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Abstract

Gross domestic product (GDP) is one of the most important macroeconomic measurements

of overall welfare in a country. Since it comprises of components such as private consumption,

correct modelling of its growth is of paramount importance. Recently, macroprudential policy-

makers have constructed Growth-at-Risk (GaR) to mitigate downside tail risks, which are events

that can lead to financial crises. To obtain GaR estimates, policymakers often rely on quantile

regression (QR) models. Yet it has multiple shortcomings, such as relying on a set of downside

risk predictors. In this paper, I propose an integral approach that analyses both the structure

of individual GDP components, as well as modelling their dependency with bivariate copulas

augmented with a general autoregressive score (GAS) framework. Coverage tests on obtained

GaR forecasts of a panel of six OECD countries indicate that copula-GAS models perform as

well as QR. However, comparative backtesting on a set of loss functions applied to GaR fore-

casts show that copula-GAS models consistently provide significantly smaller losses, especially

at higher coverages, which suggests that QR produces GaR with higher opportunity costs.

Disclaimer - The views stated in this thesis are those of the au-

thor and not necessarily those of the supervisor, second assessor,

Erasmus School of Economics or Erasmus University Rotterdam.
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1 Abbreviations

Table 1: A list of abbreviations and acronyms used in this paper.

Abbreviation Explanation

AR Autoregressive
BIC Bayesian information criterion

CAViaR Conditional autoregressive Value-at-Risk
CDF Cumulative distribution function
CPI Consumer price index
FLF Firm’s loss function
GaR Growth-at-Risk

GARCH Generalised autoregressive conditional heteroskedasticity
GAS Generalised autoregressive score
GDP Gross domestic product
GGAS Gaussian copula-GAS
GPL Generalised Piecewise Linear
IMF International Monetary Fund
IP Industrial production
LB Ljung-Box
LR Likelihood ratio

MAD Mean absolute deviation
MEM Multiplicative error model
MLE Maximum likelihood estimation
MSE Mean squared error
OECD Organisation for Economic Co-operation and Development
OLS Ordinary least squares
PCA Principal component analysis
PDF Probability density function
QR Quantile regression
RLF Regulator’s loss function

SCGAS Symmetrised Clayton copula-GAS
VaR Value-at-Risk
VAR Vector autoregressive
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2 Introduction

Gross domestic product (GDP) is well known among policymakers and the general public alike.

GDP quantifies the value that is created by the production of goods and services in a country during

a certain period. Real GDP per capita is still widely regarded as the main indicator of economic

prosperity. At the same time, however, this economic indicator is criticised for its supposed inability

to capture intangible human welfare. Besides this normative assessment, macroeconomic models

applied by policymakers mostly focussed on forecasting expected mean growth in the past, while

failing to recognise higher-order moments of the GDP growth distribution.

This paper addresses the latter critique. After the Financial Crisis of 2008, there has been

increased interest in mitigating downside tail risk. Aikman et al. (2019) and Gertler and Gilchrist

(2018) show that the fragile financial system in combination with large asset price imbalances played

a big role. Policymakers of national and central banks concluded that a new, ‘macroprudential’

framework was necessary to ensure a crisis of such magnitude would not happen again. A key

indicator for macroprudential policymakers is growth-at-risk (GaR). Originally introduced by Wang

and Yao (2001) and in detail assessed by Prasad et al. (2019), GaR (usually) is an α% quantile of the

distribution of GDP growth rates. It can be seen as estimated future GDP growth which in (1-α)%

of all cases will be lower than actual realised growth. This metric bears resemblance to value-at-

risk (VaR), widely used in portfolio management and asset pricing models. Since macroeconomic

downturns and financial vulnerabilities primarily have an impact on the left tail of the distribution

of GDP growth, it is an intuitive metric to assess extreme downside risk of large macroeconomic

systems.

Policymakers often apply quantile regression (QR) analysis to model GaR. QR is able to model

the left tail of GDP growth distribution, which implies that this approach can be directly linked

to GaR. A wide variety of factors that impact GaR, such as systemic risk measures (Giglio et al.,

2016) and productivity shocks (Loria et al., 2019) have been studied by means of QR. Although

its popularity and proven usefulness, recent contributions (e.g. Adrian et al. (2016) and Carriero

et al. (2020)) emphasise that downside risk varies more than upside risk over time, pointing at

asymmetrical business cycle fluctuations. Brownlees and Souza (2021) conclude that QR should

not be relied on too heavily, since it is dependent on macroeconomic and financial factors that

might not contribute to the predictive ability of GaR.
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One approach to correct for asymmetric tail behaviour is to consider copula models. Proposed by

Sklar (1959), a d-dimensional copula C : [0, 1]d → [0, 1] is a cumulative distribution function (CDF)

that couples uniform marginal distributions. A well-known copula is the Gaussian copula, which

captures correlation between random variables. Other types, such as Clayton and Gumbel copulas,

are capable of capturing asymmetrical tail dependence in time-series. Nowadays, this method is

widely applied in a financial and risk management context to model dependence structures, but

has not been considered as much in a macroeconomic setting. This paper aims to fill that gap

by assessing quarterly GDP growth rates in the years 1970Q1 to 2019Q4 of six OECD countries.

To obtain a dependence structure, I divide GDP growth into private final consumption, which

represents the largest proportion of total GDP (often more than 50%), and an aggregate time-series

of investments, net exports and government spending, called a ‘residual’ term. Both components are

filtered by estimating an AR(p)-GARCH model. I consider a bivariate Gaussian copula to capture

correlation, as well as a symmetrised bivariate Clayton copula, which can estimate lower and upper

tail dependence simultaneously.

Next, I augment both copula models with a Generalised Autoregressive Score (GAS) framework.

GAS models are observation-driven models which feature time-varying parameters dependent on

past observations. In this way, copula parameters can be estimated in a score-driven manner

using maximum likelihood, which implies the parameters can be modelled time-varying as such.

An advantage of this specification is its computational convenience, since likelihood functions are

relatively straightforward to define. Moreover, as GAS relies on the gradient of the log-likelihood, its

recursion will be locally optimal. I define a grid search over all parameters, to ensure that a global

optimum is attained. In addition to GDP growth rate and its components, macroeconomic indicators

can also be included in the GAS recursion. Prasad et al. (2019) argue that such indicators might

suffer from multicollinearity in GaR analysis, and proposes to use principal components instead.

Finally, to derive a set of GaR estimates for a given country, I will employ the obtained time-varying

dependence structure in a Monte Carlo simulation by using the time-varying mean and variance

obtained from the marginal AR-GARCH models.

The relationship between macroeconomic variables have been studied extensively in recent his-

tory, see for example Kydland and Prescott (1982) and Long and Plosser (1983). In addition,

literature as early as Keynes (1936) pointed at asymmetrical boom and bust cycles and nonlinear-

ities in macroeconomic dependence. Whereas this previous empirical research focussed mainly on



Dependence Modelling of GDP components 5

(asymmetrical) dependence between GDP components, relating macroeconomic relationships to a

concrete assessment of GaR using augmented copula models is a novel approach.

Ultimately, I want to assess in this paper whether GaR obtained from copula-GAS models are

more accurate than GaR obtained from QR. I evaluate GaR by using backtesting tools frequently

applied in VaR literature. The accuracy of GaR can be measured in terms of average empirical

coverage and can be assessed using coverage tests of Kupiec (1995) and Christoffersen (1998).

Another approach is in terms of losses, which can be constructed using loss functions introduced

by Lopez (1999). The advantage of loss functions is their ability to rank GaR models. The model

that produces the lowest penalty score is preferred. Testing their significance can be achieved by

conducting a Diebold-Mariano test. I use loss functions defined by Caporin (2008), which considers

the magnitude between an estimated GaR and its realised GDP growth. Since these functions are

not consistent, i.e. belonging to the Generalised Piecewise Linear (GPL) family of functions, I refer

to these results as a secondary standard to the (un)conditional coverage tests. In addition, I will

not only consider losses in case of an exception, but also when GaR is overestimated. This approach

is especially useful when the observed data frequency is low, e.g. quarterly growth.

The results of this analysis show that in terms of coverage tests, copula-GAS models perform as

well as QR for all six countries. Both conditional and unconditional coverage tests do not reject the

null of accurate GaR forecasts in almost all cases (that is, for all countries and different coverage

levels considered). When the significance is tested of scores of the models, it can be seen that at

higher coverages, copula-GAS models consistently outperform the QR benchmark. Additionally, in

almost no cases the QR GaR forecasts are preferred to copula-GAS forecasts. Since the loss functions

I use determine losses at every time in terms of magnitude, it implies that QR overestimates

downside risk, producing GaR estimates that are lower than required. Conversely, copula-GAS

models produce GaR estimates with a lower opportunity cost. In conclusion, policymakers should

also consider incorporating copula-GAS models in their macroprudential toolkit.

The following sections comprise the remainder of this report: Section 3 provides an extensive

literature review. Section 4 describes the methodology of this paper, which consists of multiple parts,

each representing a step to construct GaR forecasts. Section 5 describes the empirical application

that is used in this paper. Section 6 presents the results of the empirical application, and Section

7 concludes. The Appendix presents supplementary figures and tables to this paper.
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3 Literature Review

One of the aims of central banks is to control macrofinancial events through macroprudential pol-

icy. A vector autoregressive (VAR) model is one of the more popular econometric tools to assess

the effects of monetary and fiscal policy. White et al. (2015), Prasad et al. (2019) and Duprey

and Ueberfeldt (2020) identify exogenous fiscal shocks through models based on VAR. Mountford

and Uhlig (2009) analyse policy shocks by imposing sign restrictions, and Lof and Malinen (2014)

analyse the relationship between sovereign debt and economic growth, all through a VAR perspec-

tive. Quantile regression (QR), originally introduced by Koenker and Bassett (1978) as ‘regression

quantiles’, is also widely considered in academic literature to analyse relationships of variables. In

addition, financial and (macro-)economic data often exhibit excess kurtosis, a phenomenon QR can

overcome. Mello and Perrelli (2003) analyse the effect of control variables on GDP growth with

estimated quantiles. Central and regional banks commonly implement QR as well, see for example

White et al. (2015). Koenker (2017) provides an extensive review of QR models.

Since the Financial Crisis of 2008, there has been increased attention to the impact of systemic

risk. GaR, originally introduced by Wang and Yao (2001), is a measurement for economic downside

risk, and has been developed further by the IMF in its Global Financial Stability Report of 2017,

Adrian, Grinberg, Liang, and Malik (2018) and Prasad et al. (2019). GaR, akin to value-at-risk

(VaR) is defined as a growth rate such that the probability of expected growth rate does not exceed

a certain quantile. The advantage of this approach is that, in contrast to point forecasts of mean

growth often communicated by policymakers, GaR focuses on empirically forecasting the entire

probability distribution of future GDP growth. This allows policymakers to quantify the impact

of both upper and lower tail risks in addition to point forecasts. Conversely, GaR can provide a

probability level at which, for example, one-year ahead GDP growth will be negative. Adrian et

al. (2019) demonstrate that lower quantiles of GDP growth fluctuate more than upper quantiles, in

addition to their findings that financial and macroeconomic conditions have a greater influence on

the lower quantiles. Although QR is the main approach to construct GaR, Brownlees and Souza

(2021) suggest that this approach should be applied with caution when interest lies in forecasting,

since a macroeconomic environment usually exhibits scarce information (i.e. low-frequency data)

and requires a representative set of downside risk predictors.

GaR is often analysed with QR in combination with vector autoregressive (VAR) models.
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Whereas QR is robust to outliers and VAR allows one to analyse dynamics of the endogenous

variables, this approach refrains from making assumptions about the shape of the probability dis-

tribution. Conversely, these symmetric models do not account for asymmetric or non-normal tail

behaviour, which are exactly the parts of empirical growth distributions policymakers are concerned

with. Moreover, while VAR models could capture information from different marginals by incorpo-

rating cross-terms, multivariate data may quite possibly suffer from a certain dependence structure,

which a VAR model might be unable to capture.

One method to overcome the shortcomings of VAR and QR is to consider copulas, an approach

proposed by Sklar (1959). Copula models are an intuitive methodology to characterise the depen-

dence structure between marginals. The key benefit of this methodology is that the dependence

structure and univariate distribution functions of variables can be separated. Sklar (1959) formu-

lates this in a theorem which states that for any combination of distribution functions, there exists

a unique copula function. Patton (2006) (among others) shows that financial assets are often doc-

umented to exhibit asymmetric tail dependence, an issue which copulas may solve. This advantage

has ensured that it is now widely applied in the financial sector (Cherubini et al. (2004) provide a

review of copula functions in a mathematical finance setting).

Dynamic copula models of Patton (2006) are examples of so-called observation driven models, as

categorised by Cox et al. (1981). Observation driven models contain parameters that can be written

as a function of (lagged) endogenous and exogenous variables. This category also encompasses well

known generalised autoregressive conditional heteroskedasticity (GARCH) models as introduced by

Engle (1982) and Bollerslev (1986), but also the conditional autoregressive Value-at-Risk (CAViaR)

model of Engle and Manganelli (2004), and vector multiplicative error models (MEM) of Cipollini

et al. (2006). This paper builds upon another observation driven model developed by Creal et al.

(2013), called GAS models. GAS considers an autoregressive updating equation for time-varying

parameters, which has innovations equal to the score of the likelihood of the observations. My

research relates to the research of Creal et al. (2013) by constructing both Gaussian and symmetrised

Clayton copulas with GAS updating dynamics. The Gaussian copula combined with GAS results in

time-varying correlation, whereas the symmetrised Clayton copula with GAS produces time-varying

upper and lower tail dependence. As Patton (2006) showed that financial assets exhibit asymmetric

tail dependence, the more myopic approach to construct GaR would be using a Gaussian GAS

model. By contrast, a symmetrised Clayton copula is capable of capturing these dynamics.
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The performance of GaR forecasts can be measured using different methods. One of these

methods considers the coverage of GDP growth rates. When GaR is required at, for example, a

confidence level of α, then an accurate model would cover about (1-α) of all growth rates. Kupiec

(1995) shows that the difference between a nominal level α and its resulting empirical level α̂ can be

used to construct a likelihood ratio test, by assuming a binomial relationship between VaR violations

and VaR acceptances. When this unconditional test is not rejected, then the VaR estimates are

deemed accurate. Christoffersen (1998) builds upon this methodology and pointed out that VaR

violations can be clustered, therefore potentially yielding unreliable testing results. He proposes a

conditional coverage test, which assumes a binary Markov chain as a transition mechanism between

VaR violations. However, Lopez (1999) shows with a simulation exercise that the statistical power

of an unconditional or conditional coverage test can be low. This implies that there exists a high

probability of classifying inaccurate VaR forecasts as accurate.

Instead, Lopez (1999) proposes a second evaluation method that entails loss functions. This

approach considers the magnitude of a failure in the event of an exception. In the case of observed

(portfolio) returns, an exception means that the return at that time is lower than a forecasted VaR,

i.e. resulting in a loss. Loss functions with different characteristics can be defined. For example,

Caporin (2008) proposes regulator’s loss functions that evaluate losses in case of exceptions. By

contrast, Sarma et al. (2003) argue that a firm’s risk manager is confronted with the challenge of

being too safe (thereby requiring too much capital) or being too reckless, and proposes firm’s loss

functions. These loss functions evaluate the entire data sample, which implies that opportunity

costs are also taken into account. Another advantage of this approach is that it has increased

power over firm’s loss functions. For example, a low number of exceptions can incorrectly favour a

certain VaR model, as a small variation in the data can result in different outcomes. This benefit

is especially useful in the case of low-frequency data, such as quarterly GDP growth rates. Finally,

loss functions are capable of ranking VaR models, since the model with the smallest loss is preferred.

Nolde and Ziegel (2017) formalise the ranking of scores by introducing a comparative backtest based

on a Diebold-Mariano test statistic.
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4 Methodology

In the following sections, GaR will be obtained through different methods. The copula-GAS meth-

ods can be summarised by four steps: marginal modelling, copula-GAS estimation, Monte-Carlo

simulation and (comparative) backtesting. Backtesting comprises coverage tests and loss functions.

All aspects of these steps are expounded in the following sections. In addition, the methodology to

obtain GaR estimates with QR is given as well. I refer to these QR GaR estimates as a benchmark.

Table 1 lists all abbreviations and acronyms used in this paper.

4.1 General autoregressive score models

In this section, I will construct a model with score driven time-varying parameters. First, I assume

a conditional density for GDP growth rates yt at time t, such that

p(yt|ψ), (1)

with parameter vector ψ. Furthermore, assume that only a subset of ψ is time-varying, which means

that we can write the parameter vector ψt as ψt = (ft; θ), where ft is the time-varying parameter

of interest, and where θ consists of the remaining fixed parameters of the model. Next, I consider

the t-th log-likelihood

lt = log p(yt|Ft−1; θ), (2)

where Ft−1 is the information set known at time t−1, consisting of realised time-varying parameters

ft−1 and data. The main idea of a GAS model is the method of determining the time-varying

parameter value ft+1 for the next period. A GAS model assumes an autoregressive updating

function for ft,

ft+1 = ω +

p−1!

i=0

aist−i +

q−1!

j=0

bjft−j + CXt, (3)

with ω a constant, ai, bj and c coefficients of the model, Xt exogenous regressors and st a driving

mechanism or innovation term. Using the autoregressive order p and q, the updating algorithm

defined in Equation 3 will be abbreviated to GAS(p, q). Following Creal et al. (2013), the innovation

term st is equal to the scaled score of lt defined in Equation 2 with respect to ft and is defined as

st = ∇(yt, ft)S(ft) =
∂ log p(yt|ft; θ)

∂ft
S(ft; θ), (4)
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where ∇(yt, ft) is the score of the log-density, and S(ft) a scaling parameter. The intuition of

considering the score in a time-varying setting, is to update the time-varying parameter ft by

taking the steepest ascent direction st. The scaling factor S(ft) is applied to improve the update

by accounting for the curvature of the score. This scaling factor is defined as

S(ft) = I−1
t = E

"
∇2(yt, ft)

#−1
= −Et

$
∂2 log p(yt|ft; θ)

∂f2
t

%
, (5)

where I−1
t is the inverse of the Fisher information matrix.

4.2 Copula models

Since the introduction of Sklar (1959), copulas have been analysed and applied extensively. One

of the reasons copulas have become popular in literature is that the method allows one to sepa-

rately specify the dependence structure and marginals. Additionally, copulas and their dependence

structure can be estimated fully parametrically, or be estimated semiparametrically by specifying

a parametric copula while marginals are specified by a nonparametric model, as shown by Genest

et al. (1995) or, lastly, fully nonparametric as shown by Chen and Huang (2007). Because of these

advantages, copula models have proved to be especially useful in a financial context, not only be-

cause financial data often exhibit complex dependence structures, but also because it suffers from

heavy tails and skewed distributions.

Copulas can be applied to both bivariate and multivariate data. However, when estimating a

multivariate copula, one implicitly assumes that the dependence structure between marginals is the

same for all variables included. Moreover, especially in the case of analysing GDP growth rates of a

variety of countries, this assumption may often ignore characteristics of the data. Therefore, in my

analysis of GDP growth rates of different countries, I will focus on two components of GDP, namely

private final consumption and a sum of investments, net exports and government spending. This

methodology characterises the dependence structure between the most important macroeconomic

indicators of a given country.

McNeil et al. (2015) classify copulas into different families. They showed that copulas are

classified as elliptical or as non-elliptical functions. The Gaussian copula is classified as an elliptical

copula and is defined as

CG
Ψ(u1, . . . , un) = FΨ

"
Φ−1(u1), . . . ,Φ

−1(un)
#
, (6)
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where FΨ is a multivariate normal distribution MNn(0,Ψ), and with Φ(ui) the standard univariate

normal CDF over marginals ui. Although Gaussian copulas are models that are easy to work with

and to implement, the marginals are assumed to have elliptical innovations. Moreover, Gaussian

copulas have zero tail dependence, which implies that it underestimates kurtosis, a phenomenon

that is widely observed in macrofinancial time-series. Contemporary macroprudential policy is

concerned with modelling the fat tails of Future GDP growth. Therefore Gaussian copulas are less

capable to capture these characteristics. However, these models are able to capture time-varying

dependence, characteristics of the data QR is unable to account for.

Non-elliptical (or Archimedean) copulas allow for non-elliptical distributions with tail depen-

dencies. Archimedean copulas are defined as C(u1, . . . , un) = φ−1(
&

φ(ui)), with φ−1 the inverse

of φ. The function φ is called the generator of the copula. A specific Archimedean copula is the

Clayton copula,

CCl
θ (u1, . . . , un) =

" n!

i=1

u−θ
i − (n+ 1)

#−θ−1

θ > 0, (7)

where CCl
θ is the cumulative distribution function of the copula. The Clayton copula can be used

to model tail dependency. To arrive at the density of the Clayton copula, note that for any copula

C(u1, . . . , un) the PDF c(u1, . . . , un) can be obtained as c(u1, . . . , un) = ∂nC((u1, . . . , un)/∂u1, . . . ∂un.

The density for the Clayton copula then is obtained as

cθ(u) =

d−1'

k=0

(θk + 1)

( n'

i=1

ui

)−(1+θ)( n!

i=1

u−θ
i − n+ 1

)−(n+1/θ)

. (8)

See Hofert et al. (2012) for comprehensive clarifications of multivariate Archimedean copulas.

4.3 Copula-GAS

Firstly, I will consider a Gaussian copula in an observation driven GAS framework. Patton (2006)

proposes to write the updating equation of the bivariate Gaussian copula as

ft = ω +A

m−1!

i=0

z1,t−iz2,t−i +Bft−1, (9)

where zi,t, i ∈ {1, 2} and ft the time-varying parameter of interest are transformed univariate

marginals using the inverse CDF, and m a lag order parameter. The link function

ρt =
1− exp(−ft)

1 + exp(−ft)
(10)
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is a modified logistic transformation, which ensures that the correlation parameter ρt is defined

between [-1,1]. Using the PDF of a bivariate Gaussian copula the score can be obtained by taking

the gradient. The score ∇t(ft) of the bivariate copula can be found by taking the derivative of the

Gaussian copula cG with respect to the time-varying correlation parameter ρt,

∇(z1,t, z2,t, ρt) =
∂ log cG(z1,t, z2,t|ρt)

∂ρt
=

(1 + ρ2t )(z1,t − ρt)− ρt(z2,t − 2)
*
1− ρ2t

+2 . (11)

Subsequently scaling the score with St(ρt) = (1 + ρ2t )/(1 − ρ2t )
2 (see Creal et al. (2013) for an

overview of scores and scaling factors of different GAS models) yields a scaled score

st(z1,t, z2,t, ρt) =
2
"
ω1,t − ρt−1 − ρt−1

ω2,t−2

1+ρ2t−1

#

1− ρ2t−1

, (12)

where ω2,t = z21,t + z22,t and ω1,t = z1,tz2,t. The score in Equation 12 can finally be implemented in

a GAS(1,1) recursion

ft = ω + ast−1 + bft−1 + cXt−1, (13)

and the optimal time-invariant copula parameters ω, a, b and c can be estimated by maximising

the scaled log likelihood.

A Gaussian copula is not capable of capturing either lower or upper tail dependence, which

is frequently observed in financial time-series. Therefore, considering copulas that are able to

capture either latent dynamics could be beneficial, especially in macroprudential policymaking which

concerns extreme tail events. A mixture of Clayton copulas, proposed by Junker and May (2005),

is such a model that can capture lower and upper tail dependence. This model mixes a normal

Clayton copula (to capture lower tail dynamics) and a survival Clayton copula (to capture upper

tail dynamics). The score of the Clayton copula required for the GAS framework can be obtained

by taking the gradient of the logarithmic density as shown in Equation 8. The information matrix

that is used for scaling the score on the other hand is harder to find analytically, therefore it is

often estimated using numerical optimisation, or by simply setting the scaling matrix equal to an

identity matrix.

When mixing two Clayton copulas, one is capable of modelling both lower and upper tail de-

pendence. This results in a symmetrised Clayton copula, defined by the CDF

CCl(u1, u2;α) = pCCl
1 (u1, u2;α1) + (1− p)CCl

2 (u1, u2;α2), (14)



Dependence Modelling of GDP components 13

where α1 and α2 are the respective dependence parameters of Clayton copulas CCl
1 and CCl

2 . Tail

dependencies are captured by taking a convex linear combination of bivariate Clayton CCl
1 and

rotated ‘survival’ Clayton CCl
2 , where CCl

1 = (u−α1
1 + u−α1

2 − 1)−1/α1 with lower tail dependence

parameter α1, and CCl
2 = u1 + u2 − 1 +

*
(1 − u1)

−α2 + (1 − u2)
−α2 − 1

+−1/α2 with upper tail

dependence parameter α2.

The GAS updating equation as given in Equation 3 has to be altered slightly to accommodate

for a mixture of two copulas. In this case, the updating equation becomes two-dimensional,

ft = ω +Ast−1 +Bft−1, (15)

where ft, ω, A and B now are vectors. Similar to the Gaussian copula-GAS (GGAS) case, a link

function needs to be imposed to ensure well-defined tail dependence parameters. Ayala and Blazsek

(2018) use a link function αt = exp(ft). However, I found that using the link function αt = |ft|

tends to be more stable when computing maximum likelihood estimations.

Furthermore, following Creal et al. (2013), copulas c1 and c2 are defined without dependence

parameters of the other copula. Therefore I can apply univariate Clayton copula results to construct

the score of the symmetrised Clayton copula. Hofert et al. (2012) show that the score of an individual

Clayton copula can be written as a function of its generator. A d-dimensional Archimedean copula

is uniquely defined by its generator ψ : [0,∞] → [0, 1] by writing

C(u) = ψ
"
ψ−1(u1) + · · ·+ ψ−1(ud)

#
,u ∈ [0, 1]d. (16)

By defining Qα(u) =
&d

j=1 ψ(uj) the score of the symmetrised Clayton copula defined in Equation

14 can be written as

∂ log c

∂α
= w

,

-
∂ log c1
∂α1

∂ log c2
∂α2

.

/ = w

,

0-
1

α1+1 − log(u1u2) +
log

*
1+Qα1 (u)

+

α2
1

− (2 + 1/α1)
Qα1 (u)

1+Qα1 (u)

1
α2+1 − log(u1u2) +

log
*
1+Qα2 (u)

+

α2
2

− (2 + 1/α2)
Qα2 (u)

1+Qα2 (u)

.

1/ , (17)

where ci,αi, i ∈ {1, 2} are the PDF and dependence parameter of the Clayton and survival Clayton

copula, respectively, and w defined as w =
*
w1, w2

+′
=

*
p1c1/(p1c1 + p2c2), p2c2/(p1c1 + p2c2)

+′
.

Equation 17 shows the key difference between modelling a single copula GAS recursion (i.e. the

Gaussian copula score given in Equation 12) and a mixture of copula GAS. It can be seen from

Equation 17 that the scores from the Clayton and survival Clayton copula are updated independently

from each other. By doing so, given the definition of wi, observations either partly contribute to
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upper or lower tail dependence. This allows to model the upper and lower tail dependence of the

data simultaneously. Therefore, compared to a myopic Gaussian GAS approach, a symmetrised

Clayton GAS model yields a more complete view of macroeconomic dependencies in either tail of

its distribution.

4.4 Maximum likelihood estimation

Since both GGAS and symmetrised Clayton copula-GAS (SCGAS) are observation driven mod-

els, maximum likelihood can be applied to obtain optimal parameter estimates. When applying

maximum likelihood to a copula-GAS model, the maximisation problem can be formulated as

max
θ

n!

t=1

ℓt(yt|ft; θ) = max
θ

n!

t=1

log
"
c(u1, u2|ft−1; θ)

#
, (18)

where ℓt(yt|ft−1; θ) is the log-likelihood of observation at time t. In addition, θ and ft are the

static and time-varying parameters of the model, and c denotes the PDF of the copula of interest.

Since the log-likelihood can be determined for every observed value yt (or observed pair u1, u2 in a

copula setting), the GAS model as given in Equation 3 defines a filter. In addition, recursions can

be defined for the score and scaled score. These recursions are required to be able to update the

time-varying parameter. Equation 12 shows the recursion for the scaled score of a Gaussian copula,

whereas Equation 17 shows the vector of scores of the symmetrised Clayton copula.

To obtain well-behaved time-varying parameters through a GAS recursion, some restrictions

need to be applied to ensure stability. First, a link function needs to be defined in order to acquire

well-defined time-varying parameters (see section 4.3 for link functions applicable to GGAS or

SCGAS). Secondly, by imposing the restriction |B| < 1 in Equation 9 and |B| < ι2 in Equation 15,

the updating dynamics are enforced to remain stable over time. These mild regularity conditions

ensure that the maximum likelihood estimator will be consistent and exhibits asymptotic normal

properties. Creal et al. (2013) analyse MLE in a copula-GAS setting. Furthermore, see Heij et

al. (2004) and Blasques et al. (2014) for a comprehensive discussion regarding maximum likelihood

estimation (MLE) and MLE in a GAS framework, respectively.

By maximising the log-likelihood as defined in Equation 18, one obtains maximised likelihood

parameter estimates

θ̂ML = argmax
θ

ℓt(yt|ft−1; θ). (19)
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Using standard regularity conditions, it is possible to write

√
n
*
θ̂ML − θ0

+ d−→ N
*
0, I−1

0

+
, (20)

where I−1
0 is the observed information matrix evaluated at the true parameter θ0. The observed

information can be calculated as the negative of the Hessian,

In = E

2
∂l

∂θ

∂l

∂θ′

3
= −E

2
∂2l

∂θ∂θ′

3
. (21)

Since the approximate distribution of the maximum likelihood estimator is known, I obtain the

distribution of the estimated parameter θ̂ML ≈ N
"
θ0, I−1

n (θ̂ML)
#
. This result can then be used to

construct the variance of θ̂ML,

var
*
θ̂ML

+
≈ 1

n
I−1
0 ≈ I−1

n

*
θ0
+
≈ I−1

n

*
θ̂ML

+
. (22)

I will use Matlab R2020b built-in functions fminunc and fminsearch to maximise the likelihood.

4.5 Marginals

Financial and macroeconomic time series are generally considered to be non-normal in terms of

skewness and excess kurtosis. Fang and Miller (2009) note, for example, that the evidence of

kurtosis in GDP growth could point at volatility in the mean growth rate. Blanchard and Simon

(2001) further contribute to this reasoning by showing that large shocks in GDP growth rates

This means that, before the estimation procedure of the models presented above, the marginals

of copula-GAS models should be assessed as well. A general approach to correct for non-normal

behaviour, but also for a possible presence of autocorrelation and conditional heteroskedasticity, is

to apply autoregressive (AR) and general autoregressive conditional heteroskedasticity (GARCH)

models, further discussed by Grégoire et al. (2008). For example, Creal et al. (2013) apply AR(1)-

GARCH(1,1) to filter out conditional means and variances in a GGAS framework, whereas Manner

and Reznikova (2012) exercise AR(p)-GARCH(1,1) models to returns of exchange rates. I will follow

a similar approach in the empirical illustration of section 5 by applying an AR(p)-GARCH(1,1)
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model to the marginal distributions of log GDP growth rates yi,t,

µi,t = φi,0 +

p!

j=1

φi,jyi,t−1 + εi,t; (23)

εi,t = σi,tzi,t; (24)

σ2
i,t = γi + αiε

2
i,t−1 + βiσ

2
i,t−1, (25)

for country i at time t, Zi,t being student-t distributed with νi degrees of freedom, and µi,t being

the conditional mean. The number of lags p in equation 23 will be selected by considering Bayesian

information criteria (BIC) of the models.

This process yields standardised residuals εi,t = (yi,t − µi,t)/σi,t. The final step in processing

the marginals is transforming them into univariate marginals (refer back to equation 9 for the

copula models). I will transform the marginals nonparametrically by applying empirical cumulative

distribution functions

ui,t = Fi(εi,t) =
1

T + 1

T!

t=1

I[εi,t≤ε], (26)

where T is the number of observations and where Fi is rescaled by T + 1 to ensure stability in the

first-order condition of the log-likelihood. Finally, the transformed marginals ui,t can be used to

estimate the GGAS and SCGAS models.

4.6 Quantile regression models

In standard regression analysis, the relationship between a dependent variable yt and independent

variables Xt is modelled through the conditional mean E(yt|Xt). A linear regression model yt =

x′tβ + εt, yields an estimate µ̂(x) of this conditional mean given Xt = x by minimising the mean

squared error (MSE)

E(yt|Xt) = argmin
z

E
"
(yt − z)2|Xt = x

#
, (27)

where z = β0 + β1x1,t + · · · + bkxk,t. However, this approach only covers a small part of the

relationship between the response variable and regressors. One may be interested in, for example,

a certain quantile in the estimation procedure. An evident method capable of finding a measure

that reflects a level of confidence is QR. QR models the relationship using the conditional function

Qα(y|x) = F−1
y (α), where F is is the cumulative distribution function of y and α a quantile of the
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distribution. Contrasting minimising MSE in a standard linear regression, a QR model

yt = x′tβ(α) + εt(α) (28)

minimises the median absolute deviation (MAD)

Q(βα) = argmin
z

E
"
ρα

*
yt − z(α)

+
|Xt = x

#
, (29)

where z(α) = β0(α) + β1(α)x1,t + · · ·+ bk(α)xk,t, and ρα an asymmetric loss function defined as

ρα(εt) = εt
*
α− I(εt < 0)

+
, (30)

where εt is the error of a given observation at time t. By defining two additional variables ut =

εtI(εt > 0) and vt = |εt|I(εt < 0) it is possible to rewrite equation 28 to yt = x′tβ(α) + (ut − vt).

Then minimising MAD as defined in 29 can be reformulated as

Q(βα) = α
!

t:yt≥x′
tβ(α)

|yt − z(α)|+ (1− α)
!

t:yt<x′
tβ(α)

|yt − z(α)|, (31)

subject to the constraints Y − X ′β = u − v and ut > 0, vt > 0, where Y is a T × 1 vector of

endogenous outcomes and X a T × k matrix of exogenous variables. Equation 31 can be seen as a

linear programming problem, and can further be rewritten to

min
(u,v,β)

,

000-

αιT

(1− α)ιT

0ιk

.

111/

′,

000-

u

v

β

.

111/
(32)

such that (33)
,

000000-

IT −IT Xt,k

−IT IT −Xt,k

−IT 0 0

0 −IT 0

.

111111/

,

000-

u

v

β

.

111/
≤

,

000000-

Y

Y

0ιT

0ιT

.

111111/
, (34)

with ιT a T×1 vector of ones and IT a T×T identity matrix. This linear programming problem can

be solved using algorithms such as the Frisch-Newton interior point method, and dual simplex ap-

proach, introduced by Koenker and D’Orey (1987). I will implement the latter more straightforward

technique, since it ensures an optimal solution within a finite number of iterations.
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QR has a number of appealing advantages over the more ‘traditional’ ordinary least squares

(OLS). One evident benefit of QR is the ability to model a quantile, thereby having the liberty of

analysing different levels of confidence. In addition, it can be shown that monotonic transformations

do not influence the outcome of QR. Finally, no assumptions are made about the distributions of the

parameters. QR implements a loss function as defined in 30. This implies that QR is more robust to

outliers and non-normal errors, since the mean in OLS assigns equal 1/T weights to all observations.

The above advantages have stimulated policymakers of regional and central banks to implement QR

in their analysis (see for example Ghosh et al. (2012) who analyse the accumulation of reserves of

emerging market economies; and White et al. (2015) who determine VaR of international financial

institutions, all conducted in a QR framework).

4.7 Exogenous variables

As potentially many macroeconomic indicators could explain GDP growth, a subset of those vari-

ables could co-move over time, and therefore suffer from multicollinearity. Prasad et al. (2019)

propose partitions of macroeconomic variables to overcome this issue, and distinguish financial

conditions and macrofinancial vulnerabilities as potential partitions. Using principal component

analysis (PCA), these partitions (or factors) can be extracted. I will apply PCA to the explana-

tory variables listed in the Data section, and add the components to the GAS model as shown in

Equation 3.

4.8 Monte Carlo simulation

GaR will be analysed using a backtesting procedure. Backtesting is widely applied in financial

risk management, because the procedure enables a risk manager to determine how well a certain

model estimates VaR. Since VaR is an analogue of GaR, backtesting methods can also be applied

to measure the accuracy of GaR predictions. For every country, I will analyse log growth rates of

private final consumption and the residual term by applying an AR model to the conditional mean

and a GARCH model to the conditional variance, which yields residuals

εi,t =
Ji,t − µt,i

σi,t
, (35)

where Ji,t is either the log growth rate of private final consumption (i = 1) or the residual term

(i = 2) in quarter t, and µi,t and σi,t the conditional mean and variance in quarter t, respectively.
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Assume that the time-varying dependence parameters of both Gaussian and mixed Clayton

models, as specified in Section 4.3 are estimated at this stage. This dependency structure will then

be used in a Monte Carlo simulation for GaR. The GaR backtesting procedure can be formulated

as follows:

1. By specifying AR-GARCH models for the marginal distributions, assume that conditional

means µ̂i,t and conditional variances σ̂2
i,t, i = 1, 2 are known at this stage.

2. Assume time-varying dependence parameter f̂t is obtained by maximising the log-likelihood

of either the Gaussian CG or Clayton CCl.

3. Perform Q = 1000 Monte Carlo simulations and simulate marginals using f̂t obtained from

the fitted copula. This yields paths of marginal samples U =
"
u
(1)
i,t , . . . , u

(Q)
i,t

#′
, i = 1, 2.

4. Transform the simulated marginal samples to GDP innovation levels by applying the inverse

Student-t distribution to simulated marginal samples, F−1
i

"
u
(q)
i,t

#
= ε

(q)
i,t , i = 1, 2 and q =

1, . . . , 1000. The degrees of freedom are obtained in step 1.

5. Construct simulated consumption or residual growth rates i = {1, 2} and simulated path q

by computing Ĵ
(q)
i,t = µ̂i,t + σ̂i,tε

(q)
i,t , and construct simulated GDP growth ŷ

(q)
t by calculating

a weighted average of simulated consumption and residual growth, ŷ
(q)
t = w1,tĴ

(q)
1,t + w2,tĴ

(q)
2,t .

The weights wi,t are obtained by dividing the size of consumption or the residual term with

the size of GDP in quarter t.

6. Sort all paths q for every quarter t in descending order to obtain a historical simulation

estimate of GaRt. If one wishes a GaR at, say, a confidence level of 5%, then the 50th lowest

simulated estimate should be selected (assuming 1000 simulated GDP growth rate paths).

7. Repeat steps 1 to 6 for all countries.

4.9 Coverage tests

GDP growth rates will be compared to either marginal or joint GaR at time t, which results in

empirical coverage

π̂(p) =
1

T

T!

t=1

I{yt<GaRp
t }, (36)
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which measures exceedances of GDP growth rates below GaR at a confidence level of p, and where

T is the total amount of quarters considered in the sample. Note that the empirical coverage is

implicitly dependent on the nominal coverage p. This means that accurate GaR obtained from the

Monte Carlo simulation specified in Section 4.8 should therefore be similar.

The difference between empirical coverage and nominal coverage can be tested using likelihood

ratio (LR) tests. Kupiec (1995) proposes the unconditional coverage test. He showed that relatively

large samples are required to produce reliable VaR estimates with, at that time, standard statistical

techniques. Instead, the paper proposed the unconditional coverage test, which tests the difference

in the expected number of VaR violations and observed VaR violations. It is defined as an LR-test,

with the null hypothesis of the expected number of VaR violations and observed violations. The

likelihood of the series of violations {I1, I2, . . . , IT } under the null hypothesis can be expressed as

L(p; I1, I2, . . . , IT ) = (1− p)n0pn1 , (37)

with p denoting the ‘true’ nominal coverage, n1 =
&T

t=1 I{yt>GaRt} and n0 = T −n1. The likelihood

under the alternative hypothesis of different number of expected and observed violations is

L(π; I1, I2, . . . , IT ) = (1− π)n0πn1 . (38)

Using 37 and 38, the likelihood ratio test is given as

LRu = −2 log
"
L(p; I1, I − 2, . . . , IT )/L(π̂; I1, I2, . . . , IT )

#
(39)

= −2 log
"
(1− p)n0pn1

#
+ 2 log

"
(1− π̂)n0 π̂n1

#
. (40)

Under the null hypothesis, this test is asymptotical χ2(1) distributed. The advantage of this ap-

proach is that one can test (and therefore potentially reject) a model based on VaR predictions

that are both higher and lower than the expected number of violations. However, Kupiec’s test is

not able to distinguish the time-variation of the data, which means that it only can effectively be

applied to data with ‘conditional’ VaR violations only.

Instead, Christoffersen (1998) proposes the conditional coverage test. He notes that the majority

of forecasting literature focuses on the evaluation of point forecasts and, more importantly, that

researchers often make the assumption of homoskedastic error terms. Therefore this test is an

improvement over the unconditional coverage test, since it also addresses predicted VaR violations
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that are clustered in the data. The conditional coverage test is a combination of the unconditional

coverage test and an independence test. To derive the test of independence, consider {I1, I2, . . . , IT }

as a binary Markov chain. y defining the probability πij = P (It = j|It−1− i), a first-order transition

matrix can be written as

Π1 =

4

51− π01 π01

1− π11 π11

6

7 . (41)

Denote nij as the number of observations with consecutive observations of VaR violations, with

It−1 = i and It = j. This process yields an approximate likelihood of

L(Π1; I1, I2, . . . , IT ) = (1− π01)
n00πn01

01 (1− π11)
n10πn11

11 . (42)

The independence test that follows tests whether there is clustering of VaR violations in the data,

and could potentially be conducted separately from the unconditional and conditional tests. The

last step is to combine the unconditional coverage test and an independence test. Christoffersen

(1998) shows that the LR-test of conditional coverage is

LRc = −2 log
"
L(p; I1, I − 2, . . . , IT )/L(Π̂1; I1, I2, . . . , IT )

#
(43)

= −2 log
"
(1− p)n0pn1

#
+ 2 log

"
(1− π̂01)

n00 π̂n01
01 (1− π̂11)

n10 π̂n11
11

#
(44)

= LRu + LRind, (45)

where p denotes the true coverage, and π̂ij , i, j ∈ {0, 1} denotes the estimated transition probability.

Although the literature expounded above considers VaR, the techniques can of course also be applied

in a GaR framework. Moreover, the unconditional and conditional coverage tests can be applied to

the benchmark QR model, as well as to both copula-GAS models assessed in this paper. Therefore

I will provide both LRu and LRc test statistics in the empirical illustration, to show the predictive

accuracy of the models.
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4.10 Loss functions and comparative backtesting

Lopez (1999) argues that evaluating VaR estimates based on specific information, i.e. (un)conditional

coverage tests, does not provide enough information about its accuracy, and fail to distinguish VaR

estimates from different models. Instead, Lopez (1999) proposes regulatory loss functions to discern

VaR estimates. Using loss functions, one is able to evaluate the magnitude of experienced losses. A

general loss function can be defined as

Lm,t =

8
9:

9;

f
"
yt, GaRm,t(α)

#
if yt < GaRm,t;

g
"
yt, GaRm,t(α)

#
if yt ≥ GaRm,t,

(46)

where Lm,t is the loss when using GaR from model m at time t, yt a GDP growth rate at time t and

α the usual coverage rate. Furthermore, a distinction can be made between loss functions of firms

and policymakers, since their objective of capital requirement usually differs. Abad et al. (2015)

categorises firm’s loss functions (FLF) and regulator’s loss functions (RLF). FLF incorporate op-

portunity costs, whereas RLF take into account the magnitude of (noncovered) losses. For example,

Lopez (1999) uses a quadratic specification of f in equation 46 to penalise large exceedances. In

addition, the restriction f
*
yt, GaRm,t(α)

+
≥ g

*
yt, GaRm,t(α)

+
is imposed as well. Historically, the

function g is set equal to 0, which implies Lm,t only accounts for exceedances. Next, a score from

model m can be constructed by adding all losses over the sample period,

Sm =

T!

t=1

Lm,t (47)

Caporin (2008) proposes multiple definitions for the function f that take into account failure of

VaR estimations, but also the magnitude of the loss, namely

f1

"
yt, GaRm,t(α)

#
=

<<<<<1−
<<<

yt
GaRm,t(α)

<<<

<<<<<,

f2

"
yt, GaRm,t(α)

#
=

"
|yt|− |GaRm,t(α)|

#2

|GaRm,t(α)|
.

(48)

It should be noted that the definitions of the loss functions given above are not strictly consistent.

Consistent loss functions should be GPL (see Thomson (1979) and Saerens (2000)). However, I am

especially interested in the relative size (or magnitude) of both covered and uncovered losses. This

attribute can be modelled by dividing standard loss functions by GaR. GPL loss functions are not
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able to incorporate this factor. Whereas Nieto and Ruiz (2016) points out that RLF often fail to be

GPL, they refrain from providing a consistent loss function that incorporates relative magnitude of

losses. To the best of my knowledge, no other literature discussed such loss functions. In addition,

there exists a strand of literature (e.g. Abad and Benito (2013) and Abad et al. (2015)) that does

not consider the consistency of their evaluated loss functions. Therefore I consider loss functions

defined in equations 48 only as a secondary standard to the conditional and unconditional tests,

since these tests might not provide a definitive answer to the main objective of this paper, i.e.

determine the best GaR predicting model.

Caporin (2008) argues that the entire sample should be taken into account, instead of only

considering exceedances, in order to obtain reliable results. This can be achieved by setting fj = gj ,

where j = 1, 2, which implies that such loss functions can be both seen as FLF and RLF. It incorpo-

rates the relative size of the uncovered losses by dividing by GaR, as well as quantifying opportunity

costs by additionally penalising covered losses. I will construct scores using loss functions defined

in equations 48.

Scores of different models should be tested if one wishes to determine which model performs

best. GaR obtained with QR I consider as benchmark predictions. GaR obtained with copula-

GAS methods challenge the predictive performance of the benchmark model. In this backtesting

procedure, I am interested in two null hypotheses,

H−
0 : The competing model performs at least as well as the benchmark model,

H+
0 : The competing model performs at most as well as the benchmark model.

Nolde and Ziegel (2017) define the test statistic

S̄ =
1

T

T!

t=1

"
Sk − S∗+, (49)

where Sk is the total score obtained from model k, and where S∗ is the total score obtained from the

benchmark model. Under H−
0 , the test statistic S̄ should provide a value lower than 0. Conversely,

S̄ should be non-negative under H+
0 . Next, S̄ can be standardised by calculating

S̄ −E(S̄)

σ̂n/
√
n

, (50)

which is asymptotically standard normal and where σ̂n is the HAC estimator of the asymptotic
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variance. Using the test statistic θ̂ = S̄/(σ̂n/
√
n), the null hypotheses H−

0 and H+
0 can be tested.

This approach is colloquially called a Diebold-Mariano test (see Diebold and Mariano (1995)). The

null hypothesis H−
0 is rejected when 1 − Φ(θ̂) ≤ α, and the null hypothesis H+

0 is rejected when

Φ(θ̂) ≤ α, for a certain level α. Three regions are defined in Fissler et al. (2015) to jointly assess the

significance of the test statistics. If H−
0 is rejected, then the competing model is situated in the red

region. If H+
0 is rejected, then the competing model is situated in the green region. Finally, it may

be possible that both null hypotheses are not rejected. Then further investigation of the competing

model is required. This aspect, however, falls beyond the scope of this paper.

5 Data and macroeconomic indicators

In the next sections, I will turn to an empirical application using the methodology defined in the

previous part. Six OECD countries are selected for this purpose: Australia, Germany, Great Britain,

Japan, The Netherlands and The United States. The GaR of these countries will be analysed by

modelling their quarterly GDP growth from 1970-Q1 to 2019-Q4, for a total of 200 observations.

In addition to the above variable of interest, several exogenous variables are selected for predictive

purposes. These exogenous variables include 10-year government bond yields, consumer price index

(CPI) growth compared to a year ago, housing price growth, credit to the private non-financial

sector growth, industrial production (IP) growth and credit gap. All growths are compared to a

year ago. Some indicators are not available from 1970-Q1 (for example, 10-year bond yields of

Japan start from 1989-Q1. Missing values are therefore replaced appropriately, by standardising

the global equivalent of the missing indicator series, and then rescaling that series with the standard

deviation of the incomplete series.

Figure 1 presents GDP growth rates of Australia, Germany, Japan, The Netherlands, United

Kingdom and the United States. In addition, Table 2 presents descriptive statistics for all countries.

It can be seen that on average GDP growth has been positive. Moreover, Germany, Japan and The

Netherlands show the worst GDP decline of all considered countries of around -5% (occurring in the

Financial Crisis of 2008). Volatility clustering can be observed until 1990. Finally, a Jarque-Bera

test suggests that the GDP growth distributions of all countries deviate from normality, showing

excess kurtosis for all countries and negative skewness (with the exception of Australia and the

United Kingdom).
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Figure 1: GDP growth rates of six OECD countries, from 1970Q1 to 2019Q4, in percentages.

Potentially many macroeconomic and macrofinancial indicators can explain GDP growth rates.

At the same time, however, those indicators could also be dependent on each other, as they might

reflect the same trends observed in macroeconomic data. Prasad et al. (2019) show that it is

therefore useful to partition macroeconomic and macrofinancial variables into broad sets of similar

variables. In the case of the empirical illustration of this paper, partitioning is achieved by applying

PCA to the correlation matrix of the six exogenous variables mentioned above. I add the three most

informative principal components (z1, z2, z3) to the GAS recursion. This ensures that about 80%

or more of the variance explained is included in the model. Table 3 shows the variance explained

per country.
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Country Mean Std. dev. Min. Max. Skewness Kurtosis JB∗

Australia 0.759 0.891 -2.038 4.328 0.192 4.753 0.001
Germany 0.484 0.982 -4.787 3.899 -0.616 7.291 0.000
Japan 0.579 1.108 -4.935 3.290 -0.708 6.336 0.000

Netherlands 0.561 1.113 -5.030 5.661 -0.337 9.072 0.000
United Kingdom 0.548 0.903 -2.786 4.841 0.151 7.790 0.000
United States 0.680 0.787 -2.188 3.791 -0.288 5.354 0.000

Table 2: Descriptive statistics of GDP growth rates of 6 OECD countries. (∗); p-values of Jarque-Bera test
statistic. Shown values of the mean, standard deviation minimum and maximum are in percentages.

Table 3: Variance explained (in %) of the first three principal components obtained with PCA.

PC AUS GER JPN NLD GBR USA

z1 39.588 39.603 42.810 40.740 40.808 37.142
z2 24.632 23.156 20.657 21.587 28.268 28.994
z3 15.043 19.491 18.124 16.305 16.600 14.496

Total explained 79.263 82.249 81.591 78.631 85.676 80.633

6 Results

6.1 Quantile regression

In this section, I present GaR estimates obtained from QR. Since QR is the main tool for macro-

prudential policymakers to assess downside risk, I will consider it a benchmark for the copula-GAS

models. Figure 2 shows GaR estimates at 90% coverage (in brown), at 95% coverage (in blue), at

99% coverage (in red) and GDP growth rates in black of the United States. GaR estimates obtained

from the remaining countries are shown in the Appendix. For the United States GaR estimates it

can be seen that the GaR at different coverage levels is somewhat alike. Around 1987 and 2005

the biggest differences in GaR can be observed. Empirical exceedances are given in Table 4 for

all countries. The results suggest that on average a QR approach underestimates all considered

nominal coverages. For example, Germany and Japan exhibit empirical coverages that fall below

their respective nominal values. Section 6.5 will provide statistical coverage tests of Kupiec (1995)

and Christoffersen (1998) to determine the significance of the observed empirical coverage.
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Table 4: Empirical exceedances of GaR estimates obtained with QR, conducted at a nominal coverage of 90%,
95% and 99%.

Nominal coverage

Country 90% 95% 99%

Australia 0.910 0.950 0.995
Germany 0.870 0.920 0.980
Japan 0.860 0.915 0.960

Netherlands 0.915 0.955 0.995
United Kingdom 0.905 0.955 0.980
United States 0.900 0.950 0.985

Average 0.893 0.941 0.983
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Figure 2: Growth-at-risk (brown 10% coverage, blue 5% coverage, red 1% coverage) obtained with QR, using
long term bond yields, CPI growth, house pricing growth, credit growth, IP and credit gap data as indicators
for GDP growth.

6.2 Marginals

The first stage of estimating copula-GAS models is modelling the marginal distributions of GDP

growth rates. An AR(p)-GARCH(1,1) model is used for this purpose, where lag p is selected based

on the lowest BIC. The results are shown in Table 5. AR(p)-GARCH(1,1) results estimated on PC

growth rates and the residual term growth rates are given in the Appendix. It can be seen that the

optimal AR lag for Australia and Germany is 1, whereas GDP growth rates of Japan, Netherlands,

United Kingdom and the United States exhibit an optimum of 2 lags.

Table 6 shows descriptive statistics for the standardised residuals of the AR(p)-GARCH(1,1)

model. It contains p-values for Ljung-Box Q tests, at 1 and 4 lags, conducted on the standardised
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Table 5: AR(p)-GARCH(1,1) estimation results for quarterly GDP growth rates (1970-Q1 to 2019-Q4) of
Australia, Germany, Japan, Netherlands, United Kingdom and United States. Standard errors are given in
parenthesis.

AR(p) GARCH(1,1)

Country φ0 φ1 φ2 γ α β d.o.f. ν BIC

Australia 0.689 0.017 - 0.000 0.055 0.934 18.453 480.98
(0.064) (0.068) (0.004) (0.031) (0.028) (25.304)

Germany 0.442 0.052 - 0.217 0.204 0.564 6.240 560.56
(0.069) (0.082) (0.136) (0.098) (0.200) (2.768)

Japan 0.352 0.181 0.179 0.151 0.213 0.663 7.183 599.78
(0.090) (0.077) (0.081) (0.101) (0.100) (0.137) (4.028)

Netherlands 0.357 0.142 0.243 0.009 0.133 0.862 3.870 523.13
(0.069) (0.070) (0.068) (0.011) (0.058) (0.047) (1.005)

United Kingdom 0.282 0.295 0.192 0.022 0.292 0.708 4.132 426.50
(0.059) (0.074) (0.070) (0.016) (0.123) (0.078) (1.272)

United States 0.391 0.232 0.209 0.016 0.177 0.804 5.121 426.44
(0.071) (0.073) (0.068) (0.016) (0.075) (0.072) (2.011)

residuals (LB Q) and squared standardised residuals (LB Q2) of the marginal models. The null

hypothesis for the Ljung-Box Q test on standardised residuals claims there exists no autocorrelation

for a given lag. The null hypothesis for the Ljung-Box Q test on squared standardised residuals

claims there exists no residual time-varying volatility for a given lag. Based on the figures in Table

6, there is not enough evidence to reject the null hypothesis of homoskedastic standardised residuals

for all countries at 5% significance, at 1 and 4 lags (except Australia at 1 lag). In addition, for all

countries except the Netherlands, the null hypothesis of no autocorrelation cannot be rejected as well

at 5% significance, both at 1 and 4 lags. These results resemble findings of e.g Bhar and Hamori

(2003) and Brownlees and Souza (2021). This suggests that the marginal AR(p)-GARCH(1,1)

models entertained in this methodology adequately capture GARCH dynamics in the GDP growth

rates.

6.3 Gaussian copula-GAS

This section presents Gaussian copula-GAS (GGAS) estimation results. These results are ob-

tained by estimating the GGAS model on the uniformly transformed residuals from the AR(p)-

GARCH(1,1) model. The second step of constructing quarterly GaR estimates is obtaining the

maximum likelihood estimates of the GGAS method. I include the three most important principal

components to the GAS recursion. Table 7 presents GGAS estimation results for all countries. It
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Table 6: Descriptive statistics for the standardised residuals obtained with the AR(p)-GARCH(1,1) model.
Provided are p-values for the Ljung-Box test conducted on residuals and squared residuals, at 1 and 4 lags.

Country LB Q(1) LB Q(4) LB Q2(1) LB Q2(4)

Australia 0.422 0.328 0.039 0.067
Germany 0.785 0.080 0.910 0.631
Japan 0.746 0.369 0.486 0.680

Netherlands 0.032 0.044 0.118 0.634
United Kingdom 0.624 0.911 0.572 0.757
United States 0.845 0.633 0.766 0.399

can be seen that the GAS specification yields a highly persistent time-varying correlation process

(based on the estimates of the parameter β). These results are similar to the findings of Creal et al.

(2013), which apply a GGAS model to exchange rates. In addition, the estimated parameters of the

three principal components, as shown by the estimates of c1, c2 and c3, are sometimes insignificant.

Since the estimated parameters of α and β are significant and consistent across all countries, the

parameters of principal components may indicate that external macroeconomic factors play a less

prominent role in capturing time-varying dependence dynamics.

Table 7: Gaussian copula-GAS estimation results for quarterly GDP growth rates (1970-Q1 to 2019-Q4) of
Australia, Germany, Japan, Netherlands, United Kingdom and United States. Standard errors are given in
parenthesis.

Country ω α β c1 c2 c3

Australia
-0.866 0.039 0.955 0.047 0.012 0.003
(0.227) (0.019) (0.020) (0.015) (0.028) (0.032)

Germany
1.996 0.110 0.982 -0.020 0.055 0.044
(0.165) (0.012) (0.009) (0.017) (0.027) (0.023)

Japan
2.974 0.116 0.982 -0.002 -0.007 0.008
(0.254) (0.022) (0.006) (0.020) (0.029) (0.033)

Netherlands
-0.434 0.062 0.745 0.025 -0.090 0.357
(0.176) (0.029) (0.064) (0.042) (0.044) (0.093)

United Kingdom
1.999 0.120 0.982 0.077 0.096 0.100
(0.621) (0.020) (0.005) (0.019) (0.026) (0.050)

United States
4.331 0.075 0.982 0.245 0.249 0.174
(0.190) (0.004) (0.006) (0.020) (0.023) (0.016)

The time-varying correlation process for US private consumption and residual term growth

rates is shown in Figure 3. It can be observed that the correlation between private consumption
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and the residual term varies between -1 and 1 in the sample period. From 1970 to around 1985

the correlation process showed a relatively high amount of disturbance, which can be attributed

to the macroeconomic uncertainty at that time (see also Figure 1f which shows highly varying

GDP growth rates in the US). Overall, it can be observed that, whenever the US economy is

in distress, the GDP components are highly uncorrelated. Conversely, periods accompanied with

economic growth exhibit highly correlated GDP components. The Appendix contains time-varying

correlation processes for the remaining countries.

The third and final step is constructing time-varying GaR estimates. I use a Monte Carlo

simulation approach, explained in Section 4.8 to obtain GaR estimates. I employ the time-varying

correlation process in order to construct simulated paths of private consumption and the residual

term. A historical estimate subsequently yields the GaR estimate at a required coverage level.

Figure 4 presents quarterly GaR estimates for the US between 1970-Q1 and 2019-Q4, with a nominal

coverage of 10% (in brown), 5% (in blue), and 1% (in red). I refer the reader to the Appendix for

GaR figures associated with the remaining countries.
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Figure 3: Time-varying correlation of private final consumption and the residual term of the United States.
Shown between 19070-Q1 and 2019-Q4. Obtained with the Gaussian copula-GAS method.

The GaR estimates provide empirical coverage figures, as presented in Table 8. The table

additionally shows weighted average empirical coverages. These figures suggest that a GGAS model

provides higher empirical coverages than their respective nominal values (see for example the results

of Japan), which is also reflected in the average empirical coverages. This result suggests that

GGAS overestimates GaR, as the model does not capture enough exceedances. The results of Table
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Figure 4: Growth-at-risk (brown 10% coverage, blue 5% coverage, red 1% coverage) for US GDP growth rates
from 1970-Q1 to 2019-Q4, shown in black points. Obtained with the Gaussian copula-GAS approach.

8 contrasts the results of QR (shown in Table 4), which show an underestimation of GaR.

Table 8: Empirical exceedances of GaR estimates obtained with a Gaussian copula-GAS approach. Conducted
at a nominal coverage of 90%, 95% and 99%.

Nominal coverage

Country 90% 95% 99%

Australia 0.895 0.935 0.975
Germany 0.945 0.970 0.990
Japan 0.950 0.975 0.995

Netherlands 0.925 0.965 0.985
United Kingdom 0.930 0.945 0.995
United States 0.920 0.950 0.990

Average 0.928 0.957 0.988

6.4 Symmetrised Clayton copula-GAS

This section presents estimation results of the SCGAS model. The second step in the estimation

procedure (that is, after obtaining AR(p)-GARCH(1,1) estimates) is to obtain maximum likelihood

estimates of the parameters of the model. Analogous to the first step of estimating the GGAS

model, I will be using the bivariate GDP components (namely its residual term and private final

consumption) for this purpose. These components have been demeaned and devolatised using

an AR(p)-GARCH(1,1) model, as specified in Section 4.5. Table 9 shows estimation results of the

SCGAS model applied to Australia, Germany, Japan, Netherlands, United Kingdom and the United
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States, with standard errors given in parenthesis. It shows both maximum likelihood estimators of

the Clayton copula CCl
1 (capturing lower tail dependence) and rotated Clayton copula CCl

1 (capturing

upper tail dependence). The principal components influence the GAS recursion directly, which

means that the maximum likelihood estimators of c1, c2, c3 are estimated once. The last column

shows the maximum likelihood estimation of p, the fraction in the mixed Clayton copula

CCl = pCCl
1 + (1− p)CCl

2 . (1)

Table 9: SCGAS estimation results for quarterly GDP growth rates (1970-Q1 to 2019-Q4) of Australia,
Germany, Japan, Netherlands, United Kingdom and United States. CCl

1 is the Clayton copula capturing
lower tail dependence, CCl

2 is the rotated Clayton copula capturing upper tail dependence. Standard errors are
given in parenthesis.

Country Copula ω α β c1 c2 c3 p

Australia CCl
1 0.339 0.614 0.412

(0.064) (0.082) (0.031) 0.249 0.080 0.295 0.762
CCl
2 0.210 1.492 0.743 (0.039) (0.020) (0.020) (0.033)

(0.039) (0.425) (0.021)

Germany CCl
1 1.754 1.313 0.569

(0.114) (0.248) (0.060) 0.020 0.312 0.171 0.462
CCl
2 1.074 0.144 0.608 (0.007) (0.001) (0.010) (0.063)

(0.012) (0.002) (0.006)

Japan CCl
1 0.207 0.283 0.713

(0.048) (0.053) (0.008) 0.336 0.146 0.159 0.792
CCl
2 0.598 1.801 0.388 (0.012) (0.011) (0.027) (0.039)

(0.088) (0.349) (0.037)

Netherlands CCl
1 0.918 2.332 0.863

(0.287) (0.488) (0.043) 0.056 0.233 0.381 0.143
CCl
2 1.030 0.101 0.531 (0.021) (0.008) (0.006) (0.022)

(0.030) (0.013) (0.015)

United Kingdom CCl
1 0.367 1.234 0.484

(0.067) (0.070) (0.023) 0.064 0.195 0.035 0.517
CCl
2 0.244 1.227 0.605 (0.019) (0.010) (0.009) (0.042)

(0.044) (0.186) (0.035)

United States CCl
1 0.210 1.170 0.535

(0.052) (0.096) (0.011) 0.264 0.121 0.242 0.421
CCl
2 1.177 1.016 0.377 (0.004) (0.009) (0.031) (0.027)

(0.024) (0.094) (0.019)

Compare the results of Table 9 with the results of Table 7. Note the persistent correlation

process across all countries, as shown by the estimated parameters of β in Table 7 obtained with
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the GGAS method. These results contrast the estimation results of β as given in Table 9, which

are lower for all countries. Both lower and upper tail dependence are thus less persistent than the

correlation process captured by the GGAS method. In case of the United States, the maximum

likelihood estimates of the SCGAS approach yield time-varying lower and upper tail dependence

between private consumption and the residual term, as presented in Figure 5. It can be seen that the

dependence measures capture significant US macroeconomic events, and reveal economic stability

starting from around 1985, colloquially known as the Great Moderation. In addition, a very sharp

increase in both upper and lower tail dependence can be seen around the Financial Crisis of 2008.

For all other countries, I refer to the Appendix for figures containing their respective dependencies.
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Figure 5: Time-varying lower tail dependence (blue) and time-varying upper tail dependence (orange) between
private final consumption and the residual term of the United States. Obtained with the symmetrised SCGAS
method.

Similar to the estimation process of the GGAS approach, the third step of obtaining GaR is

to construct Monte Carlo simulations. The time-varying tail dependencies, which were estimated

in step two, are employed in this process. Multiple paths of simulations can be constructed by

using the definition of the mixed Clayton copula as defined by Equation 14. By using the obtained

time-varying dependencies, one instance of a Monte Carlo simulation can be constructed. Refer

back to Section 4.8 for the complete methodology of obtaining GaR with Monte Carlo simulations.

Entertaining the third step ultimately provides GaR estimates, which are shown for the US in

Figure 6, with a nominal coverage of 10% (in brown), 5% (in blue), and 1% (in red). The Appendix

contains GaR constructed with the symmetrised copula-GAS method for the remaining countries.

Finally, Table 10 provides accompanying empirical coverage levels. The results demonstrate that
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Figure 6: Growth-at-risk (brown 10% coverage, blue 5% coverage, red 1% coverage) for US GDP growth rates
from 1970-Q1 to 2019-Q4, shown in black points. Obtained with the SCGAS approach.

a SCGAS model neither excessively overestimates nor underestimates nominal coverages, relative

to the empirical coverages obtained with a GGAS model (shown in Table 8). A summarised value

(denoted with an average empirical coverage level), suggest that a SCGAS model fairly accurately

captures GDP growth rate exceedances. These results are crucial to a policymaker and (central)

banks, since their aim is to quantify the likelihood of risk scenarios and develop appropriate risk

measures. If GaR is underestimated (overestimated), then preemptive action in terms of macro-

prudential instruments (e.g. minimal capital requirement for banks, setting a target inflation rate),

would be too weak (strong). Policymakers that only consider these figures would therefore arrive

at premature conclusions. The next section will determine the significance of all empirical coverage

results, thereby aiding a policymaker in determining the model that best captures GaR.

Table 10: Empirical exceedances of GaR estimates obtained with SCGAS, conducted at a nominal coverage
of 90%, 95% and 99%.

Nominal coverage

Country 90% 95% 99%

Australia 0.900 0.940 0.985
Germany 0.885 0.945 0.995
Japan 0.930 0.975 0.995

Netherlands 0.910 0.960 0.995
United Kingdom 0.925 0.950 0.995
United States 0.875 0.920 0.980

Average 0.904 0.948 0.991
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6.5 Performance tests

In this section, GaR obtained with all three methods (QR, GGAS and SCGAS) is backtested using

the unconditional and conditional coverage tests as introduced by Kupiec (1995) and Christoffersen

(1998), respectively. These tests will ascertain whether the empirical coverages as presented in

Tables 4, 8 and 10 differ significantly from their nominal counterparts. Table 11 shows the test

statistics of the unconditional coverage test conducted on all countries in combination with the three

models used in this paper. In addition, Table 12 shows test statistics obtained with the conditional

coverage test. Both tests are conducted with nominal coverages of 90%, 95% and 99%. The tables

show that all models have about equal performance in terms of correct coverage. In almost all cases

both an unconditional test and a conditional test failed to be rejected, which implies that all three

models are well suited to predict GaR. This result is in stark contrast with the empirical coverages

that were obtained with the GGAS method, since Table 8 points out that GaR is overestimated

in almost all cases when this model is used (prematurely indicating low predictive performance).

In conclusion, by only considering the results of Tables 11 and 12, a macroprudential policymaker

would be indifferent in choosing a specific model if his or her aim is to correctly predict GaR.

Table 11: P-values for the unconditional coverage test, conducted at multiple nominal coverages in combina-
tion with different models (QR: quantile regression, GGAS: Gaussian copula-GAS and SCGAS: symmetrised
Clayton copula-GAS).

Nominal Coverage 90% 95% 99%

Model QR GGAS SCGAS QR GGAS SCGAS QR GGAS SCGAS

Australia 0.632 0.815 0.999 0.999 0.351 0.529 0.432 0.073 0.508
Germany 0.174 0.021 0.489 0.072 0.162 0.749 0.211 0.999 0.432
Japan 0.073 0.010 0.137 0.038 0.074 0.074 0.001 0.432 0.432

Netherlands 0.469 0.220 0.632 0.742 0.305 0.502 0.432 0.508 0.432
United Kingdom 0.812 0.137 0.220 0.742 0.749 0.999 0.211 0.432 0.432
United States 0.999 0.330 0.255 0.999 0.999 0.072 0.508 0.999 0.211

6.6 Comparing GaR with loss functions

Empirical coverage tests, conducted in the last section, do not disclose the full picture of GaR

performance. Consider Figure 7. It shows the distribution of US GDP growth rates from 1970Q1

to 2019Q4 (in gray), as well as 5% GaR estimates. GaR obtained with QR is shown in red and

GaR obtained with SCGAS is shown in blue. The figure suggests that QR GaR estimates have a
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Table 12: P-values for the conditional coverage test, conducted at multiple nominal coverages in combina-
tion with different models (QR: quantile regression, GGAS: Gaussian copula-GAS and SCGAS: symmetrised
Clayton copula-GAS).

Nominal Coverage 90% 95% 99%

Model QR GGAS SCGAS QR GGAS SCGAS QR GGAS SCGAS

Australia 0.758 0.825 0.759 0.591 0.638 0.381 0.730 0.177 0.768
Germany 0.057 0.003 0.095 0.005 0.136 0.044 0.421 0.980 0.730
Japan 0.092 0.027 0.184 0.109 0.182 0.182 0.004 0.730 0.734

Netherlands 0.065 0.024 0.043 0.029 0.008 0.473 0.730 0.768 0.730
United Kingdom 0.006 0.184 0.008 0.139 0.244 0.217 0.421 0.730 0.730
United States 0.759 0.217 0.060 0.591 0.591 0.069 0.768 0.980 0.421

higher variance compared to SCGAS GaR estimates, since it covers a much larger region of growth

rates. Additionally, QR GaR estimates have a larger mean than SCGAS GaR estimates. Since the

last sections provided evidence that all approaches produced reliable GaR estimates (in terms of

empirical coverage and coverage tests), this observation is striking.
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Figure 7: Distributions of 5% GaR of United States GDP growth rates (gray histogram), from 1970Q1 to
2019Q4. Estimated with QR (red histogram) and SCGAS (blue histogram).

Lopez (1999) suggests regulatory loss functions to distinguish VaR estimates from competing

models. I employ the loss functions given in Caporin (2008) as a secondary standard to the uncon-

ditional and conditional tests. The results of these loss functions are given in the Appendix (Tables

16, 17 and 18 for coverage levels of 10%, 5% and 1%, respectively). Nolde and Ziegel (2017) provide

a Diebold-Mariano testing procedure in order to determine the significance of competing GaR pre-

dictions. Tables 13a, 13b and 13c presents traffic light matrices for coverage levels of 10%, 5% and
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1%, respectively, an approach suggested by Fissler et al. (2015). Green cells indicate a rejection of

H+
0 (the null hypothesis claiming the competing model performs at most as well as the benchmark

model). For example, when GaR obtained from GGAS is comparatively backtested against GaR

obtained from QR, Table 13b suggests that H+
0 is rejected using loss function f1. In addition I

also performed comparative backtesting on GaR estimates obtained with GGAS and SCGAS, and

included these results in the last columns of the tables.

A few remarks can be made from the tables combined. First, copula-GAS methods produce

significantly better GaR estimates when considering coverage levels of 5% and 1%. Second, the

tables suggest that when coverage levels increase, it becomes more clear that copula-GAS methods

significantly outperform QR. Conversely, at a coverage of 10%, the Diebold-Mariano test fails to

distinguish GaR performance of QR, GGAS and SCGAS models in case of Australian, Dutch and

United States GDP growth rates. However, it cannot be concluded from the tables that QR produces

better performing GaR estimates, since only one case rejects H−
0 . Third, the last column presents

comparative backtests of models GGAS and SCGAS. The tables suggest that, as the coverage

level increases, SCGAS GaR forecasts are significantly better than their GGAS counterparts. This

phenomenon can be due to the fact that Clayton copula models capture tail dependence of the

marginals, and are therefore more suitable to be used as models for high coverage GaR forecasts.
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Table 13: Traffic light matrices for GaR forecasts based on a Diebold-Mariano test. Green cells indicate a
rejection of H+

0 , red cells indicate a rejection of H−
0 . Yellow cells indicate that H+

0 nor H−
0 can be rejected.

(a) 10% coverage.

Compared models GGAS-QR SCGAS-QR SCGAS-GGAS

Loss function f1 f2 f1 f2 f1 f2

Australia

Germany

Japan

Netherlands

United Kingdom

United States

(b) 5% coverage.

Compared models GGAS-QR SCGAS-QR SCGAS-GGAS

Loss function f1 f2 f1 f2 f1 f2

Australia

Germany

Japan

Netherlands

United Kingdom

United States

(c) 1% coverage.

Compared models GGAS-QR SCGAS-QR SCGAS-GGAS

Loss function f1 f2 f1 f2 f1 f2

Australia

Germany

Japan

Netherlands

United Kingdom

United States
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6.7 Discussion

In the methodology of this paper, several steps were taken in order to determine the performance

of GaR forecasts of different models. The first exploratory measure to discern GaR performance of

QR, GGAS and SCGAS models was to determine their respective empirical coverage levels. The

results suggested that QR slightly underestimated GaR on average and both GGAS and SCGAS

slightly overestimated GaR on average. Based on these results alone, one is unable to select a

model that produces the best GaR estimates. The second step considered testing of GaR coverage,

based on the (un)conditional coverage tests of Kupiec (1995) and Christoffersen (1998). The results

of both tests were insignificant in almost all cases, pointing out that all three models performed

equally well, which implied that this step also does not provide certainty in selecting a model.

The last step encompassed the calculation of penalty scores, based on loss functions proposed by

Lopez (1999) and extended by Caporin (2008). I used loss functions as a secondary measure to

the aforementioned coverage tests. This approach allows a macroprudential policymaker to rank

any model that produces GaR estimates, and in particular the models covered in this paper. Nolde

and Ziegel (2017) provide a comparative backtesting tool to formally test the significance of the

scores. Using this test, I distillised the outcomes by assigning traffic light colours. The traffic

light matrices suggested that copula-GAS models are preferred in almost all cases to the more

conventional QR model, since QR GaR estimates yield higher opportunity costs. However, at lower

coverage levels it became less clear which model produces the best GaR forecasts in terms of losses.

Although more types of loss functions exist (such as loss functions that only penalise exceedances,

discussed in e.g. Gneiting (2011) and Abad et al. (2014)), those that cover the entire set of GDP

growth rates and their respective GaR are preferred in the case when the frequency is low. In

the case of this paper, a 5% coverage rate in a sample of 200 observations would produce around

10 exceedances. Loss functions that address that limited amount of observations would show low

predictive performance, thus less preferred when analysing quarterly data. Combining all results, in

conclusion, demonstrates that a copula-GAS method for obtaining GaR estimations is superior to

the conventional QR approach. Therefore copula-GAS models should be incorporated, or considered

at the least, in a macroprudential surveillance framework.
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7 Conclusion

GDP is a well-known macroeconomic indicator that can act as a measurement of a country’s overall

prosperity. It comprises of elements such as private consumption, government expenses and net

export. This implies that whenever one of these factors shows a decline (or increase) in output, the

shock also will be reflected in GDP. Therefore it is of paramount importance to model and forecast

GDP growth rates, as this may lead to an overall more resilient macroeconomic system. However,

until the Financial Crisis of 2008, policymakers of (central) banks mainly focussed on forecasting

an expected mean GDP growth, which has led to a reevaluation of their methods. Policymakers

and risk managers concluded that a more prudent approach was required to mitigate tail risks of

GDP growth. One element of this macroprudential framework is GaR analysis, first developed by

Wang and Yao (2001), and is recently assessed in more detail by Adrian et al. (2018) and Prasad

et al. (2019). GaR is defined as a certain quantile of GDP growth. Hence this approach is able to

sketch and model the entire probability distribution of GDP growth rates, a major improvement to

point forecasts which policymakers originally evaluated. To construct GaR forecasts, policymakers

predominantly implement a method called quantile regression (QR) in combination with macroeco-

nomic indicators, see for example Mello and Perrelli (2003) and White et al. (2015). Since QRs can

assess the left tail of GDP growth distribution, it is a natural candidate to predict GaR. Although

this approach has benefits such as resilience to outliers, it does not make any distributional as-

sumptions, which can be beneficial when the frequency of the data is relatively low. Moreover, QR

requires a representative set of macroeconomic downside predictors as demonstrated by Brownlees

and Souza (2021), whereas a GAS approach only relies on growth rate data.

In this paper, I construct GaR forecasts by applying copulas (proposed by Sklar (1959)) and

GAS models (proposed by Creal et al. (2013)) to quarterly GDP growth rates of six OECD countries

between 1970Q1 and 2019Q4. The main question is whether this integral approach (which should

capture non-normal behaviour and tail dynamics) can produce more accurate GaR forecasts than

QR. Since GDP consists of multiple elements, a copula can be applied to analyse the dependence

between those marginals. I assess the dependence structure between private final consumption,

which often accounts for more than 50% of GDP, and a residual term. The methodology comprises

of two separate copula models that are used to construct GaR estimates, namely a Gaussian copula

and a symmetrised Clayton copula. These models are augmented with a GAS structure, to obtain
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time-varying dependence parameters of the copulas. I constructed a 4-step methodology (marginal

modelling, model estimation, Monte Carlo simulation and backtesting) to determine the quality and

accuracy of the quarterly GaR forecasts obtained with the copula-GAS models. Additionally, the

performance of GaR forecasts obtained with QR is used as a benchmark. The analysis of GaR per-

formance comprises of coverage tests (to assess the accuracy) and implementation of loss functions

as a secondary measure (to rank the models). The results show that both copula-GAS models cover

GDP growth rates as accurately as the QR benchmark, for all six countries considered. However,

significance tests on the obtained scores show that the copula-GAS models mainly produce the best

GaR, with SCGAS forecasts consistently outperforming QR forecasts at high coverage levels. In

this sense, my results underline the findings of Brownlees and Souza (2021), which concluded that

macroprudential policymakers should not rely on QR too heavily when their objective is producing

reliable risk estimates. Therefore, my proposed methodology could provide policymakers and finan-

cial institutions with GaR forecasts that are well suitable in managing downside risk of GDP growth,

and can be implemented to cover extreme events more appropriately in terms of opportunity costs.

Some aspects of my approach can be investigated for further research. For example, the bivariate

copula I used can be extended to a multivariate (hierarchical) copula, which allows modelling a

more granular dependence structure between GDP components. It can also be used to model the

dependence between GDP growth rates of different countries, thereby establishing a more resilient

region of countries. Secondly, my methodology can be applied to expected shortfall, a coherent

risk measure recently introduced by the Basel Committee on Banking Supervision to develop a

more resilient financial sector. A macroeconomic framework could benefit from this approach. In

conclusion, the modest scope of my methodology sets the stage for the development of a more

sophisticated macroprudential toolkit for policymakers.
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8 Appendix

The Appendix contains additional Tables and Figures for the remaining countries analysed in this

paper, as well as estimation results of applying an AR(p)-GARCH(1,1) model to private consump-

tion growth component and the residual component of GDP. The United States is covered in the

main text, whereas supplementary material of Australia, Germany, Japan, The Netherlands and

United Kingdom are given here. Table 14 and Table 15 contain AR(p)-GARCH(1,1) estimation

results applied to the private final consumption component and residual component, respectively.

Figure 8 shows GaR results obtained with QR. Figures 9 and 10 present time-varying correlation and

GaR, respectively, obtained with GGAS. Figures 11 and 12 present time-varying tail dependence

figures and GaR estimates, respectively, obtained with SCGAS.

Table 14: AR(p)-GARCH(1,1) estimation results for the quarterly consumption growth rate component (1970-
Q1 to 2019-Q4) of Australia, Germany, Japan, Netherlands, United Kingdom and United States.

AR(p) GARCH(1,1)

Country φ0 φ1 φ2 φ3 φ4 φ5 γ α β d.o.f. ν BIC

Australia 0.577 0.191 - - - - 0.004 0.161 0.836 199.973 440.22
(0.070) (0.073) (0.008) (0.069) (0.058) (2935.66)

Germany 0.168 -0.116 0.015 0.219 0.230 0.268 0.259 0.700 0.149 4.219 495.98
(0.070) (0.076) (0.061) (0.051) (0.049) (0.057) (0.105) (0.307) (0.131) (1.758)

Japan 0.296 0.033 0.195 0.303 - - 0.477 0.394 0.296 3.746 585.25
(0.081) (0.071) (0.062) (0.061) (0.244) (0.200) (0.242) (1.052)

Netherlands 0.208 0.003 0.209 0.338 - - 0.000 0.039 0.954 5.913 525.41
(0.064) (0.058) (0.066) (0.066) (0.008) (0.024) (0.028) (2.815)

United Kingdom 0.299 0.143 0.192 0.200 - - 0.040 0.248 0.723 7.416 526.49
(0.086) (0.072) (0.077) (0.075) (0.036) (0.109) (0.095) (3.480)

United States 0.228 0.186 0.190 0.294 - - 0.002 0.084 0.907 6.702 333.98
(0.056) (0.067) (0.068) (0.069) (0.005) (0.043) (0.042) (3.143)

Table 15: AR(p)-GARCH(1,1) estimation results for the quarterly residual growth rate component (1970-Q1
to 2019-Q4) of Australia, Germany, Japan, Netherlands, United Kingdom and United States.

AR(p) GARCH(1,1)

Country φ0 φ1 φ2 γ α β d.o.f. ν BIC

Australia 0.777 -0.098 - 0.000 0.085 0.907 199.995 784.06
(0.105) (0.068) (0.025) (0.043) (0.043) (3510.50)

Germany 0.547 0.036 - 0.566 0.168 0.686 4.420 825.43
(0.114) (0.076) (0.402) (0.087) (0.156) (1.527)

Japan 0.530 0.020 0.171 1.626 0.487 0.000 7.568 781.94
(0.118) (0.082) (0.069) (0.500) (0.171) (0.162) (5.843)

Netherlands 0.678 -0.070 - 0.022 0.181 0.819 5.427 767.80
(0.085) (0.076) (0.032) (0.070) (0.062) (1.934)

United Kingdom 0.417 -0.012 - 0.118 0.086 0.864 13.128 774.73
(0.105) (0.082) (0.144) (0.057) (0.095) (13.349)

United States 0.609 -0.046 - 0.088 0.130 0.840 6.507 771.56
(0.102) (0.069) (0.085) (0.063) (0.067) (2.770)
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Table 16: Penalty scores obtained with loss functions f1 and f2, using 10% GaR estimations in the period
1970Q1 to 2019Q4. The lowest penalty scores for every country and loss function are emphasised in bold.

Loss function f1 f2

Model QR GGAS SCGAS QR GGAS SCGAS

Australia 1353.14 1204.52 1353.32 1357.21 1331.11 1458.57

Germany 2155.12 137.22 437.43 2502.48 143.66 523.73

Japan 983.76 241.67 726.32 1034.07 383.66 1032.38

Netherlands 1239.23 1817.12 3323.62 1666.04 1418.90 3053.39

United Kingdom 2138.44 504.53 4165.21 1644.59 440.59 3796.59

United States 1820.37 2208.59 1656.28 2803.20 2098.59 1731.50

Table 17: Penalty scores obtained with loss functions f1 and f2, using 5% GaR estimations in the period
1970Q1 to 2019Q4. The lowest penalty scores for every country and loss function are emphasised in bold.

Loss function f1 f2

Model QR GGAS SCGAS QR GGAS SCGAS

Australia 2287.31 857.96 871.19 3159.95 955.28 783.03

Germany 824.35 118.94 130.66 703.36 145.97 105.48

Japan 1120.04 125.98 173.75 1441.68 165.79 163.25

Netherlands 823.06 397.57 254.68 728.45 414.17 204.70

United Kingdom 1146.35 1111.22 419.83 1122.48 997.76 358.68

United States 1115.95 1154.60 2295.05 1377.56 691.63 2312.22

Table 18: Penalty scores obtained with loss functions f1 and f2, using 1% GaR estimations in the period
1970Q1 to 2019Q4. The lowest penalty scores for every country and loss function are emphasised in bold.

Loss function f1 f2

Model QR GGAS SCGAS QR GGAS SCGAS

Australia 827.32 372.20 398.64 795.37 335.44 281.48

Germany 210.71 143.96 111.63 282.64 356.24 137.92

Japan 242.07 135.00 105.30 442.68 327.05 127.96

Netherlands 214.40 196.68 106.47 355.25 305.01 160.82

United Kingdom 667.85 550.01 100.66 619.76 418.44 94.87

United States 1201.02 499.91 248.92 1261.18 527.36 197.37
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Figure 8: Growth-at-risk (brown 10% coverage, blue 5% coverage, red 1% coverage) for the remaining coun-
tries obtained with quantile regression, using long term bond yields, CPI growth, house pricing growth, credit
growth, IP and credit gap data as indicators for GDP growth.
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Figure 9: Time-varying correlations between private consumption and the residual components for the re-
maining countries. Obtained with Gaussian copula-GAS.
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Figure 10: Growth-at-risk (brown 10% coverage, blue 5% coverage, red 1% coverage) for the remaining
countries obtained with Gaussian copula-GAS.
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Figure 11: Time-varying lower tail dependence (blue) and time-varying upper tail dependence (orange) be-
tween private final consumption and the residual term. Obtained with the symmetrised Clayton copula-GAS
method.
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Figure 12: Growth-at-risk (brown 10% coverage, blue 5% coverage, red 1% coverage) for the remaining
countries obtained with symmetrised Clayton copula-GAS.


