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Abstract

Recently, Koning and Hemerik (2021) have developed a method to enhance the power of group-

invariance tests by using subgroups instead of uniform sampling from the group. For a location

model, they find it possible to derive Oracle subgroups for which the distribution of the test statistic

is equal under the null and alternative hypothesis. In this thesis, I examine the application of this

method to permutation tests for positive serial dependence in binary sequences. These types of tests

are extensively studied within the hot hand fallacy literature. Since derivations of Oracle subgroups

is not feasible for the type of tests studied here, I have developed a heuristic approach to identifying

subgroups that beat a Monte Carlo sample of permutations of the same size. I show that this heuristic

is successful at identifying these types of subgroups for sequences of lengths 9 and 20. Furthermore,

I present a systematic approach to gain insight into why some subgroups achieve a higher power

than others in tests for positive serial dependence in binary sequences. This approach is successful

in explaining differences in power for subgroups of S6.

Keywords: Group-Invariance Tests, Permutation Tests, Hot Hand Fallacy, Binary Sequences
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1 Introduction

Traditional hypothesis testing relies on the derivation of the distribution of the test statistic under

the null hypothesis. Given a pre-specified level α, which should fix the type I error rate, the critical

value of the test can be determined from the derived null distribution of the test statistic. The

disadvantages associated with this method can be attributed to the first step, deriving the distribution

of the test statistic under the null. These derivations require a distributional assumption on the data

generating process (DGP). Many conventional statistical tests assume that the data originate from a

distribution that is approximately normal. If this assumption holds, the type I error rate is controlled,

and therefore the test is referred to as exact. If this assumption does not hold, the size of the test

is not guaranteed to be equal to α and thus the test is not exact. Moreover, when the test statistic

becomes more complicated, analytical derivations of the null distribution might not be available at

all.

Luckily, other methods of hypothesis testing exist that can circumvent these issues. One of these

alternative methods are permutation tests, which were already described by Fisher in the 1930s

(Fisher, 1937, Chapter 2). Fisher wrote about permutation tests ‘the statistician does not carry out

this very simple and very tedious process, but his conclusions have no justification beyond the fact

that they agree with those which could have been arrived at by this elementary method’. Given

the computational power at hand today, these ‘tedious’ calculations have become available to all. In

general, a permutation test is applicable in situations where the distribution of the test statistic under

the null hypothesis does not change upon permutations of the data (Ernst et al., 2004). For example,

under the null hypothesis that two samples {Xi}ni=1 and {Yi}ni=1 have equal means, interchanging

some of the elements of the groups should not affect the distribution of the test statistic Ȳ − X̄. The

critical value in a permutation test is based on the permutation distribution of the test statistic. This

permutation distribution is obtained by calculating the test statistic for all possible permutations

of the data. The critical value is then given by the α-upper or -lower quantile of the permutation

distribution of the test statistic. If the original value of the test statistic is more extreme than the

critical value, the null hypothesis is rejected. (Lehmann and Romano, 2005, Chapter 15.2)

Recently, Koning and Hemerik (2021) have developed a new method to enhance the power of

permutation tests. The authors illustrate their method using a location model. The aim of this

thesis is to examine whether their method can be extended to other settings. More specifically, I

investigate the possibility of increasing the power of permutation tests for positive serial dependence

in binary sequences based on the methodology of Koning and Hemerik (2021).
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Advantages of permutation tests over traditional hypothesis testing

The main advantage of permutation tests over traditional hypothesis testing is that the level of the

test is assured under weaker assumptions. Therefore permutation tests are more reliable in various

situations. This can be illustrated by two examples from different fields, namely treatment-control

studies and the examination of the hot hand.

The benefits of permutation tests in treatment-control studies were already pointed out by Lud-

brook and Dudley (1998) and Berger (2000). However, as the authors noted, traditional t- and

F-tests remained the standard within biomedical research. Two decades after these articles were

published, Young (2019) examined whether the results of 53 recent treatment-control studies could

be reproduced with permutation tests. In the original studies, the authors based their results on

conventional hypothesis testing. Young (2019) found that 22% of the results that were reported to

be significant on a 1% level, were no longer significant when using permutation tests. This number

even increased to 49% for joint test of significance. This reported discrepancy was assigned to the

presence of high leverage points, which highly influence estimates of coefficients and standard er-

rors and therefore make the results volatile. For a t-test, the presence of these high leverage points

generates t-distributions with fatter tails than those of the assumed distribution of the test statistic

under null. As a result, the size of the test is larger than desired. This is where the advantage of the

permutation tests comes forward. In a treatment-control experiment, the act of random assignment

of the treatment and control group is sufficient to perform exact permutation tests (Ernst et al.,

2004; Hemerik and Goeman, 2021).

Another example that illustrates the benefits of permutation tests is within the hot hand litera-

ture. Here, it was shown by Miller and Sanjurjo (2018b) that the paired t-tests conducted by Gilovich

et al. (1985) suffered from a substantial small sample bias. This could be rectified by applying a bias

correction. However, such a bias correction could be omitted altogether by simply using permutation

tests.

Approximating the permutation distribution of a test statistic

One limitation of permutation tests is that the total number of permutations of a sample increases

rapidly with the size of the sample. Consequently, for larger samples, it is computationally infeasible

to obtain the exact permutation distribution by calculating the test statistic for all possible permu-

tations. An easy solution is to approximate the permutation distribution by Monte Carlo sampling

from the permutation distribution. An approximate permutation distribution of the test statistic is
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then obtained by calculating the test static only for a random set of permutations, which is uniformly

sampled from the entire group of permutations. If the permutation distribution is approximated in

this way, the permutation test is still exact. Koning and Hemerik (2021) state that the number

of random permutations required to obtain replicable results and adequate power is usually several

times higher than α−1. For example, if α = 0.05, typically a set of 200-5000 random permutations

is used.

Novel method that replaces uniform sampling from the permutation distribution

For some applications, using such a large set of random permutations is too computationally ex-

pensive. (Kofler and Schlötterer, 2012) A smaller number of random permutations can be used but

this leads to a loss in power and less replicability. Recently, Koning and Hemerik (2021) have devel-

oped a method that provides a solution for both of these issues. Their method substitutes uniform

sampling from the permutation distribution by using a subgroup of the permutation group. This

new method has two advantages over the conventional practice. First, given a specific subgroup, the

results of the test are fully replicable as they do not depend on random sampling from the permu-

tation distribution. Second, Koning and Hemerik (2021) are able to identify subgroups for which

the power of the permutation test is higher than it would be when an equally-sized random sample

of permutations is used. Hence, there exist relatively small subgroups that can obtain a power that

would require much more randomly sampled permutations. Using such a subgroup would decrease

the computational burden of a permutation test compared to using a random set of permutations,

without compromising on power.

Aim and overview of this thesis

Koning and Hemerik (2021) illustrate their new method to enhance the power of group-invariance

tests with a location model. Permutation tests are a subclass of these group-invariance tests. The

aim of this thesis is to investigate whether the methodology of Koning and Hemerik (2021) can be

extended to another setting. More specifically, I will aim to identify subgroups of the permutation

group that enhance the power of permutation tests for positive serial dependence in binary data.

To summarize, the central question of this thesis is: ‘How to identify subgroups of the permutation

group that obtain a higher power in a permutation test for positive serial dependence in binary

sequences than an equally-sized random sample of permutations?’ To simplify notation, I will refer

to tests of positive serial dependence in binary data as tests for ‘streakiness’ and to subgroups that

5



outperform a random sample of permutations in such tests as ‘streak-breaking’ subgroups.

Permutation tests for streakiness in binary sequences are common within the ‘hot hand’ literature.

Throughout this thesis, I will use the hot hand debate as a motivating example and examine an

alternative hypothesis and test statistic often applied in this body of literature. In Chapter 2, I

give a brief overview of the literature that examines the existence of the hot hand within basketball.

However, with this thesis, I aim to explore new methodology rather than contribute to the hot hand

debate. As such, the particular binary sequences studied in this thesis are not fully representative of

those studied within the hot hand literature.

I will aim to identify streak-breaking subgroups for binary sequences of lengths 6, 9, and 20.

However, due to the complex nature of the test statistic and DGP examined, I am not able to

use the same approach as Koning and Hemerik (2021) and analytically derive properties of streak-

breaking subgroups. Therefore, I have explored other methods to identify streak-breaking subgroups.

In Chapter 5, I focus on short sequences of length 6 as this allows for calculating the power in a

test for streakiness for all subgroups of a given order. For sequences of length 6 and a specific

parametrization of the alternative hypothesis, I identify the best- and worst-performing subgroups

of order 24 in a test for streakiness. I find that there exists a subgroup that not only outperforms

an equally-sized random sample of permutations but even the entire group of permutations. In

addition, I invest the relation between the performance and the structure of these subgroups which

would make it possible to identify streak-breaking subgroups a priori. Unfortunately, the resulting

relation is based on discreetness effects of the short sequence length studied and hence can not be

generalized to longer sequence lengths. For longer sequences, it is computationally infeasible to

identify streak-breaking subgroups by investigating all possible subgroups. Therefore, in Chapter 6

and Chapter 7, I formulate a heuristic that selects candidate streak-breaking subgroups for sequences

of length 20 (Chapter 6) and length 9 (Chapter 7). I find that the heuristic is able to identify streak-

breaking subgroups that outperform a random sample of permutations for various parameterizations

of the alternative hypothesis. Moreover, this heuristic approach has the potential to be extended to

longer sequences
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2 Motivating example

I will use the statistical examination of the existence of the hot hand as a motivating example

throughout this thesis. The hot hand literature aims to identify whether there is positive serial

dependence in shot sequences of basketball players. In this section, I will give a quick overview of

the origin and the current state of the hot hand debate. However, tests for streakiness in binary

data also have other applications. For example, within empirical finance to assess serial dependence

in asset returns. (Fama, 1965; Ritzwoller and Romano, 2021)

Initial study of the hot hand

The study of the hot hand was initiated by Gilovich et al. (1985). These authors noted that within the

basketball community there is a firm belief that when a player is on a winning streak, he has a higher

probability than usual to make the next shot. When a player is on such a winning streak, he is said

to have a ‘hot hand’. The authors compared basketball enthusiasts’ belief in such a hot hand with

the statistical evidence for its existence. To statistically examine the existence of the hot hand, GVT

conducted a controlled shooting experiment to rule out external factors such as defensive pressure.

The shooting experiment included 26 basketball players from Cornwell University’s basketball team.

Each player took 100 shots from a fixed distance for which it was estimated that the player would

make 50% of the shots. If the hot hand were to exist, the shot sequences should contain more streaks

than what would be expected from a random Bernoulli sequence with success probability=0.5. Hence,

the null hypothesis that the sequences are generated by a random Bernoulli process should be tested

against some streak generating alternative.

To test this null hypothesis, the conditional probability of a hit after a streak of l hits was

compared with the conditional probability of a hit after a streak of l misses for l = 1, 2, 3. A paired

t-test of the null hypothesis E[P̂(hit | l hits) − P̂(hit | l misses)] = 0 failed to reject for all but one

player. Based on these results, the authors concluded the belief in the hot hand to be an illusion.

Follow-up studies to Gilovich et al. (1985)

Since the initial study of Gilovich et al. (1985) multiple replication studies have been conducted. For

example, Avugos et al. (2013) performed a similar controlled shooting experiment with Olympian

athletes that take 40 shots. Koehler and Conley (2003) examined the existence of the hot hand in

four years of data from the NBA three-point shooting contest. The results of both of these studies
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are in agreement with the results of the initial study of Gilovich et al. (1985) and no evidence for

the existence of the hot hand was found.

However, recently it has been pointed out that the experimental set-up and statistical analysis of

these studies suffer from two flaws that, when corrected for, reverse the conclusion of these studies.

(1) The analysis of the conditional hit probabilities with a paired t-tests suffers from a substantial

small sample bias as was discovered by Miller and Sanjurjo (2018b). This can be adjusted for by using

a bias correction or by simply using permutation tests. (2) The tests used in the above mentioned

studies are underpowered for plausible specifications of the alternative hypothesis and longer shot

sequences are required to obtain sufficiently powered tests. (Miller and Sanjurjo, 2018a; Ritzwoller

and Romano, 2021).

After applying a bias correction, Miller and Sanjurjo (2018b) find evidence of hot hand shooting

for both the study of Gilovich et al. (1985) and Avugos et al. (2013). Moreover, to obtain a higher

power for these tests, Miller and Sanjurjo (2018a) and Miller and Sanjurjo (2021) examined longer

shot sequences from, respectively, a controlled shooting experiment and the NBA three-point shooting

contest. In both of these studies evidence of hot hand shooting was found.

Implications of the hot hand debate

Gilovich et al. (1985) concluded that the belief in the hot hand is a fallacy and attributed this

misperception to the belief in the ‘law of small numbers’. The law of small numbers was introduced

by Tversky and Kahneman (1971) and refers to the fact that people ‘tend to regard a sample randomly

drawn from a population as highly representative, that is, similar to the population in all essential

characteristics.’ Otherwise stated, the belief in the law of small numbers refers to the wrongful belief

that the law of large numbers is applicable to small samples. Gilovich et al. (1985) state that due to

the believe in the law of small numbers, basketball enthusiasts will perceive streaks of hits as overly

representative of the dependence in the sequence. Hence, when they are confronted with a sequence

of hits, they overestimate the serial dependence in the sequences and conclude that the sequence is

not just generated by a random process but some other factors (the hot hand) must be in play.

Since the influential study of Gilovich et al. (1985), the hot hand ‘fallacy’ has been regarded as a

convincing example of the belief in the law of small numbers. Since then, this human misperception

of randomness has been incorporated in standard models used in behavioral finance and economics.

(Barberis and Thaler, 2003; Barberis, 2018)

However, due to the newly found evidence of hot hand shooting, it is not certain anymore whether
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the believe in the hot hand actually is a fallacy. The question remains whether the deviation from

randomness in basketball shooting is in accordance with people’s perception of the hot hand and

thus whether the belief in the hot hand is a fallacy or not.
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3 Theory

In this chapter, I will give an overview of the theoretical framework on which this thesis is based.

First, some key concepts from group theory will be discussed that are essential to the understanding

of this research. Following, I will explain the principles of a group-invariance test and give a short

overview of the method developed by Koning and Hemerik (2021) to enhance the power of these

tests using subgroups. Although the methodological approach taken in this thesis differs from that

of Koning and Hemerik (2021), the key concept of using subgroups in group-invariance tests finds

its origin here.

3.1 Group theory

In his book on group theory, (Armstrong, 1988) Armstrong introduces groups with the statement

‘Numbers measure size, groups measure symmetry’. Armstrong (1988) formally defines a group as

‘a set G together with a multiplication on G which satisfies three axioms:

1. The multiplication is associative, that is to say (xy)z = x(yz) for any three (not necessarily

distinct) elements from G.

2. There is an element e in G, called the identity element, such that xe = x = ex for every x in

G.

3. Each element x of G has a (so-called) inverse x−1 which belongs to the set G and satisfies

x−1x = e = xx−1.’

In this definition ‘multiplication’ should not be interpreted in the usual sense but as an operation

that combines elements of a set.

Example. A simple example of a group is the set of all integers Z along with addition as the mul-

tiplication operator, annotated by G = (Z,+). To verify this is a group, we can check whether G

satisfies the above three axioms.

1. As (x+ y) + z = x+ (y + z) for x, y, z ∈ Z, the multiplication is associative.

2. The set contains an identity element, namely 0, as x+ 0 = x for all x ∈ Z.

3. As x+(−x) = 0 for all x ∈ Z, the inverse of x is equal to −x and hence the inverse of x belongs

to the set Z.
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Three other key properties common to all groups are: (1) the identity element of a group is unique,

(2) the inverse of each element x ∈ G is unique, and (3) a group is closed under multiplication. The

latter property means that, for every x, y ∈ G it holds that xy ∈ G. The number of elements in a

group is referred to as the order of the group and denoted by | G |.

Subgroups

A subgroup of a group G is defined as ‘a subset of G which itself forms a group under the multipli-

cation of G’. A subset H of G forms a subgroup if, (1) the identity element of G belongs to H; (2)

for all x, y ∈ H, the product xy is an element of H; (3) the inverse of each element in H, which by

definition is a member of G, is contained in H.

Example. The even integers, denoted by 2Z, are a subset of Z. Moreover, 2Z also forms a subgroup of

the group Z under addition. The latter statement can be verified by checking the three requirements

for subgroups given above.

1. The identity element of Z, namely 0, is an element of 2Z.

2. For all x, y ∈ 2Z, x+ y ∈ 2Z. Thus the product xy in an element of the subgroup 2Z.

3. The inverse of x ∈ 2Z equals −x. As −x is an even integer it is contained in 2Z.

Permutations

As this thesis focuses on permutation tests, I will discuss some essential properties of (sub)groups

of permutations in more detail. A permutation on a set X is defined as a bijection of X onto itself.

The collection of all permutations of X forms a group under composition of functions and is denoted

by SX . ‘Composition of functions’ means that for two permutations σ and τ , στ(x) = σ(τ(x)).

Verifying that SX indeed forms a group under composition of functions can be done by checking the

three requirements for a group using the properties of a bijection and composition of functions. (1)

Composition of functions is associative; (2) there is a permutation ε which leaves all elements of X

fixed and hence is the identity element of the group; (3) as each permutation σ is a bijection, it has

an inverse σ−1. Hence, SX satisfies all three criteria. Finally, when the set X consists of the first n

positive integers, SX is referred to as the symmetric group of degree n and is denoted by Sn.

Now I introduce two notations of permutations that will be used throughout this thesis.
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Example. Consider the permutation σ ∈ S6 which is defined by σ(1) = 5, σ(2) = 6, σ(3) = 1,

σ(4) = 4, σ(5) = 3 and σ(6) = 2.

Cyclic form notation. σ = (153)(26). In a cyclic form notation, each integer within the brackets is

mapped onto the integer on its right. The last integer within the brackets is mapped onto the first

integer. Note that the integer 4 is not included in this notation as it is mapped onto itself.

Array form notation. σ = [3, 6, 5, 4, 1, 2]. In the array form notation of σ, the indices are places

on their new positions.

To finish this section on permutations, I provide some more definitions that will be used in Chapter 6.

A cyclic permutation is a permutation with a single pair of brackets i.e. τ = (162). The permutation

σ = (153)(26) is the product of two disjoint cyclic permutations. Every permutation in Sn can be

written as either a cyclic permutation or the product of multiple disjoint cyclic permutations. A

cyclic permutation of length k is called a k-cycle. Hence, σ consists of a 3-cycle and a 2-cycle.

Cyclic subgroups

In Chapter 6, I solely focus on finding cyclic streak-breaking subgroups, as cyclic subgroups have some

useful properties. One of these properties is that the order of a cyclic subgroup can be determined

easily. In this section, I will explain what cyclic subgroups are and give a formula for the order of

cyclic subgroups.

A cyclic subgroup of G can be created by taking an element x ∈ G and the set of all powers of

x. Such a cyclic subgroup is denoted by < x > and x is referred to as the generator of the group.

It can be verified that the set < x > actually forms a subgroup by checking the requirements of a

subgroup: (1) the identity element of G is equal to x0 and hence the identity element of G belongs

to < x >; (2) xixj = xi+j and hence the product of xi and xj is an element of < x >; (3) the inverse

of xn is equal to x−n which is an element of < x >.

Example. Given the permutation σ = (1234) ∈ S4, the cyclic subgroup < σ > consists of the elements

{σ = (1234), σ2 = (13)(24), σ3 = (1432), σ4 = ε}.

Subgroups can also be constructed by selecting multiple generators and subsequently closing the

group. However, subgroups created in this way are not termed ‘cyclic’ subgroups. Note the difference

between a cyclic permutation and a cyclic subgroup. A cyclic permutation is a permutation consisting
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of only one pair of brackets, a cyclic subgroup is a subgroup generated by just one permutation.

The order of the above described cyclic subgroup < σ > is equal to 4. For all subgroups of Sn

generated by a cyclic permutation - a permutation consisting of one k-cycle - the order will equal k.

When a cyclic subgroup of Sn is generated by a permutation that is the product of disjoint cyclic

permutations, the order can be determined with the following formula. Let σ be a product of r

disjoint cyclic permutations of length k1, k2, ..., kr. Then the order of < σ > equals

| < σ > | = lcm(k1, k2, ..., kr), (1)

where lcm denotes the least common multiple. For a formal proof of this theorem refer to Proposition

9.8 of Humphreys (1996). For an intuitive explanation of this theorem consider the permutation

σ = (153)(26). The order of the cyclic subgroup < σ > will be equal to the smallest integer s for

which σs = ε. In other words, the order of < σ > is equal to the number of times the permutation

σ has to be repeated until all elements will have ended up in their initial position. In this case,

after 3 repetitions of σ elements 1, 5, 3 will be in their initial position but elements 2 and 6 will be

interchanged. The smallest value of s for which σs = ε equals 6, which is the least common multiple

of 2 and 3.

3.2 Group-invariance tests

Permutation tests are a subclass of group-invariance tests. In this section, I will give a brief explana-

tion of the construction of group-invariance tests and describe the new methodology of Koning and

Hemerik (2021) to enhance the power of these tests by using specific subgroups instead of uniform

sampling from the group.

Group-invariance assumption

A group-invariance test is based on the assumption that under the null hypothesis, the distribution

of the data is invariant under the transformations of a group. Hence, group-invariance tests do not

rely on a parametric, distributional assumption.

If the group-invariance assumption holds, the size of the test is controlled. For a formal proof of

this statement, refer to Theorem 1 of Hemerik and Goeman (2021). It is a crucial element of this

proof that the set of transformations used actually forms a group. If the set of transformations used

does not form a group, the test is not guaranteed to be exact.

I will now give two examples of a group-invariance assumption.
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Example. For a permutation tests with data x = [x1, x2, ..., xn], the group-invariance assumption is

that under the null

x
d
= τ(x), for all τ ∈ Sn. (2)

Hence, under the null, the distribution of the data does not change upon permutations of the data.

Example. This second example illustrates the group-invariance assumption that is used in the location

model as described by Koning and Hemerik (2021). Consider the following DGP,

x = ιµ+ ε, (3)

where x and ε are n-vectors and ι is a n-vector of ones. The group-invariance assumption made in

this example is,

ε
d
= Rε, for all R ∈ R. (4)

Here, R denotes a (n×n) sign-flipping matrix and R the group of all (n×n) sign-flipping matrices.

A sign-flipping matrix is a diagonal matrix with diagonal entries equal to -1 or 1. Premultiplying

a n-vector with a sign-flipping matrix, flips some of the signs of the elements of the vector. Using

the axioms of a group defined in section 3.1, it can be verified that the set of sign-flipping matrices

forms a group under matrix multiplication.

The group-invariance assumption on ε holds if the error terms εi are independent and if the

marginal distribution of εi is reflection symmetric about the y-axis. This is for example the case if

the error terms are independent and normally distributed.

The remainder of this chapter will use the location model defined in Equation (3) and the group-

invariance assumption from Equation (4) as an example to illustrate the construction of group-

invariance tests.

Construction of group-invariance tests

I continue with the location model to illustrate the construction of a group-invariance test. I start by

presenting a more intuitive approach to the construction of the group-invariance test and formalize

this method afterward. As a group-invariance test is a superclass of the permutation tests described

in the introduction, the procedure followed is quite similar.

Given the location model in Equation (3), we want to test the hypothesis H0 : µ = 0 against

Ha : µ > 0 with the test statistic T (x) = n−1/2ιx. Note that under H0, the group-invariance

assumption that was made for ε also holds for x.
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Under the alternative hypothesis, T (x) is expected to be relatively large. Premultiplying x with

a sign-flipping matrix R is likely to lower the value of the test statistic as some of the elements of x

will get the opposite sign. The critical value of the test is determined by taking the α-upper quantile

of the set {T (Rx) | R ∈ R}. When T (x) is larger than the critical value, the null hypothesis is

rejected.

For a formalisation of this procedure, I will first introduce the concept of orbits. The group R

introduces a partitioning O of the sample space into sets, which are called orbits. The orbit of an

arbitrary vector a ∈ Rn is Oa := {Ra |R ∈ R} ∈ O, where a is used to represent the orbit.

For the location model, the group invariance assumption allows the disintegration of the distribu-

tion of ε into a distribution over O and a distribution over each orbit. Because of the group-invariance

assumption, there exists a conditional distribution ε | ε ∈ ORε that is uniform over the elements of

ORε . This is the key property to derive analytical results for these type of tests and will be applied

later on.

Using the concept of orbits, the group-invariance test for the location model is constructed as

follows. Given the observed data x the orbit ORx = {Rx | R ∈ R} and the set of test statistics

T (ORx ) = {T (Rx) |R ∈ R} can be determined. For a given level α, the α-upper quantile of the set

T (ORx ) is used as critical value. The null hypothesis is rejected if T (x) is larger than the critical

value.

Controlling the size of group-invariance tests

The advantage of a group-invariance test is that it controls the size of the test if the group-invariance

assumption holds. However, depending on the number of elements in the multiset T (ORx ), it is

possible that the α-upper quantile of the set T (ORx ) does not exists. Moreover, assuming that the α-

upper qauntile does exists, if the critical value occurs multiple times in the multiset of test statistics,

the test is no longer exact. To circumvent both of these issues, the following procedure can be used

to determine the critical value and the probability with which the null hypothesis is rejected.

The critical value is chosen as the k-th value in the ordered set of test statistic, denoted with

T (k)(ORx ). Setting k = d(1− α) |R | e assures that the test has at most level α as shown by Hemerik

and Goeman (2018). To make the test exact, randomization is used in the case that T (x) = T (k)(ORx ).

The null hypothesis is then rejected with a probability,

P(reject H0 |x, R) =
α|R| − |

{
R ∈ R | T (Rx) > T (k)(Ox)

}
|

|
{
R ∈ R | T (Rx) = T (k)(Ox)

}
|

(5)
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Although this method assures the size of the test is controlled, the results might become less repro-

ducible since rejection depends on a stochastic event.

Note that equation (5) is adapted for the location model discussed here, where a one-sided test

is used and the critical value is taken as the α-upper quantile. For other tests, e.g. a two-sided test,

this equation can easily be adjusted.

Enhancing the power of group-invariance tests using subgroups

In this section, I will explain the basic idea behind the enhancement of the power of group-invariance

tests as described by Koning and Hemerik (2021). To this end, I first examine the source of power

of a group-invariance test in the location model. To recall, in the location model, we want to test

the hypothesis H0 : µ = 0 against Ha : µ > 0 with the test statistic T (x) = n−1/2ιx.

To study the power of the group-invariance test, results are derived conditional on ε ∈ ORε .

This is convenient as under the group-invariance assumption the distribution of ε is uniform over

ORε . After deriving conditional results, the resulting expressions can be integrated over all orbits

ORε ∈ O, which yields general, unconditional properties of the group-invariance test (Chang and

Pollard, 1997).

The power of a group-invariance test conditional on ε ∈ ORε , is given by

power | ε ∈ ORε = P
[
reject H0 |Ha, ε ∈ ORε

]
(6)

= P
[
T (x) > α-upper quantile of T (ORx ) |Ha, ε ∈ ORε

]
. (7)

Hence, to study the power of this test it is required to know the distribution of the test statistic

T (x). Given that ε is uniformly distributed over ORε , T (ε) = n−1/2ι
′
ε is uniformly distributed over

T (ORε ). Hence, the test statistic T (x) = T (ιµ+ ε) is uniformly distributed over the set

{
T (ιµ+ Rε) |R ∈ R

}
:=
{
n−1/2ι

′
ιµ+ n−1/2ι

′
Rε |R ∈ R

}
= n1/2µ+

{
n−1/2ι

′
Rε |R ∈ R

}
(8)

= n1/2µ+ T (ORε ).

The set T (ORx ) is equal to

T (ORx ) :=
{
T (Rx) |R ∈ R

}
=
{
n1/2µ(n−1ι

′
Rι) + n−1/2ι

′
Rε |R ∈ R

}
. (9)
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Equation (8) and Equation (9) are quite similar. Comparing these equations gives insight into the

source of power of this test. For sign-flipping matrices R, it holds that (n−1ι
′
Rι) ≤ 1. Therefore,

for all R ∈ R it follows that

n1/2µ(n−1ι
′
Rι) + n−1/2ι

′
Rε ≤ n1/2µ+ n−1/2ι

′
Rε. (10)

Therefore, the power of a group-invariance test depends on the term (n−1ι
′
Rι) in Equation (9). If

(n−1ι
′
Rι) = 1 for all R ∈ R the group-invariance test has trivial power α. If (n−1ι

′
Rι) < 1 the test

has non trivial power.

The smaller the value of (n−1ι
′
Rι), the smaller the critical value of the test, and hence the larger

the power. This forms the core of the methodology of Koning and Hemerik (2021) to enhance the

power of group-invariance tests. If it is possible to select a subgroup Q ⊂ R such that ι
′
Qι = 0 for all

Q ∈ Q, the power of the test will be larger than when an equally-sized set of random permutations

is used.

Koning and Hemerik (2021) refer to such a subgroup as an oracle subgroup. The authors note

that for the location model with sample mean test statistic and sample size n, the largest attainable

order of an oracle subgroup of the sign-flipping group, is equal to 2t. Here, t is the number of 2’s

in the prime factorization of n. In practice, this number will be quite low, which might make the

estimate of the critical value less accurate. Therefore, they propose to use near-oracle subgroups

U ⊂ R for which ι
′
Uι is relatively small for all U ∈ U .

The benefit of using these oracle or near-oracle subgroups instead of uniform sampling from the

group is that either the power of a group-invariance test can be enhanced while using the same number

of transformations or the power of the test remains the same while using fewer transformations, which

can greatly decrease the computational cost required.
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4 Definition of alternative hypothesis and test statistic

In this thesis, I will examine whether the use of subgroups can enhance the power of permutation

tests for positive serial dependence in binary data. To this end, I will use an alternative hypothesis

and test statistic commonly used in the hot hand debate.

Definition of alternative hypothesis

In tests for positive serial dependence in binary sequences the null hypothesis assumes that the data

is generated by a sequence of independent Bernoulli variables with success probability p. There are

multiple possibilities for defining the alternative hypothesis based on the description of the hot hand

by basketball enthusiasts. Within the basketball community, the hot hand is regarded as an increase

in the probability of a hit when a player is on a winning streak. There are multiple ways to formalize

this belief into a specification of the alternative hypothesis. Miller and Sanjurjo (2018a) distinguish

three forms. First, a regime shift model that can be modeled as a hidden Markov chain. In this case,

an external factor triggers the hot hand of a player. Second, a positive feedback model in which the

probability of a hit increases after a streak of l hits. Third, a hit streak model, in which a player may

enter a hot state with a given probability and remains there for a pre-specified number of throws.

In this thesis, I will opt for the positive feedback model for which the power has been derived

by Ritzwoller and Romano (2021). The DGP under the alternative hypothesis can be defined via a

Markov chain with 2m states, where a state represents the outcome of the past m shots. I denote

a shooting sequence of n shots with x = [x1, x2, ..., xn], xi ∈ {0, 1}. Each state is represented by a

tuple (x1, x2, ..., xm) ∈ {0, 1}m, where x1 denotes the most recent shot outcome. For instance, for

m = 3 the state of a hit followed by two misses equals (0, 0, 1). For most states the probabilities of

transitioning from (x1, x2, ..., xm) to (1, x1, ..., xm−1) and (0, x1, ..., xm−1) are equal to, respectively,

p and (1− p). The only exceptions are the states corresponding to a streak of m ones or zeros. For

these states, the probability to remain in the same state, thus to elongate the streak, increases by η.

Here, η is a positive number less than min(1− p, p). For example, the transition probability matrix

for m = 2 is given in Table 1. From now on I, will simply denote this alternative hypothesis as Ha.
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(0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) (1− p) + η p− η 0 0

(1, 0) 0 0 1− p p

(0, 1) 1− p p 0 0

(1, 1) 0 0 (1− p)− η p+ η

Table 1: Transition probability matrix under the alternative hypothesis for m = 2.

In this thesis, I will fix the parameter p at 0.5 as the power of tests for streakiness is highest for

this parameterization. Furthermore, I examine sequences of length n = 6, 9, and 20. I have decided

to focus on such relatively short sequences because these are computationally easier to examine. As

noted by Ritzwoller and Romano (2021) these sequence lengths are too short to obtain sufficiently

powered tests for probable values of η. The authors propose that a plausible upper bound for η is

half of the interquartile range of the distribution of the hit percentages of NBA players. This equals

an upper bound on η of 0.038. In this thesis I will examine η ∈ {0.2, 0.3, 0.4}. I have chosen these

relatively high values of η because this results in a higher power of the permutation tests. As a

consequence, this parameterization is not representative of the magnitude of a possible hot hand.

However, this research focuses on exploring new methodology rather than contributing to the hot

hand debate.

Definition of the test statistic

Commonly used test statistics in the hot hand literature are P̂(hit | l hits) − P̂(hit | l misses) and

P̂(hit | l hits)− P̂(hit). (Ritzwoller and Romano, 2021; Gilovich et al., 1985) The advantage of these

test statistics is that it is also informative of the magnitude of the hot hand. A disadvantage is

that these test statistics are not defined if a sequence does not contain a streak of l consecutive

hits/misses. For longer sequences this rarely occurs but for short sequences, which I will study in

this thesis, it occurs quite frequently. Hence, I have opted for another test statistic, namely the

runs test statistic (TR(x)) also employed by Gilovich et al. (1985) and Miller and Sanjurjo (2018a).

TR(x) counts the number of runs in a sequence, e.g. TR([0, 0, 1, 0, 1, 1]) = 4. Under the alternative

hypothesis streaks occur more often and thus the number of runs will be lower. Therefore, the null

hypothesis should be rejected if TR(x) is relatively small compared to the set TR(OGx). Hence, the

critical value of a permutation test with TR(x) test statistic is the α-lower quatile of the set TR(OGx).

It is important to note that TR(x) is a discrete test statistic and hence the same values may occur
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frequently in the multiset TR(OGx). For shorter sequences, this phenomenon is even more pronounced.

One of the consequences of such a discrete test statistic is that the critical value might be encountered

multiple times in the multiset TR(OGx). As described in Section 3.2, this might impact the size of the

test. This can be accounted for by rejecting the null hypothesis with a specific probability based on

Equation (5), in the case that TR(x) equals the critical value. Since in this application, the α-lower

quantile is taken as critical value the > sign in Equation (5) should be replaced with a < sign.
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5 Understanding the difference in performance between subgroups

in tests for streakiness

Koning and Hemerik (2021) are able to analytically derive the existence and properties of oracle

subgroups in a location model. I have not been able to use a similar approach for permutation tests

for streakiness in binary data. This is due to the complex nature of the test statistic and DGP

examined. However, the underlying idea that the power of a permutation test can be enhanced by

using a subgroup instead of an equally-sized random sample of permutations might still be applicable.

In the following three chapters, I explore two other methods to find streak-breaking subgroups.

In this chapter, I present a systematic approach to examine why some subgroups outperform others

in tests for streakiness given a specific parameterization of Ha. This approach, in short, focuses on

the most likely sequences under Ha and aims to explain why P(reject H0 |x, G) for a given subgroup

G deviates from P(reject H0 |x, Sn), for these most likely sequences x. As a case study, I apply this

approach to the best- and worst-performing subgroups of order 24 of S6.

Given Ha with m = 2 and η = 0.3, I find that for S6 there exist subgroups that not only beat a

random sample of permutations but even the entire symmetric group for many significance levels α.

Moreover, I show that this systematic approach is successful in explaining differences in performance

based on the structure of these subgroups. However, it seems that these differences in power arise

from discreetness effects due to the small sequence lengths studied (n = 6). Therefore, I have not

been able to extend the findings to longer sequences to identify streak-breaking subgroups for other

values of n. For this reason, in the remaining two chapters, I use a heuristic approach to identify

possible streak-breaking subgroups of S20 (Chapter 6) and S9 (Chapter 7).

5.1 Methodology

In this section, I will first discuss the approach I will take to relate the performance of subgroups in

tests for streakiness to the structure of these subgroups. Then, I will introduce the case study that

I use to demonstrate this approach with.

Relating the power of a subgroup in a test for streakiness to its structure

To understand differences in power between subgroups, I first present an analytical expression for

the power of a permutation tests using a given subgroup. Using the law of total probability, the
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power of a permutation test, given a specific group G, equals

power | Ha, G = P(reject H0 | Ha, G)

=
∑
x∈X

P(reject H0 | x, G) ∗ P(x | Ha), (11)

where X denotes the sample space. Hence, the power of these tests is equal to the weighted average

of the rejection probabilities of all sequences, where the weighing factor is the likelihood of the

sequences. The likelihood of the sequences can vary strongly under Ha. For higher values of the

parameters η and n, these differences in likelihood become more pronounced.

The analytical expression for the power given in Equation (11) shows that the sequences with

the highest likelihood have the most influence on the overall power of the test. Since it is too

complicated to examine the rejection probabilities of all feasible sequences, I propose to focus on the

rejection probabilities of the most likely sequences to understand differences in performance between

subgroups. These rejection probabilities for a given subgroup can be compared with the rejection

probabilities of Sn. Following, remarkable differences in the rejection probabilities of these most

likely sequences can be related to the structure of the subgroup.

Case study for sequences of length 6

To illustrate the approach discussed above, I will examine the best- and worst-performing subgroups

of order 24 of S6. I have decided to focus on short sequences of length 6 for two reasons:

1. The main reason is that for S6 the size of the sample space is only 64. In general, the size of

the sample space for sequences of length n equals 2n. The small sample space for n = 6 has

two advantages. First, the number of sequences with a relatively high likelihood is limited,

which simplifies the analysis described above. For example, if I want to investigate the top

10% sequences with the highest likelihood, I only have to consider 6 sequences. For sequences

of length 20, this would correspond to examining 104,857 sequences. Second, since the sample

space for sequences of length 6 is small, the power of the test can be calculated exactly with

Equation (11). For longer sequences the power should be approximated with simulations.

2. The second reason for studying sequences of length 6 is that it is feasible to search all subgroups

of S6 of a given order and select those with the highest and lowest power in a test for streakiness.

The number of subgroups of Sn grows rapidly with n and hence it would not be possible to

examine all subgroups for higher values of n.
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For this case study, I decided to examine the best- and worst-performing subgroups of order 24 of

S6. I will refer to these subgroups as Ghigh and Glow. The reasoning for focusing solely on subgroups

of order 24 is twofold. First, subgroups of order 24 are not that small that a gain in power might be

based on small sample properties. Second, the order of S6 is only 720. Therefore, larger subgroups

would comprise a substantial amount of S6, which might smooth out differences between subgroups.

Finally, within this chapter the parameters of Ha are fixed at η = 0.3 and m = 2. Additionally,

the significance level α is fixed at 3/24.

5.2 Results

In this section, I will first present the analytically determined power of a test for streakiness using

the subgroups Ghigh and Glow. Then, I will examine the most likely sequences under Ha, to relate

the power of Ghigh and Glow in a test for streakiness to the structure of these subgroups. Finally, I

will discuss the power of these subgroups for other significance levels α.

Power of Ghigh and Glow in test for streakiness

Table 2 gives the analytically determined power for S6, Ghigh and Glow in a test for streakiness with

α=3/24. For 24-rnd, the power was simulated using 100.000 Monte Carlo samples. The power of Glow

is 3.8 percentage points lower than that of 24-rnd. However, Ghigh beats 24-rnd by 0.72 percentage

points. Moreover, the power of the permutation test with Ghigh almost equals the power of the test

with S6.

Later on in this section, I aim to relate the difference in power between Ghigh and Glow to the struc-

ture of these groups. To be able to understand that reasoning, it is necessary to know the structure of

Ghigh and Glow. Ghigh is generated by the permutations σhigh = (1, 2, 5) and τhigh = (1, 5, 2, 3)(4, 6)

and Glow is generated by σlow = (2, 4, 5) and τ low = (2, 4, 3, 5)(1, 6). Interestingly, these groups have

a very similar structure. For both subgroups, all the permutations within the group permute 4 and

2 elements of the sequence separately. For Ghigh, the elements 1, 2, 3, 5 and the elements 4, 6 are

permuted separately. For Glow, the elements 2, 3, 4, 5 and 1, 6 are permuted separately. All elements

of the subgroups are given in Table A.1 in the Appendix.
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24-rnd S6 Ghigh Glow

power | G 0.1802 0.1883 0.1874 0.1423

Table 2: Analytically determined power of test for streakiness with TR(x) test statistic, α=3/24
and alternative hypothesis Ha with m = 2 and η=0.3.

Examination of most likely sequences under Ha

Now, I will examine the 10 most likely sequences under Ha and describe for each of these sequences

what properties of a subgroup will result in a high rejection probability. In the following section, I

will relate these properties to the structure of Ghigh and Glow to explain the power of these groups

in a test for streakiness.

Table 3 and Table A.2 enumerate all 64 unique binary sequences of length 6. For now, I will

only focus on the first two columns x and P(x |Ha). The other columns will be discussed later on.

The sequences in Table 3 and Table A.2 are ordered from highest to lowest likelihood under Ha with

m=2 and η = 0.3. The likelihood of the sequences vary strongly, from 0.102 for sequences 1 and 2 to

0.003 for sequences 57-64. Hence, based on Equation (11) the most likely sequences have 34 times

as much influence on the overall power of the test as the least likely sequences. This justifies the

approximation to solely examine the rejection probabilities for the most likely sequences to explain

the difference in power between subgroups. Furthermore, the sequences in Table 3 are ordered in

pairs that are each other’s complement. Since the DGP and test statistic do not discriminate between

sequences of 0’s and 1’s, the results for these pairs are the same.

For the 10 most likely sequences, I provide reasoning which properties of a subgroup will yield

a high rejection probability in a test for streakiness. Rejection of the null hypothesis occurs if the

test statistic TR(x) is low compared to the set of test statistics TR(OGx) = {TR(τ(x)) | τ ∈ G}. The

combination of short sequences with the discrete test statistic TR(x) will yield multisets TR(OGx) in

which the same values occur frequently, e.g. for x = [0, 1, 0, 0, 0, 0] the set TR(OS6x ) contains only 2’s

and 3’s. Therefore, rejection probabilities will usually not equal 0 or 1 but some intermediate value

determined by Equation (5). (Since in this application, the α-lower quantile is taken as critical value

the > sign in Equation (5) should be replaced with a < sign).

Sequence 1, 2: [0, 0, 0, 0, 0, 0] and [1, 1, 1, 1, 1, 1]

These sequences do not change upon permutation, hence the rejection probability will be the

same across all groups. Based on Equation (5) the rejection probability will equal α| G |−0| G | = α.
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P(reject H0 |x, G)

x P(x |Ha) 24-rnd S6 Ghigh Glow

1 [0, 0, 0, 0, 0, 0] 0.102 0.125 0.125 0.125 0.125

2 [1, 1, 1, 1, 1, 1] 0.102 0.125 0.125 0.125 0.125

3 [1, 0, 0, 0, 0, 0] 0.064 0.374 0.375 0.5 0.125

4 [0, 1, 1, 1, 1, 1] 0.064 0.374 0.375 0.5 0.125

5 [0, 1, 0, 0, 0, 0] 0.040 0 0 0 0.125

6 [1, 0, 1, 1, 1, 1] 0.040 0 0 0 0.125

7 [1, 1, 1, 1, 1, 0] 0.026 0.375 0.375 0.25 0.125

8 [0, 0, 0, 0, 0, 1] 0.026 0.374 0.375 0.25 0.125

9 [1, 0, 1, 0, 0, 0] 0.025 0 0 0 0

10 [0, 1, 0, 1, 1, 1] 0.025 0 0 0 0

11 [0, 1, 1, 1, 1, 0] 0.016 0.085 0 0 0.125

12 [1, 0, 0, 0, 0, 1] 0.016 0.085 0 0 0.125

13 [0, 0, 0, 0, 1, 1] 0.016 0.767 0.938 1 0.5

14 [1, 1, 1, 1, 0, 0] 0.016 0.768 0.938 1 0.5

15 [1, 0, 1, 0, 1, 0] 0.016 0 0 0 0

16 [0, 1, 0, 1, 0, 1] 0.016 0 0 0 0

17 [0, 1, 0, 1, 0, 0] 0.016 0 0 0 0

18 [1, 0, 1, 0, 1, 1] 0.016 0 0 0 0

19 [1, 1, 0, 0, 0, 0] 0.016 0.766 0.938 0.75 0.5

20 [0, 0, 1, 1, 1, 1] 0.016 0.766 0.938 0.75 0.5

21 [1, 1, 1, 0, 0, 0] 0.016 0.861 1 0.5 0.75

22 [0, 0, 0, 1, 1, 1] 0.016 0.859 1 0.5 0.75

23 [1, 1, 1, 1, 0, 1] 0.016 0 0 0 0.125

24 [0, 0, 0, 0, 1, 0] 0.016 0 0 0 0.125

Table 3: The 24 most likely sequences under Ha with m = 2 and η = 0.3. For each sequence the
likelihood and the rejection probability using 24-rnd, S6, Ghigh and Glow are given. The significance
level is set at α = 3

24 .
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Sequence 3, 4: [1, 0, 0, 0, 0, 0] and [0, 1, 1, 1, 1, 1]

In this case TR(OS6x ) contains only 2’s and 3’s and TR(x) = 2. Hence, TR(x) = 2 is the smallest

values in the set TR(OS6x ). The rejection probability will be based on Equation (5) and is

highest for groups G for which the number of 2’s in the multiset TR(OGx) is small. If element

1 of sequence 3/4 is placed at position 1 or 6, the test statistic will equal 2. Hence, the group

should scarcely place element 1 at the outer positions 1 and 6.

Sequence 5, 6: [0, 1, 0, 0, 0, 0] and [1, 0, 1, 1, 1, 1]

Here, TR(OS6x ) again only contains 2’s and 3’s and TR(x) = 3. For a given level α and group G,

if TR(OGx) contains at least α ∗ |G| 2’s, the rejection probability will equal 0. If this is not the

case, the rejection probability will still be relatively low. The highest rejection probability is

attained if the multiset TR(OGx) consists of only 3’s. In this case the rejection probability will

equal α| G |−0
| G | = α. Hence, the rejection probability is severely limited for sequences 5 and 6.

Sequence 7, 8: [1, 1, 1, 1, 1, 0] and [0, 0, 0, 0, 0, 1]

This case is similar to that of Sequence 3, 4, i.e. TR(OS6x ) contains only 2’s and 3’s and

TR(x) = 2. Again, the rejection probability is highest if the number of 2’s in the set TR(OGx) is

small. This will be the case for a group that does not place element 6 at positions 1 or 6 often.

Sequence 9, 10: [1, 0, 1, 0, 0, 0] and [0, 1, 0, 1, 1, 1]

Here, TR(τ(x)) ∈ {2, 3, 4, 5} and TR(x) = 4. Hence, for most subgroups the rejection probabil-

ity will equal 0.

This analysis shows that focusing on sequences 1, 2, 5, 6, 9, and 10 is not a wise strategy for

constructing subgroups with a high power since the rejection probability for these sequences is

severely limited. Hence, a subgroup with high power should do well for sequences 3, 4, 7, and 8.

Rejection probability for sequences 3, 4, 7, 8 for Ghigh and Glow

Given that the rejection probabilities of sequences 3, 4, 7, 8 are most important to explain differences

in power amongst subgroups, I examine these rejection probabilities for Ghigh and Glow. I compare the

rejection probabilities for Ghigh and Glow with those of S6. Then, I relate the rejection probabilities

for sequences 3, 4, 7, 8 to the structure of the subgroups and aim to identify characteristics of the

subgroups that lead to a high or low power in a test for streakiness. The rejection probabilities for
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all feasible sequences of length 6 using S6, Ghigh and, Glow are given in the latter three columns of

Table 3 and Table A.2.

Ghigh Table 3 shows that the rejection probability for sequence 3, 4 is 0.125 higher for Ghigh than

for S6. On the other hand the rejection probability for sequence 7, 8 is 0.125 lower for Ghigh

than for S6. Because the likelihood of sequences 3, 4 is 2.5 times higher than that of sequences

7, 8, this results in a net positive effect on the power of Ghigh compared to S6.

The difference in rejection probabilities between S6 and Ghigh, can be related to the structure

of Ghigh. Previously, I discussed that P(reject H0 | sequence 3/4, G) will be high for a subgroup

G that does not place element 1 at an outer position frequently. Similarly,

P(reject H0 | sequence 7/8, G) will be high for a subgroup G that does not place element 6 at

an outer position frequently. Ghigh permutes the elements 1, 2, 3, 5 and 4, 6 of a sequence

separately. Hence, element 1 will be placed at an outer position for 1/4 of the permutations

in Ghigh and element 6 will be placed at an outer position for 1/2 of the permutations. The

symmetric group S6 places the elements 1 and 6 at an outer position for 1/3 of the permutations.

Thus, Ghigh obtains a higher rejection probability than S6 for sequences 3, 4 (for which the

rejection probability is high if element 1 is not at an outer position frequently) and a lower

rejection probability for sequences 7, 8 (for which the rejection probability is high if element 6

is not at an outer position frequently).

This might raise the question of why Ghigh is the best performing subgroup of order 24 as it

does not obtain a high rejection probability for sequences 7, 8. The answer is that there is

no subgroup of S6 that obtains a higher rejection probability than S6 for both sequences 3, 4

and sequences 7, 8. Since sequences 3, 4 have a higher likelihood than sequences 7, 8. The

subgroup with the highest power should maximize the rejection probability of sequences 3, 4.

This is exactly the case for Ghigh.

Glow The rejection probabilities of sequences 3, 4, 7, 8 are all equal to 0.125 for Glow. These rejection

probabilities are 0.250 lower than for S6. Hence, Glow performs poorly for all of the ‘influential’

sequences.

These low rejection probabilities can again be related to the structure of Glow. Glow permutes

the elements 2, 3, 4, 5, and 1, 6 of a sequence separately. Hence, elements 1 and 6 will always

be at an outer position. This results in the low rejection probabilities for sequences 3, 4, 7, 8.
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Figure 1: Power of the test for streakiness with alternative hypothesis Ha with parameters m = 2
and η = 0.3 for varying levels of α.

Power of Ghigh and Glow for other values of α

The forgoing analysis focused on a test with a fixed significance level of 3/24. In this section, I will

discuss the power of Ghigh and Glow for other values of α.

Figure 1 shows the power of a test for streakiness using Ghigh, Glow, 24-rnd, and S6 for multiple

significance levels. This plot shows that Glow performs worse than 24-rnd for all values of α. Surpris-

ingly, Ghigh obtains a higher power than S6 for α > 3/24, with the exception of α = 8/24. The fact

that a subgroup beats the entire symmetric group is very remarkable as a higher power is obtained

under weaker assumptions, i.e. permutation invariance under a subgroup instead of permutation

invariance under the entire symmetric group. Statistically, this seems counterintuitive as this would

suggest there is a ‘free lunch’. However, the higher power of Ghigh for α > 3/24 comes at the cost of

the lower power of Ghigh for smaller values of α.

To explain why Ghigh outperforms the entire symmetric group for α > 3/24, I will again focus

on the ‘influential’ sequences 3, 4. Based on Equation (5) the rejection probability of sequences 3, 4

given Ghigh or S6 can be expressed as a function of α.
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P(reject H0 | sequence 3/4, S6) =


3α, if α ≤ 7/24

1, otherwise

(12)

P(reject H0 | sequence 3/4, Ghigh) =


4α, if α ≤ 5/24

1, otherwise

(13)

Combining these expressions yields,

P(reject H0 | sequence 3/4, Ghigh)− P(reject H0 | sequence 3/4, S6) =


α, if α ≤ 5/24

1− 3α, if 5/24 < α < 7/24

0, if α ≥ 7/24

. (14)

Hence, for α ≤ 6/24, the difference in rejection probability between Ghigh and S6 increases with

increasing α. (More precise, the difference in rejection probability is increasing for α < 19/72.) This

gives an explanation why Ghigh only outperforms S6 for higher values of α. Moreover, the advantage

of Ghigh with respect to sequence 3, 4 disappears for α ≥ 7/24. Thus, the fact that Ghigh also

outperforms S6 for α ≥ 9/24 can not be attributed to a high rejection probability for sequences 3, 4

and must be due to differences in rejection probabilities for the less likely sequences.

5.3 Discussion

The aim of this chapter was to explain the differences in performance between subgroups based on

the structure of those subgroups. The presented method that focuses on the most likely sequences

under Ha was successful in explaining these differences. For the case studied in this chapter, the

property that made a subgroup successful was that it should not contain many permutations that

place element 1 of the sequence at one of the outer positions. This conclusion is very specific to this

case and can be regarded as a discreetness effect of the short sequences studied here. Therefore, this

conclusion can not be generalized to longer sequences.

However, the key insight that can be learned from this case study is that successful subgroups

are those that have a high rejection probability for the most likely sequences. As shown in Table 3

and Table A.2 the likelihood of the most and least likely sequences differs by a factor of 34. Hence,

not every sequence contributes equally to the overall power of the test, and subgroups that achieve

a high power are those that have high rejection probabilities for the most likely sequences. This

conclusion can also be generalized to other parameter settings. The extent to which the likelihood
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of the sequences differs depends on the sequence length and the parameters m and η of Ha. For

example, for n = 20 and m = 2, the likelihood of the most and least likely sequences differ by a

factor of 18 ∗ 106 for η = 0.3, and a factor 198 for η = 0.1.

The question remains whether the approach presented in this chapter is feasible for longer se-

quences. As the size of the sample space grows rapidly with increasing n, it is not feasible to apply

the exact same approach for higher values of n. As an alternative approach for longer sequences, a

fixed number of the most likely sequences could be examined. This could provide some insight into

the structure of high-performing subgroups of Sn.
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6 Identifying cyclic streak-breaking subgroups with a heuristic for

n=20

As it is not feasible to enumerate all subgroups for larger values of n, another approach is required

to identify streak-breaking subgroups for longer sequences. In the following two chapters, I present a

heuristic approach to select subgroups with possible streak-breaking properties. I apply this approach

to sequences of length 20 and 9, in respectively Chapter 6 and Chapter 7. For both n = 20 and

n = 9, the heuristic is able to identify subgroups that outperform a random sample of permutations

for various specifications of Ha.

In this chapter, I limit the scope to cyclic subgroups, as these have some nice properties that help

to guide the heuristic search. I apply the heuristic method to identify the most-promising subgroups

of S20 of orders 30 and 99. For both of these orders, 4 out of the 15 subgroups that were selected by

the heuristic, are streak-breaking. In contrast, when randomly selecting 15 subgroups, none of the

subgroups outperform a random sample of permutations.

6.1 Methodology

The heuristic approach I developed to identify streak-breaking, cyclic subgroups of S20 consists of

three steps.

Step 1: Selecting the most-promising class of subgroups.

Step 2: Selecting the most-promising subgroups within a class.

Step 3: Simulating the power of selected subgroups in tests for streakiness.

Before discussing these three steps, I will clarify why I limit the heuristic search to cyclic subgroups

and how I define a ‘class of subgroups’.

Advantages of cyclic subgroups

This method focuses on cyclic subgroups, i.e. subgroups that are generated by only one permutation.

However, it is also possible to create subgroups by selecting multiple generators and combining these

to form a group. The reason for focusing on cyclic subgroups is twofold, where both arguments

are related to the order of the subgroups. First, for cyclic subgroups, the order of the group can

easily be calculated based on the generator of the subgroup using Equation (1). For non-cyclic
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subgroups, there is no straightforward formula to determine the order of the subgroup based on

the set of generators. Second, forming non-cyclic subgroups by combining two permutations of S20,

typically results in huge subgroups. These subgroups are not suitable for permutation tests as this

requires too much computational power. Moreover, the aim of this thesis is to explore whether it is

possible to identify relatively small subgroups that beat an equally-sized random set of permutations

or, equivalently, that obtain the same power as a larger set of randomly sampled permutations.

Throughout this chapter, I only focus on cyclic subgroups. For simplicity, I will sometimes drop

the adjective ‘cyclic’ and just refer to cyclic subgroups as subgroups.

Classes of subgroups

In Step 1 of this heuristic method, I select the most-promising class of subgroups. In this section,

I will provide a definition of such a class of subgroups. For this definition, I will use the fact that

every permutation in Sn can either be written as a cyclic permutation or as the product of r disjoint

cyclic permutations of length k1, k2, ..., kr. This was described in more detail in Section 3.1.

Definition. Given that a permutation τ ∈ Sn can be written as the product of r disjoint cyclic

permutations of length k1, k2, ..., kr, I define the ‘cyclic-structure’ of τ as {k1, k2, ..., kr}.

Definition. I define the ‘{k1, k2, ..., kr}-class’ of subgroups as the set of all cyclic subgroups of Sn that

are generated by a permutation with a {k1, k2, ..., kr} cyclic-structure.

Example. The permutations σ = (26)(153) and τ = (15)(246) have the same cyclic-structure and the

subgroups generated by σ and τ belong to the {2, 3}-class.

All subgroups within a class will have the same order. This follows from Equation (1).

Step 1: Selecting the most-promising class of subgroups

Now I will discuss the first step of the heuristic method to identify possible streak-breaking sub-

groups. In this step, the class of subgroups that is most likely to contain streak-breaking subgroups

is selected. Some classes are more likely to contain streak-breaking subgroups than others. I intro-

duce a new metric, the Least Permuted Index, to identify which classes are most likely to contain

streak-breaking subgroups.
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Definition The Least Permuted Index (LPI) of a subgroup G equals the least number of elements

that are permuted by any of the permutations within G (excluding the identity permutation).

All subgroups within a class have the same LPI. To illustrate this, consider the following example.

Example Consider the permutations σ = (26)(153) and τ = (15)(246). The subgroups generated by

σ (Gσ) and τ (Gτ ) have order 6. The number of elements permuted by the permutations in Gσ and

Gτ is the same. This is shown in the enumeration below. The smallest number of permuted elements

is 2. Hence, the LPI of both Gσ and Gτ equals 2.

σ0 = τ0 = ε - 0 elements permuted

σ1, τ1 - 5 elements permuted

σ2, τ2 - 3 elements permuted

σ3, τ3 - 2 elements permuted

σ4, τ4 - 3 elements permuted

σ5, τ5 - 5 elements permuted

Classes with a high LPI are most likely to contain streak-breaking subgroups. The reasoning behind

this is as follows. Consider a subgroup that contains a permutation that only permutes 2 elements of

a sequence. I call such a permutations that leaves the majority of the sequence in tact a ’conservative’

permutation. Hence, the LPI of this subgroup equals 2. The presence of such a permutation can

have a substantial impact on the power of a permutation test for streakiness. This is due to the fact

that the null hypothesis in a permutation test is only rejected if TR(x) is smaller than the α-lower

quantile of TR(OGx). A few conservative permutations, for which the permuted test statistic is close

to the actual test statistic, therefore can have a large impact on the power of the test. The presence

of these conservative permutations is captured in the LPI. A high LPI, therefore, gives an indication

that each permutation in the subgroup permutes the sequence relatively well.

Only subgroups from classes with a high LPI will be examined for streak-breaking properties.

However, the number of subgroups within a class is still huge. Therefore, in Step 2 of this method,

I introduce a heuristic to select the most promising subgroups within a class.
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Step 2: Selecting the most-promising subgroups within a class

To select the most-promising subgroups from a class with cyclic-structure {k1, k2, ..., kr}, I have

developed the following heuristic procedure.

• Sample 100,000 generators with the cyclic-structure {k1, k2, ..., kr} and create 100,000 cyclic

subgroups from these generators.

• Check these subgroups against the criterion that none of the permutations within the subgroup

is allowed to contain 4 consecutive elements. As such, both the permutation [..., 7, 8, 9, 10, ...]

and [..., 10, 9, 8, 7, ...] are not permitted.

• Score the remaining subgroups with a heuristic scoring function that can be used to rank the

subgroups for their streak-breaking qualities.

In the last step, I have used the following scoring function (SF),

SF(σ) =
n−1∑
i=1

|σi+1 − σi|. (15)

In this formula the array form representation of σ should be plugged in. For example the array form

representation of σ = (3, 6, 2)(1, 5) is [5, 6, 2, 4, 1, 3] and SF(σ) = 1 + 4 + 2 + 3 + 2 = 12.

The scoring function is applied to each permutation within a subgroup G and the minimum and

mean values of the set {SF (σ | σ ∈ G)} are taken as metrics for the quality of the entire group.

From now on, I will refer to these metrics as the mean score and the min score of a subgroup. The

15 subgroups with the highest mean score are selected for the simulation study in Step 3.

Step 3: Simulating the power of selected subgroups in tests for streakiness

In this step, I simulate the power of the selected subgroups in tests for streakiness and compare the

results with the power of an equally-sized random set of permutations. I examine the power of the

test for multiple specifications of the alternative hypothesis. The following parameters of Ha are

considered: m ∈ {2, 3} and η ∈ {0.2, 0.3, 0.4}. Additionally, the level of the test is set at α = 0.05

and 100,000 Monte Carlo samples are used to approximate the power of the test.

To determine if the power obtained with a subgroup (p̂g) is statistically different from the power

obtained with a random sample of permutations (p̂r), I apply a binomial hypothesis test for equal

success probability (Bain and Engelhardt, 2014, Chapter 12.4). When performing l replications in

a simulation study resulting in s rejections of the null hypothesis, this outcome can be regarded as
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drawn from a binomial distribution with l trials and a true rejection probability p. For testing the null

hypothesis of equal power of the subgroup and the random sample of permutations (H0 : pg = pr)

against the alternative Ha : pg 6= pr, the following test statistic can be applied,

Z =

sg
lg
− sr

lr√
sg+sr
lg+lr

∗ (1− sg+sr
lg+lr

) ∗ 1
lg+lr

. (16)

The two-sided p-value is then given by,

p-value = 2 ∗
(
1− Φ(|Z|)

)
, (17)

where Φ(·) is the cumulative density function of the standard normal distribution.

A subgroup is classified as ‘streak-breaking’ if (1) for at least one specification of Ha, the power

of the subgroup is significantly higher than the power of the random sample and (2) the power of the

subgroup is never significantly lower than the power of the random sample. Here, the significance

level is set at 5%.

6.2 Results

In this section, I present the results of each of the three steps of the heuristic method. In Step 1,

two classes of subgroups are chosen from which possible streak-breaking subgroups are selected in

Step 2. In Step 3, I find that for both of the classes examined, 4 out of the 15 selected subgroups

are streak-breaking.

Step 1: Selecting the most-promising class of subgroups

For this study, I want to investigate subgroups of S20 of two different orders. I decided to focus

on subgroups of order 30 and on the largest attainable cyclic subgroups of S20. Given these order

constraints, I select the most-promising classes of subgroups based on the LPI.

Subgroups of order 30. There are multiple classes that contain subgroups of order 30, e.g. {2, 3,

10}-class, {2, 15}-class or {2, 6, 10}-class. The LPI values of these classes equal 3, 2, and 9,

respectively. Hence, out of these three options, the latter class is preferred. The {2, 6, 10}-class

also has the highest LPI attainable for cyclic subgroups of order 30.
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Largest attainable cyclic subgroups. For n = 20, the maximal order that can be attained with a

cyclic subgroup is 210. The cyclic subgroups of S20 with an order of 210 are all members of

the {3, 7, 10}-class. The LPI of this class equals 3. Therefore, this class is not very likely to

contain streak-breaking subgroups. Hence, I decided to focus on slightly smaller subgroups.

The subgroups of the {9, 11}-class are the largest subgroups of S20 that also attain a high LPI

value. The subgroups of the {9, 11}-class have order 99 and a LPI value of 9. The {9, 11}-class

is the only class that consists of subgroups of order 99.

The {2, 6, 10}-class and the {9, 11}-class both have a LPI value of 9 and therefore are selected as

promising classes of subgroups. In the following step, the most-promising subgroups within these

classes are selected with a heuristic.

Step 2: Selecting the most-promising subgroups within a class.

For both of these classes, 100,000 subgroups are generated. Of the 100,000 subgroups of the {3, 6,

10}-class (order=30), 23,057 satisfy the requirement that no permutation within the subgroup can

contain 4 consecutive elements. For the subgroups of the {9, 11}-class (order=99), 25,987 pass this

first criterion. The mean scores for the remaining subgroups are in the range [88.552, 143.138] for

the subgroups of the {3, 6, 10}-class and in the range [105.235, 139.582] for the subgroups of the {9,

11}-class.

For both of these classes, the 15 subgroups with the highest mean scores are selected for a

simulation study in Step 3. The mean scores, min scores, and generators of these subgroups are

given in Table 4. The subscripts 30 and 99 refer to the order of the group. The underlined groups

are those that perform significantly better than an equally-sized random subset of permutations

and are classified as ‘streak-breaking’. For both classes, 4 out of the 15 selected subgroups perform

significantly better than an equally-sized random sample. The simulation results of these groups will

be discussed in the results of Step 3.

Based on the results in Table 4, we can examine the ability of the heuristic score measure to

select streak-breaking subgroups. The fact that, for both classes examined, only 4 out of the 15

selected subgroups are streak-breaking indicates that the mean score is not a fail-proof metric to

select streak-breaking subgroups. Moreover, the actual streak-breaking subgroups do not have the

highest mean scores out of the selected subgroups.

Additionally, it is remarkable that all streak-breaking subgroups have a relatively high min score,

but not all groups with a high min score perform well. Hence, a high min score is a necessary
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mean score min score generator

Ga30 143.138 98 (3, 4, 19)(1, 11, 8, 18, 12, 16)(2, 7, 6, 13, 10, 9, 17, 15, 5, 20)

Gb30 142.931 99 (8, 16, 9)(2, 5, 18, 4, 10, 13)(1, 14, 3, 20, 7, 6, 17, 12, 11, 15)

Gc30 142.31 90 (4, 6, 10)(1, 14, 17, 7, 2, 13)(3, 19, 15, 12, 9, 11, 5, 16, 20, 18)

Gd30 142.138 100 (2, 9, 11)(6, 19, 20, 10, 13, 15)(1, 4, 7, 5, 18, 3, 14, 12, 8, 16)

Ge30 141.759 92 (6, 18, 17)(1, 7, 3, 11, 14, 5)(2, 19, 16, 20, 4, 9, 8, 12, 10, 15)

Gf30 141.69 102 (3, 4, 17)(1, 9, 7, 12, 8, 15)(2, 6, 11, 14, 10, 5, 13, 19, 18, 20)

Gg30 141.655 100 (7, 8, 16)(4, 18, 9, 11, 12, 20)(1, 13, 19, 3, 15, 17, 6, 5, 10, 14)

Gh30 141.517 102 (4, 19, 10)(1, 9, 5, 7, 12, 15)(3, 11, 16, 6, 13, 14, 17, 18, 8, 20)

Gi30 141 88 (1, 8, 12)(3, 17, 5, 14, 7, 4)(2, 20, 10, 19, 18, 6, 9, 13, 15, 16)

Gj30 140.793 76 (2, 6, 4)(1, 10, 7, 17, 14, 18)(3, 15, 19, 20, 16, 12, 5, 13, 11, 9)

Gk30 140.793 69 (6, 15, 16)(2, 18, 12, 8, 20, 14)(1, 9, 17, 5, 3, 11, 4, 19, 13, 10)

Gl30 140.621 101 (2, 9, 20)(5, 18, 16, 19, 14, 12)(1, 7, 3, 15, 13, 11, 8, 17, 10, 6)

Gm30 140.621 103 (12, 20, 15)(2, 14, 17, 7, 10, 6)(1, 19, 16, 3, 9, 13, 8, 4, 5, 11)

Gn30 140.448 105 (8, 20, 11)(1, 6, 17, 3, 12, 13)(2, 7, 15, 10, 14, 9, 5, 4, 18, 19)

Go30 140.241 101 (3, 19, 14)(1, 9, 6, 17, 10, 11)(2, 12, 20, 13, 15, 7, 5, 8, 18, 4)

Ga99 139.582 85 (2, 9, 13, 6, 17, 19, 4, 12, 8)(1, 18, 7, 20, 3, 11, 10, 15, 16, 5, 14)

Gb99 139.378 93 (2, 6, 4, 7, 16, 19, 8, 11, 15)(1, 10, 20, 14, 3, 5, 13, 18, 12, 17, 9)

Gc99 139.296 91 (2, 14, 5, 18, 19, 10, 15, 4, 6)(1, 13, 7, 8, 20, 3, 16, 11, 12, 9, 17)

Gd99 139.153 94 (3, 9, 20, 14, 12, 15, 6, 18, 17)(1, 19, 5, 2, 8, 10, 11, 16, 7, 4, 13)

Ge99 138.969 95 (2, 10, 20, 8, 16, 12, 13, 9, 4)(1, 17, 3, 15, 18, 11, 6, 7, 14, 5, 19)

Gf99 138.888 69 (2, 12, 6, 18, 4, 5, 10, 11, 16)(1, 3, 20, 14, 17, 15, 13, 9, 7, 19, 8)

Gg99 138.745 72 (4, 14, 18, 16, 20, 10, 17, 6, 11)(1, 7, 9, 19, 3, 8, 2, 5, 13, 15, 12)

Gh99 138.52 87 (3, 10, 16, 12, 14, 20, 9, 6, 13)(1, 11, 4, 5, 17, 2, 18, 19, 7, 8, 15)

Gi99 138.52 73 (4, 10, 18, 12, 16, 8, 20, 15, 14)(1, 19, 11, 17, 6, 9, 7, 2, 3, 13, 5)

Gj99 138.5 76 (4, 10, 13, 8, 12, 15, 20, 18, 16)(1, 2, 7, 3, 19, 14, 6, 9, 5, 11, 17)

Gk99 138.439 85 (3, 4, 18, 8, 16, 20, 12, 9, 15)(1, 10, 14, 17, 5, 6, 11, 19, 7, 2, 13)

Gl99 138.357 94 (2, 18, 19, 4, 13, 7, 16, 8, 9)(1, 10, 12, 6, 15, 17, 20, 11, 14, 3, 5)

Gm99 138.337 91 (2, 11, 13, 20, 14, 10, 17, 18, 6)(1, 5, 12, 15, 8, 16, 19, 4, 3, 9, 7)

Gn99 138.316 86 (3, 18, 17, 7, 9, 15, 20, 14, 12)(1, 16, 8, 10, 4, 5, 13, 19, 6, 2, 11)

Go99 138.296 71 (2, 4, 7, 9, 12, 19, 16, 11, 8)(1, 5, 17, 10, 14, 6, 13, 15, 18, 20, 3)

Table 4: Mean scores, min scores, and generators of the 15 selected cyclic subgroups of order 30
and 99. The streak-breaking subgroups are underlined.
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but not a sufficient condition for a streak-breaking subgroup. Intuitively, it seems logical that a

high min score is a necessary condition. A high min score indicates that all permutations in the

subgroup permute the elements well. As discussed in the previous section, if a subgroup contains a

few conservative permutations (which would result in a lower min score), the power of these tests

can be seriously weakened. Finally, the reason as to why subgroups with comparable scores, e.g. Ga30
and Gb30, perform very differently in these tests, is not clear yet. However, finding an explanation for

this could be interesting for further research.

Step 3: Simulating the power of selected subgroups in tests for streakiness

Table 5 shows the results of the simulation study for the streak-breaking subgroups. The subgroups

Gb30 and Gd99 achieved a gain in power for 5 out of the 6 parameter settings studied and hence might

be regarded the ‘best’ subgroups within their category. The surge in power was in the range of [0.41,

0.76] percentage points for Gb30 and in the range of [0.57, 1.02] for Gd99. The highest gain in power

amounted to 1.48 percentage points and was achieved by Gm99 for η = 0.4 and m = 3.

Furthermore, it is interesting to note that whether a subgroup is better than a Monte Carlo

sample of permutations strongly depends on the specific alternative hypothesis that is examined.

None of the subgroups investigated outperformed the Monte Carlo sample for all six specifications

of the alternative hypothesis examined. Moreover, the cases in which the subgroups achieve a gain

in power differ across subgroups.

6.3 Discussion

The results showed that it is possible to identify streak-breaking subgroups of different orders for

sequences of length n = 20. Especially the fact that streak-breaking subgroups of order 99 were

found, gives an indication that it is possible to find such subgroups of higher-order and that this is

not just an artifact of small groups are short sequences. Hence, based on these results, it seems that

there is potential to apply this method to different sequences lengths.

With this approach, only cyclic subgroups were examined. For S20, the largest cyclic subgroup

has order 210. This might be regarded as a limitation of this method as this might restrict the power

that can be obtained with such a subgroup, especially when the power is compared to a test that uses

a few thousand random permutations. However, for longer sequences, this limitation disappears. For

example, in the hot hand literature often a sequence length of 100 throws is used. (Gilovich et al.,

1985; Miller and Sanjurjo, 2021). For S100, there exist cyclic subgroups of a much higher order than
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Gb30 Gg30 Gl30
η m=2 m=3 m=2 m=3 m=2 m=3

0 0.04931 - 0.04938 - 0.05010 - 0.04963 - 0.05050 - 0.05007 -

0.2 0.22505 (0.44) 0.13401 (0.41) 0.22464 (0.40) 0.13293 (0.30) 0.22336 - 0.13563 (0.57)

0.3 0.35870 (0.76) 0.19927 (0.74) 0.35470 - 0.19568 (0.38) 0.35603 (0.50) 0.19535 (0.35)

0.4 0.41994 - 0.25016 (0.64) 0.43023 (0.91) 0.24051 - 0.42288 - 0.24582 -

Gm30 30-rnd

0 0.05018 - 0.05018 - 0.05138 - 0.05014 -

0.2 0.22303 - 0.13230 - 0.22065 - 0.12991 -

0.3 0.35730 (0.62) 0.19486 - 0.35107 - 0.19184 -

0.4 0.43167 (1.06) 0.25196 (0.82) 0.42108 - 0.24373 -

Gd99 Ge99 Gh99
0 0.04799 - 0.05099 - 0.05123 - 0.04992 - 0.05036 - 0.04844 -

0.2 0.24113 - 0.14336 (0.57) 0.23979 - 0.14102 (0.34) 0.23580 - 0.13942 -

0.3 0.38737 (0.80) 0.21357 (0.91) 0.38645 (0.71) 0.20887 (0.44) 0.37925 - 0.20881 (0.44)

0.4 0.45462 (0.79) 0.26905 (1.02) 0.45755 (1.08) 0.26735 (0.85) 0.45198 (0.53) 0.26035 -

Gm99 99-rnd

0 0.04991 - 0.05086 - 0.05064 - 0.04864 -

0.2 0.23948 - 0.14283 (0.52) 0.23927 - 0.13763 -

0.3 0.38330 - 0.21132 (0.69) 0.37936 - 0.20443 -

0.4 0.45724 (1.05) 0.27364 (1.48) 0.44671 - 0.25888 -

Table 5: Power of test for streakiness with TR(x) test statistic, α = 0.05 and alternative hypothesis
with m ∈ {2, 3} and η ∈ {0, 0.2, 0.3, 0.4}. The power of the test is given for the streak-breaking
subgroups of order 30 and 99, 30-rnd and 99-rnd. For the cases that a subgroup outperformed the
random sample on a 5% significance level, the difference in power in %-points is given between
brackets.
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for S20. For instance, subgroups of S100 with the cyclic-structure {20, 20, 59} have an order of 1180

and LPI equal to 40. Therefore, this method has a lot of potential to be extended to longer sequences

in future research.

The heuristic presented is not fail-proof as groups with similar scores, e.g. Ga30 and Gb30 can perform

very differently in tests for streakiness. However, for both cyclic structures examined, 27% of the

selected subgroups turned out to be streak-breaking. When 15 randomly selected subgroups of orders

30 and 99 are used in simulations, none of these subgroups turned out to be streak-breaking. This

shows that the heuristic is able to identify streak-breaking subgroups. Additionally, the percentage

of streak-breaking subgroups might even be increased if the subgroups used in the simulation study

are selected on both a high mean and a high min score. In this research, the subgroups were only

selected on a high mean score. However, based on the presented results, it seems as though a high

min score is a necessary condition for a streak-breaking subgroup.

Finally, it would be an interesting objective for future research to identify why some subgroups

are better than others. Determining this underlying reason might also provide a starting point to

improve the heuristic selection criteria.
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7 Identifying streak-breaking subgroup with a heuristic for n=9

The previous chapter focused on finding cyclic streak-breaking subgroups of S20 with a heuristic.

For short sequences, however, the order of cyclic subgroups is severely limited. For example, the

largest cyclic subgroup of S9 has order 20. Hence, focusing on merely cyclic subgroups seems too

restrictive for such short sequences.

In this chapter, I focus on sequences of length n = 9 and extend the methodology discussed in

the previous chapter to include all subgroups. To this end, I create subgroups by combining two

generators. Following, I examine the largest subgroups of S9 that satisfy the constraints of the

heuristic (order=216). I find that all ten subgroups of order 216 that satisfy the constraints, turn

out to be streak-breaking.

7.1 Methodology

In Section 6.1 it was discussed that the order of cyclic subgroups can be determined easily. Hence,

one can selectively construct subgroups of a given order. In this chapter, I will not examine cyclic

subgroups but subgroups that are created by combining two generators. When creating subgroups

in this way, it is not trivial to know upfront what the order of the group will be. Therefore, in

this chapter, I am not able to generate subgroups of a specific order. To account for this, I have

changed Step 1 of the heuristic procedure to generate subgroups of any order. Then, in Step 2 the

most-promising subgroups of a given order are selected. Step 3 remains the same as in the previous

chapter and hence will not be discussed here.

Step 1: Generating subgroups by randomly combining permutations

In this step, I generate subgroups by combining two generators to form a group. To this end, I

randomly sample 5000 permutations from Sn and create groups by combining every possible pair of

those 5000 permutations. Only the subgroups with an order between 25 and 3000 are selected to

continue to Step 2.

Step 2: Selecting the most-promising subgroups of a given order

For the resulting set of subgroups, I apply the same heuristic criteria as in Step 2 of Chapter 6 to

select the most-promising subgroups. The first criteria is that none of the permutations within a

subgroup is allowed to contain 4 consecutive elements. The second criterion consists of the mean
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scores of the remaining subgroups. For a given order, the subgroups with the highest mean scores

are selected for a simulation study.

Note that the first criterion is more restrictive for subgroups of S9 than for subgroups of S20.

Additionally, permutations with 3 consecutive elements are also quite conservative for sequences of

length 9, while the heuristic does not account for this. Therefore, I have introduced an additional

metric that counts the number of permutations in a group with 3 consecutive elements. I will refer

to this metric as ‘#consecutive(3)’.

7.2 Results

In this section, I present the results of the heuristic procedure for n = 9. With a simulation study, I

examine the power in tests for streakiness for ten subgroups of order 216. I find that all of these ten

subgroups are streak-breaking.

Results of Step 1 and Step 2

The combining of 5000 randomly generated permutations results in 1700 unique subgroups that do

not contain any permutations with 4 consecutive elements and have an order between 25 and 3000.

The order of these groups ranged from 27 to 216. The reason that no subgroups with an order larger

than 216 are found, is that the constraint on the absence of permutations with 4 consecutive elements

is too restrictive.

As discussed before, the search for streak-breaking subgroups of S9 is extended to include non-

cyclic subgroups because the order of cyclic subgroups is too small. Since I am interested in finding

somewhat larger subgroups that beat a Monte Carlo sample of permutations, I examine the largest

subgroups found in this search, i.e. the subgroups of order 216. In total, there are 2364 unique

subgroups of order 216 identified in this search. However, only 10 of these subgroups do not contain

any permutations with 4 consecutive elements. Table 6 gives the metrics and generators of these

subgroups. Interestingly, all of the groups have the same mean score. The underlying reason for this

phenomenon is not clear yet.

Step 3: Simulating the power of selected subgroups in a test for streakiness

The power of these ten subgroups in tests for streakiness is given in Table 7. All of the ten subgroups

of order 216 are streak-breaking meaning that they are never significantly worse than 216-rnd and

in some cases significantly better.
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mean score min score #consec(3) generators

Ga216 26.754 16 27 (1, 7, 3, 9, 5, 4)(2, 6) and (1, 3, 6)(2, 4, 8)(5, 9, 7)

Gb216 26.754 16 27 (1, 5, 7, 3, 4, 2)(8, 9) and (1, 7, 2)(3, 5, 8)(4, 6, 9)

Gc216 26.754 15 33 (1, 4)(2, 5, 3, 6, 7, 8) and (1, 3, 2, 4)(6, 7, 8, 9)

Gd216 26.754 15 33 (1, 7, 4, 5, 8, 6)(2, 9) and (1, 8, 3, 9)(2, 6, 4, 7)

Ge216 26.754 15 30 (1, 6, 3, 7, 9, 5) (2, 4) and (1, 3, 6, 7)(4, 5, 8, 9)

Gf216 26.754 14 30 (1, 7, 3, 6, 4, 8)(2, 9) and (1, 2, 8, 5)(3, 6, 7, 4)

Gg216 26.754 14 30 (1, 3, 4, 8, 6, 9)(2, 7) and (1, 6, 3, 2, 7, 8)(4, 5)

Gh216 26.754 13 35 (1, 4, 9, 5)(2, 6, 3, 8) and (1, 8, 6)(2, 9, 4)(3, 5, 7)

Gi216 26.754 12 28 (1, 5)(2, 6, 4, 3, 9, 8) and (1, 9, 2)(3, 7, 5)(4, 6, 8)

Gj216 26.754 12 28 (2, 4, 7)(3, 5, 9) and (1, 3, 9)(2, 4, 5)(6, 8, 7)

Table 6: Mean scores, min scores, #consec(3), and generators of the 10 groups of order 216 that
were selected.

The groups Gh216 and Gi216 achieve a significant gain in power for all specifications of the alternative

hypothesis examined. The increase in power ranges from 0.35 to 0.94 for Gh216 and from 0.37 to 1.06

for Gi216. For both groups, the largest increase in power is realized for m = 2 and η = 0.4, this

amounted to 0.94 and 1.06 percentage points, respectively. Although these latter two groups might

be considered the ‘best’ subgroups examined, this was not necessarily expected based on the metrics

investigated. Table 6 shows that Gh216 and Gi216 have a relatively low min score and Gh216 even has

the highest number of permutations with 3 consecutive elements. Hence, these metrics do not fully

capture the streak-breaking qualities of a subgroup.

7.3 Discussion

The methodology presented is successful in identifying streak-breaking subgroups of a relatively

large order for sequences of length 9. The largest streak-breaking subgroups found have an order of

216. Some of these subgroups even beat 216-rnd for all specifications of the alternative hypothesis

examined. It is probably possible to find larger streak-breaking subgroups if the constraint on the

presence of permutations with 4 consecutive elements is relaxed. This could be done by allowing

that, for example, a maximum of 2.5% of the permutations may contain 4 consecutive elements.

Interestingly, all 10 subgroups of order 216 that did not contain 4 consecutive elements were

streak-breaking. For subgroups of different orders, this is not generally the case. As mentioned in

the previous chapter, it is not clear yet what property makes that some subgroups outperform others.

This would be valuable to know and hence is an interesting topic for future research.
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Ga216 Gb216 Gc216

η m=1 m=2 m=1 m=2 m=1 m=2

0 0.05109 - 0.05094 - 0.04955 - 0.04958 - 0.04954 - 0.05017 -

0.2 0.22638 - 0.12434 (0.31) 0.22707 (0.42) 0.12389 - 0.22841 (0.56) 0.12426 (0.30)

0.3 0.33935 (0.70) 0.15355 - 0.33623 - 0.15588 (0.32) 0.33735 (0.50) 0.15478 -

0.4 0.35371 (0.82) 0.15547 (0.39) 0.35578 (1.02) 0.15569 (0.41) 0.35733 (1.18) 0.15413 -

Gd216 Ge216 Gf216

0 0.05053 - 0.04969 - 0.04961 - 0.05073 - 0.04968 - 0.04857 -

0.2 0.22665 (0.38) 0.12114 - 0.22544 - 0.12256 - 0.22475 - 0.12387 -

0.3 0.33842 (0.60) 0.15109 - 0.33862 (0.62) 0.15400 - 0.33881 (0.64) 0.15515 -

0.4 0.35812 (1.26) 0.15411 - 0.35420 (0.87) 0.15476 - 0.35701 (1.15) 0.15466 -

Gg216 Gh216 Gi216

0 0.04920 - 0.04984 - 0.04990 - 0.0502 - 0.05055 - 0.05077 -

0.2 0.22839 (0.55) 0.12454 (0.33) 0.22699 (0.41) 0.12570 (0.45) 0.22802 (0.52) 0.12522 (0.40)

0.3 0.33912 (0.67) 0.15437 - 0.33897 (0.66) 0.15616 (0.35) 0.33773 (0.53) 0.15634 (0.37)

0.4 0.35550 (1.00) 0.15469 - 0.35490 (0.94) 0.15577 (0.42) 0.35614 (1.06) 0.15551 (0.39)

Gj216 216-rnd

0 0.04999 - 0.05089 - 0.05014 - 0.05038 -

0.2 0.22645 - 0.12687 (0.56) 0.22285 - 0.12125 -

0.3 0.33917 (0.68) 0.16045 (0.78) 0.33239 - 0.15268 -

0.4 0.35514 (0.96) 0.16020 (0.86) 0.34555 - 0.15162 -

Table 7: Power of test for streakiness with TR(x) test statistic, α = 0.05 and alternative hypothesis
with m ∈ {1, 2} and η ∈ {0, 0.2, 0.3, 0.4}. The power of the test is given for the selected subgroups
of order 216 and 216-rnd. For the cases that a subgroup outperformed the random sample on a 5%
significance level, the difference in power in %-points is given between brackets.
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Finally, this method is not suitable for long sequences. Even for sequences of length 20, randomly

combining generators results in huge subgroups. Hence, for long sequences using cyclic subgroups,

as described in the previous chapter, is recommended.
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8 Conclusion

In this thesis, I have identified subgroups of the permutation group that obtain a higher power in

a permutation test for positive serial dependence in binary sequences than an equally-sized Monte

Carlo sample of permutations. I have identified such streak-breaking subgroups for sequences of

lengths 6, 9, and 20.

Streak-breaking subgroups for sequences of lengths 6, 9, and 20

For sequences of length 6, I have found a subgroup of order 24 that not only outperforms an equally-

sized random sample of permutations but even the entire symmetric group for many significance levels

α. This is very remarkable as a higher power is obtained under weaker assumptions, i.e. permutation

invariance under a subgroup instead of permutation invariance under the entire symmetric group.

For sequences of length 9 and 20, I have been able to identify streak-breaking subgroups based on

a heuristic. I have presented two variations of this heuristic method. For long sequences, e.g. n = 20,

this heuristic focuses solely on cyclic streak-breaking subgroups while for short sequences, e.g. n = 9,

non-cyclic subgroups are examined. For n = 20, a cyclic subgroup of order 99 (Gd99) is found that

achieves a gain in power ranging from 0.57 to 1.02 percentage points for various specifications of

the alternative hypothesis. For n = 9, the best performing subgroup of order 216 (Gi216) achieves an

increase in power between 0.37 and 1.06 percentage points.

Therefore, it can be concluded that the method developed by Koning and Hemerik (2021) to

enhance the power of group-invariance tests can be extended to a completely different DGP and test

statistic.

Understanding the differences in power between subgroups

In this research, I have not been able to fully explain differences in performance between subgroups

based on the characteristics of these subgroups.

In Chapter 5, I have presented a systematic approach to examine why some subgroups perform

better than others in permutation tests for positive serial dependence - given a particular specification

of Ha. The key insight of this systematic approach is that streak-breaking subgroups are those that

have a high rejection probability for the most likely sequences under the alternative hypothesis. For

sequences of length 6, this method showed to be insightful to explain differences between subgroups.

However, this result was based on discreetness effects of the short sequences studied and hence could

not be generalized to identify streak-breaking subgroups for longer sequences.
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Furthermore, in Chapter 6, subgroups were found with very similar scores on the heuristic mea-

sures but very different performances in tests for streakiness (Ga30 and Gb30). It is not clear yet what

the underlying reason for this phenomenon is.

Suggestions for future research

Since this is the first research that examines the application of subgroups in permutation tests for

streakiness, there are still some questions left answered. In particular, I have two suggestions that

would be interesting to examine in future research.

First, it would be interesting to gain more insight into why some subgroups perform better than

others in tests for streakiness. This could be done by applying the systematic approach of Chapter 5

to the subgroups of S20 that were selected by the heuristic in Chapter 6. Due to the large sample space

for n = 20, it is not possible to enumerate all feasible sequences as I have done for n = 6. Therefore,

I recommend focusing on the 50 most likely sequences under Ha and aim to find an explanation why

subgroups with very similar scores on the heuristic measures, perform very differently in tests for

streakiness. Determining the underlying reason for this difference in performance might also provide

a starting point to improve the heuristic selection criteria used in Chapter 6 and Chapter 7.

Second, it would be interesting to extend the heuristic method, developed to identify candidate

streak-breaking subgroups, to longer sequence lengths. In the hot hand literature, often shot se-

quences of at least 100 throws are studied. It would be interesting to see whether it is possible to

identify streak-breaking subgroups of S100 with the heuristic approach. An additional advantage of

studying longer sequence lengths is that the maximal order attainable for cyclic subgroups increases.
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A Appendix

Ghigh Glow

1 [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6]

2 [2, 5, 3, 4, 1, 6] [6, 5, 4, 2, 3, 1]

3 [3, 5, 2, 6, 1, 4] [1, 3, 2, 5, 4, 6]

4 [5, 1, 3, 4, 2, 6] [6, 4, 5, 3, 2, 1]

5 [1, 3, 2, 6, 5, 4] [1, 4, 3, 5, 2, 6]

6 [2, 3, 5, 6, 1, 4] [6, 2, 4, 3, 5, 1]

7 [3, 2, 5, 4, 1, 6] [1, 5, 3, 2, 4, 6]

8 [5, 3, 1, 6, 2, 4] [6, 3, 4, 5, 2, 1]

9 [1, 5, 2, 4, 3, 6] [1, 2, 4, 5, 3, 6]

10 [2, 1, 5, 4, 3, 6] [6, 5, 2, 3, 4, 1]

11 [3, 1, 5, 6, 2, 4] [1, 3, 5, 4, 2, 6]

12 [5, 2, 1, 4, 3, 6] [6, 4, 3, 2, 5, 1]

13 [1, 2, 5, 6, 3, 4] [1, 4, 5, 2, 3, 6]

14 [2, 5, 1, 6, 3, 4] [6, 2, 3, 5, 4, 1]

15 [3, 5, 1, 4, 2, 6] [1, 5, 2, 4, 3, 6]

16 [5, 1, 2, 6, 3, 4] [6, 3, 5, 2, 4, 1]

17 [1, 3, 5, 4, 2, 6] [1, 2, 5, 3, 4, 6]

18 [2, 3, 1, 4, 5, 6] [6, 5, 3, 4, 2, 1]

19 [3, 2, 1, 6, 5, 4] [1, 3, 4, 2, 5, 6]

20 [5, 3, 2, 4, 1, 6] [6, 4, 2, 5, 3, 1]

21 [1, 5, 3, 6, 2, 4] [1, 4, 2, 3, 5, 6]

22 [2, 1, 3, 6, 5, 4] [6, 2, 5, 4, 3, 1]

23 [3, 1, 2, 4, 5, 6] [1, 5, 4, 3, 2, 6]

24 [5, 2, 3, 6, 1, 4] [6, 3, 2, 4, 5, 1]

Table A.1: Array form representation of all permutations within Ghigh and Glow
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P(reject H0 |x, G)

x P(x |Ha) 24-rnd S6 Ghigh Glow

25 [0, 1, 1, 0, 0, 0] 0.010 0.084 0 0 0.25

26 [1, 0, 0, 1, 1, 1] 0.010 0.085 0 0 0.25

27 [0, 0, 0, 1, 0, 1] 0.010 0 0 0.125 0

28 [1, 1, 1, 0, 1, 0] 0.010 0 0 0.125 0

29 [1, 0, 1, 1, 1, 0] 0.010 0 0 0 0

30 [0, 1, 0, 0, 0, 1] 0.010 0 0 0 0

31 [0, 0, 1, 0, 0, 0] 0.010 0 0 0 0.125

32 [1, 1, 0, 1, 1, 1] 0.010 0 0 0 0.125

33 [1, 0, 0, 0, 1, 1] 0.010 0.193 0.125 0.375 0.25

34 [0, 1, 1, 1, 0, 0] 0.010 0.192 0.125 0.375 0.25

35 [1, 0, 0, 0, 1, 0] 0.010 0 0 0 0

36 [0, 1, 1, 1, 0, 1] 0.010 0 0 0 0

37 [0, 0, 0, 1, 0, 0] 0.010 0 0 0 0.125

38 [1, 1, 1, 0, 1, 1] 0.010 0 0 0 0.125

39 [0, 0, 1, 0, 1, 0] 0.006 0 0 0 0

40 [1, 1, 0, 1, 0, 1] 0.006 0 0 0 0

41 [1, 1, 0, 1, 0, 0] 0.006 0.002 0 0 0

42 [0, 0, 1, 0, 1, 1] 0.006 0.002 0 0 0

43 [1, 0, 1, 1, 0, 1] 0.006 0 0 0 0

44 [0, 1, 0, 0, 1, 0] 0.006 0 0 0 0

45 [1, 0, 1, 1, 0, 0] 0.006 0.002 0 0 0

46 [0, 1, 0, 0, 1, 1] 0.006 0.001 0 0 0

47 [0, 1, 0, 1, 1, 0] 0.006 0 0 0 0

48 [1, 0, 1, 0, 0, 1] 0.006 0 0 0 0

49 [1, 0, 0, 1, 0, 1] 0.006 0 0 0 0

50 [0, 1, 1, 0, 1, 0] 0.006 0 0 0 0

51 [0, 1, 1, 0, 1, 1] 0.006 0 0 0 0

52 [1, 0, 0, 1, 0, 0] 0.006 0 0 0 0

53 [1, 1, 0, 0, 0, 1] 0.004 0.192 0.125 0.375 0.25

54 [0, 0, 1, 1, 1, 0] 0.004 0.191 0.125 0.375 0.25

55 [1, 1, 1, 0, 0, 1] 0.004 0.085 0 0 0.25

56 [0, 0, 0, 1, 1, 0] 0.004 0.084 0 0 0.25

57 [1, 1, 0, 0, 1, 1] 0.003 0.085 0 0 0.25

58 [0, 0, 1, 1, 0, 0] 0.003 0.085 0 0 0.25

59 [1, 1, 0, 0, 1, 0] 0.003 0.002 0 0 0

60 [0, 0, 1, 1, 0, 1] 0.003 0.002 0 0 0

61 [1, 0, 0, 1, 1, 0] 0.003 0.002 0 0 0

62 [0, 1, 1, 0, 0, 1] 0.003 0.002 0 0 0

63 [0, 0, 1, 0, 0, 1] 0.003 0 0 0 0

64 [1, 1, 0, 1, 1, 0] 0.003 0 0 0 0

Table A.2: The 40 least likely sequences under Ha with m = 2 and η = 0.3. For each sequence the
likelihood and the rejection probability using 24-rnd, S6, Ghigh and Glow are given.
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