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Abstract

This paper proposes an estimation method that robustifies the finite mixture model with
the use of the Median-Of-Means (MOM) estimator proposed by Lecue & Lerasle (2020).
This method replaces expected values in the original estimation algorithm by the
MODM-estimator and optimises this new problem. The used data consists of simulations
from four data generating processes (DGP) and an empirical data set. Two of the DGP’s
generate linear or soft-clustered data. The other two DGP’s add different types of outliers
to these data sets. The results indicate that for uncontaminated data, there is no superior
method. For the contaminated data, however, the MOM estimator outperforms maximum
likelihood estimation. Nevertheless, this robustification does not hold with certainty for

small samples.
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1 Introduction

Not a single person has the exact same preferences. Take for example the learning and
personality preferences of students (Durling et al., 1996). In this paper the focus lies on art-
based students and the conclusion is that their way of problem-solving differs significantly
from other professions. Nevertheless, most econometric models, such as the linear regression
model, do not take these differences into account (Heij et al., 2004). The finite mixture model,
however, is a model that solves this problem and does include this so-called unobserved
heterogeneity. Be that is it may, the problem with this model is that similarly to least
squares, the estimations are easily affected by outliers in the data. This is because one
uses maximum likelihood to optimise these estimations (G. J. McLachlan & Peel, 2004).
Maximum likelihood makes use of the whole data set, including the outliers. This can then
result in estimations that are unreliable (Lecue & Lerasle, 2020). Nevertheless, simplifying
the model by neglecting unobserved heterogeneity and then using robust linear regression
may also lead to weak performance of the proposed model (G. J. McLachlan & Peel, 2004).
This is the reason why in this paper, we combine robust statistics with the finite mixture

model.

Some research has already been conducted on this problem. Yao et al. (2014) for example,
replace the normal distribution that is traditionally used for the finite model by the Student’s
t-distribution. The reason they do this is because of the heavy tails that a t-distribution con-
tains. In other words, the probabilities corresponding to extreme values are larger compared
to that of the normal distribution. In this way one can take outliers into account. This idea
can also be used for the replacement of a skew normal distribution (Lin et al., 2007). In
this paper they replace the latter by the skewed t-distribution. The problem with both these
methods is that there are still extreme values that are not tackled by the t-distribution due
to the fact that the tails of this distribution will still converge too zero as the values get more
extreme. The focus in our paper therefore lies on a different robust method that does not
have this attribute: Median-Of-Means (MOM) estimation (Alon et al., 1999). This method
filters the data by creating subsets and then estimate the coefficients of the model for each

of these subsets. The subsets with outliers will have other estimations compared to those of



the uncontaminated subsets. If one then takes the median over these results, the selected
estimation will then likely not be affected by outliers, as the majority of the subsets does
not contain outliers. The contaminated estimations will be on the outside of the sequence of
estimations and will not be chosen as the median. In this way one takes out the outliers in
the data. We combine this method with the finite mixture model. By doing so, we are able

to robustify the finite mixture model. This leads to the following research question:

e “How can one use the Median-Of-Means to effectively combine unobserved heterogeneity

and robustness within a linear regression framework?"

Some papers have already used the MOM estimator for the robustification of the linear
regression problem (Lugosi & Mendelson, n.d.; Lecue & Lerasle, n.d.). According to Lecue
& Lerasle (2020), however, these researchers have come up with complex methods to use
the MOM estimator and robustify the linear regression model. This is why they propose a
method where the MOM estimator is used differently. Their proposed method uses the MOM
estimator as an optimisation problem instead of an estimator. This means that the expected
value that one normally optimises in the linear regression context is replaced by the MOM
estimator. The latter is then optimised, resulting in robust estimations. The advantage of
this method is that it does not only robustify, but also simplifies the optimisation problem
compared to the papers by Lugosi & Mendelson (n.d.); Lecue & Lerasle (n.d.). This is why

we use this idea in our paper.

The way our proposed method works is as follows. As mentioned earlier, the optimisation
of the finite mixture is traditionally done using maximum likelihood. Nevertheless, due to
the multiplicative nature of the model, this cannot be done by optimising the log-likelihood
function directly (Muthen & Shedden, 1999). We must use the so-called EM algorithm.
This algorithm consists of two steps: Expectation and Maximisation. In the first step an
expectation is set up. This expectation is then optimised in the maximisation step. This
expectation can be split up into individual expectations similar to the expectation that is
optimised in the linear regression problem. (G. J. McLachlan & Peel, 2004). The optimisation

of these expected values are easily affected by outliers (Yao et al., 2014). In our case, this



means that the maximisation step is prone to contaminated data. We solve this, however, by
replacing this expectation with the robust MOM estimator similar to Lecue & Lerasle (2020).
By doing so, we obtain several robust loss functions and the estimations of the coefficients
are going to be robust as well. For so far as we know, this method has never been done for

the finite mixture model.

Our results show that for larger data sets, the MOM estimator either outperforms or
performs equally compared to the maximum likelihood estimator for the contaminated and
uncontaminated data. For the smaller data sets, however, this is not the case. For these
data sets we see that the variance of the MSE increases, which indicates the unreliability
of the performance results. So, for small samples the MOM estimator does not robustify
the finite mixture model with certainty. The conclusion is confirmed even more when using
both the maximum likelihood and MOM estimator for an empirical application: For this
small empirical data set, we conclude that the MOM estimator performs less well than the

maximum likelihood estimator.

The remainder of the paper is structured as follows. Section 2 discusses relatable papers
and research that has previously been conducted. In section 3 we then go through the
methodology and estimators used throughout our research. Section 4 discusses the simulation
design and corresponding performance results of the proposed estimators. In Section 4 we
then analyse the empirical data set and the corresponding results. Lastly, we conclude our

research in Section 5 and go through our limitations in Section 6.

2 Literature

2.1 Related studies

In the past years people have conducted research on the subjects of robustness and unobserved
heterogeneity in econometric models. The robustness of models ensures that contaminated
data, which is data that contains outliers, does not affect the estimation results. Including

unobserved heterogeneity into models ensures that we takes personal preferences into account.



In this section we go through to some of this previously conducted research that is relatable

to this paper.

2.1.1 Unobserved heterogeneity

When we look at the linear assumption that is made in OLS, we notice that every explanatory
variable corresponds to a single coefficient. After the estimation of these coefficients, we use
these estimations for forecasts of data points in the test set. This means that for each of
these data points, one uses the same estimation of the coefficients. But is this always the
case? In practice, this assumption is not often satisfied (Heij et al., 2004). This problem is
called unobserved heterogeneity and means that the effect of each explanatory variable on the
dependent variable may differ for different data points. G. J. McLachlan & Peel (2004) use a
model called the finite mixture model that takes this unobserved heterogeneity into account.
The way this model works is by using different clusters, each with different coefficients. A
data point then belongs to a certain cluster with a corresponding probability. In other words,
the model uses soft-clustering. By doing so, one obtains a linear combination of the different
coefficients belonging to the different clusters and therefore every effect that an explanatory

variable has on the dependent variable is going to be different for every data point.

There is, however, a disadvantage to the finite mixture model. Due to the clustering within
the model, maximum likelihood optimisation becomes difficult and time-consuming. To still
find an optimal solution, we must therefore use a method called the EM-algorithm. This
algorithm allows for easier optimisation and results in the same estimation as maximum
likelihood (Muthen & Shedden, 1999). However, it remains an iterative process, which still
makes the usage of this model more time-consuming than other models such as the linear

regression model (Veldhuizen et al., n.d.).

2.1.2 Robustness

One of the key definitions of robustness within this context is the breakdown point. This is the
proportion of data points that need to be turned into arbitrarily high or low values in order

for the estimator to give an extreme arbitrarily estimation (Hampel, 1971). So, to achieve



robustness one seeks to find a breakdown point as low as possible. An example of a robust
estimator is the MM estimator, which can be used to estimate the linear regression coefficients
in a robust and efficient manner (Susanti & Pratiwi, 2014). The MM-estimator combines two
estimators: The S-estimator and the M-estimator. The main property of the S-estimator is
its robustness. The property of the M-estimator is its efficiency. The MM-estimator combines
both, and by doing so, obtains both properties. The result is a robust estimator with high
efficiency. Other examples are the papers by Lugosi & Mendelson (n.d.) and Lecue & Lerasle
(n.d.). In these papers they use the so-called Median-Of-Means estimation method, which
robustly estimates the location parameter of data. This method splits up the data in K
subsets. For each of these sub sets the location parameter is estimated, using the mean as
the estimator. This then results in a sequence of K different estimations. Finally, the median
of this sequence is taken. This method assures that outliers that might appear in the original
data set only have an effect on the subset that uses that outlier. Taking the median then
makes sure that the contaminated estimator is not chosen as the final estimation. A clear
example where this method is used in practice, is in a paper by Pazis et al. (2016). Here
they use the MOM estimator for PAC exploration. PAC stands for Probably Approximately
Correct, and is a method that seeks to find a solution that has a high probability (Probably)
for a low error (Approximately Correct). The main assumption of this method is that there
are no errors in the data. In reality however, this can definitely be the case. Pazis et al. (2016)
propose to use the MOM estimator in this situation to make PAC exploration more robust.
Their conclusion is that the Median-Of-Means estimator make sure there is less dependence

on the range of values the optimisation can take, making the process indeed more robust.

Lecue & Lerasle (2020) use the Median Of Means to make linear regression robust. In the
general linear regression setting, one optimizes an expected value (Heij et al., 2004). Lecue
& Lerasle (2020) replace this expected value by the Median-Of-Means estimator. In this
way the optimisation problem becomes completely different. Solving this new optimisation

problem then results in robust estimations. Our paper revolves around this idea.



2.1.3 Least Median of Squares regression

Another example that robustifies linear regression is Least Median of Squares regression.
Normally, one would use the sum of squared residuals as the loss function and minimise
the latter to obtain the least squares solution. However, this method is highly sensitive to
outliers (Lecue & Lerasle, 2020). In order to solve this, Rousseeuw (1996) proposes that
a different loss function is selected. Instead of taking the sum of the squared residuals, he
selects the median of these squared residuals as the chosen loss function. The reason for this
is as follows. An outlier generates different squared residuals than other data points. If one
then creates an ordered sequence of these squared residuals, the ones belonging to the outliers
will lie on the outside of the sequence. If one then takes the median of this ordered sequence,
the squared residuals belonging to the outliers will not be chosen. Minimising this median
then means that one minimises a loss function that is not affected by outliers, making the
result robust. In theory and in practice this works well for outliers in the dependent variable.
If there are other types of outliers, this method will not give a robust estimation (Lecue &
Lerasle, 2020). Nevertheless, the advantage of this method is that can also be used in a
setting different from linear regression. An empirical An example where this method is used
is a paper by Mili et al. (1991). In this paper they solve problem of optimising static state

estimators in power systems with the help of Least Median of Squares regression.

2.1.4 Robustness and unobserved heterogeneity using the t-distribution

Other research has already been conducted on combining both robustness and heterogeneity
(G. McLachlan & Peel, 2000). In this paper, they utilise the t-distribution in the finite
mixture model. This method differs from the original use of the finite mixture model in the
linear regression context, where they use the normal distribution (G. J. McLachlan & Peel,
2004). The t-distribution has heavier tails, meaning that values that lie further from the
mean have a higher probability compared to the normal distribution. Therefore, extreme
values cannot be taken into account when assuming normality. Due to heavy tailed property
of the t-distribution, this is possible, however. In this way one can take outliers into account
when estimating. Lin et al. (2007) extend this idea and use the skew t-distribution as a

robust replacement for the skew normal distribution. This idea turns out to be useful for



heterogenous data, specifically. An example where this robust method is applied is the

medical image segmentation (Nguyen & Wu, 2011).

2.1.5 Regularization

Regularization is a method that is mainly used to make sure that the estimations do not
overfit the data. Overfitting means that the estimations are shaped towards the trainig
set. When this happens this usually to causes performance problems, because the test set
might have other characteristics than the training set (Bradley et al., 2011). To prevent
this from happening regularization adds a penalty term to the loss function that accounts
for this overfitting problem. Even though this is its main goal, it is also useful in robust
statisctics. If your training set contains outliers, these outliers usually affect the estimations.
The outliers can simply interfere with the estimation, similarly to all the other data points.
However, if one uses regularization, this prevents the model from overfitting. In other words,
the influence of the training set on the estimation becomes less. In this way outliers will have
less effect on the estimation, making the estimation more robust. A example where this is
used is in a paper by Tao & Zhai (2006). In this paper they combine regularisation with the

optimisation of the mixture model in order to obtain robust results.

2.2 Contribution

In this paper we propose a new estimator similar to the paper by Lecue & Lerasle (2020) to
robustify the finite mixture model. Lecue & Lerasle (2020) give mathematical proof that their
method, using the Median-Of-Means estimator as an optimisation problem, indeed robustifies
the linear regression problem. This is confirmed even more using simulated results. Moreover,
it is mentioned that their method of replacing the original optimisation problem of the linear
model by the Median-Of-Means estimator has never been done before. For our research
a similar reasoning holds. We show that for the finite mixture model too, optimisation
problems can be replaced by the Median-Of-Means estimator. By doing so the estimation
will be robust against both outliers in the dependent variables and the explanatory variables.
For so far we know, the only way this robustification has been done for the finite mixture

model is by using the t-distribution. Our paper will therefore add a new robust method to



current literature.

2.3 Outliers in data

There different possible types of outliers in data. First of all, one may have outliers in the
dependent variable. This type of outlier is also called a vertical outlier. Secondly, there are
bad and good leverage points. In this case the explanatory variables take on extreme values.
The difference between good and bad leverage points is the value of the dependent variable. If
the dependent variable changes in such a way that the data point lies in line with the linear
regression mode, that data point is considered a good leverage point. Even though these
data points do not fit the rest of the data set, the corresponding values still fit the general
correlation between the variables. Therefore, these data points do not affect the estimation
of the coefficients. However, they might affect the estimation of the corresponding standard
errors (Verardi & Croux, 2009). A bad leverage point is a point where the explanatory
variables are extreme, but value of the dependent variable fits into the rest of the data. In

this way the data points will not be in line with the linear regression model.

3 Methodology

In this section we discuss the models, methods and estimators we use throughout our research.
It is split up into four parts. The first part discusses the finite mixture model, which is the
model that includes unobserved heterogeneity. The second part explains the Median-Of-
Means estimator, which is a estimator that robustifies the estimation of an expected value.
The third part then explains how we combine part 1 and 2 to robustify the finite mixture

model. Lastly, part four elucidates how we train and test the used models.

3.1 Finite mixture model

According to the traditional regression model, the dependent variable y has a linear relation
with the explanatory variables (Heij et al., 2004). The assumption that is made here is

that the coefficients, or the effect of the explanatory variables on the dependent variable are
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the same for every data point. In reality, however, this does not have to be the case. The
model we propose to include the latter is called the finite mixture model. Instead of using a
single relation between the dependent variable y and the explanatory variables x, this model
consists of C' different clusters. Here ¢ € {1,2,...C’}. Let i € {1,2,..., N}, where N is the
total number of data points. Each of the data points (y;,x;) belongs to one cluster ¢ with
probability 7.. Conditional on the cluster, the model follows a specific distribution that is set
beforehand. In our case this distribution is set to be the normal distribution. The probability

distribution function (PDF) belonging to this distribution equals

1 1
Pru(yi|xi, fc) = —==€e"2
(ilxi, Be) = ——7=

(zi—x}Bc)?
o

(1)

Here f. is the vector of coefficients belonging to cluster ¢, x; are the set of the explanatory
variables {x;1, T;2, ..., z;c} of index i € {1,2...N}. N is the total number of data points and
o is a scale parameter corresponding to the standard deviation of the normal distribution.
Finally, we use the subscript n for clarification purposes that this equation is the PDF of the

normal distribution.

Combining the unconditional probabilities 7. for ¢ € {1,2,...C’} and Equation 1 we obtain

the likelihood contribution of data point (y;,x;). This contribution equals

C
Li(yi’Xiae) = ZWCPTn(yi|Xi>5c)- (2)

The likelihood function then equals the multiplication of all the individual likelihood contri-

bution and becomes
N

L(0) = HLi(yi‘Xhe)- (3)

3.1.1 Expectation Maximisation algorithm

Due to the multiplicative nature of the individual likelihood contributions the likelihood
function becomes difficult to solve (Heij et al., 2004). Normally, one would use the so-called

log-likelihood, the logarithm of the likelihood function, which turns the multiplication in
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Equation 3 into a sum. The equation becomes

Z In(L;(yi|x;,0)). (4)

Equation 4 is called the log-likelihood function. Solving this new problem entails the same
results, but has less computational difficulty (Heij et al., 2004). In this case, however, taking
the logarithm does not make the optimisation problem easier, as the multiplication between
7. and Equation 1 remains. This is why in this case, we use the Expectation Maximisation
(EM) algorithm. This algorithm makes use of step-wise optimisation, eventually resulting
in the same outcome as optimising the log-likelihood using traditional maximum likelihood
estimation (Muthen & Shedden, 1999). Logically, it consists of two different stages: Expect-

ation and Maximisation.

Expectation The first step is the Expectation (E) step. In this step, we compose the
expected log-likelihood. To do so, we must first define the probability that data point (y;, x;)

belongs to cluster c¢. This is defined as

cP |y Me .
SO 1 1 Y S N T (5)

C )
> i1 T Pr(yilxi, B;)

Plugging in the estimates #, and 3, for all ¢ € {1,2,...C'}, gives the estimate Z;. for Equation
5 (Melnykov et al., 2010). According to G. J. McLachlan & Peel (2004), the exptected
log-likelihood then becomes

c

= Z Z chn PT yz|Xza ﬁc + Z Z chh'l ﬂ-c <6)

i=1 c=1 i=1 c=1

Maximisation In the Maximisation (M) step, Equation 6 is optimised. Due to the in-
dependence of the elements in the sum, this can be done separately for each ., 8. and o2

Optimising 7, and 02 can be done analytically. The optimal solution for 7, equals

12



1 N
ﬁc:Nch,c:L...,C. (7)
=1

For o2 the analytical solution becomes

Z —xﬁ (8)

The optimisation of each coefficient (. equals a weighted least squares problem. This

means that an analytical solution is possible. This solution equals

Be=(X'Z.X)'X'Z.Y. (9)

Here X is the matrix including all the data corresponding to the explanatory variables and
the constant. W, is a diagonal matrix with weights Z;. as diagonal matrix elements. ¢ €
{1,2,...C’} corresponds to a specific cluster and i is an index corresponding to data point
(yi,x;). Lastly, Y is a vector containing all data y; € {y1,ys2...yn} that corresponds to the

dependent variable.

3.2 Median-Of-Means

The Median-Of-Means estimation is a method to robustly estimate the expected value of a
cloud of data points that come from an unknown distribution. Given specific assumptions
the arithmetic mean is a consistent estimator for the latter (Heij et al., 2004). The Equation

of the arithmetic mean equals

f(x) = i in = X. (10)

Here x; is an observation on a set of explanatory variables corresponding to data point i. N

is the total number of data points.

Sometimes, however, it might be the case that the assumptions set by Heij et al. (2004)

do not hold. For example, their might be an outlier in the data, which is a data point with
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a value that is different from the rest of the data points. If this is the case, Equation 10 is
not going to give correct estimations (Lecue & Lerasle, 2020). In order to minimise the effect
of outliers on the estimations, we can use the Median-Of-Means (MOM) estimator. This
estimator is calculated in several steps. Firstly, the data points are randomly split up into K
different subsets. We create this randomness by first randomly shuffing the original data set.
For each of these subsets, Equation 10 is then used to calculate the arithmetic mean. This
results in a sequence of K values {fiy, fi2, ..., fic }. Secondly, the median of this sequence is

taken as the final estimation. This resulting MOM estimator then becomes

MOM (1) = med({iv, iz, - 11c})- (11)

The split-up of data ensures that outliers can only have an effect on one estimation of the
mean. This effect ensures that these affected arithmetic means differ from the uncontamin-
ated estimations. Due to the randomness, these estimations should be similar in terms of
value. The affected estimation therefore becomes an extreme value in the sequence of estim-
ations. When the median is taken, the affected estimations will therefore not be chosen. In

other words, this method ensures robustness (Alon et al., 1999).

3.3 Using MOM in the the finite mixture model

The MOM method ensures robustness for the estimation of an expected value. But can we
also use it in the linear regression setting? Lecue & Lerasle (2020) propose a way to do so

by replacing the expected value
E((Y - X'B)*), (12)

which is the animal the OLS estimator seeks to optimise, by the Median-Of-Means estimator.

Let (Y — X’$8)? be equal to A. The Median-Of-Mean estimator for Equation 12 then becomes

14



Here, each \; for j € {1,2,3,.., K} equals the arithmetic mean to estimate Equation 12 for

each subset j.

We use this exact method in the finite mixture model setting. To see how this works,
one must look at Equation 6 from a different of view. Equation 9 indicates that for each
different component in Equation 6 corresponding to a specific cluster ¢, the optimal outcome
is equal to the weighted least squares estimator. Therefore one should not think of this
optimisation problem as a maximum likelihood problem. Instead, the estimation of each
different component equals the optimisation of a weighted least squares problem, which is a
generalisation of a least squares problem. The weighted least squares problem also optimises
Equation 12 (Kiers, 1997). This means that conditional on cluster ¢ an expected value
equal to Equation 12 is optimised in the finite mixture model. We are therefore able to
use the idea proposed by Lecue & Lerasle (2020), and replace these expected values. The
difference however, is that the arithmetic means in Equation 13 are replaced by weighted

means equalling
1 &
,Uweighted(x) = gc ; Zlc<yl - (Xgﬂc))z' (14)

Here (. is the vector of coefficients belonging to cluster ¢, x; are the set of the explanatory
variables {z;1,2;2,...,2;C} of index i € {1,2...N;} and y; is the value of the depending
variable corresponding to index i. Here N, equals the amount of data points in subset
k. Lastly, S. equals fvz’“l 2. Hach of the weighted MOM-estimators are then optimised
independently for each cluster ¢. A frequently used method for this optimisation is the
gradient descent algorithm. For these kind of algorithms one seeks to find the optimal value.
This value is found by setting steps in the direction of the steepest descent. It can be shown
that this direction equals the opposite of the gradient, hence the name gradient descent

(Ruder, 2016).
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3.4 Hold-out sample and performance measure
3.4.1 Training and validation set

In order to be able to test the performance of the different methods on our simulated data
set we use a three way hold-out sample. This means that we split up the data into three
different subsets, with three different purposes. Let (V. + N, + NV;) be the total number of
data points in our full data set. The first subset is the training set consisting of N, data
points. We use this set for learning, which equals the estimation of the different parameters
in the model. In other words, this is the data set that we use as input for either the EM

algorithm or our newly proposed robust MOM estimation method.

The second subset is called the validation set. This set consists of N, data points. We use
this set to optimise the hyperparameters, which are the parameters that are used to control
the learning process and performance of a model. In our case there are two hyperparameters:
The number of clusters in the finite mixture model and the number of subsets for the MOM
estimator. We optimise the latter in the following way. We first select a sequences of values
that we want to use for the number of clusters and the number of subsets. Along with the
training set, we then use each of these values as an input to train the model. This results
in different estimations of the coefficients for the different values of the sequences. One then
uses the validation set to test the performance for each value of these estimations The value
with the best performance gets selected as the optimal choice. Once the number of clusters
is selected, the training set and validation set get combined to obtain a data set consisting of
(Ny-+ N,) data points. We use this combined set to train the model one final time, resulting

in the final estimation of the coefficients.
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3.4.2 Test set

The remaining test set is then used to measure the final forecasting performance of the model.
For both validation and final testing the performance is measured by the mean squared error.

We define this performance measure as

N,
~ 1 ~

MSE(yx,0) = 1= > _(4: = fi(xi8.). (1)

i=1
Here y is the vector that contains all the values of the dependent variable for the test-set and
X is the matrix containing all the values for the vector of explanatory variables. Moreover,
N is the total number of data points and 0 is the set that contains all the estimations for the
unknown parameters within the model. The subscript [ resembles what data set one uses:

the validation set v or the test set ¢. Lastly we define f;(x}3,) as

c
fi(xiBe) = Z Zie(X3Be)- (16)
c=1
Here Z;. corresponds to Equation 5 and ¢ € {1,2...C'}. C' is the total number of clusters. We
use this to optimise the number of clusters and compare across the different methods, but

also to see how different data sets change the performance of a specific model.

4 Simulation design and results

In this section we go through the different data generating processes used for our research
and analyse the corresponding results. We simulate data using four different data generating
processes. Two of the latter are uncontaminated, in the sense that they create data that
does not contain any outliers. The other two data generating processes do include outliers,
however. The difference between these processes is the type of outliers. For each data
generating process small and large data sets are created. We use the small data set to see
how well the proposed estimator performs for finite sets. We then use the large for the

asymptotic properties. The number of data points for every small data set is set to 300.
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For the large data set this number equals 3000. For both the small and large data sets we

conduct a total of ten simulations.. All programming is done in Rstudio (Rstudio, 2020).

4.1 Simulation design
4.1.1 Data without outliers

Recall that this research revolves around the linear regression context. Therefore we choose to
simulate data that is in line with this model. According to Heij et al. (2004), the general linear
regression assumptions correspond to data that have a linear relation between the dependent
variable y and explanatory variables x and an error term that has a normal distribution.

Mathematically, this equals
yi =x;0+e (17)

Here i is an index that indicates a data point ¢ € {1,2, ..., N}. N is the total number of data
points.
In other words, this means that the explanatory variables must come from a normal

2 one can choose. For visualisation

distribution with a mean equal to #'x; and a variance o
purposes, Figure 1 displays an example of a two dimensional simulation. Note that this is
not the data set we are using. Nevertheless, it visualises the linearity of the data generating

process.

For the simulation of the used data we select o to be 5. The chosen coefficients for each
variable can be seen in Table 1. We simulate the data using three variables and a constant.
We then assume that these variables are fixed (Heij et al., 2004). By using Equation 17 we
are then able to surmise that the dependent variable indeed comes from a normal distribution
with a mean of #'x and a o equalling 5. Nevertheless, we must simulate the explanatory
variables from some distribution. In other words, it is impossible for this assumption to hold.
By selecting the normal disrtibution for the simulation design of the explanatory variables,
we are able to mimic this assumption, however. When doing this, Equation 17 becomes
a sum of normal distributions, which results in the dependent variable y; being normally

distributed (Halfens & Meijers, 2012). In this way the assumption of fixed regressors might
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not hold, but at least the dependent variable y; does have the aspects of normality. For the
simulation of the explanatory variables we select the variance to be 4 and the mean to be 10.
In this way we select the data to lie around 10, with some spread. This is necessary to obtain
decent estimations (Heij et al., 2004). We then select this first data generating process as
the basis of our research and use it to see how the methods perform in the ideal situation of

a linear data.

coefficients | values
Bo 1
B 7
B2 1
33 5

Table 1: Coefficients used for simulation of linear data.

Discrete data For the second data generating process we add complexity by using the
finite mixture model as a basis. This model assumes that the dependent variable y; may
come from different distributions, each with their own probability. For example, y; may
come from distribution 1 with probability m;, come from distribution with probability 7o
with probability 79 etc. The number of possible distributions is set beforehand. In literature,
the number of possible distributions is defined as the number of clusters. Therefore, this is
what we use throughout this paper. We define these clusters to be distributed similarly to
the linear regression context. This means that given a cluster, the dependent variable y; is
normally distributed with mean 8.x and a variance ¢ that is chosen beforehand. Once again

we make the assumption that the regressors x are fixed. In other words,

C
Pro(yilx;, 0) = wPro(yili, B) (18)
c=1

Here ¢ € {1,2,...,C}. C is the total number of clusters. Lastly, Pr,(yi|xi,.) is equal to
Equation 1.

For visualisation purposes Figure 2 shows t