3 75 4,900 1,948.51 358.09 3 175 4,920 4,039.41 47.20
3 100 4,900 2,652.81 0.00 3 200 4,920 4,662.67 291.43
4 25 3,553 379.29 379.29 4 125 3,672 3,001.11 116.84
4 50 3,654 1,393.09 399.67 4 150 3,690 3,603.73 309.26
4 75 3,675 1,738.52 280.38 4 175 3,690 4,173.45 228.61
4 100 3,675 2,303.64 58.84 4 200 3,690 4,593.34 259.42

kroB100 2 25 6,717 724.61 497.65 kroB200 2 125 7,391 3,149.58 276.98
2 50 7,051 1,551.88 261.21 2 150 7,391 3,794.03 227.48
2 75 7,275 2,058.20 0.00 2 175 7,391 4,406.26 94.00
2 100 7,391 2,710.89 341.40 2 200 7,401 5,087.07 219.86
3 25 4,478 753.42 407.07 3 125 4,927 3,182.38 250.28
3 50 4,700 1,295.45 260.40 3 150 4,927 3,680.48 93.79
3 75 4,850 1,871.65 0.00 3 175 4,927 4,290.78 326.77
3 100 4,927 2,735.77 125.60 3 200 4,934 4,906.98 327.39
4 25 3,358 343.65 343.65 4 125 3,695 3,031.29 93.48
4 50 3,525 1,138.21 429.98 4 150 3,695 3,341.38 91.55
4 75 3,637 1,731.33 333.10 4 175 3,695 3,822.71 208.43
4 100 3,695 2,794.81 141.06 4 200 3,700 4,687.13 154.41

kroC100 2 25 7,020 847.38 554.26
2 50 7,186 1,345.26 440.07
2 75 7,240 2,087.82 137.88
2 100 7,345 2,798.28 67.99
3 25 4,680 674.22 499.33
3 50 4,790 1,336.02 0.00
3 75 4,826 2,021.24 334.77
3 100 4,896 2,504.59 356.60
4 25 3,510 341.11 341.11
4 50 3,593 1,136.71 304.19
4 75 3,620 1,869.49 244.57
4 100 3,672 2,365.71 159.77

Note: UB and Best Obj. denote the best upper bound and the objective value of the best solution found by CPLEX

at 1,800s, respectively.

Table 6: Computational Results CPLEX for kroA100, kroB100, kroC100, kroA200 and kroB200

6.3.2 Heuristic Approach

Table 7 shows the detailed computational results for the instances with up to 100 nodes. HALNS-E

shows strong results, always finding an improved solution compared to CPLEX, save for one instance.

For that one instance kroA100-2-25-7106, the reported optimality gap is just 5.39%. Nevertheless, the

average percentual improvement over the best feasible solution found by CPLEX is 391.25% with an average

computational time of 80.16 seconds. More interestingly, HALNS-E is able to obtain the optimal solution

for four instances. CPLEX was also able to find the optimal solution for three of these instance, but

HALNS-E was quicker in each case. HALNS-E took 38.67, 20.04, and 35.94 seconds for the respective

instances kroA100-4-25-3553, kroB100-4-25-3358 and kroC100-4-25-3510, while CPLEX took 960.83, 50.24,

and 75.86 seconds. Moreover, the maximum percentual improvement is equal to 2,073.60%, excluding

those instances for which the objective value of the best feasible solution is zero.
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HALNS-E HALNS-MCS

Instance |P | |V | Tmax Obj. Val. Time (s) Gap % Improve % Obj. Val. Time (s) Gap % Improve %

kroA100 2 25 7,106 686.48 36.84 5.39 0.00 423.22 9.92 41.67 0.00
2 50 7,308 884.42 87.69 37.50 311.48 484.39 14.28 65.77 125.36
2 75 7,351 1,273.80 151.78 34.10 412.25 574.74 13.03 70.27 131.13
2 100 7,351 1,136.91 146.77 53.60 1,226.23 452.96 10.33 81.51 428.38
3 25 4,737 686.55 63.44 0.00 11.17 441.26 0.27 35.73 0.00
3 50 4,872 861.64 63.96 35.77 317.67 473.56 1.58 64.70 129.55
3 75 4,900 986.23 83.26 49.39 175.42 525.93 0.63 73.01 46.87
3 100 4,900 1,338.06 122.87 49.56 >1,000.00 552.17 2.19 79.19 >1,000.00
4 25 3,553 379.29 38.67 0.00 0.00 293.27 0.12 22.69 0.00
4 50 3,654 677.16 41.21 51.39 69.43 427.25 1.09 69.33 6.90
4 75 3,675 921.38 71.88 47.00 228.62 468.57 0.17 73.05 67.12
4 100 3,675 1,279.03 92.69 44.48 2,073.60 554.76 0.29 75.92 842.77

kroB100 2 25 6,717 499.91 42.27 31.01 0.45 306.09 1.65 57.76 0.00
2 50 7,051 838.97 98.12 45.94 221.19 540.70 2.19 65.16 107.00
2 75 7,275 1,267.23 150.41 38.43 >1,000.00 521.81 14.98 74.65 >1,000.00
2 100 7,391 1,370.01 127.27 49.46 301.29 549.69 2.35 79.72 61.01
3 25 4,478 537.26 28.92 28.69 31.98 395.20 0.17 47.55 0.00
3 50 4,700 758.30 96.81 41.46 191.21 542.49 0.97 58.12 108.33
3 75 4,850 1,189.39 102.01 36.45 >1,000.00 558.25 0.71 70.17 >1,000.00
3 100 4,927 1,488.61 69.77 45.59 1,085.17 781.89 1.21 71.42 522.51
4 25 3,358 343.65 20.04 0.00 0.00 343.65 0.12 0.00 0.00
4 50 3,525 798.84 56.90 29.82 85.79 442.46 0.27 61.13 2.90
4 75 3,637 986.93 61.10 43.00 196.28 598.12 0.44 65.45 79.56
4 100 3,695 1,368.08 108.49 51.05 869.89 746.10 0.36 73.30 428.94

kroC100 2 25 7,020 658.86 63.87 22.25 18.87 375.33 0.77 55.71 0.00
2 50 7,186 853.97 98.14 36.52 94.05 546.07 1.31 59.41 24.09
2 75 7,240 1,231.88 122.75 41.00 793.45 641.47 13.36 69.28 365.24
2 100 7,345 1,440.33 156.23 48.53 2,018.55 549.39 2.25 80.37 708.08
3 25 4,680 536.16 39.26 20.48 7.38 427.00 0.16 36.67 0.00
3 50 4,790 896.91 54.90 32.87 >1,000.00 632.21 3.11 52.68 >1,000.00
3 75 4,826 1,206.73 70.65 40.30 260.47 546.17 1.41 72.98 63.15
3 100 4,896 1,290.64 120.24 48.47 261.93 658.20 2.54 73.72 84.58
4 25 3,510 341.11 35.94 0.00 0.00 341.11 0.14 0.00 0.00
4 50 3,593 729.51 55.52 35.82 139.82 510.58 0.18 55.08 67.85
4 75 3,620 960.43 62.27 48.63 292.70 603.05 0.78 67.74 146.57
4 100 3,672 1,240.01 42.79 47.58 676.11 641.75 0.30 72.87 304.67

Mean 957.63 80.16 39.73 391.25 516.34 2.93 63.93 152.62

Note: Gaps are given with respect to the upper bound found by CPLEX after 1,800 seconds; Improvement is measured with respect to
the best feasible solution obtained by CPLEX after 1,800 seconds; Best HALNS results over 10 runs reported.

Table 7: Computational Results HALNS for kroA100, kroB100, and kroC100

An average optimality gap of 39.73% is obtained over all instances, with a maximum value of 53.60%.

Remember that the value of the reported optimality gaps are likely to be overstated due to the potentially

weak upper bound. Moreover, a solution is obtained within 3 minutes for all instances, with a maximum

computational time of 156.23 seconds.

Turning our attention to HALNS-MCS, the direction of the results is what was expected. That is, com-

putational times have improved and solution quality has decreased compared to HALNS-E. A solution

is obtained for all instances within one minute, with an average and maximum computational time of

2.93 and 14.98 seconds, respectively. HALNS-MCS was able to obtain the optimal solution for two of the

three instances that HALNS-E was able to solve optimally. On the other hand, HALNS-MCS was not

able to find an improved solution for a total of seven instances. The average and maximum percentual

improvement over all instances is 152.62% and 842.77%, respectively, which constitutes a substantial de-

terioration in solution quality compared to HALNS-E. This trend continues when looking at the reported

optimality gaps for HALNS-MCS, which on average and at maximum are 63.93% and 81.51%, respectively.
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HALNS-E HALNS-MCS

Instance |P | |V | Tmax Obj. Val. Time (s) Gap % Improve % Obj. Val. Time (s) Gap % Improve %

kroA200 2 125 7,345 1,538.47 214.11 52.24 416.15 552.67 1.68 82.84 85.42
2 150 7,380 1,561.13 206.52 55.95 >1,000.00 602.62 0.96 83.00 >1,000.00
2 175 7,380 1,604.68 214.85 61.77 2,195.18 451.37 0.49 89.25 545.60
2 200 7,380 1,723.80 183.42 63.44 1,502.32 662.06 22.57 85.96 515.41
3 125 4,896 1,582.27 113.42 50.20 >1,000.00 728.40 0.57 77.07 >1,000.00
3 150 4,920 1,648.27 125.85 56.72 570.45 670.56 0.70 82.39 172.75
3 175 4,920 1,723.38 138.43 57.34 3,551.49 628.95 0.55 84.43 1,232.60
3 200 4,920 1,979.96 151.97 57.54 579.39 601.97 0.60 87.09 106.56
4 125 3,672 1,330.73 54.91 55.66 1,038.97 585.44 0.22 80.49 401.08
4 150 3,690 1,456.67 109.46 59.58 371.01 690.46 1.54 80.84 123.26
4 175 3,690 1,655.74 73.31 60.33 624.28 703.66 1.62 83.14 207.81
4 200 3,690 1,700.25 114.99 62.98 555.42 728.96 1.04 84.13 181.00

kroB200 2 125 7,391 1,716.39 192.29 45.50 519.69 738.92 2.53 76.54 166.78
2 150 7,391 1,810.46 203.49 52.28 695.87 610.85 2.22 83.90 168.53
2 175 7,391 1,950.13 234.72 55.74 1,974.66 771.32 10.69 82.49 720.58
2 200 7,401 1,953.40 265.51 61.60 788.49 627.82 2.02 87.66 185.56
3 125 4,927 1,639.82 88.07 48.47 555.19 824.50 1.78 74.09 229.43
3 150 4,927 1,788.89 125.58 51.40 1,807.34 698.81 1.31 81.01 645.08
3 175 4,927 1,759.50 110.39 58.99 438.45 705.60 2.19 83.56 115.93
3 200 4,934 1,922.39 137.95 60.82 487.19 650.29 1.33 86.75 98.63
4 125 3,695 1,379.85 92.16 54.48 1,376.11 706.78 0.50 76.68 656.10
4 150 3,695 1,579.96 96.10 52.72 1,625.83 737.07 1.94 77.94 705.12
4 175 3,695 1,776.32 88.94 53.53 752.26 740.38 0.96 80.63 255.23
4 200 3,700 2,066.97 112.87 55.90 1,238.63 791.24 1.06 83.12 412.43

Mean 1,702.06 143.72 56.05 1,075.65 675.45 2.54 82.29 360.49

Note: Gaps are given with respect to the upper bound found by CPLEX after 1,800 seconds; Improvement is measured with respect to
the best feasible solution obtained by CPLEX after 1,800 seconds; Best HALNS results over 10 runs reported.

Table 8: Computational Results HALNS for kroA200 and kroB200

Table 8 shows the detailed computational results for the instances with up to 200 nodes. For these in-

stances, none of the HALNS methods is able to find an optimal solution, yet they both are able to find

an improved solution for all instances compared to CPLEX within considerably less time. Note that CPLEX

could not find any optimal solution within 1,800 seconds for these larger instances. HALNS-E takes

on average 143.72 seconds to find a solution, with a maximum computational time of 265.51 seconds.

HALNS-MCS on the other hand does not show significantly increased solving times on average compared

to the instances with up to 100 nodes, with an average and maximum solving time of 2.54 and 22.57

seconds.

With respect to solution quality, the results become more difficult to interpret. This is due to the fact

that almost none of the objective values of the best feasible solutions found by CPLEX exceed 300, and

all obtained upper bounds exceed 3,000. Subsequently, virtually any solution found by both HALNS

methods will be an improved solution, which is positive in its own right. However, the optimality gaps

for these instances become increasingly ambiguous, due to the increased likelihood of them becoming

increasingly weak for larger instance sizes.

As before, HALNS-E outperforms HALNS-MCS by a large margin in terms of solution quality, although

it comes at the cost of significantly larger computational times. The average and maximum optimality

gap for HALNS-E is equal to 56.05% and 63.44%, respectively, while these values are 82.29% and 89.25%
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for HALNS-MCS. These results are apparent when realising that virtually all objective values obtained

by HALNS-E are a factor of at least two larger than those obtained by HALNS-MCS. Similarly, the

average and maximum improvement over CPLEX is 1,075.65% and 3,551.49% for HALNS-E, respectively,

while these values are 360.49% and 1,232.60% for HALNS-MCS.

6.4 Algorithm Analysis

In order to the evaluate the performance of the algorithm and its components, results have been obtained

for HALNS-E with certain components left out or disabled. Firstly, the component of adaptive weighting

is disabled such that each of the node selection strategies and removal/insertion operators have an equal

chance to be selected during the entire solving process. Secondly, the local search component is left out

to see whether its addition has a significant effect on the algorithm’s outcome. Hammami et al. (2020)

used a similar strategy to evaluate their HALNS algorithm. For the analysis of this implementation of

the HALNS algorithm, adaptive weighting and local search where thought to show the greatest impact

if left out or disabled. Additionally, like Hammami et al. (2020), differing values of the reaction factor

λ or leaving out the SPP could be considered. However, these options have been disregarded due to

time considerations. The average results for HALNS-E and these derivative implementations for the

benchmark instances with up to 100 nodes are shown in Table 9.

Avg. Objective Value Avg. Solving Time (s) Avg. Gap % Avg. Improve %

HALNS-E 957.63 80.16 39.73 391.25
HALNS-E w/o Adaptive Weighting 938.73 75.62 39.49 390.08
HALNS-E w/o Local Search 956.70 76.79 38.64 381.61

Note: Averages taken of best HALNS results over 10 runs.

Table 9: Average Results HALNS-E and derivative implementations for kroA100, kroB100, and kroC100

The average solving time of HALNS-E is greater than the derivative implementations by approximately

four seconds. Given that extra computations have to be performed in the complete algorithm, this

is in line with expectations. The effect of adaptive weighting on the average objective value is larger

than that of the local search component, showing a decrease of 18.90 and 0.93 compared to HALNS-E,

respectively. The average percentual improvement compared to the best feasible solution found by CPLEX

is favourable for HALNS-E, being 1.17 higher when adaptive weighting is disabled and 9.64 higher when

the local search component is left out. The average optimality gaps show a slightly different picture on the

other hand, with HALNS-E having the highest value among the considered implementations. Given that

the computed optimality gaps are upper bounds, the results are favourable for the complete HALNS-E

algorithm, with it having the highest average objective value and percentual improvement compared to

the derivative implementations.

7 Conclusion & Discussion

The purpose of this research is to study the Team Orienteering Problem with Service-Time-Dependent

Profits and Time Windows. To that extent, a Mixed Integer Nonlinear Programming formulation is
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developed, where a concave increasing objective function is maximised. As a baseline, the proposed

formulation is linearised and solved using the general purpose solver CPLEX under a time limit of 1,800

seconds. The main focus of this research is a Hybrid Adaptive Large Neighbourhood Search heuristic to

solve the TOPSTPTW, which consists of routing and scheduling subproblems. Routes are constructed

and modified within the HALNS framework, while the scheduling of service times takes places each time

a route is modified. The Service-Time Scheduling Problem is the most demanding part of the algo-

rithm, and as such an exact and heuristic approach is proposed. The exact approach HALNS-E follows

a linearised MINLP formulation for the SSP, which is solved using CPLEX, while the heuristic approach

HALNS-MCS follows a Modified Coordinate Search method.

HALNS-E significantly outperforms CPLEX for the considered instances with more than 25 nodes, always

finding an improved solution within four minutes. Whether these solutions are in actuality close to opti-

mal is difficult to determine, due to the likelihood of the obtained upper bounds being rather weak. Still,

the percentual improvements over the best feasible solution found by CPLEX are often quite substantial.

HALNS-MCS is a quick method to solve the TOPSTPTW, with no computational time exceeding 30

seconds for instances with 25 or more nodes. The solution quality of this method however does leave

room for improvement, showing significantly lower objective values compared to HALNS-E. For smaller

instances with up to 15 nodes the results are more ambiguous to interpret, where occasionally CPLEX is

quicker or obtains better solutions than HALNS-E. More interestingly, the behaviour of HALNS-MCS

becomes unpredictable for these instances, at times showing unusually large solving times of over 400

seconds.

HALNS-E is a reliable method to solve the TOPSTPTW, showing steady computational times and strong

solutions. In general, the TOPSTPTW quickly becomes computationally difficult for increased instance

sizes. As such, a general purpose solver such as CPLEX is not favoured for solving real-world problems.

If solving times are more important than solution quality, HALNS-MCS is the preferred method. How-

ever, it should be taken into account that the solution quality will be far from optimal in this case, and

instances with less than 25 nodes will possibly take an unexpected amount of time to solve.

The SSP assumes that the order of the nodes in a route is fixed, for future research on this topic an idea

could be to omit this assumption from the MINLP formulation. This entails that the SSP can also change

the order of the nodes in a given route if that would result in a higher objective value. This approach

is computationally more intense, but could potentially result in quicker convergence of the algorithm. In

this case, an accompanying MCS heuristic will not be possible, as the order of the nodes is important in

determining a solution. Furthermore, the MCS heuristic as implemented in this research may be further

tweaked. First of all, the repair method could be improved upon, through investigating the relationship

between decreasing service times and arrival times, and potentially through the implementation of a

greedy repair method. Secondly, it may be interesting to construct candidate solutions in such a fashion

that it is not possible to generate infeasible trail solutions. Additionally, a simple yet intuitive idea when
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performing multiple runs of the algorithm would be to reuse the best found solution of a previous run as

an initial solution for a new run. This results in a stronger initial solution, which may possibly improve

the performance of subsequent runs. Lastly, future research on the TOPSTPTW would benefit from

stronger upper bounds in order to better determine optimality gaps.
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Appendix A Average Results

HALNS-E HALNS-MCS

Instance |P | |V | Tmax Obj. Val. Time (s) Gap % Improve % Obj. Val. Time (s) Gap % Improve %

kroA100 2 25 7,106 655.25 (37.47) 49.06 (18.08) 9.69 (5.16) 0.00 (0.00) 408.69 (13.17) 8.04 (4.06) 43.68 (1.82) 0.00 (0.00)
2 50 7,308 812.26 (69.77) 73.16 (23.79) 42.60 (4.93) 277.91 (32.46) 434.80 (21.48) 3.06 (4.53) 69.27 (1.52) 102.29 (9.99)
2 75 7,351 1,110.41 (81.04) 118.75 (36.21) 42.56 (4.19) 346.54 (32.59) 475.53 (65.16) 30.11 (13.14) 75.40 (3.37) 91.23 (26.20)
2 100 7,351 1,021.28 (69.34) 111.94 (36.75) 58.32 (2.82) 1,091.34 (80.88) 390.03 (48.82) 4.67 (2.74) 84.08 (1.99) 354.98 (56.95)
3 25 4,737 632.87 (26.25) 44.29 (15.80) 7.82 (3.82) 2.68 (4.07) 423.54 (10.27) 0.24 (0.10) 38.31 (1.50) 0.00 (0.00)
3 50 4,872 847.56 (15.06) 62.05 (16.08) 36.82 (1.12) 310.84 (7.30) 434.92 (37.63) 0.57 (0.37) 67.58 (2.80) 110.82 (18.24)
3 75 4,900 903.72 (61.16) 74.25 (17.86) 53.62 (3.14) 152.38 (17.08) 462.93 (47.62) 0.82 (0.73) 76.24 (2.44) 29.50 (12.73)
3 100 4,900 1,244.95 (43.15) 91.99 (22.35) 53.07 (1.63) >1,000.00 N.A. 534.98 (17.20) 2.36 (1.27) 79.83 (0.65) >1,000.00 N.A.
4 25 3,553 379.29 (0.00) 22.35 (7.15) 0.00 (0.00) 0.00 (0.00) 289.99 (4.92) 0.13 (0.02) 23.55 (1.30) 0.00 (0.00)
4 50 3,654 659.45 (9.58) 46.03 (22.77) 52.66 (0.69) 65.00 (2.40) 384.61 (21.05) 0.23 (0.30) 72.39 (1.51) 0.94 (2.24)
4 75 3,675 880.93 (28.21) 66.39 (25.14) 49.33 (1.62) 214.19 (10.06) 437.48 (24.39) 0.19 (0.04) 74.84 (1.40) 56.03 (8.70)
4 100 3,675 1,196.54 (65.86) 78.14 (12.87) 48.06 (2.86) 1,933.42 (111.93) 520.25 (21.46) 0.31 (0.07) 77.42 (0.93) 784.12 (36.48)

kroB100 2 25 6,717 456.17 (15.90 46.36 (17.77) 37.05 (2.19) 0.05 (0.14) 287.29 (19.58) 1.48 (0.24) 60.35 (2.70) 0.00 (0.00)
2 50 7,051 796.56 (40.88) 82.68 (25.87) 48.67 (2.63) 204.96 (15.65) 499.45 (31.86) 3.62 (3.46) 67.82 (2.05) 91.21 (12.20)
2 75 7,275 1,163.44 (56.85) 136.79 (32.61) 43.47 (2.76) >1,000.00 N.A. 463.15 (47.17) 130.58 (218.92) 77.50 (2.29) >1,000.00 N.A.
2 100 7,391 1,267.04 (66.13) 126.20 (27.62) 53.26 (2.44) 271.13 (19.37) 502.38 (25.94) 1.67 (0.79) 81.47 (0.96) 47.15 (7.60)
3 25 4,478 524.69 (9.75) 27.44 (12.38) 30.36 (1.29) 28.90 (2.40) 370.77 (10.17) 0.22 (0.03) 50.79 (1.35) 0.00 (0.00)
3 50 4,700 723.73 (26.09) 54.81 (18.17) 44.13 (2.01) 177.93 (10.02) 494.33 (29.74) 0.55 (0.24) 61.84 (2.30) 89.83 (11.42)
3 75 4,850 1,143.61 (48.75) 79.42 (21.52) 38.90 (2.60) >1,000.00 N.A. 517.68 (25.75) 0.79 (0.44) 72.34 (1.38) >1,000.00 N.A.
3 100 4,927 1,410.03 (52.78) 100.08 (16.34) 48.46 (1.93) 1,022.61 (42.02) 676.99 (57.80) 3.59 (8.11) 75.25 (2.11) 439.00 (46.02)
4 25 3,358 343.63 (0.00) 24.23 (6.64) 0.00 (0.00) 0.00 (0.00) 343.63 (0.00) 0.11 (0.01) 0.00 (0.00) 0.00 (0.00)
4 50 3,525 750.69 (34.24) 55.87 (10.64) 34.05 (3.01) 74.59 (7.96) 406.57 (36.85) 0.18 (0.10) 64.28 (3.24) 0.81 (1.14)
4 75 3,637 965.55 (9.44) 67.57 (16.97) 44.23 (0.55) 189.87 (2.83) 574.34 (27.10) 0.46 (0.18) 66.83 (1.57) 72.42 (8.14)
4 100 3,695 1,302.42 (48.10) 74.03 (22.90) 53.40 (1.72) 823.33 (34.10) 657.53 (46.29) 0.51 (0.23) 76.47 (1.66) 366.15 (32.82)

kroC100 2 25 7,020 640.70 (20.61) 50.55 (10.18) 24.39 (2.43) 15.60 (3.72) 363.38 (8.88) 1.48 (0.51) 57.12 (1.05) 0.00 (0.00)
2 50 7,186 815.62 (38.17) 62.33 (20.77) 39.37 (2.84) 85.34 (8.67) 487.71 (37.96) 1.95 (3.40) 63.75 (2.82) 11.29 (7.78)
2 75 7,240 1,131.19 (61.52) 110.99 (35.86) 45.82 (2.95) 720.42 (44.62) 602.63 (25.15) 153.32 (232.41) 71.14 (1.20) 337.07 (18.24)
2 100 7,345 1,345.62 (75.21) 149.79 (21.11) 51.91 (2.69) 1,879.24 (110.62) 484.08 (31.60) 1.06 (0.46) 82.70 (1.13) 612.02 (46.48)
3 25 4,680 528.59 (6.04) 32.07 (9.77) 21.60 (0.90) 5.86 (1.21) 369.86 (21.17) 0.23 (0.13) 45.14 (3.14) 0.00 (0.00)
3 50 4,790 862.91 (34.38) 71.51 (28.99) 35.41 (2.57) >1,000.00 N.A. 526.68 (63.35) 1.19 (1.30) 60.58 (4.74) >1,000.00 N.A.
3 75 4,826 1,139.07 (59.83) 76.19 (15.72) 43.65 (2.96) 240.25 (17.87) 515.33 (24.36) 2.97 (2.30) 74.50 (1.21) 53.93 (7.28)
3 100 4,896 1,244.76 (31.91) 83.59 (21.13) 50.30 (1.27) 249.06 (8.95) 581.55 (58.93) 2.98 (1.98) 76.78 (2.35) 63.08 (16.53)
4 25 3,510 341.11 (0.00) 22.83 (7.82) 0.00 (0.00) 0.00 (0.00) 341.11 (0.00) 0.12 (0.01) 0.00 (0.00) 0.00 (0.00)
4 50 3,593 713.09 (10.39) 46.81 (12.03) 37.27 (0.91) 134.42 (3.41) 509.10 (1.39) 0.19 (0.05) 55.21 (0.12) 67.36 (0.46)
4 75 3,620 898.20 (38.67) 63.57 (21.88) 51.96 (2.07) 267.25 (15.81) 511.73 (56.00) 0.63 (0.22) 72.63 (3.00) 109.23 (22.90)
4 100 3,672 1,189.86 (33.23) 61.38 (16.61) 49.70 (1.40) 644.72 (20.80) 580.39 (51.11) 0.27 (0.08) 75.47 (2.16) 263.26 (31.99)

Note: Gaps are given with respect to the upper bound found by CPLEX after 1,800 seconds; Improvement is measured with respect to the best feasible solution obtained by CPLEX after 1,800 seconds;
Standard deviation in parentheses.

Table 10: Average Computational Results HALNS for kroA100, kroB100, and kroC100 over 10 runs
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HALNS-E HALNS-MCS

Instance |P | |V | Tmax Obj. Val. Time (s) Gap % Improve % Obj. Val. Time (s) Gap % Improve %

kroA200 2 125 7,345 1,410.27 (64.25) 163.87 (39.43) 56.22 (1.99) 373.14 (21.56) 504.99 (21.30) 0.59 (0.39) 84.32 (0.66) 69.42 (7.14)
2 150 7,380 1,357.48 (111.94) 169.20 (33.79) 61.70 (3.16) >1,000.00 N.A. 520.04 (34.07) 0.81 (0.25) 85.33 (0.96) >1,000.00 N.A.
2 175 7,380 1,440.21 (87.12) 157.11 (30.76) 65.69 (2.08) 1,959.94 (124.61) 443.43 (2.79) 0.64 (0.45) 89.44 (0.07) 534.23 (3.99)
2 200 7,380 1,602.02 (67.97) 214.74 (26.75) 66.03 (1.44) 1,389.13 (63.18) 543.12 (86.19) 4.94 (7.39) 88.48 (1.83) 404.85 (80.12)
3 125 4,896 1,391.06 (90.59) 89.15 (20.25) 56.22 (2.85) >1,000.00 N.A. 581.32 (87.50) 0.86 (0.43) 81.70 (2.75) >1,000.00 N.A.
3 150 4,920 1,499.03 (101.08) 109.45 (36.39) 60.64 (2.65) 509.74 (41.11) 604.88 (35.55) 0.75 (0.16) 84.12 (0.85) 146.04 (13.24)
3 175 4,920 1,511.54 (119.54) 102.17 (31.34) 62.58 (2.96) 3,102.62 (253.28) 580.32 (30.68) 0.65 (0.27) 85.63 (0.76) 1,129.58 (65.00)
3 200 4,920 1,774.67 (141.72) 104.05 (33.58) 61.94 (3.04) 508.95 (48.63) 468.15 (71.85) 0.40 (0.27) 89.96 (1.54) 60.64 (24.66)
4 125 3,672 1,267.66 (68.78) 64.98 (12.58) 57.76 (2.29) 984.99 (58.87) 541.26 (17.51) 0.21 (0.04) 81.96 (0.58) 363.26 (14.99)
4 150 3,690 1,391.51 (35.62) 83.02 (19.92) 61.39 (0.99) 349.94 (11.52) 633.36 (55.78) 0.55 (0.37) 82.43 (1.55) 104.80 (18.04)
4 175 3,690 1,525.89 (124.74) 84.23 (17.75) 63.44 (2.99) 567.48 (54.56) 659.10 (26.59) 1.55 (0.97) 84.21 (0.64) 188.31 (11.63)
4 200 3,690 1,625.16 (47.15) 94.47 (22.69) 64.62 (1.03) 526.47 (18.18) 684.18 (24.88) 0.59 (0.23) 85.11 (0.54) 163.74 (9.59)

kroB200 2 125 7,391 1,399.62 (152.15) 133.81 (47.44) 55.56 (4.83) 405.32 (54.93) 637.87 (57.73) 18.82 (47.25) 79.75 (1.83) 130.30 (20.84)
2 150 7,391 1,686.75 (74.03) 174.33 (23.85) 55.54 (1.95) 641.49 (32.54) 539.50 (25.33) 7.09 (5.34) 85.78 (0.67) 137.17 (11.14)
2 175 7,391 1,761.27 (103.59) 184.50 (56.74) 60.03 (2.35) 1,773.75 (110.20) 680.94 (31.86) 2.41 (2.92) 84.55 (0.72) 624.43 (33.90)
2 200 7,401 1,800.32 (119.11) 204.74 (52.50) 64.61 (2.34) 718.86 (54.18) 555.92 (51.58) 3.31 (2.66) 89.07 (1.01) 152.86 (23.46)
3 125 4,927 1,517.21 (152.15) 101.23 (23.28) 52.32 (2.57) 506.20 (32.64) 737.14 (52.99) 1.26 (0.66) 76.84 (1.67) 194.52 (21.17)
3 150 4,927 1,606.85 (97.48) 93.88 (17.99) 56.34 (2.65) 1,613.25 (103.94) 603.94 (42.51) 0.62 (0.29) 83.59 (1.15) 543.93 (45.32)
3 175 4,927 1,615.80 (95.16) 108.92 (29.92) 62.34 (2.22) 394.48 (29.12) 634.05 (54.15) 2.27 (1.13) 85.22 (1.26) 94.03 (16.57)
3 200 4,934 1,846.71 (91.51) 144.29 (25.68) 62.37 (1.86) 464.07 (27.95) 557.64 (51.58) 1.00 (2.66) 88.64 (1.01) 70.33 (23.46)
4 125 3,695 1,300.14 (79.59) 87.65 (30.95) 57.11 (2.63) 1,290.85 (85.15) 634.96 (37.76) 0.79 (0.40) 79.05 (1.25) 579.26 (40.40)
4 150 3,695 1,494.36 (52.51) 86.33 (18.57) 55.28 (1.57) 1,532.33 (57.36) 702.87 (17.62) 2.46 (1.61) 78.96 (0.53) 667.76 (19.25)
4 175 3,695 1,656.68 (94.60) 90.22 (22.52) 56.66 (2.47) 694.85 (45.39) 660.41 (61.07) 0.87 (0.39) 82.72 (1.60) 216.86 (29.30)
4 200 3,700 1,848.31 (110.41) 104.58 (18.93) 60.57 (2.36) 1,097.02 (71.51) 695.34 (74.25) 1.00 (0.48) 85.16 (1.58) 350.32 (48.08)

Note: Gaps are given with respect to the upper bound found by CPLEX after 1,800 seconds; Improvement is measured with respect to the best feasible solution obtained by CPLEX after 1,800 seconds;
Standard deviation in parentheses.

Table 11: Average Computational Results HALNS-E for kroA200 and kroB200 over 10 runs
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