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Abstract

The goal of this research was to construct a model that forecasts monthly airline revenue for

the upcoming 12 months. The airline’s current forecast is not yet able to do so, and it is based

on a naive model that depends on a lot of subjectivity. An automated forecast that makes use

of statistical forecasting models should take away the subjectivity. It will also allow the airline

to control monthly revenue in a better way, as marketing campaigns can be adjusted to the

forecasted progress of monthly revenue.

The construction of a new forecast is done by using both a short- and long-term model. The

short-term model will predict the first 4 months, and the long-term model will extend this model

to forecast up to 12 months. These models make use of a combination of time series models such

as Exponential Smoothing and SARIMA(X) models, as well as a Dynamic Factor model. These

models can also be combined with the aim of increasing forecast accuracy. The data of the

airline can be disaggregated by applying the attributes Point of Sale, Booking Channel, Cabin

Class, Carrier, and Line Group. By doing so, the airline is able to trace back more precisely

how revenue is earned. The most important data that is used in this thesis are revenue curves,

which are curves that show the progress of the earned revenue for a specific flight month, and

monthly revenues.

From the results it can be concluded that the combination of a short-term model for the

first 4 months and a long-term model for months 5-12 had a positive outcome. The forecast

accuracy of the short-term model for the first 4 months is higher than when the long-term model

is applied to the first 4 months. Hence, the two models complement each other. Moreover, it is

found that the attributes that are used to disaggregate the data are Point of Sale dependent; the

so-called large Point of Sales do not require the same attributes as the small Point of Sales. For

the short-term model, a combination of the SARIMA and SARIMAX models shows good results

for large Point of Sales, whereas for small ones the best results are obtained when Exponential

Smoothing, SARIMA, and SARIMAX models are combined. For the long-term model, two out

of four tested Point of Sales showed the best results when a combination of the Exponential

Smoothing method and the Dynamic Factor model was used, whereas for the other two the

naive model performed best. A combination of the Exponential Smoothing method and the

Dynamic Factor model performed second-best for these two Points of Sales.

The airline is advised to replace the current forecast that is based on a naive model by

the model combinations found in this research, since the forecast accuracy increases and the

influence of subjectivity decreases. However, the long-term model needs some improvement as

it does not always outperform the naive model.
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Chapter 1

Introduction

Forecasting techniques have proved to be valuable for revenue management (RM) over the years.

For the airline industry, a well-performing revenue forecast can lead to an increase in revenue as

the forecast could positively influence tactics and decision-making. Lee (1990) has shown that if

the forecast accuracy increases by 10 percent, the revenue on high demand flights can increase

by 0.5-3.0 percent. The increase in revenue is, amongst others, an important factor that could

lead to the investigation of such forecasting models.

Currently, the airline for which this research is being done is in need of a new advanced

method to correctly predict the revenue per line group, booking channel, cabin, carrier, and

flight month, based on historic data. Each month, the airline wants to know what their PaxKM,

Revenue and Yield will be, while costs do not have to be taken into consideration. The PaxKM

is defined as the number of kilometers all passengers together will fly. The Revenue is equal to

the total earnings and the Yield is determined to be the number of earnings per flown kilometer,

which is the Revenue divided by the PaxKM. By forecasting the PaxKM and the Yield, the

Revenue can be predicted by multiplying these two values. Currently, a factor model is used for

the prediction of the PaxKM. However, the airline has not been able to find a working model

for the Yield or the Revenue yet.

Since the airline does not have an official automated and advanced forecasting model, it

is possible for the different establishments of the airline all over the world to apply their own

techniques and ideas. As a result, the current forecast is handmade every month by each es-

tablishment, requiring a lot of man-hours and being subjected to subjectivity. Thus, there is

a great need for an automated model that provides a well-performing forecast, which can be

implemented by all establishments.

In this research it will be investigated whether a model can be created that can forecast the

monthly revenue for an airline. A forecast is needed that predicts the upcoming 12 months,

as the current one only predicts up to December of the current year, no matter if the current

month is January or November. The new forecast will be called a rolling forecast, and it will be

a combination of a short-term and a long-term model. The short-term model will predict the

first 4 months, and the long-term model extends this forecast to 12 months.

During this research, the data will be disaggregated using the attributes: point of sale, line

group, booking channel, cabin class and carrier. The purpose of this disaggregation is that fore-

casts will be made for specific sets of attributes instead of for the airline as a whole, in order to

find more precisely how revenue is obtained. These individual forecasts can then be aggregated
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to form a forecast for the entire airline. By splitting the data into different attributes, the models

will provide a clear picture of where the revenue is coming from. During this research, it will

become clear which variables are of the most importance for the revenue forecast. The data that

will be used is real airline data, consisting of e.g., revenue curves, monthly revenues and PaxKM

data. Revenue curves show the progress of how much revenue has been obtained by selling tick-

ets for a specific month. Tickets for the flights in this month can be bought approximately a year

before the flight, which allows the airline to create a curve of the progress throughout the year.

Given the data, models that are able to deal with time series, trends and seasonality will be used.

The most important reason the airline is in need of the outcome of this research is that a

well-performing revenue forecast can inform the management regarding the position in the mar-

ket, and it can keep the management up to date regarding developments in the monthly revenue.

Also, it is necessary to decrease subjectivity and to see whether targets that are set are still

achievable. Thus, when the forecast shows results that might or might not be satisfactory, fares

and marketing tactics can be optimized to the situation. The shortcomings that come with not

having a high-performing forecast are the motivation to investigate new models. For researchers

outside of this airline, the research of this thesis can still be of importance, as it investigates the

use of known models with new data from a different point of view. This research could function

as a new inspiration to improve the future research of forecasting in revenue management.

L. Weatherford (2016) provides an overview of forecasting methods that have been used in the

airline industry for RM. By using forecasting methods, issues as overbooking, seat availability

and pricing can be solved and optimized. Some of the techniques that have been used are

Exponential Smoothing (ES) models, linear regressions and Moving Average (MA) models.

Also, the research of L. R. Weatherford et al. (2003) is mentioned, in which neural networks

slightly outperform the aforementioned methods.

However, in collaboration with Lufthansa Airlines, Lemke et al. (2013) looked into forecasting

the revenue with real airline data. It became clear that models that are simple and based on

robust time series show a significant increase in performance compared to sophisticated methods.

Such simple methods are regression, ES, or simple average models. The reason why these simple

models outperform the sophisticated ones lies in the adaptability of the simple models. This is

a different result than the one that was given in L. Weatherford (2016), where a neural network

model was preferred. As the current research will also be done in collaboration with an airline,

which allows the use of real airline data, the conclusion of Lemke et al. (2013) is of importance

for this thesis.

Subsequently, Lemke et al. (2013) mention diversification procedures in which different mod-

els or models with diverse data are combined. By using different models, a diverse method pool

can be used that considers a trade-off between individual accuracy and diversity in the pool. It

is encouraged to combine complex (non-linear) and less complex (linear) models. Within these

models, a diversification in data is also possible. For example, by using data with different

levels of aggregation. By using a diverse method pool and combining these different methods,

the combinations could lead to better forecasts. The use of such forecast combinations will be
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applied to the current research as well.

The literature on revenue management leads to the investigation of time series models. Mod-

els used in RM research show that Structural Time Series Models (STSMs) are interesting models

to investigate. These models, also known as Unobserved Component Models, have already suc-

cessfully been used in time series forecasts. The elements of the STSMs can be separated into

different components, describing for example trends, seasonal patterns, and cycles. Proietti

(2002) describes the STSMs and their application for the aforementioned components, which

will be present in the data that is used for the current research. Models that are fundamental

for the STSMs are the State Space Models (SSMs).

With enough historical data, important patterns and components can be captured to create

accurate forecasts. Examples of SSMs are Autoregressive Integrated Moving Average (ARIMA)

models and ES methods, which were also mentioned in the literature on RM. These models

are well known and often used for time series research. When using linear models that have

normally distributed errors, these models can be called Linear Gaussian State Space Models.

A. C. Harvey & Shephard (1993) already called these methods exceedingly useful time series

methods.

Among others, the research of Jackman & Greenidge (2010), Song et al. (2011) and Athana-

sopoulos & Hyndman (2008) has shown that STSMs and SSMs can be successfully applied to

forecasting economic time series. Therefore some representations of the SSMs, the ES method

and the Seasonal ARIMA (SARIMA) method, will be described in more detail. Moreover, some

literature of the Dynamic Factor Model (DFM) will be given, as the airline has previously used

a factor model for the forecast of the PaxKM.

The first application of the SSMs that will be discussed is the ES method, given in Hyndman

et al. (2002). Here the authors go into detail about the SSMs using multiple different ES methods.

For the current research, the ES method that uses an additive trend and seasonal component will

be of importance. The method that uses these additive components is called the Holt-Winter’s

Exponential Smoothing Method (HWESM).

Gardner Jr (2006) provides an overview of the research that has been done using ES methods

up to the year 2005. A table with 65 different papers is presented, and from these 65 papers, 58

obtained a successful result in the form of forecast accuracy. Hence, since this is a large portion

of the 65 papers, the ES methods have often proved to be valuable. Using data from Makridakis

et al. (1982), forecasts were performed in Hyndman et al. (2002) that indicate that the use of

ES models contributes to good results, especially on the short-term where a forecast is made

for up to 6 periods. Both Gardner Jr (2006) and Hyndman et al. (2002) mention that the ES

methods can no longer be seen as ad hoc forecasting approaches, and that these models are on

the same level as ARIMA models.

Other representations of the SSMs that are often used, are the well-known ARIMA models.

These models allow one to forecast time series by looking at autoregressive and moving average

factors. In the research of Goh & Law (2002), a variant of the ARIMA model is tested to forecast
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the demand of tourism where the data contained seasonality. The model that was used was the

SARIMA model. The SARIMA models were used to forecast tourism demand and consistently

outperformed naive, ARIMA, MA, and ES models.

A specific framework of ARIMA that has worked well for the airline industry is the so-called

airline model. This model is described in Box et al. (2015), which is a fifth version from the

original book of 1970. The optimal framework of the airline model is already determined, and

therefore optimization of the number of parameters is no longer necessary. The framework was

later modified for SARIMA as well. Since this study researches the revenue of an airline, this

model will be interesting to investigate.

There are not many papers available in which SARIMA or SARIMAX (SARIMA with ex-

ogenous variables) models are used for (airline) revenue management. This is where the current

research will contribute to the literature. Nonetheless, applying SARIMA(X) models to time se-

ries data with seasonal patterns has proved to lead to good results. This is for example the case

in Goh & Law (2002), but Faraway & Chatfield (1998) also showed promising results. Here the

SARIMA airline model outperforms neural networks when forecasting the number of monthly

passengers for an airline.

Since the airline already uses a factor model for the PaxKM forecast, a DFM will also be

considered in order to see what the impact of another type of model could be. The DFM was

first discussed in Geweke (1977), where the DFMs were used as a time-series variant of the factor

models. These models are not necessarily used in airline revenue management, but Breitung &

Eickmeier (2006) and Stock & Watson (2011) have reviewed the use of DFMs in other papers.

In the first paper, existing applications for macroeconomic problems are mentioned. The use

of DFMs led to encouraging results and good performances. Stock & Watson (2011) describe

applications of the DFM and review empirical findings, and thereby show the versatility of these

models.

Combining models, as earlier mentioned by Lemke et al. (2013), has proved to lead to more

accurate results. Among others, in Makridakis et al. (2018), Timmermann (2006) and Bates &

Granger (1969) it is shown that combining models can increase forecast accuracy. Hence, dur-

ing this research, the models will be combined using a simple average method with the aim of

increasing the performance of the models. The use of a simple average method has been proved

to be hard to beat (Timmermann, 2006). The effectiveness of combining models is shown in

the M4 research of Makridakis et al. (2018), which continues on Makridakis et al. (1982). The

authors asked forecasting experts to improve the forecast accuracy of time series methods. The

results show that out of the 17 methods that had the highest accuracy, 12 consisted of a combi-

nation of methods. These combinations could consist of only statistical approaches such as the

aforementioned ES or SARIMA models, but also machine learning methods. The best results

were obtained when both machine learning and statistical approaches were combined. These

models also resulted in the most accurate 95% prediction intervals (PIs).

As mentioned earlier, little research has been done for revenue management in the airline
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industry using the models specified in the previous paragraphs. This makes this research more

relevant and interesting, not only for this particular airline but also for other researchers and cor-

porations who deal with the issues addressed in this thesis. This thesis will therefore contribute

to the current research on revenue management, which makes it scientifically relevant.

Next to the fact that there are not many studies regarding this topic, this thesis has access

to a large amount of real airline data. In competitive businesses such as the airline industry,

companies do not necessarily share their data and findings. This research will therefore not only

look at the right models to use, but also the data that is used is revealed. Since the accessibility

to the results of such research is not common, new insights could be provided that can be helpful

in future research.

The airline earns its revenue by selling tickets in countries all over the world. Each of these

countries is called a Point of Sale (PoS). Based on the earned revenue per country, the airline

divides these PoS’s into two groups, small and large PoS’s. It is believed that these two groups

might need different models. By combining forecasting methods for both the short- and the

long-term model and the two types of PoS’s, the model combinations with the best performance

must be found.

Besides the forecasting methods, it will also be important to choose the right attributes to

disaggregate the data with. Because the airline wants to pinpoint the origin of the earned rev-

enue, besides the Point of Sales, attributes such as the line group, cabin class, booking channel,

and carrier can be used. The airline prefers the use of the line group, booking channel, and

carrier attribute for large PoS’s, and cabin class and carrier for small PoS’s. These preferences

will be tested.

Since booking curves and their corresponding revenue curves can hold a lot of information

on what the revenue in a certain month will turn out to be, this data will be used in the short-

term model. The curves of multiple years will form a time series with a sawtooth pattern, and

modeling techniques will be applied that predict future values based on these curves. For the

short-term forecast, the ES models, a SARIMA model with and without exogenous variables

and a DFM will be used to forecast the first 4 months. This boundary of 4 months is chosen by

the company, as this is the forecast horizon for which they actively react on the current state of

bookings. The models will also be combined to increase forecast accuracy.

For the long-term forecast, the same ES model, SARIMA without exogenous variables, and

the DFM will be used and combined. However, there is a difference in the data. The revenue

curves 12 months before departure will contain too little information as too few tickets have

been sold yet. Therefore, for this model, the time series of the monthly revenues will be used.

This research has shown that there is indeed a difference between large and small PoS’s.

Firstly, they both require different attributes to optimize forecast accuracy. For the large as well

as the small PoS’s, the attributes that result in the best performance are the ones that were

preferred by the airline. Besides that, the results of the short- and long-term models show that

the combination of the two models and their different forecast horizons outperforms the single

use of the long-term model for the entire 12-month forecast.
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For the short-term model, a combination of HWESM, SARIMA, and SARIMAX shows the

best results for small PoS’s, whereas a combination of SARIMA and SARIMAX has the best

forecast accuracy for large PoS’s. For both types of PoS’s, a naive model is outperformed. Out

of the tested models for the long-term model, the combination of HWESM and DFM shows

the best results for one small and one large PoS, and for the other two PoS’s the naive model

outperforms all other models.

In the next chapter, the data of this research will be presented with the help of figures. In

Chapter 3, the methods used in this research are described. Chapter 4 will consist of the results

and a discussion of these results, followed by a conclusion in Chapter 5.
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Chapter 2

Data

In this chapter the different types of data are discussed. As can be expected, airlines have a lot

of data which can be disaggregated into various levels of detail. For example, data can be given

for an entire country or for a specific flight. In order to obtain this detailed data, attributes

must be selected. Depending on the level of detail of the data, the number of observations

can vary. In the upcoming sections there will be focused on the visualization of the data using

attributes that are of importance for the data disaggregation, as well as variables that can be

used to predict the revenue. The data that will be used is monthly data, and depending on the

variable this is available since January 2015 or January 2016. Besides that, the last data is from

December 2019 and is not effected by the Covid-19 pandemic. Since the data is real airline data,

for confidentiality reasons some attributes are anonymized and indicated by capital letters.

2.1 Attributes

All the data that the airline possesses can be categorized by using multiple attributes. This

collection of data could consist of e.g., the number of bookings, yield, revenue, ticket prices, and

any other (flight specific) information. By using these attributes, the data can be disaggregated,

which could increase the interpretability of the data as it is divided into subgroups. Due to this

increased interpretability, the airline is able to see more clearly where, when and how revenue

is obtained. The attributes that are of most importance are:

- Point of Sale, countries denoted by W , X, Y and Z;

- Line group, destination areas;

- Cabin classes: Business, Economy, First and Premium Class;

- Booking channels: Direct Online, Direct Offline, Indirect Online, Indirect Offline and

Unknown;

- Carrier, airline company;

- Ticketing date, date at which a ticket was bought.

Almost all data of the airline can be split up in different PoS’s. The PoS filters the data

on a specific country or subareas where tickets are sold, so the PoS is not necessarily the same

as the location a plane departures from. Hence if you are in Berlin and you buy a ticket from

London to New York City, the PoS will be Germany (Berlin) even though the flight departures

from London. As airlines have establishments all over the world, PoS specific data can show

how each establishment performs and if sales strategies should be altered.
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Each PoS sells tickets to different parts in the world. The line group attribute divides the

world in a number of groups that indicate what the destination will be. For the most part these

line groups are large groups of countries, for example a whole continent. In the example given

above the line group would be the United States of America.

When you buy a ticket from an airline, there is some variety in tickets you can choose from.

The most well-known tickets are Economy and Business class tickets. Depending on the carrier,

the cabin attribute divides the plane into two (Economy & Business) or all four different classes,

each with their own fares and customer characteristics. The Economy and Premium class are

also called the low revenue classes, whereas the Business and First class are known as the high

revenue classes due to the average ticket prices in each cabin class. Within these low and high

revenue classes, the tickets show some similar characteristics.

The booking channels show how tickets were purchased. These purchases can be done on

the internet (online) or in person (offline), but also at the airline itself (direct) or through a

travel agent (indirect). All channels show different behaviour when it comes to the prices and

the moment when tickets are purchased.

The carrier attribute disaggregates the data into different airline carriers that are part of

the airline. Lastly, in the airline industry people can buy their tickets months in advance. This

means that an airline can already make an estimation on how many revenue they will make or

how many passengers will travel in a certain period of time. Since people can still cancel their

flights, revenue is only booked after a flight has departed. By using the ticketing date attribute,

data such as the revenue earned in a certain month can be traced back to the moment a ticket

was bought. This allows one to create a graph that shows how the revenue is distributed over

the periods of time prior to the departure date. The ticketing date can be daily, weekly or

monthly.

All these attributes can contribute to specifying the data. Note that the data is not on an

individual flight level, as the aim of this research was to look at a more aggregate level of the

revenue. This has consequences for the data that is available and methods that can be used.

The figures that will be presented in this chapter will help in showing the importance of the

data disaggregation.

2.2 Dependent variable

In this section the dependent variable, the monthly revenue, of the past years will be displayed

in various ways in order to show the necessity of data disaggregation. This monthly revenue

itself is available as of January 2005, however some important attributes were introduced later

which causes the data to be sufficient since 2015. The sample frequency can be chosen to be

daily, weekly, monthly, seasonally or yearly and the observations can be broken down into several

attributes. Nonetheless, in this section the data is presented as the monthly data of all flights

combined. In order to limit the amount of data that is presented here, only the data of PoS W

is used in this section. This is the main PoS for this research and this data will provide enough

information to understand the data of other PoS’s as well. In case data of other PoS’s needs to

be visualized, this will be provided in Appendix A.
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The total monthly revenue of PoS W from January 2015 - December 2019 is given in Figure

2.1. There can be seen a clear seasonal pattern as the revenue in the summer (July and August)

is evidently higher than during the winter months (November-February). Also, there is an un-

mistakable trend over the years.

Figure 2.1: Total monthly revenue in millions of euros of PoS W from January 2015 - December 2019.

In Figure 2.2 the monthly revenue of PoS W in the period January 2015 - December 2019

is disaggregated using the cabin attribute, thereby showing how the revenue differs in both the

amplitude and the seasonal pattern per cabin class.

It can be seen that not all classes show the same type of seasonality. For example, the

revenue of the Economy class in Figure 2.2a shows obvious peaks during the summer months,

as this is the moment where many people go on holiday, whereas the revenue drops during the

winter. The seasonal pattern of the Premium class is very inconsistent, as displayed in 2.2b.

When looking at the summer months, it can be seen that in 2016 the revenue is at a low point,

whereas the peaks at July 2018 and August 2019 are some of the highest points. Also, the trend

that can be seen in Figure 2.2a is not present for the Premium class. First class (Figure 2.2c)

has a seasonal pattern that is somewhat inconsistent as well, even though overall the summer

months have low revenues. The monthly revenue of Business class (Figure 2.2d) shows a clear

seasonal pattern, with peaks at the March and at the end of the year, in October and November.

Moreover, for this PoS, as for the entire airline, it can be seen that the Economy and the

Business classes have monthly revenues that are significantly higher than those of the Premium

and First classes. This is because not all carriers sell First and Premium class tickets. As

this PoS is largely represented by a single carrier that does not sell First and Premium tickets,

Economy and Business are the most common tickets here.

In Figure A.1 in Appendix A the cabin classes of PoS Y are displayed. Even though this PoS

is also largely represented by a carrier that does not sell Premium and First class tickets, the

seasonal patterns of the Premium and First class are not as inconsistent as for PoS W . There
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(a) Economy class. (b) Premium class.

(c) First class. (d) Business class.

Figure 2.2: Monthly revenues in millions of euros of the cabin classes of PoS W from January 2015 -
December 2019.

can even be seen similarities between the seasonality of the Economy and Premium class, and

Business and First class. For the latter there is however a large difference in trend over time.

For the rest of this research the Economy and Premium classes will be combined, as will the

Business and First class. From now on these two groups will be called Economy and Business

respectively. This is done because there will not always be enough data of the Premium and First

class tickets to forecast accurately. Also, the airline already divided the cabin classes in low and

high revenue classes, and within these two groups the cabins show some similar characteristics.

A characteristic of the Business class that might be of importance is the fact that most people

who buy these tickets, buy them close to the flight date. If the purchase behaviour of Business

class is compared to Economy class tickets, on average Business class tickets are purchased at a

later stage.

In Figure 2.3 the total monthly revenue of PoS W of the period January 2015 - December

2019 is disaggregated into four booking channels.

There can be seen that the Direct Online and the Indirect Offline channels are the largest

channels, whereas the Direct Offline and Indirect Online are the smallest. Overall there can be

seen positive trends over the years 2015-2019 as well as clear seasonal patterns, which are differ-

ent for each channel. An important observation is that in Figure 2.3a the monthly revenues of

January 2015 until March 2016 are left out of the figure, because the values of these months were

close to zero. This is due to the fact that for the Direct Online channel the monthly revenues

were only successfully obtained as of April 2016 for this particular PoS. Before April, these rev-
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(a) Direct Online channel. (b) Direct Offline channel.

(c) Indirect Online channel. (d) Indirect Offline channel.

Figure 2.3: Monthly revenue in millions of euros of the booking channels of PoS W from January 2015
- December 2019.

enues could have been given the label Unknown. Over the years, the amount of monthly revenue

labeled Unknown has dropped because data is being processed better, and also the amount of

monthly revenue that got this label is very inconsistent. Due to these reasons, the Unknown

booking channel is not taken into account here. Because of the amount of revenue that is booked

on this Unknown channel, not every set of data (PoS, channel, etc.) is able to use the same size

of historic data.

Lastly, in Appendix A, a figure can be found that shows the monthly revenues when both

the booking channel and cabin class attributes are used. Figure A.2 shows eight figures of the

four channels in combination with the Economy and Business classes. Here it can be seen that

the combinations of cabin classes and booking channels do not necessarily have the same trend

or seasonal pattern over the years. For the two figures of the Direct Online channel, the first

few observations were left out. This is due to the same reasons as for Figure 2.3a.

2.3 Independent variables

The independent variables can be used to predict the revenue. These variables can consists of

lagged values of the dependent variable, but also exogenous variables that are different than

the revenue. Just as for the dependent variable, the sample frequency and the number of

observations depend on the level of detail of the data. The data that will be used will be

monthly data. Furthermore, individual flight data is grouped together in the attributes that are
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mentioned in Section 2.1 in order to prevent the loss of interpretability. Due to the necessary

application of these attributes, not all the available airline data can be used as it is not specified

on the level of the attributes. Also, since some data will be used to predict 12 months ahead,

the data must be useful enough on the long term to be implemented in a model. Due to this,

the selection of variables for a long-term forecast becomes limited.

2.3.1 Revenue curves

Per individual flight the booking curves are available. These curves show the progress of the

number of tickets sold from the moment the tickets are up for sale until the flight date. This

data can also be looked at on a more aggregate level in order to see the bigger picture. By using

the ticketing date attribute and looking at the revenue per ticketing month, the booking curves

are in a way transformed to revenue earned per month. Instead of knowing that for example

6 months before departure 20% of the tickets have been sold, the revenue per ticketing month

displays the amount this 20% of tickets is worth. This way one can keep track of the progress

of the revenue. Both the shape of the curves as the lagged values of the observations can be

useful for predicting the final monthly revenue. As mentioned in Section 2.2, this data is also

available as daily or weekly data since 2015, but considering that the dependent variable will be

the monthly revenue the data will be presented as monthly data.

For PoS W and the months January and July of the years 2016-2019, the revenue per tick-

eting month of the booking channels is displayed in Figure 2.4. These figures show how the

monthly revenue evolves over the months prior to the departure, but also how the shapes can

differ between months and booking channels. Cancelled tickets are not taken into account in

these figures, as in the end these have not brought in any revenue. As the revenue is not the

same in each month, the curves in Figure 2.4 are scaled to show the difference in shape more

clearly. These curves are hereinafter referred to as revenue curves. Figure A.3 in Appendix A

displays these curves for the different cabin classes.

Figures 2.4a, 2.4c, 2.4e and 2.4g show the revenue curves of January, and the curves of July

are displayed in Figures 2.4b, 2.4d, 2.4f and 2.4h. The biggest difference between the scaled

curves are not necessarily found between months, but between channels. For example, the

indirect offline channels have just past the 20% mark at 2 months before departure, whereas the

other three channels are already at 40-60%. Also, for these three channels, the range of 40-60%

is still quite a wide range. This shows that there is a different purchase behaviour in the last

couple of months for the booking channels.

Figure A.3 in Appendix A shows the revenue curves of the cabin classes of January and July.

The differences between these curves are not as big as for the booking channels, as at all times

the curves of both the different cabin classes as the months are within a range smaller than 13%.

The largest difference is found at 2 months before departure for July. Here, the economy class

has obtained on average 46% of the total revenue whereas the business class is still at 34%.

It must be kept in mind that the revenue curves visualized in Figures 2.4 and A.3 are

made with the final monthly data, and they do therefore not contain any cancellations. The
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(a) Direct Online channel of January. (b) Direct Online channel of July.

(c) Direct Offline channel of January. (d) Direct Offline channel of July.

(e) Indirect Online channel of January. (f) Indirect Online channel of July.

(g) Indirect Offline channel of January. (h) Indirect Offline channel of July.

Figure 2.4: Channel revenue curves of all the tickets bought in PoS W for January and July 2016 -
2019. The cumulative percentage of the total earned revenue is given x months before departure.

cancellations are not displayed in the figures because cancelled tickets did not contribute to

the final revenue. However, when present time data is used as an independent variable, there

is still the possibility that the curves contain revenue of tickets that will be cancelled in the

future, causing the revenue per ticketing month to drop again. Cancellation data for PoS’s is
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not directly available, as this data is only given for Point of Bookings. However, there is another

way to handle cancellations. It is possible to look at the revenue curves at another point in

time. For example, it enables one to look at the true revenue per ticketing months of Figure

2.4b while pretending to be in e.g. March 2019, instead of looking back at the data in for

example August 2021. By doing so, it is possible to compare the revenue curves of July 2019

as seen in March 2019 to the final curves of July 2019. It enables one to see how the revenue

per ticketing month decreases for a specific month as the departure months approaches, due to

processed cancellations. This can be done for all the years that are available, enabling one to

find a pattern in cancellations over time. However, this cancellation data is not available for

years prior to 2016, which limits the data to the years 2016-2019.

2.3.2 Capacity, PaxKM and ASK

Besides the data that is presented above, there are some exogenous variables that could be

relevant for this research. However, due to the expected relevance of the above-mentioned

revenue data and the somewhat limited availability of other variables, the main focus lied on

revenue data.

Unfortunately, not many variables can be linked to each attribute. For example, variables

could be flight-specific, variables belong to a certain Point of Booking instead of a PoS which

causes all data to be different, or variables are not disaggregated into all the necessary attributes.

This last group of variables must be dealt with carefully in order to apply them to a PoS correctly.

An example of such a variable is the Capacity. The Capacity variable shows how many seats

there are available to the airline per flight. Since all four booking channels could sell the same

amount of available seats for a specific flight, capacity is considered to be the same for each

channel.

Also the PaxKM (total kilometers flown by passengers) can hold information on the revenue.

When the expected PaxKM is higher, the chances are either that more people bought a ticket

and therefore the revenue will be higher as well, or the overall length of the flights has increased.

The PaxKM is correlated with the Capacity, as the maximum value of the PaxKM is determined

by the flown kilometers of all planes times the capacity. A problem however is that, just as for

the revenue, the exact value of the PaxKM depends on the number of customers that occupy

a seat. Therefore this data is uncertain up to the moment a plane has departed. However,

contrary to the revenue, the airline was already able to forecast the PaxKM. The last variable

that could be of importance is the Available Seat Kilometers (ASK). The ASK data looks like

the data of the PaxKM, but instead of showing how many kilometers passengers are expected

to fly, it shows how many kilometers there can be flown by passengers. When this number gets

higher, either more people can buy tickets and more revenue is expected, or there are more long

flights. This variable is also correlated with both the PaxKM data and the Capacity.

The data of the PaxKM, Capacity and ASK variables can be divided over the PoS’s, line

groups and cabin classes. As the booking channels have no influence on e.g. the amount

seats available in a plane, these variables can safely be used for all channels without further

disaggregation.
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Chapter 3

Methods

In this chapter the methods that will be used in this research are presented. In the first section,

the use of the attributes and the splits in the data are explained. In Section 3.2 the modeling

techniques of this research will be discussed. The application of the modeling techniques will be

explained in the following two sections about the short- and the long-term model. Here it will

also be clarified what data is used for which model. Lastly, information will be provided about

prediction intervals and model performance.

3.1 Data disaggregation

The airline would like to have a 12-month rolling forecast overlooking different regions. As

airlines have a lot of data, the airline wants to disaggregate the data in order to be able to trace

back more precisely how the revenue is earned. The attributes that are going to be used are

already introduced in Chapter 2, Section 2.1. It must be mentioned that one should be careful

when using disaggregated data. When data is disaggregated too much, it could result in the loss

of its informative power. Nonetheless, for the purpose of creating a useful model there must be

zoomed in on some specific attributes.

In order to test whether the models are useful for different markets, four different PoS’s

have been chosen. The PoS’s W and X are large PoS’s with high revenues for each line group.

These two countries will be used to create the models and to test them. For these large PoS’s,

the airline has appointed the line group, booking channel, and carrier attributes as the most

important attributes. Therefore, these 3 attributes will be the main focus for the large PoS’s,

but it will also be tested whether the cabin attribute has any positive influence on the forecast

accuracy.

PoS’s Y and Z are a lot smaller and only have one major line group to focus on, as the

others are smaller and of less importance. PoS Y and Z are used to see whether the models

perform differently for large and small PoS’s. The most important attribute for these smaller

PoS’s are the cabin and carrier. Because these PoS’s have only one major line group, and the

other line groups have only limited data, the airline prefers to not apply the line group attribute

here. Hence, the focus will lie on applying the cabin class and the carrier attribute. The booking

channel attribute will be tested as well, in order to see whether it could contribute to the forecast

accuracy.
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3.2 Modelling Techniques

In this section, the models and the ideas behind the choices that were made are explained. As

shown in Section 2.3.1, twelve months before the departure date too few tickets have been sold

to accurately predict the revenue. However, as the departure date comes closer, the tickets

that have been sold already show how the revenue curve compares to those of previous years.

Therefore, two different models will be necessary in order to provide an accurate forecast for the

upcoming months in the short- and the long term. A short-term model will predict 4 months.

This number is chosen as this is the furthest forecast horizon the airline actively acts upon when

it comes to changes of tactics or promotions. The long-term model continues on the short-term

model, up to 12 months. The short-term model will make use of the revenue curves discussed in

Section 2.3.1 and variables presented in Section 2.3.2. The long-term model will use the monthly

time series data given in Section 2.2. Hence, this is not the same data as the revenue curves.

The use of data for the short and long-term models will be explained in more detail in Sections

3.3 and 3.4.

Different methods will be tested to see which performs the best. For each PoS, there will

be many models because depending on the PoS, there will be numerous line groups, two cabins,

four booking channels, and two carriers for each month in the year. The decision to disaggregate

the data into so many levels is made because this would allow the airline to see more precisely

where the revenue comes from, but it also allows the trends and seasonality of the different

attributes to have an impact on the data. If the data would not be disaggregated, there is a risk

of losing specific trends and seasonality in the data as these could be averaged out.

Moreover, by disaggregating the data it becomes possible to test whether some attributes

systematically have higher predictability than others. For example, it could be the case that

a certain booking channel always has a higher forecast accuracy than others, or that Economy

class is easier to predict than Business class.

In the next subsections the techniques that are used for this research are introduced and

explained.

3.2.1 Exponential smoothing

Holt-Winter’s Exponential Smoothing Model is a version of the ES models that can take into

account trends and seasonality. Since airline data is subjected to these two components, as seen

in the figures in Section 2.2, these must be implemented in the model. As there are different

forms of Holt-Winter’s model, in this section the choice of the chosen model is explained.

The HWESM has an additive trend component and a seasonal component that can vary to

be either additive or multiplicative. Also, the errors can be additive or multiplicative. When

the seasonal component is chosen to be multiplicative, the model values could increase rapidly

due to the characteristics of the multiplicative component. Given the type of data that is used

for the short-term models, the use of additive models is advised. This way the chances that the

model explodes or (heavily) over- or underpredicts become smaller.
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For this model, that has an additive component for the trend, seasonality and the errors,

the AAA (Additive trend, Additive seasonality, Additive errors) model is introduced. The AAA

model can be seen in Equations 3.1 and 3.2 (Hyndman et al., 2001).

yt = lt−1 + bt−1 + st−m + εt, (3.1)

lt = lt−1 + bt−1 + αεt

bt = φbt−1 + αβεt

st = st−m + γεt.

(3.2)

In Equation 3.1 the smoothing equation of yt, the dependent variable at time t, is given, and

Equation 3.2 shows the error-correction forms of lt, bt and st. These are elements of the State

Space Vector that denote the level, trend and seasonal components at time t respectively. If

these last three equations were written as a function of yt, lt, bt and st, these would have been

smoothing equations as well. However, it was chosen to write them in error-correction form,

which means that the equation of yt is used to rewrite lt, bt and st as a function of εt instead of

yt. εt is the error term at time t, which is i.i.d. N(0, σ2) distributed.

In Equation 3.2, α, β and γ are smoothing parameters that originate from the smoothing

equations of the level, trend and the seasonal equations respectively. φ is a damping coefficient

in case the trend must be damped and m is the length of a season within the data. For example,

when you have monthly data, m will equal 12 when the season takes a year to reoccur. In the

equation for bt the factor before the error εt is written as separate coefficients α and β instead of

one new coefficient. This is a result of the transition from the smoothing equation to the error-

correction form. Moreover, these two coefficients will be used in the calculation of a prediction

interval (PI).

It can be seen that the error term εt is present in all equations that make up the AAA

model. The result is a Single Source of Error model (SSOE). When using this model, there is

one single error sequence that drives all the observations as well as the variables (Hyndman et

al., 2001). This causes the error terms to be perfectly correlated. Opposite of the SSOE model

is the Multiple Source of Error model (MSOE). When using the MSOE, the error terms are

independent and have different variances.

There are benefits to the SSOE model compared to the MSOE model, which are mentioned

in Hyndman et al. (2002). The authors state that both linear and non-linear SSMs can be for-

mulated when using the SSOE model, which is a practical benefit. Also, the perfectly correlated

errors make it possible to correctly rewrite state space equations as functions of the only error

term ε, as was done for the error-correction forms in Equation 3.2.

The coefficients in the HWESM model are being optimized by using the Limited-memory

Broyden–Fletcher–Goldfarb–Shanno, or LBFGS, technique. This is an iterative line search al-

gorithm related to the Broyden–Fletcher–Goldfarb–Shanno (BFGS) technique, that finds the

best direction to move towards in order to find the point where the gradient equals 0 or close

to zero. The difference between the LBFGS and the more known BFGS is that the BFGS has

to store an approximation of the Hessian matrix whereas the LBFGS stores only some vectors

of the approximation, and thereby requires less computational memory.
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The variant of the HWESM model that is used here, the AAA model, is a linear repre-

sentation of the State Space Models. For this linear representation, a method is suggested in

Hyndman et al. (2001) to calculate a 95% confidence interval using the coefficients provided in

Equations 3.1. The 95% PI will be given by ζh ± 1.96
√
vh. Here ζh is the predicted value for h

periods into the future and vh is the corresponding variance. For the (damped) AAA model the

expression for vh is given by Equation 3.3 (Hyndman et al., 2001).

vh =

σ2
[
1 + α2(h− 1){1 + βh+ 1

6β
2h(2h− 1)}+ γk{γ + α[2 + βm(k + 1)]}

]
if φ = 1

σ2
[
1 +

∑h−1
j=1

{
α2(1 + φj−1β)2 + γdj,m[γ + 2α(1 + φj−1β)]

}]
if φ 6= 1.

(3.3)

In this equation σ2 is the variance estimated by
∑n

t=1 ε̂
2
t /n, h is the forecast period for

which holds that h ≥ 2 or else v1 = σ2, and dj,m equals 1 if j=m (mod m) and 0 otherwise.

Lastly, k = b(h− 1)/mc. In the research of Hyndman et al. (2002) it was tested whether the

PIs contained the actual values of the forecast. It was found that the 95% PIs tended to be too

optimistic, as not always 95% of the predictions were contained by the interval. However, this

phenomenon is well-known in forecasting, as stated by the authors. The coverage probability of

PIs will be of importance for the current research, as the results must be usable for the airline.

This means that the coverage probability must be high while the size of the interval remains

small. However, the performance of the models will not be determined by using PIs. This will

be done by using error measures on the point forecasts.

The performance of the models will be tested by using the Mean Squared Error (MSE),

Weighted Mean Absolute Percentage Error (WMAPE), and Mean Absolute Error (MAE) error

measures. The application of these error measures will be explained in more detail in Section

3.6. By comparing these scores to those of other models, the model that performs the best can

be found.

3.2.2 SARIMA(X)

The SARIMA model is a Seasonal ARIMA model that has similar characteristics as the regular

ARIMA model, as the dependent variable can consist of lagged values of the dependent variable

or error terms. The difference between the two models is that the SARIMA model contains

extra lag orders and an order of integration to include seasonality, whereas seasonality in the

ARIMA models is implemented by using seasonal dummies. In Chapter 1 literature is provided

that shows the successful use of the SARIMA model in the airline/tourism industry, but the

application is not necessarily proved in revenue management. In order to test this application,

during this research it was chosen to use SARIMA models instead of ARIMA models with

seasonal dummies.

The SARIMA model has four lag orders, auto-regressive (AR) p, moving average (MA) q,

seasonal AR sp and seasonal MA sq. It also has two orders of integration, integration d and

seasonal integration sd, as well as the parameter m that indicates the length of a season in the
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data.

Besides using the SARIMA model, it is possible to extend the SARIMA with exogenous

variables, thereby creating the SARIMAX model. SARIMAX is almost completely the same as

the SARIMA model, but the only difference is that for every time t, a value of exogenous variable

Xt will be added. In preparation of the SARIMA(X) equations, the different components of the

ARIMA model are given in Equations 3.4 and 3.5. In Equation 3.4 it is shown how the B

operator works for the order of integration d, and Equation 3.5 shows the ARIMA model and its

operators. Using these, it becomes easier to understand how the SARIMA(X) models, provided

in Equations 3.6 and 3.7 respectively, are composed.

∆yt = yt − yt−1 = yt −Byt = (1−B)yt

∆dyt = yt − yt−d = yt −Bdyt = (1−B)dyt
(3.4)

Φp(B)(1−B)dyt = µ+ Θq(B)εt

Φp(B) = 1 + φ1B + φ2B
2 + ...+ φpB

p

Θq(B) = 1 + θ1B + θ2B
2 + ...+ θqB

q

(3.5)

Φp(B)Φsp(B
m)(1−B)d(1−Bm)sdyt = µ+ Θq(B)Θsq(B

m)εt, (3.6)

Φp(B)Φsp(B
m)(1−B)d(1−Bm)sdyt = µ+ ψXt + Θq(B)Θsq(B

m)εt. (3.7)

In these equations yt is the dependent variable at time t, φq is the qth order AR coefficient,

θp is the pth order MA coefficient, εt is the error at time t, µ is the constant mean, B is a

difference operator, Xt is a (n×1) vector of exogenous variables at time t where n stands for the

number of different exogenous variables, ψ is a (1×n) vector of coefficients and Φp and Θq are

the collections of the pth and qth order coefficients, respectively.

Since there are four lag orders (p, q, sp and sq) and two orders of integration (d and sd) for

which the values can be optimized for each model, it could be the case that for each booking

channel and cabin different values are optimal. However, as it is desirable to have the same

values for the lag orders and order of integration for all models, the SARIMA airline model is

used. For this model the values of p, d, q, sp, sd and sq are set to 0, 1, 1, 0, 1 and 1 respectively.

By using the same orders for all models, the SARIMA model can be tested on other data more

easily and results can be compared. The SARIMA and SARIMAX airline models are given in

Equations 3.8-3.9 and 3.10-3.11 respectively.

Φ0(B)Φm,0(B
m)(1−B)(1−Bm)yt = µ+ Θ1(B)Θm,1(B

m)εt (3.8)

yt − yt−1 − yt−m − yt−(m+1) = µ+ εt + θ1εt−1 + θ1mεt−m + θ1θ1mεt−(m+1) (3.9)

Φ0(B)Φm,0(B
m)(1−B)(1−Bm)yt = µ+ ψXt + Θ1(B)Θm,1(B

m)εt (3.10)

yt − yt−1 − yt−s − yt−(s+1) = µ+ ψXt + εt + θ1εt−1 + θ1sεt−s + θ1θ1sεt−(s+1) (3.11)
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The coefficients in the SARIMA(X) Airline model are being optimized by using the LBFGS

technique. As for the HWESM AAA model, the MSE, WMAPE, and MAE are used to compare

the output. More information can be found in Section 3.6 on the model performance. The PIs

of the SARIMA models are created based on the errors in the model and the variance of the

error.

3.2.3 Dynamic Factor Model

The last modeling technique that will be tested is the Dynamic Factor Model (DFM). The DFM

does not quite work in the same way as the aforementioned State Space Models, as these models

were chosen because of their applications of trends and seasonal patterns. However, the DFM

has been selected because it has successfully been used in other sectors, next to the fact that the

airline has previously used a factor model to forecast the PaxKM. The idea behind the DFM is

that there are latent dynamic factors ft that drive the dependent variable.

A feature of the DFM that could be useful is that it can model multivariate data, for example

different channels, where the channels have influence on each other. The DFM is displayed in

Equation 3.12.

yt,n = Λ(L)ft,n + εt,n

ft,n = Ψ(L)ft−1,n + ut,n
(3.12)

Here, the time is displayed by t ∈ T , and the number of different data sets in case of mul-

tivariate data is given by N , where n ∈ N . For time t ∈ T and n ∈ N , y is the dependent

variable with size T × N . Λ(L) is a matrix of factor loadings with size T × L with lag L, f is

the unobserved factor with size L × N , ε is a T × N matrix of idiosyncratic errors, Ψ(L) is a

vector of autoregression coeffiecients with size L×L, and u are the factor disturbances with size

L × N . The idiosyncratic errors εt,n are specific for each data set, such that εt,n ∼ N(0, σ2n).

These errors are independent of ut,n ∼ N(0, Q), which means that E[εt,nut−k,n] = 0 ∀ k.

In the case where 4 channels are modeled simultaneously, N equals 4. The amount of

lagged factors that are added, L, can be optimized by using for example the Akaike Information

Criterion (AIC). However, when the value of L is optimized for each individual data set, this

can take a lot of time due to all the different PoS’s and attributes. Since it is preferred to find

a general model that performs well for each set of data, some cabins/channels will be optimized

at random in order to find a value of L that has an AIC value that is the best overall. This

value will then be used for all the data.

The factor loadings of the DFM will be optimized by using the Expectation-Maximization

algorithm. The output of the model will be compared by using the MSE, WMAPE, and MAE

error measures. More information can be found in Section 3.6 on the model performance. The

PIs of the DFM will be created based on the variance of idiosyncratic errors εt,n

3.2.4 Combining methods

A recent article that discusses the combination of methods is the M4 research of Makridakis et

al. (2018). In this article it is also mentioned that combining methods can increase the overall
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accuracy of the model. Hence, this will be tested for the current research as well. The M4

research was not the first research of combining methods. In 1969 the authors of Bates & Granger

(1969) already concluded that combining methods is beneficial for the model performance. Also,

in Timmermann (2006) combining forecasts has been investigated on a theoretical level. It was

stated that by combining different forecasts, accuracy can be increased compared to forecasts

that are based on a single model.

In the M4 research, some researchers use Machine Learning techniques in order to find

optimal weights for each of the applied methods. However, since this research focuses on many

different cases due to the many PoS’s, line groups, cabins, and channels, the chances of the

weights being different for each one of these cases are likely to be high. Since the goal of this

research is to find a model that can be implemented by all PoS’s, it was chosen to use weights

that are based on the simple average. This way, the weights will be the same for all cases.

Moreover, the simple average has proved its worth (Timmermann, 2006). The goal of combining

the methods is to increase forecast accuracy and decrease the values of the error measures.

3.3 Short-term forecast

For the short-term forecast the revenue curves will be the most important data in calculating

the monthly revenue. A method is needed that can model the historical revenue curves, and

by implementing the most recent data to this model, a short-term forecast will be created. As

an example, there can be looked at the curves provided in Figures 2.4 and A.3. The data of

2016, 2017, 2018, and the available data of 2019 can be used to train a model, with which the

last 4 months of 2019 will be predicted. This data will create a sawtooth-like time series with

three full “seasons” of the years 2016-2018, and one incomplete one from 2019. Depending on

the quality of the data, for each particular month, the revenue curves of the years 2016 to 2019

are available. The data of the curves is segmented into different attributes.

Training a model can be done by using adaptive models or non-adaptive models. The

difference is that the coefficients of adaptive models change over time when new data is available,

whereas non-adaptive models are trained by using historical data from a specific period in time,

even though new data is available. Since airline data is not constant over the years, the adaptive

models can take into account trends and seasonality better than non-adaptive models. Hence,

adaptive models will be used to train the models. This is also advised by Kalekar et al. (2004).

No complicated mechanism is necessary for the application of the adaptive model. When the

current date, the number of years of training data one wants to use (lookback) and the month

that needs to be predicted are given as input, the model will recognize which data to use as all

data have a date-tag.

Besides using adaptive models, it can also be interesting to look at how monthly data can

be used in the best way. Each month has month-specific data, but does a model perform better

when using only this month-specific data, or is the performance higher when there is no distinc-

tion made between months? For example, when the data of 2016-2018 is used to predict the

revenue of January 2019, either 3 series of observations of January can be used, or 36 series of ob-

servations of all the months in the previous four years. The downside is that the revenue curves

of the different months do not necessarily have precisely the same shape, as shown in Figures 2.4
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and A.3, and more importantly, the amount of revenue differs per month. On the other hand,

the amount of data that becomes available could possibly result in a more reliable model. These

two different models will be referred to as a month specific model when only the data of that par-

ticular month is used, and a general monthly model when all months are used to train the model.

The techniques that will be used to analyze the revenue curves in the short term are HWESM,

SARIMA, SARIMAX, and DFM. These models will be tested using a month-specific model and

a general monthly model. Lastly, the methods will be combined with the aim of improving

performances. The individual predictions of the combined models will be a simple average of

the predictions of the channels/cabins of the other models, as will the PIs (Grushka-Cockayne

& Jose, 2020). The revenue curves will be used by each method, and the SARIMAX will use

the PaxKM, Capacity, and ASK data as well.

Each complete revenue curve has 13 data points, from a specific month in the previous year

up to that month in the current year. The length of the season, as mentioned in Section 3.2.1,

is 13 in this case. It could be beneficial to remove the first couple of data points from a curve,

as some combinations of attributes could cause the revenue curves to start with multiple zeroes,

which will not benefit the models. This can be the case for smaller PoS’s. For the SARIMAX

model, there will be investigated which exogenous variables are of importance in the forecast,

and for the DFM it will be analyzed whether univariate or multivariate data results in better

forecast accuracy. The short-term (combined) models that will be tested are listed here:

- HWESM, both with month specific (SP) as general monthly (G) data

- SARIMA (SAR), both with month specific (SP) and general monthly (G) data

- SARIMAX (SARX), both with month specific (SP) and general monthly (G) data

- DFM, with month specific data

- All models combined except for DFM (All)

- HWESM SP + SAR SP + SARX SP (All SP)

- HWESM G + SAR G + SARX G (All G)

- SAR SP + SARX SP (SAREXO)

- All SP + SARX G (SP + SARX G)

- All SP + SAR G (SP + SAR G)

These models will be compared to a naive model, which predicts the revenue of a channel/cabin

of a period to be the same as the revenue in the same period of the previous year. This also

means that the prediction of the naive model will be the same for different forecast horizons,

as they are all based on last year’s results. Other combinations, such as the DFM with general

monthly data, performed badly when testing some attributes at random, and were therefore not

taken into account for the rest of the research.

All the cabins, channels, and carriers of each month in 2019 will be predicted 1-4 months

ahead. Then, all the 1-month forecasts of the entire year will be combined to form a forecast

overview of the overall 1-month prediction, and the same will be done for the 2-4 months

predictions. This means that the overall 1-month prediction is a combination of predictions of

January 2019, predicted in December 2018, up to December 2019, predicted in November 2019.

It is also important to process the cancellations of previous years into the data of the current
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year. The revenue curves that are available from previous years, can also be obtained when

using another snapshot date. This snapshot date means that it is possible to change the date on

which the data is looked at. For example, when the revenue curve of December 2019 is displayed

in 2021, there are 13 data points from December 2018 - December 2019. However, when using

the snapshot date of September 1st 2019 there will be 9 data points, from December 2018 -

August 2019. This data has not yet processed all the cancellations, as some will take place

after September 1st. For the historical data both the final revenue curves as the revenue curves

from other snapshot dates that include cancellations are available, enabling one to analyze the

differences between these snapshot dates and the final curves.

The analysis of these differences can be applied to the current year, which only has the

incomplete snapshot date data. As it is not precisely known how many tickets the revenue

consists of or what these tickets’ prices were, there will simply be looked at the percentage of

revenue that was canceled in the previous years. This percentage will be used to deduct possible

cancellations from the revenue curve in a simple way.

Lastly, it will be checked whether the chosen attributes are of importance or whether the

performance will increase significantly when attributes are left out. The biggest difference will

be between the two groups of PoS’s (large and small), and not between the individual PoS’s

within these groups. Since the airline already has its preferences about which attributes to use

(line group, carrier, and booking channel for large PoS’s and cabin class and carrier for small

PoS’s), it will be investigated if these preferences are also the best attributes to apply to the

data. To test whether the use of these preferences is optimal, the cabin class attribute will be

included for large PoS’s, and the booking channels will be added for small PoS’s to compare the

outcomes.

3.4 Long-term forecast

For the long-term forecast, the time series of the monthly revenue as given in Section 2.2 will be

of importance as the revenue curves hold less information in the long term. As for the short-term

model, the long-term model needs to be able to take into account trends and seasonality in order

to correctly perform a rolling forecast of 12 months.

An adaptive model will prove to be more accurate than a non-adaptive model since the most

recent data holds more information on the current trends than data that is not updated over

the years. Hence, the use of an adaptive model is a more suitable approach. Just as for the

short-term model, the data and therefore the parameters will automatically be updated each

month when the current date and the desired lookback are given as input, since each data point

has a date-tag.

A problem that is encountered for the long-term model is that a lot of data is not yet available

for flights that depart in 12 months. This is also the reason that the revenue curves cannot be

used. It is already known how many flights will depart approximately, but, for example, the

ticket prices depend on the demand and the pricing tactics that will be decided in the upcoming

months. Therefore it is hard to use reliable independent variables. The most reliable data is

monthly revenue as displayed in Figures 2.1 - 2.3, and not the revenue curves as used in the

short-term model. If other variables are used, the chances of using independent variables that
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contain uncertainty increase, which increases uncertainty in the forecast.

The state space representations HWESM and SARIMA will be used again. Due to the

adaptability of these models, they are believed to perform well. Nonetheless, the models are

also combined using a simple weighted average between the models for both the point forecasts

and the upper and lower bound of the PIs. Next to these two models, the DFM is used. The data

that will be used is the same as for the HWESM and SARIMA models. There will be investigated

whether the DFMs perform better with univariate or multivariate data and the DFM will also

be taken into account when combining models. The long-term (combined) models that will be

tested are listed here:

- DFM

- HWESM

- SARIMA (SAR)

- All three models (All)

- HWESM + SARIMA (HWESM-SAR)

- HWESM + DFM (HWESM-DFM)

- DFM + SARIMA (DFM-SAR)

As for the short-term model, these models will be compared to a naive model.

All the cabins, channels, and carriers of each month in 2019 will be predicted 5-12 months

ahead. Then, as was also mentioned for the short-term model, all the 5-month forecasts of the

entire year will be combined to form a forecast overview of the overall 5-month prediction, and

the same will be done for the 6-12 months predictions. This means that the overall 5-month

prediction is a combination of predictions of January 2019, predicted in August 2018, up to

December 2019, predicted in July 2019.

3.5 Aggregated prediction intervals

As mentioned before, for each PoS, month, and line group, there will be multiple channels or

cabins to predict. Each of these forecasts will have its own prediction and PI, but in order to

summarize the data it will be beneficial to aggregate all the predicted values to obtain the total

predicted revenue per month. The PI of the total predicted revenue per month can however

not be obtained by adding the individual PIs due to possible covariance between the channels.

For each individual forecast of a channel or cabin, the model’s errors must be used to find

the correlation between the errors of the channels or cabins. By using the correlations, it is

possible to apply these to calculate the total covariance and also take into account the increased

variance due to out-of-sample predictions. When a covariance matrix is calculated directly from

the model’s errors, the increased variance of a forecast horizon larger than 1 is not taken into

account. In case a combination of models is used, the errors are a weighted average of the

combined errors.
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3.6 Model Performance

In order to choose the right method, for each forecast the absolute percentage error, squared

error, and absolute error are calculated. These values can provide a quick overview of the

performance of the different models. Since for each PoS and line group the monthly total revenue

is composed of the individual forecasts of the other attributes, these values are aggregated and

the total MSE, WMAPE, and MAE are calculated. Here the weight of an individual forecast

is determined by the actual revenue of that forecast divided by the total actual revenue of that

month. This is done because the MAPE could provide misleading insights when a forecast of

a very low revenue has a high MAPE, and a forecast of a high revenue has a low MAPE. It

is advised to use multiple error measures to determine the model performance, as a single one

could provide one-sided information that does not necessarily portray the situation correctly.

To test whether combining methods has a significant impact on the results, the Diebold-

Mariano (DM) test is applied (Diebold (2015), D. Harvey et al. (1997)). The DM-test compares

for example MSE values of various forecast horizons for different models. Hereby the MSE values

form a time series that can be compared to another model’s MSE values. The DM-test looks

like a t-test and is performed to see if the MSE values of the two models differ significantly or

whether these can be considered the same. Here the null hypothesis is that the MSE values of

the two models do not differ significantly from each other.

Lastly, there will be looked at the PIs. Since the outcome of this research will be applied

in a very practical manner, the correctness of the PIs is of importance. An interval that is

too small will not contain 95% of the predictions, whereas an interval that is too large will

not be useful. As was already mentioned by Hyndman et al. (2002), for the ES methods, for

example, it is a known phenomenon that not every 95% interval contains 95% of the predictions.

Therefore, for each method, there will be looked at the coverage probability over a whole year

of predictions. They also found that the ES models that found the best MAPE values, had the

worst PI coverage probabilities. Hence it will be interesting to see if this holds for the other

models as well. The models in this research will not necessarily be rejected based on a small PI

coverage probability, as the opposing PIs that have a large(r) coverage probability can have a

very large PI and can therefore be uninformative at the same time.
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Chapter 4

Results & Discussion

In this chapter, the results of this research will be presented and discussed. At first, some general

observations will be provided, followed by the results of both the short- and long-term models.

Lastly, a discussion of the results will be given. In order to reduce the information given in this

chapter, only the results of large PoS W and small PoS Y are given. The results of PoS’s X

and Z are given in Appendix B.

4.1 Results

As the results would be too extensive if the forecasts of the individual channels are presented,

the values in this chapter are summarized. The total prediction of each month consists of

multiple carriers and channels or cabin classes, which have their own squared error, absolute

error, and absolute percentage error. The monthly values of the MSE, MAE, and WMAPE are

the (weighted) means of the individual predictions. Besides that, the predictions of each month

are aggregated as well such that the MSE, MAE, and WMAPE are given for the entire year of

2019. For the yearly WMAPE this means that monthly WMAPE values are weighted by the

monthly revenues. The tables in this section will contain the error measures for all (combinations

of) models and forecast horizons. In order to increase interpretability, the WMAPE and MSE

results of the naive model are chosen to be a benchmark and the results of the other models

are given relative to this naive model. This means that the WMAPE and MSE results of the

other models are divided by the results of the naive model. Moreover, the results of the naive

model are constant over time as for each forecast horizon the prediction is the same as last year’s

revenue.

4.1.1 General results

From the research it could be concluded that the airline’s preferred attributes for both small

and large PoS’s resulted in the best results. When for the large PoS’s the cabin class attribute

was included, the models performed slightly worse. The difference in performance was not large,

but since the addition of the cabin class did not enhance the model and the airline initially did

not want to include this attribute, it will be left out. Thus, the attributes that are used for large

PoS’s are line groups, booking channels, and carriers.

When the booking channels were included for the small PoS’s the results were worse compared

to the case where only the preferred attributes were used. Because the small PoS’s have less

data, the extra disaggregation led to insufficient data for each channel-cabin combination. Also,
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not every small PoS uses all booking channels consistently, which led to bad performances.

Therefore, the attributes that will be used for small PoS’s are the cabin classes and carriers, as

proposed by the airline.

For the SARIMAX model, the variables ASK, PaxKM, and Capacity were tested. Since

there are many models there cannot be given a single significance value of the coefficients. With

the aim of using the same variables for all models, it was chosen to use the variables ASK and

PaxKM, because the coefficient of the Capacity was insignificant on many occasions when testing

some combinations of attributes. For the DFM it was tested whether the use of multivariate

data would outperform univariate data. It was found that by using multivariate data, errors

increased compared to the use of univariate data. Hence, only the results of the univariate model

will be presented in the next subsections.

The predictability of channels or cabins can differ between the PoS’s, as in each PoS there

can be a preference for certain tickets or the way these tickets are bought. However, for the large

PoS’s it can be said that in general the larger channels, Direct Online and Indirect Offline, are

more accurately forecasted than the others. Moreover, predictions of the line groups that bring

in only a small share of the total revenue are less accurate than those of larger line groups. The

results of the small PoS’s show that in general the forecasts of Business class are more accurate

than Economy class.

4.1.2 Short-term models

The short-term models calculated the revenue forecast for 1-4 months. The results that are about

to be presented are summarized for all predictions in 2019, and for these models a training set of

3 years was used. For each of the months January till December in 2019, a forecast was made 1,

2, 3 and 4 months beforehand, and for each forecast horizon the predictions of all the months in

2019 are aggregated such that the results of the whole year are shown. This is also explained in

Section 3.3. These results can be disaggregated into the different carriers, cabins and channels,

but this will not be done here due to the extensiveness of the results.

Large PoS’s

As the large PoS’s have 10 different line groups, the results of the line groups will be combined

by using a weighted mean where the weights are determined by the yearly revenue of the line

groups divided by the yearly revenue of the entire PoS. The results of PoS W are given below

in Tables 4.1 and 4.2 and the results of PoS X are given in the Tables B.1 and B.2 in Appendix

B.

Tables 4.1 and 4.2 show the short-term results of the WMAPE, MSE, PI coverage proba-

bilities and MAE error measures of PoS W . The results are given for a forecast horizon of 1,

2, 3 and 4 months. For example, this means that column 1 WMAPE contains the weighted

WMAPE values of all the 1-month predictions of that PoS.

For PoS W it can be seen that there are five models with similar results. These models are

SAR SP, SARX SP, SAREXO, SP + SARX G and SP + SAR G. By applying the DM-test

on the MSE values of these models, it is found that both SAR SP and SAREXO have MSE
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Table 4.1: Relative error values for the aggregated short-term models of PoS W . For each forecast
horizon in the short-term model and for all (combinations of) models, the values of WMAPE and MSE
are given relative to the time-independent errors of the naive model, which are 8.80 % and 34 × 1010

respectively. Also the total PI coverage probabilities are provided per model.

Model
WMAPE MSE

PI probability
1 2 3 4 1 2 3 4

HWESM SP 0.67 1.04 1.25 1.44 0.71 1.50 2.12 2.79 0.403
HWESM G 1.02 1.31 1.52 1.66 2.12 2.65 3.00 3.32 0.713
SAR SP 0.55 0.79 0.89 0.97 0.32 0.56 0.65 0.74 0.670
SAR G 0.82 1.10 1.25 1.44 1.71 2.35 2.65 3.12 0.764
SARX SP 0.58 0.76 0.85 0.94 0.62 0.62 0.65 0.82 0.495
SARX G 0.81 1.10 1.25 1.44 1.59 2.29 2.62 3.09 0.763
DFM 1.40 1.43 1.46 1.49 1.65 1.85 2.00 2.12 0.345
All 0.60 0.81 0.93 1.03 0.62 0.97 1.09 1.32 0.748
All SP 0.55 0.80 0.91 1.01 0.38 0.68 0.85 1.06 0.607
All G 0.83 1.10 1.28 1.42 1.56 2.18 2.47 2.91 0.753
SAREXO 0.55 0.76 0.86 0.94 0.38 0.56 0.62 0.74 0.656
SP + SARX G 0.58 0.81 0.94 1.04 0.50 0.79 0.94 1.15 0.676
SP + SAR G 0.53 0.75 0.85 0.94 0.41 0.68 0.79 1.00 0.720

Table 4.2: MAE values for the aggregated short-term model of PoS W . The error values are displayed
for each forecast horizon in the short-term model and for all (combinations of) models. The errors of

the naive model are time-independent.

Model
MAE (e1000)

1 2 3 4

Naive 257 257 257 257
HWESM SP 206 308 362 409
HWESM G 324 392 436 466
SAR SP 153 213 236 252
SAR G 258 331 366 414
SARX SP 170 208 227 246
SARX G 254 329 366 416
DFM 370 386 397 408
All 181 233 262 285
All SP 159 223 252 273
All G 261 333 372 406
SAREXO 158 208 230 243
SP + SARX G 171 227 257 277
SP + SAR G 155 215 239 259

values that are significantly lower than those of the other three methods, but they do not differ

significantly from each other at a 95% level. A DM-test on the WMAPE and MAE values shows

that the WMAPEs of SAREXO are significantly lower than those of SAR SP at a 95% level,

and the MAEs of SAREXO are significantly lower than those of SAR SP at a 90% level.

Tables B.1 and B.2 in Appendix B show that for PoS X approximately the same results are

found and also the SAREXO model gives the best results. For both PoS’s the SAREXO models

outperform the naive model.
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Small PoS’s

In Tables 4.3 and 4.4 the short-term results of the error measures of PoS Y are given.

Table 4.3: Relative error values for the aggregated short-term models of PoS Y . For each forecast
horizon in the short-term model and for all (combinations of) models, the values of WMAPE and MSE
are given relative to the time-independent errors of the naive model, which are 15.79 % and 323 × 1010

respectively. Also the total PI coverage probabilities are provided per model.

Model
WMAPE MSE

PI probability
1 2 3 4 1 2 3 4

HWESM SP 0.17 0.36 0.50 0.55 0.02 0.11 0.20 0.24 0.990
HWESM G 0.41 0.69 0.90 1.08 0.14 0.33 0.57 0.83 0.859
SAR SP 0.35 0.88 1.09 1.28 0.12 0.66 1.02 1.43 0.990
SAR G 0.23 0.46 0.66 0.85 0.03 0.13 0.26 0.40 0.984
SARX SP 0.38 1.09 0.80 0.89 0.26 3.75 0.63 0.67 0.849
SARX G 0.23 0.45 0.67 0.86 0.03 0.12 0.27 0.41 0.979
DFM 1.50 1.74 1.77 1.80 2.28 3.10 3.22 3.37 0.657
All 0.19 0.42 0.42 0.47 0.03 0.19 0.15 0.19 1.000
All SP 0.22 0.61 0.52 0.59 0.05 0.55 0.24 0.29 0.984
All G 0.24 0.44 0.62 0.77 0.03 0.13 0.26 0.40 0.964
SAREXO 0.31 0.91 0.82 0.90 0.11 1.39 0.55 0.67 0.943
SP + SARX G 0.20 0.49 0.41 0.44 0.03 0.33 0.15 0.18 0.990
SP + SAR G 0.20 0.49 0.41 0.43 0.03 0.33 0.15 0.17 0.990

Table 4.4: MAE values for the aggregated short-term model of PoS Y . The error values are displayed
for each forecast horizon in the short-term model and for all (combinations of) models. The errors of

the naive model are time-independent.

Model
MAE (e1000)

1 2 3 4

Naive 1,109 1,109 1,109 1,109
HWESM SP 181 394 537 590
HWESM G 449 742 970 1,167
SAR SP 380 958 1,178 1,387
SAR G 246 498 717 916
SARX SP 416 1,185 861 962
SARX G 252 487 724 932
DFM 1,620 1,889 1,918 1,948
All 209 459 451 513
All SP 238 662 566 635
All G 262 479 673 830
SAREXO 339 981 884 979
SP + SARX G 212 536 444 477
SP + SAR G 211 534 444 464

There is no method that performs the best for all measures and forecast horizons. At the

forecast horizon of 3 and 4 months, the combined models SP + SARX G and SP + SAR

G have the lowest error measures, whereas HWESM SP has the lowest errors for a forecast

horizon of 1 and 2 months. The All combination regularly comes in with the second or third

best results. When applying the DM-test it is found that the MSE values of these four models

differ significantly from the other models, but not necessarily from each other. The same holds
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for the values of the WMAPE and MAE error measures. It is only found that for all 3 measures,

the values of SP + SAR G are significantly less than those of the SP + SARX G combination

at a 90% level.

In Tables B.3 and B.4 in Appendix B the results are given for PoS Z. For this PoS the

lowest errors are found for SP + SARX G and SP + SAR G. When the DM-test is used to

compare their MSE values, it was found that those of SP + SARX G are significantly less than

those of SP + SAR G. The WMAPE and MAE values do not differ significantly at a 95% level.

For both PoS Y and Z the naive model is being outperformed by the SP + SAR G and SP +

SARX G combinations.

4.1.3 Long-term model

The results of the long-term models, as mentioned in Section 3.4, can be separated in the large

PoS’s W and X, and the small PoS’s Y and Z. These PoS’s are all compared to a naive model.

For these models a training set of 4 years of data performed better than 3 years. The forecast

horizon consists of 5-12 months. The forecast horizons 1-4 months were tested as well but they

were all outperformed by the short-term model. For that reason only the results of 5-12 months

are displayed. Just as for the short-term model, the results per forecast horizon are summarized

for all the months in the year. This is also explained in Section 3.4.

Large PoS’s

The results presented here are a weighted mean of the results of the individual line groups of

PoS’s W and X. The results of PoS W are shown in this paragraph, and the results of PoS X

are shown in Figures B.5 - B.8 in Appendix B. Tables 4.5 - 4.8 display the results of PoS W .

Table 4.5: Relative WMAPE values for the aggregated long-term models of PoS W . Values are given
relative to the time-independent naive model, with error 8.80 %. The error values are displayed for each

forecast horizon in the long-term model and for all (combinations of) models.

Model
WMAPE

5 6 7 8 9 10 11 12

DFM 2.01 2.09 2.09 2.16 2.24 2.32 2.40 2.53
HWESM 1.58 1.64 1.61 1.60 1.55 1.46 1.38 1.38
SARIMA 1.54 1.64 1.81 1.94 2.25 2.46 2.69 2.96
All 1.46 1.50 1.51 1.50 1.58 1.61 1.66 1.76
HWESM-SAR 1.42 1.45 1.49 1.49 1.56 1.57 1.51 1.56
HWESM-DFM 1.57 1.57 1.54 1.48 1.44 1.40 1.36 1.40
DFM-SAR 1.62 1.70 1.76 1.89 2.08 2.22 2.38 2.59

By looking at Tables 4.5 - 4.7 it becomes very clear that the error measures of the naive model

are always the lowest. This means that for this PoS, the naive model is the best model. When

looking at the other models, the results of PoS W show that HWESM-SAR and HWESM-DFM

are the two next best models, without there being model that directly stands out. By applying

the DM-test on the MSE it is found that the MSE values of HWESM-SAR are significantly less

than those of HWESM-DFM at a 95% level. The same test for the WMAPE and MAE values

show no significant difference between the two models at a 95% significance level. When looking
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Table 4.6: Relative MSE values for the aggregated long-term models of PoS W . Values are given
relative to the time-independent naive model, with error 34 × 1010. The error values are displayed for

each forecast horizon in the long-term model and for all (combinations of) models.

Model
MSE

5 6 7 8 9 10 11 12

DFM 5.65 6.12 6.38 6.38 6.56 7.00 7.56 8.82
HWESM 2.50 2.76 2.29 2.21 2.21 1.74 1.74 1.74
SARIMA 1.97 2.12 2.59 2.85 3.94 4.65 5.88 7.65
All 2.35 2.35 2.32 2.12 2.15 2.06 2.18 2.65
HWESM-SAR 1.82 1.82 1.68 1.59 1.74 1.56 1.53 1.76
HWESM-DFM 2.85 2.82 2.53 2.18 1.82 1.53 1.38 1.56
DFM-SAR 3.18 3.41 3.79 3.88 4.44 4.91 5.79 7.21

Table 4.7: MAE values for the aggregated long-term models of PoS W . The error values are displayed
for each forecast horizon in the long-term model and for all (combinations of) models. The errors of the

naive model are time-independent.

Model
MAE (e1000)

5 6 7 8 9 10 11 12

Naive 257 257 257 257 257 257 257 257
DFM 519 547 557 570 589 612 641 690
HWESM 400 423 408 406 393 360 356 355
SARIMA 400 426 466 497 583 645 720 802
All 374 384 386 379 398 411 431 464
HWESM-SAR 362 366 373 375 389 390 383 403
HWESM-DFM 396 395 391 374 351 339 339 352
DFM-SAR 423 444 461 495 546 586 637 706

Table 4.8: Average PI coverage probability of the long-term models of PoS W .

DFM HWESM SAR ALL HWESM-SAR HWESM-DFM DFM-SAR

PI probability 0.781 0.829 0.911 0.912 0.912 0.854 0.915

at the results of PoS X in Appendix B, it can be seen that HWESM-DFM and the naive model

show the best results. HWESM-DFM performs better than the naive model if we look at the

WMAPE and MAE measures, except for a forecast horizon of 11 and 12 months. However, the

naive model shows better results for the MSE measure. By applying a DM-test on all three

error measures it can be shown that WMAPE values of HWESM-DFM are significantly less

than those of the naive model, the naive model has MSE values that are significantly less than

those of HWESM-DFM, and the MAE values do not differ significantly at a 95% level.

Small PoS’s

In Tables 4.9 - 4.12 the long-term results of PoS Y are displayed.

There can be seen that all the WMAPE values, all the MAE values, and all but one MSE

values of the HWESM-DFM model are the lowest, hence the best. By using the DM-test, it can

be said that the error values of HWESM-DFM for PoS Y are significantly less than the error

values of the other models at a 95% level. The coverage probability of the PIs is the lowest of
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Table 4.9: Relative WMAPE values for the aggregated long-term models of PoS Y . Values are given
relative to the time-independent naive model, with error 15.79 %. The error values are displayed for

each forecast horizon in the long-term model and for all (combinations of) models.

Model
WMAPE

5 6 7 8 9 10 11 12

DFM 0.88 1.01 1.08 1.08 1.04 0.96 1.01 1.08
HWESM 1.24 1.29 1.23 1.10 1.03 0.99 1.21 1.39
SARIMA 1.14 1.25 1.33 1.37 1.30 1.54 2.10 2.75
All 0.70 0.83 0.93 0.98 0.92 0.89 1.19 1.52
HWESM-SAR 1.17 1.20 1.18 1.15 1.02 1.11 1.61 1.94
HWESM-DFM 0.60 0.72 0.87 0.91 0.85 0.71 0.81 0.95
DFM-SAR 0.61 0.74 0.89 1.00 1.02 1.04 1.34 1.76

Table 4.10: Relative MSE values for the aggregated long-term models of PoS Y . Values are given
relative to the time-independent naive model, with error 323 × 1010. The error values are displayed for

each forecast horizon in the long-term model and for all (combinations of) models.

Model
MSE

5 6 7 8 9 10 11 12

DFM 0.79 1.16 1.35 1.30 1.23 1.02 1.10 1.09
HWESM 1.51 1.53 1.35 1.10 0.86 0.75 1.28 1.69
SARIMA 1.21 1.41 1.56 1.79 1.63 2.06 0.46 0.82
All 0.50 0.63 0.82 0.96 0.89 0.76 1.50 2.42
HWESM-SAR 1.31 1.36 1.3 1.25 1.00 1.07 2.41 4.02
HWESM-DFM 0.36 0.52 0.73 0.81 0.72 0.46 0.69 0.91
DFM-SAR 0.34 0.55 0.87 1.15 1.20 1.13 2.02 3.25

Table 4.11: MAE values for the aggregated long-term models of PoS Y . The error values are displayed
for each forecast horizon in the long-term model and for all (combinations of) models. The errors of the

naive model are time-independent.

Model
MAE (e1000)

5 6 7 8 9 10 11 12

Naive 1,109 1,109 1,109 1,109 1,109 1,109 1,109 1,109
DFM 977 1,124 1,201 1,199 1,155 1,061 1,117 1,198
HWESM 1,380 1,427 1,369 1,223 1,139 1,094 1,339 1,537
SARIMA 1,262 1,383 1,474 1,522 1,437 1,707 2,330 3,051
All 781 917 1,033 1,083 1,020 983 1,315 1,682
HWESM-SAR 1,293 1,334 1,308 1,272 1,130 1,228 1,790 2,153
HWESM-DFM 664 804 962 1,010 941 785 899 1,058
DFM-SAR 680 818 990 1,113 1,129 1,154 1,489 1,951

Table 4.12: Average PI coverage probability of the long-term models of PoS Y .

DFM HWESM SAR All HWESM-SAR HWESM-DFM DFM-SAR

PI probability 0.990 0.927 0.990 1.00 0.990 0.982 1.00

all the models, however this value is still 98.2 % while the PIs are 95% intervals. Hence, this is

a good result.

The results of PoS Z are a bit different, as can be seen in Tables B.9 - B.12 in Appendix

B. Here the naive model outperforms every other model for every error measure. By using a

DM-test, the HWESM-DFM combination can be called the second best model, as all its error
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measures are significantly less than the other six models at a 95% level. Only the MSE values

of DFM did not differ significantly from HWESM-DFM on a 95% level.

4.2 Discussion

First, the used attributes will be discussed. No results have been presented that show the out-

come when other attributes have been used, as this would be too extensive. However, there

can be said that for the small PoS’s the data was not consistent and sufficient enough to be

disaggregated into line groups, channels, cabins, and carriers. By dropping the line group and

the channel attribute, the overall data contained fewer missing values and proved to be more

useful. Also, the airline was not interested in the line group and channel attribute for small

PoS’s. For the large PoS’s the cabin attribute was left out of consideration. The results of the

large PoS’s with and without the cabin attribute were similar, but since the airline was not

interested in the cabin attribute for large PoS’s it was not included.

For the SARIMAX model the variables Capacity, ASK and PaxKM were tested. Since there

are many models for all the different attributes, there cannot be given a single significance value

for the variable coefficients. However, the inclusion of the capacity variable often led to in-

significant coefficients when selecting some attributes at random. Because of these results, this

variable was not included in the models. Also, the variables are all correlated, as an increase

in capacity, which is an increase in available seats, makes it possible for the PaxKM and ASK

to increase as well. Besides the SARIMAX model, it was expected that the possibility of using

multivariate data in the DFM would lead to better results as it could take into account interac-

tions between carriers, channels or cabins directly. However, the multivariate data unexpectedly

underperformed considerably compared to the univariate data, which led to the use of the uni-

variate data only.

Even though there was a lot of data available, not all the data could be used to test the

models. For example, as the necessary attributes could not always be applied to the historical

data, the usable data set decreased in size from the years 2005-2019 to 2015-2019. Besides that,

for the revenue curves and the cancellation data, only data from 2016-2019 was available, which

resulted in 3 years of training data and 1 year of test data. It would have been preferred to

have more years of data to train the models with. This would have also made it possible to test

the adaptive model on other years than 2019. This was not possible during this research, but

it is very much advised to do this in the future. The models already showed good results over

a large variety of PoS’s, line groups, channels, cabins, carriers, and months, but the addition of

extra years would show the performance of other years as well and it would have allowed the

current optimized lookback values to be tested on e.g. the year 2018.

Nonetheless, over the years flights schedules have been adjusted which resulted in new flight

routes or even the removal of routes within line groups. These changes can have a large effect on

the revenue, which could lead to increased inaccuracies when (outdated) data is used of routes

that are no longer flown. Hence, the lack of more years of data is not necessarily a huge issue.

Lastly, there must be mentioned that some revenue curves without cancellation data were tested,
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which enlarged the data set to the years 2015-2019. These results showed that the addition of

older data did not lead to better results, as the accuracies dropped. Since this data did not

include cancellation data, it was not sufficient for this research. However, it clearly showed that

the addition of extra data did not lead to better results for the 2019 forecast.

During this research, the focus lied on high-level revenue forecasting instead of individual

flights, as preferred by the airline. This led to the research as it is now and its minor issues

regarding for example the data. If the revenue of individual flights was supposed to be fore-

casted, a lot of data and new variables had become available, such as ticket prices, competition

for specific destinations, and recurrent flights. However, due to this increase in the amount of

available data, it would have taken a lot more time to find the right data and models for all the

different flights. Techniques that would have become more interesting to use in this case are

Neural Networks, as used in L. R. Weatherford et al. (2003), and Machine Learning methods.

For further research, this might be interesting to look into and possibly combine such methods

with the current time series methods to improve the forecast accuracy. As mentioned in Chap-

ter 1 regarding Makridakis et al. (2018), a model that consisted of a combination of time series

methods and Machine Learning outperformed other models.

Regarding the results of the short- and long-term models, it can be seen that the results of

the large PoS’s are not necessarily the same as for the small PoS’s, which shows that it was

helpful to look at these PoS’s separately. Within these sets of small and large PoS’s, there can

be seen some consensus in which models perform the best. Also, the model that comes out to

be the best is always either a combination of methods or the naive model. This shows that

combining forecasts is also profitable in revenue management for airlines.

For the short-term models, different models turned out to perform well. For both large PoS’s

the SAREXO combination showed the best results. For the small PoS’s, the results were not so

definite. PoS Y has four models for which the performance does not differ significantly, and PoS

Z has two best models for which only the MSEs differ significantly from each other, in favor

of SP + SARX G. For PoS Y , SP + SAR G and SP + SARX G would have scored better if

the results of SARX SP would not have been this bad for the 2 month forecast. Out of the

48 predictions for the whole year, 3 predictions caused errors that led to a monthly MSE 300

times the size of other months. Without these few bad predictions, the scores of SARX SP and

therefore SP + SARX G and SP + SAR G would have been a lot better for a 2 month forecast.

When this problem is dealt with, for both small PoS’s the model combinations SP + SARX G

and SP + SAR G will perform well for all forecast horizons. From the results of these two small

PoS’s none of these two models can be appointed to be the best model conclusively.

The best models outperform the naive model. This is very important because the naive

model resembles the current general idea of the forecasting methods of the airline. The short-

term models now forecast up to 4 months, however, during this research some combinations of

attributes were tested at random to see how they would perform if 5 or 6 months were forecasted.

These showed similar results as the 1-4 month forecasts and were therefore promising. Due to

the time in which this research had to be conducted, it was not possible to test these extended

forecast horizons in full, but it is believed that the short-term model can outperform the long-
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term model at a forecast horizon of 5 and 6 months, as it already outperformed the long-term

model for 1-4 months. For larger forecast horizons the revenue curves probably hold too little

information to predict accurately as only a small portion of tickets has been sold yet.

In this research revenue curves were used for the short-term model, which was a new approach

in revenue management. However, when using this data as a sawtooth pattern, the models that

are used in this research might not all be perfectly suited for the data. The SARIMA model,

for example, is best used when using time series as presented in Section 2.2, which was done

for the long-term model. However, to prevent the use of even more models for both short- and

long-term models, it was chosen to test the models on both the time series of Section 2.2 and

the revenue curves. The use of diffusion models was considered as these models can look at the

adoption of products, which are sold tickets in this case. However, since the revenue earned

per ticketing month only increases over time until the departure date, the data did not fit these

models either. Even though the short-term models showed good results, in order to optimize

the use of revenue curves extra research should be done to find models that fit the curves better.

Continuing on the use of the SARIMA model, it would have been informative if also an ARIMA

model with seasonal dummies was tested. For both the short- and long-term models, this would

have shown whether the use of the SARIMA model was the right choice. Unfortunately, there

was no time to test this at the end of the research.

The long-term models do not always outperform the naive models. This was not as expected,

as the models take into account both seasonality and trends, whereas the naive model is only a

simplified seasonal model. Nonetheless, when the forecast horizon increases to 12 months, the

uncertainties and error measures are bound to go up, which is something the naive model is not

affected by. Apart from the naive model, the model that almost always shows the best results

is HWESM-DFM. For PoS’s X and Y this combination often outperforms the naive model,

whereas it performs worse for PoS’s W and Z. For large PoS W also the HWESM-SAR com-

bination performs well, but since the HWESM-DFM outperforms HWESM-SAR significantly

for the other large PoS, PoS X, the HWESM-DFM is chosen to be the better combination out

of the two for large PoS’s. In the future, the airline wants to add business knowledge to the

models in order to make the models of the individual PoS’s more PoS-specific. This research

focused on creating a general model, but the addition of business knowledge might overcome

the outperformance by the naive model.

As mentioned in Chapter 1, Hyndman et al. (2002) stated that the ES models show good

results, especially for a forecast horizon up to 6 periods, and also that the ES models were

on the same level as ARIMA models. Looking at the short-term results, the SARIMA models

outperform the ES models most of the time. However, when looking at the long-term models,

the ES models seem to outperform the SARIMA models when the forecast horizon increases.

This is not perfectly in line with the research of Hyndman et al. (2002). Also interesting to

mention is the output of the DFMs. The DFM performs badly on the short-term model but is

part of the best combination for the long-term model. It was found that the error measures of

the DFM did not decrease as much when the forecast horizon decreased as the other models.

This led to poor performances on the short-term model, but relatively better performances on
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the long-term model. This was also the reason the DFM was not included in the All, All SP,

or even the All G model, as the error measures were simply too high to be useful in model

combinations.

Also, in Hyndman et al. (2002) it was mentioned that the models that obtained the best

MAPE values had the worst PI coverage probabilities. This statement was based on the results

of ES methods. When looking at the results of this research, similar patterns can be found.

If the short-term results are compared, especially between the SP and G models, there can be

said that the SP models have better WMAPE values than the G models of the same method,

but their PI coverage probability is much lower. The cause of this was the higher variance of

the errors in the G models, which resulted in PIs up to two times the size of those of the SP

models, which led to a higher coverage probability. Now the practical applications must be kept

in mind. A high coverage probability is preferred, but sometimes the PIs can become so large

that a PI becomes useless for the airline. That is why the PIs are mentioned but the best model

is not determined by them. Overall the best models hardly ever obtained PI coverage proba-

bilities equal to or larger than 95%, but combining forecasts increased the coverage probability

compared to the individual models.
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Chapter 5

Conclusion

During this research, it is investigated whether a forecasting model could be created that accu-

rately predicts monthly revenue for 12 months in the future in the airline industry. The data

is disaggregated into different small and large PoS’s, all with specific attributes such as cabins,

booking channels, line groups and carriers. These attributes divide the forecasts into subgroups.

Multiple time series methods are tested, for instance, HWESM, SARIMA and SARIMAX, as

well as the DFM. Next, these models are combined to improve performance. Also, a distinction

is made in the forecast horizon. A short-term model will forecast 1-4 months and a long-term

model will forecast 5-12 months.

It is found that the forecast accuracy of the short-term model for the first 4 months is higher

than when the long-term model is applied to the first 4 months. This shows the importance of

using different techniques for the two forecast horizons. Moreover, the attributes that are used

to disaggregate the data are PoS dependent. Large PoS’s benefit from using the line group,

booking channel and carrier attributes, whereas small PoS’s only require the cabin class and

carrier attributes. This indicates that a distinction between large and small PoS’s contributes to

the results. Also, for these small and large PoS’s, the models with the best accuracy consist of

different combinations of methods. For the short-term model, a combination between SARIMA

and SARIMAX performs best for the large PoS’s, whereas a combination of HWESM, SARIMA,

and SARIMAX leads to better results for the small ones. Both these combinations outperform

the naive model, which resembles the airline’s current model the most. For the long-term

forecast, one large and one small PoS showed the best results when HWESM and DFM were

combined, whereas the other two showed the best results when the naive model was used. For

these two PoS’s, the combination of HWESM and DFM performed second best.

The airline is advised to put the combined forecasting models found in this research into use

and thereby replacing their current naive model. Nonetheless, the long-term model will need

some improvements as it does not always outperform the naive model.

For future research it is recommended to extend the forecast horizon of the short-term model

as long as it outperforms the long-term model. Due to the period in which the research had to

take place, this was not investigated in full, but because of some random tests with the extended

forecast horizon, it is believed that the preferred 4-month forecast can be extended to 6 months.

Moreover, it is advised to use more years of historical data to test the optimal value for the

lookback for the adaptive model, even though some tests pointed out that using older data will

not improve the results. The absence of more data limited this research in testing the models

and the current optimal value of the lookback on years other than 2019.
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Appendix A

Appendix: Figures

A.1 Data Figures

(a) Economy class. (b) Premium class.

(c) First class. (d) Business class.

Figure A.1: Monthly revenues in millions of euros of the cabin classes of PoS Y from January 2015 -
December 2019.
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(a) Economy class and Direct Online channel. (b) Business class and Direct Online channel.

(c) Economy class and Indirect Online channel. (d) Business class and Indirect Online channel.

(e) Economy class and Direct Offline channel. (f) Business class and Direct Offline channel.

(g) Economy class and Indirect Offline channel. (h) Business class and Indirect Offline channel.

Figure A.2: Monthly revenue in millions of euros of PoS W when both the cabin class and the
booking channel attributes are used to disaggregate the data, from January 2015 - December 2019.
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(a) Economy class revenue curves for flights departing
in January.

(b) Economy class revenue curves for flights departing
in July.

(c) Business class revenue curves for flights departing
in January.

(d) Business class revenue curves for flights departing
in July.

Figure A.3: Cabin class revenue curves of all the tickets bought in PoS W for the years 2016 - 2019.
The cumulative percentage of the total earned revenue is given x months before departure.
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Appendix B

Appendix: Results

B.1 Short-term models

B.1.1 Point of Sale X

Table B.1: Relative error values for the aggregated short-term models of PoS X. For each forecast
horizon in the short-term model and for all (combinations of) models, the values of WMAPE and MSE
are given relative to the time-independent errors of the naive model, which are 8.04 % and 124 × 1010

respectively. Also the total PI coverage probabilities are provided per model.

Model
WMAPE MSE

PI probability
1 2 3 4 1 2 3 4

HWESM SP 0.66 1.00 1.17 1.29 1.29 2.14 2.22 2.37 0.476
HWESM G 0.98 1.39 1.57 1.73 2.59 3.31 3.65 3.94 0.756
SAR SP 0.52 0.77 0.80 0.90 0.55 0.85 0.70 0.79 0.726
SAR G 1.00 1.42 1.61 1.82 2.96 3.87 4.21 4.6 0.782
SARX SP 0.50 0.70 0.80 0.90 0.58 0.69 0.73 0.81 0.561
SARX G 0.99 1.41 1.60 1.82 2.92 3.8 4.15 4.56 0.783
DFM 1.18 1.25 1.29 1.31 1.16 1.24 1.29 1.33 0.477
All 0.59 0.87 0.98 1.09 0.77 1.19 1.29 1.41 0.809
All SP 0.51 0.76 0.85 0.94 0.52 0.96 0.99 1.06 0.683
All G 0.93 1.33 1.52 1.70 2.66 3.43 3.73 4.05 0.782
SAREXO 0.49 0.73 0.79 0.89 0.40 0.69 0.70 0.77 0.712
SP + SARX G 0.53 0.77 0.87 0.95 0.44 0.8 0.87 0.95 0.768
SP + SAR G 0.49 0.73 0.80 0.89 0.41 0.77 0.83 0.91 0.795
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Table B.2: MAE values for the aggregated short-term model of PoS X. The error values are displayed
for each forecast horizon in the short-term model and for all (combinations of) models. The errors of

the naive model are time-independent.

Model
MAE (e1000)

1 2 3 4

Naive 628 628 628 628
HWESM SP 503 708 781 837
HWESM G 688 909 991 1,055
SAR SP 336 478 490 537
SAR G 731 961 1,051 1,148
SARX SP 343 452 489 534
SARX G 727 952 1,044 1,144
DFM 666 699 716 725
All 411 570 621 670
All SP 358 511 550 591
All G 678 896 990 1,072
SAREXO 316 460 485 530
SP + SARX G 351 497 535 572
SP + SAR G 333 478 511 549

B.1.2 Point of Sale Z

Table B.3: Relative error values for the aggregated short-term models of PoS Z. For each forecast
horizon in the short-term model and for all (combinations of) models, the values of WMAPE and MSE
are given relative to the time-independent errors of the naive model, which are 9.62 % and 5.90 × 1010

respectively. Also the total PI coverage probabilities are provided per model.

Model
WMAPE MSE

PI probability
1 2 3 4 1 2 3 4

HWESM SP 0.70 1.43 1.70 1.66 0.47 2.02 2.88 2.85 0.620
HWESM G 0.99 1.67 2.05 2.23 0.83 2.64 4.24 5.19 0.901
SAR SP 0.61 0.94 1.07 1.14 0.34 0.73 0.93 1.24 0.776
SAR G 0.82 1.42 1.75 1.98 0.61 1.93 3.19 4.31 0.901
SARX SP 0.63 0.99 1.31 1.30 0.37 0.81 2.25 1.76 0.703
SARX G 0.81 1.34 1.67 1.90 0.58 1.78 2.95 4.07 0.896
DFM 1.52 1.47 1.47 1.45 1.92 1.78 1.76 1.73 0.474
All 0.55 0.92 1.10 1.12 0.27 0.73 1.17 1.20 0.927
All SP 0.58 0.95 1.15 1.11 0.29 0.75 1.17 1.03 0.886
All G 0.76 1.30 1.59 1.81 0.51 1.61 2.63 3.49 0.907
SAREXO 0.58 0.91 1.18 1.13 0.31 0.68 1.27 1.08 0.880
SP + SARX G 0.51 0.85 1.00 0.94 0.25 0.63 0.95 0.83 0.907
SP + SAR G 0.50 0.85 1.01 0.96 0.24 0.63 0.97 0.85 0.917
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Table B.4: MAE values for the aggregated short-term model of PoS Z. The error values are displayed
for each forecast horizon in the short-term model and for all (combinations of) models. The errors of

the naive model are time-independent.

Model
MAE (e1000)

1 2 3 4

Naive 195 195 195 195
HWESM SP 130 264 314 307
HWESM G 183 310 380 413
SAR SP 114 175 198 211
SAR G 152 262 324 367
SARX SP 116 184 242 240
SARX G 150 248 309 352
DFM 282 272 272 269
All 101 170 203 207
All SP 107 176 213 205
All G 140 241 295 335
SAREXO 107 168 218 210
SP + SARX G 94 158 184 174
SP + SAR G 93 157 186 178

B.2 Long-term models

B.2.1 Point of Sale X

Table B.5: Relative WMAPE values for the aggregated long-term models of PoS X. Values are given
relative to the time-independent naive model, with error 8.04 %. The error values are displayed for each

forecast horizon in the long-term model and for all (combinations of) models.

Model
WMAPE

5 6 7 8 9 10 11 12

DFM 1.16 1.15 1.15 1.15 1.12 1.11 1.12 1.13
HWESM 1.10 1.15 1.16 1.18 1.20 1.21 1.21 1.18
SARIMA 1.21 1.29 1.36 1.46 1.60 1.80 1.98 2.19
All 0.96 0.98 0.99 1.00 1.04 1.10 1.18 1.23
HWESM-SAR 1.06 1.10 1.13 1.18 1.25 1.34 1.42 1.48
HWESM-DFM 0.95 0.96 0.97 0.95 0.96 0.95 1.00 1.02
DFM-SAR 1.01 1.03 1.05 1.09 1.13 1.22 1.32 1.44
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Table B.6: Relative MSE values for the aggregated long-term models of PoS X. Values are given
relative to the time-independent naive model, with error 124 × 1010. The error values are displayed for

each forecast horizon in the long-term model and for all (combinations of) models.

Model
MSE

5 6 7 8 9 10 11 12

DFM 1.41 1.44 1.48 1.50 1.40 1.37 1.37 1.50
HWESM 1.60 1.85 1.90 1.73 2.15 2.06 2.21 1.69
SARIMA 1.37 1.40 1.85 2.51 3.69 5.29 6.83 8.07
All 0.93 0.92 1.02 1.01 1.28 1.59 2.04 2.11
HWESM-SAR 1.20 1.26 1.40 1.51 2.16 2.73 3.31 3.37
HWESM-DFM 1.02 1.05 1.14 1.05 1.15 1.17 1.35 1.21
DFM-SAR 0.97 0.93 1.06 1.15 1.38 1.85 2.52 2.99

Table B.7: MAE values for the aggregated long-term models of PoS X. The error values are displayed
for each forecast horizon in the long-term model and for all (combinations of) models. The errors of the

naive model are time-independent.

Model
MAE (e1000)

5 6 7 8 9 10 11 12

Naive 628 628 628 628 628 628 628 628
DFM 736 735 740 743 721 717 725 746
HWESM 700 722 730 732 751 757 779 720
SARIMA 743 781 827 911 1,043 1,209 1,368 1,537
All 591 594 601 621 653 722 783 819
HWESM-SAR 649 663 690 730 788 881 949 986
HWESM-DFM 595 592 602 597 612 610 665 662
DFM-SAR 627 631 643 677 724 798 891 971

Table B.8: Average PI coverage probability of the long-term models of PoS X.

DFM HWESM SAR ALL HWESM-SAR HWESM-DFM DFM-SAR

PI probability 0.783 0.787 0.898 0.903 0.896 0.842 0.910

B.2.2 Point of Sale Z

Table B.9: Relative WMAPE values for the aggregated long-term models of PoS Z. Values are given
relative to the time-independent naive model, with error 9.62 %. The error values are displayed for each

forecast horizon in the long-term model and for all (combinations of) models.

Model
WMAPE

5 6 7 8 9 10 11 12

DFM 1.23 1.30 1.32 1.33 1.30 1.23 1.31 1.29
HWESM 1.59 1.77 1.98 2.13 2.23 1.85 1.58 1.29
SARIMA 1.42 1.56 1.85 2.14 2.33 2.47 2.80 2.96
All 1.08 1.15 1.28 1.49 1.52 1.47 1.54 1.39
HWESM-SAR 1.37 1.48 1.64 2.00 2.07 1.97 1.99 1.98
HWESM-DFM 1.03 1.10 1.18 1.35 1.41 1.22 1.24 1.14
DFM-SAR 1.07 1.16 1.30 1.4 1.47 1.54 1.71 1.57

46



Table B.10: Relative MSE values for the aggregated long-term models of PoS Z. Values are given
relative to the time-independent naive model, with error 5.90 × 1010. The error values are displayed for

each forecast horizon in the long-term model and for all (combinations of) models.

Model
MSE

5 6 7 8 9 10 11 12

DFM 1.64 1.78 1.85 1.97 1.95 1.75 1.98 1.97
HWESM 4.69 5.27 6.19 6.98 7.00 4.78 3.12 2.15
SARIMA 2.95 3.10 4.97 7.05 7.93 8.00 10.12 11.66
All 1.53 1.61 2.22 3.08 3.24 2.51 2.95 2.83
HWESM-SAR 3.08 3.22 4.49 6.00 6.39 5.25 5.32 5.56
HWESM-DFM 1.42 1.47 1.71 2.27 2.32 1.53 1.63 1.34
DFM-SAR 1.25 1.49 2.03 2.66 2.8 2.47 3.51 3.42

Table B.11: MAE values for the aggregated long-term models of PoS Z. The error values are
displayed for each forecast horizon in the long-term model and for all (combinations of) models. The

errors of the naive model are time-independent.

Model
MAE (e1000)

5 6 7 8 9 10 11 12

Naive 195 195 195 195 195 195 195 195
DFM 241 254 257 260 253 241 256 252
HWESM 311 345 387 416 435 361 308 252
SARIMA 277 304 360 418 456 482 546 577
All 210 225 250 290 298 287 301 272
HWESM-SAR 269 289 320 390 404 386 389 387
HWESM-DFM 202 214 231 263 275 238 242 223
DFM-SAR 210 227 253 274 287 301 333 307

Table B.12: Average PI coverage probability of the long-term models of PoS Z.

DFM HWESM SAR ALL HWESM-SAR HWESM-DFM DFM-SAR

PI probability 0.904 0.930 0.997 0.987 0.979 0.948 1.00
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