
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis Business Analytics and Quantitative Marketing

Introducing Probabilistic Neural Network based models for

advertisement conversion prediction and attribution modelling

Student: (Katherine) K.Y.M. de Kruiff, 444677

Supervisor: dr. (Kathrin) K. Gruber

Second assessor: (Eoghan) E.P. O’Neill

Date final version: November 3, 2021

Abstract

Advertisers are constantly optimizing their online marketing strategy and ad buying

decisions. At the same time, ad exchanges aim to optimize their ad pricing scheme.

To do so, advertisers and ad exchanges require meaningful insights which have to be

generated based on the browsing behavior of the Internet user. The current literature

employs attribution models to generate data-driven insights and to assign credits to

advertisements based on their contribution to a conversion. This research introduces

a new model to the current literature, the Attention Probabilistic Neural Network

(APNN), beneficial for both advertisers and ad exchanges. The APNN is simple to

implement and avoids long training times compared to the existing models and enables

attribution modelling by making use of the relation between individual advertisements.

Based on the newly introduced APNN, this research also introduces the similar point

APNN which optimizes the use of relevant information to further improve model ac-

curacy. To evaluate the performance of the different models, a dataset of the online

advertising research company Criteo is used. It follows that the newly introduced (sim-

ilar point) APNNs are easy to implement and interpret while having compatible model

performance with existing neural networks which employ attention mechanisms and

sequential modelling for attribution modelling and conversion prediction.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University.

Contents

1 Introduction 3

2 Literature Review 6

2.1 Attribution Modelling . 6

2.1.1 Rule-based Attribution Models . 7

2.1.2 Data-driven Algorithmic Models . 7

2.1.3 Machine Learning Attribution - Attention Mechanisms 9

2.2 Attention based Attribution Models . 10

2.3 Performance Measures for Imbalanced Data 11

3 Data Description 13

4 Methodology 15

4.1 Benchmark Models . 16

4.1.1 Bagged Logistic Regression and Simple Probabilistic Model 16

4.1.2 Additive Hazard and Additional Multi-touch Attribution Model . . . 18

4.1.3 ARNN and DARNN . 20

4.2 PNN and Attention PNN . 22

4.2.1 Classical PNN . 23

4.2.2 Standard PNN . 25

4.2.3 Standard APNN . 27

4.2.4 Similar Point APNN . 28

4.2.5 Attribution Modelling with Standard APNN 28

4.3 Performance Evaluation . 30

5 Results 32

5.1 Results Benchmark Models . 32

5.2 Results PNN and APNNs . 33

5.3 Comparison Benchmark and (A)PNNs . 34

5.4 Attribution Results of Standard APNN . 36

1

6 Conclusion and Discussion 38

References 41

A Code Data Preprocess 44

B Code PNN and APNN 45

C Code Model Evaluation 46

2

1 Introduction

With the increase of online shopping, the online customer journey is becoming more advanced

and more important for advertisers and ad exchanges. Every day customers are targeted with

personal advertisements through different channels, e.g., e-mail, social media, search engines

or mobile platforms. The browsing behavior of the customers and the data generated by the

response to the advertisements allow advertisers and ad exchanges to generate meaningful

insights in their marketing strategy and ad pricing scheme respectively. However, it remains

a challenge to identify which advertisements contributed most to the final purchase, also

referred to as conversion.

The customer journey and browsing behavior of an Internet user typically consist of

multiple advertisement touchpoints, also referred to as impressions. Measuring the influ-

ence of each touchpoint on the conversion is referred to as the attribution problem (Arava,

Dong, Yan, Pani, et al., 2018). For advertisers it is very important to allocate the right

conversion credit to each touchpoint along the customer journey of an Internet user for two

main reasons; i) knowing the contribution of each touchpoint along the customer journey to

bringing in sales enables advertisers to make informed decisions on the buying behavior of

customers (Lee, Orten, Dasdan, & Li, 2012), and ii) a reliable attribution model uncovers

the contributions from all relevant advertisements giving insights on which advertisements

advertisers should focus to increase sales while minimizing advertising costs (Geyik, Saxena,

& Dasdan, 2014). Also ad exchanges benefit from a reliable attribution model as it can be

used to optimize the pricing scheme of advertisements between advertisers and publishers

and thus maximize profit.

At first the attribution problem was addressed by applying different rule-based heuristics,

like the last- or linear-touch rules, where credits are given to the last touchpoint or equally

distributed over all touchpoints of the customer journey respectively (J. Wang, Zhang, &

Yuan, 2016). These rule-based heuristics are easy to employ, but don’t rely on data support.

Therefore, several other, data-based approaches are proposed in the literature of attribution

modelling to statistically learn the attributions of the different touchpoints ranging from

simple probabilistic to advanced methods (Shao & Li, 2011; Anderl, Becker, Von Wangen-

3

heim, & Schumann, 2016; Dalessandro, Perlich, Stitelman, & Provost, 2012; Xu et al., 2016;

Li & Kannan, 2014). Due to the increase in data availability ad exchanges often address the

attribution problem using machine learning algorithms (Arava et al., 2018; Ren et al., 2018;

Du, Zhong, Nair, Cui, & Shou, 2019). However, these methods often consist of models with

multiple layers making interpretation of the model difficult and apply sequential modelling

which leads to long training times. For both advertisers and ad exchanges interpretability

of the model is important. If a model is well-understood, this will enhance its usage, which

will lead to more effective advertising. Further, although real-time use of the model is often

not necessary, it may be beneficial for advertisers to avoid long training times of the model

in order to quickly generate insights in newly developed advertisements.

In order to increase interpretability and improve the training time of attribution and

advertising conversion models for both advertisers and ad exchanges, this research examines

the performance of a simple Probabilistic Neural Network (PNN) model in combination with

an attention mechanism (APNN) to model the attribution of the different touchpoints. In

addition, the similar point APNN is introduced based on the principle of k-nearest neigh-

bors to increase the accuracy of conversion prediction for advertisers. In the literature a

PNN has widely been used in classification and pattern recognition problems, but has not

yet been examined in the field of advertising conversion in combination with an attention

layer. The attribution and conversion prediction of the different touchpoints is based on

the cosine similarity between the touchpoints. Further, the (A)PNNs are able to deal with

the imbalanced nature of the data, which is normally a challenge in modelling advertising

conversions as the data often contains very few conversions, which makes conversions appear

like an ‘outlier’ and hard to recognize. To deal with the imbalanced nature of the data for

sequential modelling, sampling techniques are used which often result in ignoring part of the

dataset or making assumptions which might be invalid. In contrast, due to the structure of

a PNN based model, an imbalanced nature of the data is no issue and all available data can

be used.

Thus, in order to contribute in the field of advertising conversion, this research aims to

answer the following research questions: i) How does one employ a PNN with an attention

4

layer (APNN)? ii) How does an APNN perform compared to the benchmark models, like

for example the Recurrent Neural Network (RNN) with attention mechanism? and iii) How

can one interpret the attribution allocation of the APNN? To answer these research ques-

tions, part of the dataset of the online advertising company Criteo is used. The complete

dataset consists of 16.5 million touchpoints, resulting in 6.8 million user sequences from

which approximately 550,000 led to a conversion.

Empirical results show that the similar point APNN using the most similar touchpoint for

predicting the convergence of a sequence, is the best performing model of the standard PNN

and APNNs based on accuracy and F -score. As the similar point APNN is based on cosine

similarity, its good performance is mainly due to the usage of the most relevant information

for conversion prediction and ignoring touchpoints which are not informative. However, the

similar point APNN is not able to model the attribution of different touchpoints and is there-

fore not of great interest for ad exchanges. To include attribution modelling, the standard

APNN is evaluated which is able to generate (quick) attribution results based on the relation

between individual touchpoints. Hence, it uses a different approach than the advanced deep

neural networks with an attention mechanism using sequence-to-sequence modelling. The

main advantage of the standard PNN and APNNs is the ease of implementation and inter-

pretation and the avoidance of long training times of the models. Hence, for an accurate,

simple and easy interpretable model for conversion prediction, advertisers should be referred

to the similar point APNN. For attribution modelling, both advertisers and ad exchanges

have to decide which attribution approach is preferred, the APNN or a neural network, and

have to weigh this against the importance of interpretability and training time of the model.

The remainder of this research is organized as follows. First, Section 2 gives an overview

of the relevant literature. Second, Section 3 describes the data used to answer the research

questions. Third, Section 4 describes the benchmark models and lays out the details of the

standard PNN and APNNs. Fourth, Section 5 gives an overview of the results of the applied

methods. Finally, Section 6 summarizes the conclusions, answers the research questions and

suggests topics for further research.

5

2 Literature Review

The literature review consists of three main parts. First, Section 2.1 gives an introduction

to attribution modelling and reviews several methods used to model touchpoint attribution.

Second, Section 2.2 describes neural network based models using an attention mechanism for

attribution modelling. Lastly, Section 2.3 gives an overview of the metrics used to evaluate

models for imbalanced data.

2.1 Attribution Modelling

Advertisers invest in marketing campaigns and advertisements to draw in customers to pur-

chase their product through their website, mobile app, and/or store, and thus increase sales.

Hence, customers are typically exposed to all types of advertisements in their path to a pur-

chase. Therefore, attribution modelling is used to determine the appropriate credit for each

touchpoint on a user’s path to a purchase, which is possibly distributed over different online,

mobile, and offline channels. Furthermore, insights on the overall attribution of different

channels can be generated by aggregating the individual attributions of the touchpoints per

channel. Thus, by making use of attribution modelling several questions can be answered,

for example i) Which advertisements drive conversions most? ii) Which advertising channels

are most effective? iii) Does the impact of the advertisement differ between devices? and

many more (Kannan, Reinartz, & Verhoef, 2016).

Thus, on the one hand attribution modelling is used by advertisers to efficiently (re)allocate

their advertising budget and make informed ad buying decisions (Geyik et al., 2014). On the

other hand, attribution modelling is used by ad exchanges to optimize the pricing scheme

between advertisers and publishers. To do so several attribution methods are proposed in

the literature of attribution modelling which can be divided in three main categories; i)

Rule-based heuristics, ii) Data-driven algorithmic models, and iii) Machine Learning mod-

els.

6

2.1.1 Rule-based Attribution Models

First, rule-based attribution models were developed which rely on a set of rules to attribute

credits to specific touchpoints. These models are simple, straightforward and widely adopted

in the literature of attribution modelling. Amongst others, examples of such models are

the last-touch, first-touch, Time Decay and linear-touch rule model. The first- and last-

touch rule model assign all the credits to the first and last touchpoint of a user sequence

respectively preceding a conversion thereby ignoring the effects of other touchpoints. The

linear-touch rule model distributes the credits evenly over all touchpoints and hence assumes

equal contribution of all touchpoints to the conversion. Further, the Time-Decay attribution

model assumes that the credit of a touchpoint decays based on the decay parameter which

is based on intuition, but not supported by the data itself. An extensive literature review of

other examples of rule-based attribution models is given by Kee (2012).

The rules of the rule-based attribution models are not based on the data meaning that

the attributions are determined without taking into consideration whether an advertisement

in the customer journey led to a conversion. Therefore, these models are far from optimal

and easily fooled by advertisers in order to gain credits and not considered in this research.

2.1.2 Data-driven Algorithmic Models

Second, in order to overcome the drawbacks of rule-based heuristics and attribute credits

to the different touchpoints based on the data, data-driven models were developed taking

into account the outcome of the customer journey of an Internet user, conversion yes or no.

This is also referred to as Multi-Touch Attribution (MTA) as these models aim to track

the behavior of a user after being exposed to advertisements of different channels. In the

literature of attribution modelling often the simple Logistic Regression (LR) is used which

allows for a direct interpretation of the relationship between a touchpoint and the probability

of a conversion which will be explained in more detail in Section 4.1.1. Further, Shao and

Li (2011) proposed a bagged LR method where they use weights to distribute the credits for

attribution modelling and compare it to a probabilistic model.

Many other models and techniques based on probabilistics are employed in the literature

7

of attribution modelling. For example, Zhang, Wei, and Ren (2014) introduce the Additive

Hazard (AH) model which uses survival analysis and an additive hazard function to predict

conversion while taking into consideration the time of a touchpoint. Similarly, Ji, Wang, and

Zhang (2016) propose the Additional Multi-touch Attribution (AMTA) model which is also

based on survival analysis to model conversion and makes use of the hazard rate of conversion

at a specific time to model the conversion attribution of the different touchpoints. However,

in general probabilistic models have two main limitations; i) they rely on distributional

assumptions which may be invalid, and ii) as the data availability increases tremendously

in size and complexity, probabilistic models need to rely on approximations to make the

attribution problem computationally feasible, e.g., browsing data has to be trimmed back.

Amongst others, Ren et al. (2018) evaluated the performance of the bagged LR, AH and

AMTA model and their results will be used as a benchmark for the newly developed model

introduced in this research.

Another example of a data-driven model which aims to fairly distribute credits across

advertisements is Shapley Value, a concept based on cooperative game theory (Shapley,

1953). Shapley Value evaluates the marginal contribution of each player in a game, where in

case of attribution modelling for advertisements the different channels are seen as players and

the marketing strategies as the cooperative game. Hence, the channels aim to convert users

by cooperatively attract and influence users. Then, the attribution is computed based on

the contribution of the channel to the conversion (Zhao, Mahboobi, & Bagheri, 2018). The

computed attribution of a channel gives an indication of the attribution of the advertisements

belonging to this channel. Hence, a disadvantage of the Shapley Value algorithm is that it

requires the definition of a limited number of advertisement/touchpoint labels (e.g., channels)

in order to be computationally tractable and that touchpoints have to be grouped according

to broad definitions which might cause a loss of valuable information. Hence, Shapley Value

is not considered in this research.

8

2.1.3 Machine Learning Attribution - Attention Mechanisms

To deal with the increase in data availability, ad exchanges more often rely on machine

learning techniques for attribution modelling. Where machine learning initially was mainly

employed to translate a sequence of words from one language to another or image and speech

recognition, new approaches have been proposed to derive conversion attributions (Arava et

al., 2018; Ren et al., 2018; Du et al., 2019). These approaches often rely on neural networks

which make use of sequential modelling and are trained on one sequence at the time. In order

to attribute credits to the different touchpoints based on their contribution to the likelihood

of a conversion, attention mechanisms are used.

Figure 1: Location-Base Attention
Mechanism. Source: Ren et al. (2018)

Attention mechanisms were introduced to help neural

networks focus on the important parts of the input data.

An attention function can be seen as mapping a query

and a set of key-value pairs to an output, where the query,

keys, values and output are all vectors. Then, the output

is computed as a weighted sum of the values, where the

weights are computed by a compatibility function of the

query with the corresponding key. In terms of attribution

modelling for advertising, the input consists of a user se-

quence consisting of different touchpoints which are then

summarized into the output vector. Figure 1 shows an

example of a Location-Base attention mechanism, where

xj reflects the input, (query, keys and values), in this case

the sequence of touchpoints of a user, hj the hidden states, f the feed-forward network, after

which the compatibility function, here the softmax, is applied to compute the final weight

scores, ai, which reflect the attention given to each hidden state. Using the attention weights

and the outcomes of the hidden states the output c is computed. The output vector c reflects

the context vector of all the sequences of a user capturing, for example, the different patterns

of advertisements being clicked. Using the context vector, the final conversion rate of a user

sequence is predicted.

9

The two most common attention mechanisms are additive and (scaled) dot-product at-

tention (Bahdanau, Cho, & Bengio, 2014; Vaswani et al., 2017). In the additive attention

model a vector is created as a weighted sum of the hidden states, where the weights re-

flect the attribution given to each state in a sequence. To do so the additive attention uses

a feed-forward network with a single hidden layer to compute the compatibility function.

Compared to the additive attention, the (scaled) dot-product attention is faster and more

space-efficient as it makes use of a compatibility function which is equal to the dot-product

between the hidden and forward state representation allowing for the use of highly opti-

mized matrix multiplication code. By scaling the dot-product for the dimension of the keys,

Vaswani et al. (2017) suggest that the scaled dot-product attention results in at least the

same or better performance than the additive attention mechanism. However, due to the

multiplicative nature of the scaled dot-product attention issues of numerical under- and/or

overflow can occur.

Besides additive and (scaled) dot-product attention, common attention mechanisms are

the Content-Base and Location-Base attention mechanisms which depend on a cosine and

softmax compatibility function respectively for computation of the attention scores. The

Content-Base attention mechanism computes the weight of the target hidden state based

on a comparison with each of the previous hidden states for which Graves, Wayne, and

Danihelka (2014) use the cosine similarity. Then the weights are determined by normalizing

these similarities and used for the computation of the context vector. The Location-Base

attention mechanism determines the weights merely based on the target hidden state. Hence,

the context vector of the Location-Base attention mechanism is computed as a weighted

average over all hidden states, as also described above and shown in Figure 1 (Luong, Pham,

& Manning, 2015).

2.2 Attention based Attribution Models

Besides the bagged LR and probabilistic based models for attribution modelling mentioned

in Section 2.1.2, there exist models which have implemented the above mentioned atten-

tion mechanisms in a neural network over a wide variety of industries. An example of

10

a basic model in the field of advertising conversion is the Attention Recurrent Neural

Network (ARNN) which employs a single Location-Base attention mechanism to model

impression-level patterns when determining the conversion attribution. As an extension

to the ARNN, Ren et al. (2018) developed the Dual-Attention Recurrent Neural Network

(DARNN) which not merely models impressions-level patterns, but also models the click-

level through sequence-to-sequence modelling using a Location-Base attention mechanism.

Hence, it aims to capture the sequential user behavior patterns and learns the optimal at-

tentions using sequential modelling, while taking into consideration different behavior types.

Further, Arava et al. (2018) proposed the Deep Neural Net With Attention multi-touch at-

tribution model (DNAMTA) which also makes use of sequential modelling, but at the same

time includes time-decay functions and static user information in combination with dynamic

touchpoint observations.

However, all the above attention based attribution models are multiple layered models,

often built around neural networks and therefore relatively difficult to interpret for advertisers

and ad exchanges making them inaccessible for usage. Besides, many of these models make

use of sequential modelling which is computationally expensive. Also, a wide variety of

neural networks like RNN’s require a long training time to train the model. To avoid these

limitations, Vaswani et al. (2017) for example introduce the Transformer which is a simple

network architecture solely based on attention mechanisms. For the same reasons, this

research proposes a classification method based on established statistical principles, the

PNN, and aims to combine the idea of attention with the PNN into a newly developed

model, referred to as APNN. For comparison, amongst others, the ARNN and DARNN are

used as benchmark models for which results are provided by Ren et al. (2018).

2.3 Performance Measures for Imbalanced Data

Besides the difficulties of finding and improving approaches or models to model advertising

conversion using imbalanced data, finding the appropriate evaluation measure for model as-

sessment is important when dealing with imbalanced data (Bekkar, Djemaa, & Alitouche,

2013). The literature of evaluation measures consists of several types; i) measures based on

11

the confusion matrix, ii) combined measures of the confusion matrix, iii) graphical perfor-

mance evaluation measures, and iv) probabilistic measures.

In machine learning classifiers are mostly evaluated using the confusion matrix in which

the number of True Positive (TP), False Positive (FP), False Negative (FN), and True

Negative (TN) are reported. From the confusion matrix, several evaluation measures can

be constructed, like accuracy, error rate, sensitivity (recall), specificity, and precision. As

accuracy gives equal weight to TP and TN it is often not considered as performance metric for

imbalanced data. However, as both the correct prediction of converting and non-converting

advertisements is important, this research considers accuracy as a performance metric to

evaluate the models. Besides accuracy, additional evaluation measures, like precision and

recall, were developed as these are independent of the data distribution and used in case the

prediction of one of the classes is more important (Bekkar et al., 2013).

In the literature of model evaluation many combinations of the above mentioned eval-

uation measures have been proposed, like G-means, likelihood ratios, discriminant power,

F -(beta)measure, balanced accuracy, Youden index and Matthews correlation coefficient.

The usage of these combination measures often depends on the application and goal of the

study. For example, the likelihood ratios are mainly used in medical diagnosis predictions

(Delacour, François, Servonnet, Gentile, & Roche, 2009). In this research the F -measure will

be considered in combination with the accuracy as it is often employed in the field of fraud

detection, which is comparable to the rare event of an advertising conversion (Di Martino,

Decia, Molinelli, & Fernández, 2012; Bekkar et al., 2013). Also, the F -measure puts more

emphasis on the minority class making the metric useful for imbalanced data.

Further, one can use graphical performance evaluation like the Receiver Operating Char-

acteristics (ROC) curve. For this curve it holds that the more the curve is toward the upper

left corner, the better the ability of the classifier to distinct between the minority and major-

ity class. However, there are some disadvantages when evaluating models with imbalanced

data using the ROC curve (Drummond & Holte, 2000), e.g., the difficulty to compare models

when two ROC curves intersect. Hence, the area under the ROC curve (AUC) measure is

considered which is a summary indicator of the pairwise ranking performance of the ROC

12

curve and therefore has no relationship to the direct output value of the model. Thus, the

AUC is able to order models by overall performance and is therefore preferred in model

evaluation (Batista, Prati, & Monard, 2004). Ren et al. (2018) have also used the AUC to

compare their models which are used as a benchmark in this research.

Lastly, if besides the incorrect vs. correct class prediction one is also interested in the

uncertainty that a model has in predicting the classes, probabilistic metrics should be con-

sidered, like log-loss also known as Cross-Entropy or the Brier score. Often in case of binary

classification problems and as seen in research with similar settings the log-loss is used as a

performance metric (Ren et al., 2018). Hence, the log-loss will be considered as evaluation

metric for some of the models evaluated in this research which will be further explained in

Section 4.

3 Data Description

To answer the research questions stated in the introduction, a dataset of Criteo is used.

Criteo is a company in online advertising research which merely sells advertisements via

display and which published a dataset for attribution modelling in real-time auction-based

advertising (Diemert, Meynet, Galland, & Lefortier, 2017). With this dataset Criteo is able

to analyze online user browsing behavior and to target different segment groups of users with

their advertisements. The dataset contains live traffic data of Criteo over 30 days consisting

of user information after displaying advertisements/impressions. For every advertisement

shown to a user, the dataset contains the relative timestamp, if the advertisement was clicked

and led to a conversion, the unique user and campaign ID, the timestamp of the conversion

if applicable, the number of clicks, the time since last click for the given advertisement, and

a category ID associated with contextual features of the advertisement. The 59,098 unique

category IDs reflect amongst others the different communication platforms and formats of

the advertisement (e.g., video or audio). Further, the dataset contains information on the

price paid by Criteo for displaying the advertisement and the cost per order in case of an

attributed conversion to Criteo. Table 1 shows the relevant data used in this research which

consists of whether an advertisement is clicked in combination with its contextual features.

13

The dataset consists of 16.5 million impressions over a range of 675 campaigns resulting

in 6.1 million sequences from which 550,000 resulted in a conversion. In order to use the data

some pre-processing and cleaning has to be done. Given the original data and the activity

of the users, sequences per user and conversion can be constructed based on the process of

Ren et al. (2018). If a user has multiple conversions, the sequence will be split based on

the conversion time to construct separate sequences for all (non-)conversions. As shown in

Figure 2, the dataset contains many sequences consisting of one impression. However, as

this data is used to segment online users based on their browsing behavior, the sequences

consisting of one touchpoint can be omitted as one cannot identify browsing behavior based

on one touchpoint. After omitting sequences with one touchpoint, it follows that the dataset

has a conversion ratio of 4.34%. The training and test set contain 80% and 20% of the

sequences respectively while stratifying the conversion ratio in the training and test set. For

the benchmark models, Ren et al. (2018) applied an undersampling technique in order to

deal with the imbalanced nature of the data and to retrieve a 50-50 split of converting and

non-converting sequences. For the PNN based model undersampling is not required and all

data can be used, which is an advantage as no information is lost.

Figure 2 shows the frequency with which sequence lengths occur in the dataset for con-

verted and non-converted sequences. For illustration purposes sequences with more than

30 impressions are excluded in this figure, corresponding to 0.1% of the total number of

sequences. Further, Table 2 gives descriptive statistics about the data before and after re-

moving the sequences containing one impression. It shows that the number of impressions

in case of a converted sequence is lower than for non-converted sequences.

For evaluation and comparison of the benchmark models with the newly introduced

standard PNN and different APNNs, only five days of the Criteo dataset, resulting in 2.75

million touchpoints, are used for computation and memory purposes. In this way enough

data is used to get an indication of the performance of the standard PNN and different

APNNs while saving computation time and avoiding memory issues. The conversion ratio

of this partial dataset is 4.1%.

14

Figure 2: Number of impressions per sequence. Sequences with more than 30 impressions (0.1%) are
excluded for illustration purposes.

Table 1 Relevant information per touchpoint. In total there are 59,098 unique category IDs.

Input Type # of options
Clicked Binary 0 or 1
Campaign ID Categorical 675
Category 1 Categorical 9
Category 2 Categorical 70
Category 3 Categorical 1,829
Category 4 Categorical 21
Category 5 Categorical 51
Category 6 Categorical 30
Category 7 Categorical 57,196
Categroy 8 Categorical 11
Category 9 Categorical 30

Table 2 Descriptive statistics of converting and non-converting sequences. Sequences consisting
of one impression are not considered as they are not informative in segmenting user behavior.

Min. 25% Quantile Median Mean 75% Quantile Max.
Before cleaning
Length converting seq. 1 1 1 1.467 1 81
Length non-converting seq. 1 1 1 2.486 3 880
After cleaning
Length converting seq. 2 2 2 2.907 3 81
Length non-converting seq. 2 2 3 4.157 5 880

4 Methodology

The methodology can be split into three main parts. First, Section 4.1 gives a description

of the benchmark models evaluated by Ren et al. (2018). Second, 4.2 describes the standard

PNN and the newly introduced PNN with an attention layer, referred to as APNN. Lastly,

15

Section 4.3 describes the evaluation metrics which are used to evaluate the different models.

Ren et al. (2018) implemented all models in Python and trained all the deep models sep-

arately over one NVIDIA GeForce GTX 1080 Ti wit Intel Core i7 processor for five hours.

The standard PNN and APNNs are run using the Lisa system, which is a cluster computer

consisting of several hundreds of multi-core nodes running the Linux operating system.

4.1 Benchmark Models

The models evaluated by Ren et al. (2018) are used as a benchmark for the standard PNN

and APNNs. Ren et al. (2018) use four baseline models to compare to the ARNN and

their newly introduced DARNN. In order to understand these models Section 4.1.1 gives

a description of the bagged LR and SP model, Section 4.1.2 describes the AH and AMTA

model, and lastly, Section 4.1.3 describes the ARNN and DARNN.

4.1.1 Bagged Logistic Regression and Simple Probabilistic Model

First, the bagged LR model is used as a benchmark model which was introduced by Shao

and Li (2011). Shao and Li (2011) combine the LR model with the idea of bagging which

enables the model to reduce the estimation variability which is caused by highly correlated

covariates between channels. The bagged LR model results in an easy interpretable, simple

logistic model and generates stable and reproducible estimation results. The model consists

of two main steps

Step 1: Sample a proportion of all sample observations and covariates for the given

dataset, fit a LR model on the sampled covariates and sampled data, and save

the estimated coefficients.

Step 2: Repeat Step 1 M number of times, after which the final coefficient estimates are

computed by averaging over the M estimated coefficients of each iteration.

Shao and Li (2011) have shown that the bagged LR model achieves a similar missclassification

rate as the standard LR model. Further, the attribution modelling is based on the coefficients

of the resulting bagged LR model which indicate the contribution of each of the channels to

16

the conversion. The variability of the coefficients of the bagged LR model is much smaller

than the coefficients of the standard LR model which is preferred for attribution modelling

in order to fairly distribute credits amongst advertisers. Hence, using the stable results of

the bagged LR model advertisers can develop a clear strategy to optimize their resource

allocations and advertisers can optimize their ad pricing scheme accordingly.

Second, an SP model is considered which is based on the idea of Dalessandro et al. (2012).

The SP achieves low estimation variability, is simpler than the (bagged) LR model making

the model easy to interpret, but loses accuracy. In the SP model, Ren et al. (2018) compute

the conversion rate of each user sequence the same way as done in Zhang et al. (2014), where

p(y = 1|{cj}mi
j=1) = 1−

mi∏
j

(1− Pr(y = 1|cj = k)), (1)

where Pr(y = 1|cj = k) is the conversion probability from the observed data for the k-

th channel and mi the total browsing activities of a user. Then, using the structure as

described in Shao and Li (2011) who use a combination of first and second-order conditional

probabilities, the contribution of each channel and/or touchpoint towards the conversion can

be computed in two steps

Step 1: First, the conversion probability and pairwise conditional probability are com-

puted as

P (y|xk) =
Ny=1(xk)

Ny=1(xk) +Ny=0(xk)
, (2)

and

P (y|xk, xl) =
Ny=1(xk, xl)

Ny=1(xk, xl) +Ny=0(xk, xl)
, (3)

respectively, for k 6= l, where y is the binary outcome, conversion yes or no, and

xk, k = 1, ..., p, the p different advertising channels. Then, Ny=1(xk) and Ny=0(xk)

reflect the number of users with and without conversion respectively exposed to

channel k, and Ny=1(xk, xl) and Ny=0(xk, xl) reflect the number of users with and

without conversion respectively exposed to both channel k and l.

17

Step 2: Then, the contribution of channel k is computed for each converted user as

C(xk) = p(y|xk) +
1

2Nk 6=l

∑
i 6=j

{
p(y|xi, xj)− p(y|xi)− p(y|xj)

}
, (4)

where Nk 6=l reflects the number of channels (l’s) not equal to k (N-1).

Hence, attribution modelling using the SP model is done by computing the different con-

version probabilities for the different channels which has an even more direct interpretation

than the results of the bagged LR model. Due to the overlapping influences of different

touchpoints through similarly designed advertisements/channels and a user’s exposure to

multiple media channels the second-order probability is included. Hence, the second-order

probability estimation can be seen as the joint effect of all possible combinations of two

channels. Higher order probabilities can also be included, but the number of observations

which contain overlapping higher order interactions often drops significantly, even for very

large datasets (Shao & Li, 2011).

4.1.2 Additive Hazard and Additional Multi-touch Attribution Model

Third, Ren et al. (2018) evaluate the performance of the AH model from Zhang et al. (2014).

Besides the strength of the impact of different advertisements and channels, the AH model

is able to incorporate the differences in time-decaying speed of advertisements. This is done

by using a hazard function with a set of additive exponential kernel functions, which are

assumed to each reflect the dynamics of the influences of an advertisement channel on the

conversion. The hazard function is considered to be additive on the clicking of the different

advertisement channels and is specified as follows for user u

λu(t) =

{ ∑
tui ≤t

gaui (t− tui) , t ≤ tlu

0, otherwise
, (5)

where gaui (·) is the kernel function which is used to model the effect of channel aui on the

conversion of user u, lu the length of the sequence of touchpoints of user u, and tui the specific

time an advertisement was shown to user u (Zhang et al., 2014). Using this hazard function,

18

the contribution of each touchpoint to the likelihood of a conversion can be measured as well

as its time-decaying property. Hence, the AH model models the conversions as a user’s ‘death’

after a sequence of advertisements using survival theory with the above specified hazard

function. The final model is fitted by iteratively maximizing the log-likelihood function for

all users.

After fitting the AH model, the attribution to a specific channel of the different touch-

points is derived from the conversion probability that a user clicks on an advertisement from

that specific channel which is defined as

P (y = 1|βaui , ωaui , T) = 1− exp(−βaui (1− exp(−ωaui T))), (6)

where T is the predefined observational window over which the hazard function is com-

puted, βaui the strength of the impact of the advertisement on the conversion, and ωaui its

time-decaying property. Note that the derivation of Equation (6) is based on the usage of

exponential kernels for gaui (·). More mathematical details about the AH model can be found

in the paper of Zhang et al. (2014).

Fourth, the AMTA model is considered which is similar to the AH model. Besides survival

analysis for conversion modelling, the AMTA model uses the hazard rate of conversion

at the specific time of the touchpoint to model the conversion attribution (Ji & Wang,

2017). Therefore, the AMTA model is based on two main assumptions; i) the effect of an

advertisement is fading with time, and ii) the effects of advertisements on the browsing path

of a user are additive. The hazard rate for conversion at time t for user u is specified as

follows

h(t|bu) =
∑
t≤i t

αaui (xue,i)faui

(
t− tui , xud,i

)
, (7)

where bu is the browsing path of user u, xui a set of features, xue,i the measure for the effect of

the advertisement exposure on a specific channel at a specific time, {aui , tui }, xud,i the decay

speed of the advertisement, and faui the time-decaying kernel . Given the browsing path bu

and advertisement {aui , tui , xui }, and using the hazard rate specified above, the contribution

of an advertisement to the conversion at timestamp t and the contribution of channel k for

19

the conversion of user u at timestamp t can be computed as

attui =
αaui (xue,i)faui (t− tui , xud,i)

h(t | bu)
(8)

and

attuk =

∑
tui <t,a

u
i =k

αaui (xue,i)faui (t− tui , xud,i)
h(t | bu)

(9)

respectively. As for the AH model, the AMTA model is fitted by maximizing the log-

likelihood function for all users. Ji and Wang (2017) have shown that the AMTA model

is superior to state-of-the-art techniques in conversion rate prediction. More details and

mathematical specifications of the AMTA model can be found in the paper (Ji & Wang,

2017).

4.1.3 ARNN and DARNN

Apart from the four previously mentioned baseline models, Ren et al. (2018) implemented

neural networks using an attention mechanism to model the attribution of different advertise-

ments and channels. Instead of optimizing a log-likelihood function or estimating coefficients

per channel, neural networks are trained by feeding the system one sequence at the time,

referred to as sequential modelling. The advantage of sequential modelling is that the model

is able to generate more precise attribution results based on individual user behavior as the

models take an entire user sequence as input and learn the attribution for one sequence at

the time. However, a downside is that the training process of the neural networks is time

consuming and that neural network based models often consist of multiple layers making

the models relatively hard to interpret and therefore potentially inaccessible for advertisers

to use.

Ren et al. (2018) have implemented a standard RNN with a single attention mechanism to

illustrate the advantage of their newly introduced dual-attention mechanism. The RNN with

the single attention mechanism which models the impression-level behavior, is the encoder

part of the model illustrated in Figure 3. The RNN is fed one user sequence at the time

consisting of several touchpoints. As each touchpoint is mostly categorical, an embedding

20

layer is included in the RNN which takes the sparse input feature reflecting a user sequence

consisting of multiple touchpoints as input and transforms this into a dense representation

vector, which has been widely used in related literature (Qu et al., 2016; X. Wang et al.,

2017). Then, the embeddings are fed through the encoder RNN function as

hj = fe(xj, hj−1), (10)

where h is the hidden vector at each time step j, and fe a standard long short-term memory

(LSTM) model as described in Hochreiter and Schmidhuber (1997). Each hidden state gives

a representation of the input data, a user sequence consisting of multiple touchpoints. Using

the attention of the impression-level behavior the conversion rate of the sequence is predicted.

In addition to the above encoder modelling the impression-level behavior, the DARNN

models the click probability and applies dual-attention to include both the impression-level

behavior and click probability in predicting the conversion. Hence, the DARNN can be split

into three parts; i) the encoder for the impression-level behavior modelling as described

above, ii) the decoder and sequential prediction for the click probability, iii) dual-attention

for jointly modelling impression and click behavior in order to predict the conversion rate.

Using this sequence-to-sequence construction, the DARNN can alleviate the data sparsity

problem of the rare event of a click and an even rarer event of a conversion by using the signal

of the click behavior to boost estimation capacity for the sparse conversion behaviors. Ren et

al. (2018) have shown that modelling the click-level attribution is statistically more impor-

tant for attributing credits than impression-level behaviors as the clicking of advertisements

generates revenue for the publishers.

The goal of the sequential prediction of the click-level is to model the click action at

each time an ad is shown to the user. This is done by defining a probability over the click

outcomes, z, as

p(z) =

mi∏
j=1

p(zj = 1|{z1, ..., zj−1},x), (11)

where z = (z1, ..., zmi
) and x = (x1, ..., xmi

) with mi the total browsing activity of user i.

Then, with the decoder shown on the right hand side of Figure 3 the conditional probability

21

of a click is modeled as

ẑj = p (zj = 1 | {z1, . . . , zj−1} ,x) = g (zj−1, sj) , (12)

where g is the output function which is a multi-layer fully connected perceptron of Feed

Forward NN with sigmoid activation function which transforms the output into the click

probability, p(zj = 1). Further, sj is the hidden vector at click-level of the jth touchpoint

containing information about the probability of the touchpoint being clicked, which is com-

puted as

sj = fd (sj−1, zj−1,hmi
) , (13)

where fd has the same structure of the LSTM model as the encoder fe of Equation (10) and

where the last hidden state hmi
from the encoder is used. A more detailed mathematical

description of the DARNN can be found in Ren et al. (2018).

Figure 3: Sequential modelling with dual-attention (DARNN). Source: Ren et al. (2018)

4.2 PNN and Attention PNN

Due to the possible disadvantages of interpretability and long training times of neural net-

works mentioned earlier, this research proposes a PNN which incorporates the idea of atten-

tion to model the attribution of the touchpoints. The PNN was first introduced by Specht

22

(1990) to resolve the issue of long training times. It uses a Bayesian approach to generate

solutions and thereby avoids local minima of heuristic approaches using back propagation,

as done in the ARNN and DARNN. PNN’s are used in many applications ranging from

classification and mapping tasks to directly estimating posteriori probabilities. Especially

because of the training simplicity and sound statistical foundation in Bayesian estimation

theory, the PNN has widely been used in classification problems (Mao, Tan, & Ser, 2000).

The main advantages of the PNN are; i) real-time use of the model, ii) few to no hyper-

parameters which require tuning, and iii) relatively easy interpretability of the model. As

shown in Figure 4, a standard PNN for a binary classification consists of four layers; i) the

input layer, ii) the pattern layer, iii) the summation layer, and iv) the decision layer. This

research proposes a method to incorporate the idea of an attention mechanism into a PNN

for which the structure is shown in Figure 5.

Figure 4: PNN model structure for a binary
classification problem.

Figure 5: APNN model structure for a binary
classification problem.

4.2.1 Classical PNN

The classical and standard PNN without attention layer consist of four layers and its struc-

ture for a binary classification problem is shown in Figure 4. First, the input layer distributes

the input to the neurons in the pattern layer, where the pattern layer is split for the different

classes, which in this research is either conversion or no conversion. Hence, in the pattern

layer each neuron represents a case of the training set. At each neuron xij of the pattern

23

layer the distance to the input x is computed as follows

φij(x) =
1

(2π)d/2σd
exp
[
− (x− xij)

T (x− xij)

2σ2

]
, (14)

where d is the dimension of the input vector x, and σ the smoothing parameter which can

be tuned (Mao et al., 2000).

Thereafter, the output of the pattern layer is passed on to the summation layer neurons.

The summation layer computes the maximum likelihood of pattern x being classified to class

0 or 1 by summarizing and averaging the output of all neurons belonging to the same class

as

pi(x) =
1

(2π)d/2σd
1

Ni

Ni∑
j=1

exp
[
− (x− xij)

T (x− xij)

2σ2

]
, (15)

where Ni is the total number of samples in class i. The output pi(x) reflects the probability

of input x being classified to class i, where i ∈ {0, 1} in case of a binary classification.

Lastly, the decision layer assigns a class to the input x based on the output of the

summation layer as follows

Ĉ(x) = arg max pi(x), i ∈ {0, 1}, (16)

where Ĉ(x) is the estimated class 0 or 1. The above decision rule corresponds to the Bayes’

decision rule if the a priori probabilities for each class are the same, and is based on the

assumption that losses for making an incorrect decision are the same for each class (Mao et

al., 2000).

The structure of the PNN as just described enables the usage of the model in real-time,

which is an advantage of the PNN as mentioned before. This is due to the fact that once

one pattern representation for a class has been observed, new patterns can be generated by

the network allowing the PNN to operate in parallel without the need for feedback from the

neurons (Specht, 1990). Further, by choosing the suitable value of the smoothing parameter

σ the shape of the decision surfaces can be made as complex as necessary and can approach

the Bayes optimal.

24

4.2.2 Standard PNN

The standard PNN computes the distance between the neuron and each new input. In the

application of advertisement conversion, the input is a single touchpoint from the test set

and the classes correspond to touchpoints of converted and non-converted sequences. Hence,

in contrast to the benchmark models the input for the standard PNN and different APNNs

is a single touchpoint of a sequence instead of the entire sequence.

A touchpoint consists of the click level, campaign IDs and category IDs. As these are

all categorical variables, Equation (14) cannot be applied in the pattern layer. To be able

to use Equation (14) as in the standard PNN one could learn embeddings per touchpoint.

However, doing this the advantage of no required model training is lost as training would

have to be done to generate the embeddings for each touchpoint. To avoid training, each

touchpoint is transformed into a sparse vector containing zeros and ones, where the first

element reflects the click level, the next 675 elements the campaign IDs and the last 59,098

elements the category IDS, resulting in

x =

[
1︸︷︷︸

click

00...00︸ ︷︷ ︸
campaign IDs

01...10︸ ︷︷ ︸
category IDs

]
, (17)

where the presence of a one at the first element in the matrix indicates whether the adver-

tisement is clicked, a one in the next 675 elements the campaign of the advertisement, and

ones in the last 59,098 elements the categories corresponding to the advertisement. Hence,

x is the sparse vector representation of each touchpoint.

After the transformation of the touchpoints into the sparse vectors, the ‘distance’ between

the touchpoints can be computed using the cosine similarity. In the pattern layer the cosine

similarity of a new touchpoint and each of the training points is computed at each of the

neurons of the two classes. Given the sparse input vector x and the neuron xij the cosine

similarity is computed as

ψij :=
x · xij
‖x‖‖xij‖

. (18)

As our data merely consists of display advertisements, all touchpoints can easily be compared

25

with each other by computing the cosine similarity. Further, Equation (18) does not contain

a parameter which has to be tuned as the smoothing parameter σ in Equation (14), which

benefits the real-time use of the model.

After the pattern layer, the summation layer computes the average cosine similarity for

the converted and non-converted class as follows

Ψi :=
1

Ni

Ni∑
j=1

ψij, (19)

where ψij is the cosine similarity between x and neuron xij and Ni the number of touch-

points in class i. This is similar to Equation (15) of the standard PNN and assumes equal

contribution of each touchpoint in predicting the conversion. After the summation layer of

both classes, the touchpoint is assigned to the class with the highest average cosine similarity

as follows

Ĉ(x) = arg max Ψi, i ∈ {0, 1}. (20)

Hence, the standard PNN as just described takes each touchpoint into consideration inde-

pendently of its sequence and focuses on the prediction of the class of individual touchpoints.

Thus, as Zhang et al. (2014) and Shao and Li (2011), the standard PNN assumes that con-

version of a user sequence can be predicted based on an individual advertising touchpoint

and examines whether similar touchpoints have led to a conversion in the past. As there are

so many different individuals leading to many different shopping behaviors, it is very time

consuming and computationally intensive to model each of these behaviors individually. Fur-

ther, given that non-converted sequences contain relatively many touchpoints compared to

converted sequences, one can assume that there are many advertisements which are not trig-

gering and persuasive in generating conversions. Hence, it seems plausible to assume that if

a new advertisement is developed which is similar to many of the advertisements included

in sequences which did not lead to an actual conversion, that this advertisement is not likely

to be successful in generating conversions. The same holds the other way around, if a new

advertisement is developed which is similar to advertisements often contained in converting

sequences, this advertisement is likely to be successful in generating conversions. Hence, the

26

standard PNN examines the relation between touchpoints rather than modelling sequential

behavior and uses these relations to predict conversion. The relation used in this research

is the cosine similarity in which the click level is included which is a good indicator for a

triggering advertisement and which is important for attribution modelling. In the standard

PNN all touchpoints are assumed to be equally important in the prediction of a conversion.

Hence, the standard PNN does not include attribution modelling.

4.2.3 Standard APNN

To include attribution modelling in the model and to be able to give more credits to touch-

points/advertisements which contributed more to the likelihood of a conversion, the standard

APNN is introduced. The standard APNN contains one additional layer, the attention layer,

after the pattern layer as shown in Figure 5. The attention mechanism of the standard APNN

is based on the similarities of touchpoints and assumes that sequences containing touchpoints

which are very similar will lead to the same outcome. Thus, these touchpoints should be given

more weight. In the attention layer the weights of the converted and non-converted touch-

points/neurons are computed by normalizing the output, the computed cosine similarities,

of the pattern layer, which is similar to the Content-Base attention mechanism introduced

by Graves et al. (2014). Then, the summation layer computes the weighted average cosine

similarity of the training samples per class as

Ψi =
1

Ni

Ni∑
j=1

wijψij, (21)

where wij is the weight for each neuron xij, ψij the similarity between x and neuron xij and

Ni the number of touchpoints in class i, with i ∈ {0, 1}. As the weights are determined based

on the similarities of both converted and non-converted touchpoints, one expects for example

that the weights for the similarities of a converted touchpoint are higher for the neurons in

the converted class and vice versa. After the summation layer, the output is passed on to the

decision layer, which is the same as for the standard PNN defined in Equation (20). As the

standard APNN includes an attention mechanism and aims to give attention to more relevant

touchpoints, one expects that this model is able to predict conversions and non-conversions

27

more accurately than the standard PNN.

4.2.4 Similar Point APNN

The standard APNN described above takes into account all touchpoints through the weighted

average cosine similarity. However, although touchpoints within a class have led to the same

outcome and are therefore similar to some extend, touchpoints within a class can still differ

resulting in a lower cosine similarity between these touchpoints. As these touchpoints are

more difficult to compare, they are not as relevant in predicting the conversion outcome of

the input as the touchpoints with the highest cosine similarity. In order to minimize the

use of relatively uninformative information, the similar point APNN is introduced for which

the summation and decision layer are based on the idea of k-nearest neighbors. Instead

of computing the weighted average cosine similarity over all points within a class in the

summation layer, the similar point APNN examines the conversion outcome of the k most

similar touchpoints. Then, in the decision layer the touchpoint is assigned to the most

common outcome amongst the k most similar touchpoints. Hence, the prediction is only

based on the k most similar/important neurons instead of all training points. Thus, the

similar point APNN focus on improving the accuracy of conversion prediction, but thereby

loses the ability of attribution modelling and is not able to provide the uncertainty of a

prediction.

The similar point APNN minimizes the use of uninformative information even more than

the standard APNN. Hence, it is expected that the similar point APNN will predict the

conversion outcome more accurately than both the standard PNN and standard APNN.

The hyperparameter of this model is the number of similar points to include, k. In order

to gain insights in the number of ‘neighbors’ or similar points to include, the model will be

evaluated for k ∈ {1, 3, 5, 9, 15}.

4.2.5 Attribution Modelling with Standard APNN

In comparison with the benchmark models, the standard APNN does not employ sequential

modelling or optimizes the log-likelihood for all users. The standard APNN described in Sec-

28

tion 4.2.3 includes attribution modelling from a different angle as it bases the attribution on

the relation (cosine similarity) between individual touchpoints. Hence, the standard APNN

assumes that the similarity is a reliable indicator for attributing credits to the different ad-

vertisements. This assumption is plausible as for example advertisements which contributed

relatively much to the likelihood of a conversion are probably clicked often, leading to a

higher cosine similarity. Using the computed cosine similarities for the converted touch-

points, a researcher can attribute credits to the different touchpoints by normalizing the

cosine similarities of the touchpoints. Thus, this approach assumes that advertisements

which have much in common with many of the converted touchpoints/advertisements are

more likely to contribute to the conversion and will therefore achieve a higher cosine sim-

ilarity and receive more credits. However, this approach is highly dependent on the input

variable used to compute the cosine similarities and therefore the resulting similarity weights

indicating the attribution are not stable and reproducible.

To improve stability for attribution modelling, the bagging idea of the bagged LR baseline

model can be used. For all touchpoints in the test set, the cosine similarities with the

converted touchpoints of the training set are computed as credits are merely assigned in case

of a conversion. To stabilize the attribution estimates, all computed cosine similarities for

the converted touchpoints with each point of the test set are saved and averaged after wards.

The computed average cosine similarity also contains the similarity of the converted training

touchpoints with touchpoints of the test set which eventually did not lead to a conversion.

However, as it is expected that the cosine similarity between these non-converted test points

and the converted training points will be relatively low for all converted touchpoints, this is

not likely to influence the attribution results significantly. Finally, the contribution of each

touchpoint to the likelihood of a conversion of a user sequence is computed by normalizing

the average cosine similarities of the converted class. Hence, by averaging and normalizing

the cosine similarities, an indication of the attribution credits per advertisement in case of

a conversion is given.

The dataset of Criteo used in this research merely consists of display advertisements.

However, in case a dataset consists of advertisements of different channels, display, video,

29

music, etc., the weights of the touchpoints per channel can be aggregated and used to gain

insights in the effectiveness of the different channels and attribute credits to the different

channels accordingly. The higher the attribution weight, the bigger the contribution of the

channel to the likelihood of a conversion and the higher the rewarded credits to the channel

should be.

4.3 Performance Evaluation

To evaluate the performance of the benchmark models, Ren et al. (2018) used the AUC

and the log-loss/Cross-Entropy evaluation metrics. As the standard PNN and APNNs do

not predict a conversion probability like the benchmark models, the performance of the

standard PNN and APNNs are mainly evaluated using accuracy in combination with the

F -score. However, in order to compare the standard PNN and APNNs with the benchmark

models, an approximation of the conversion probability based on the (weighted) average

similarity is used to compute the log-loss and AUC for the standard PNN and APNN.

First, the AUC is computed as the area under the ROC curve which plots the True

Positive Rate (TPR), also known as recall, against the False Positive Rate (FPR) at different

classification thresholds. The classification threshold indicates the number of positive items

and by lowering the threshold both the False Positives and True Positives increase. Therefore,

the AUC has no relationship to the direct output value of the model, but considers the

pairwise ranking performance. Hence, the similarities of the PNN and APNN can be used as

an approximation to compute the conversion probability on which the different thresholds of

the AUC will be based. To approximate the conversion probability the softmax activation

function is applied to convert the (weighted) average cosine similarities into a probability,

p(y = 1) =
eψy=1

eψy=1 + eψy=0
, (22)

where ψy=1 and ψy=0 are both between zero and one and reflect the (weighted) average sim-

ilarity of the input with converted touchpoints and non-converted touchpoints respectively.

Hence, if p(y = 1) is larger than 0.5 the (weighted) average similarity of the converted touch-

points is higher than the (weighted) average similarity of the non-converted touchpoints.

30

Thus, the input touchpoint is more likely to lead to a conversion.

Second, Ren et al. (2018) use the log-loss as an evaluation metric which is computed as

log-loss = − 1

N

[N∑
i=1

(yilog(p̂i) + (1− yi)log(1− p̂i))
]
, (23)

where N is the number of data points, yi the true value taking a 0 or 1 for data point j

and p̂i is the probability corresponding to classifying data point i as 1. Using the conversion

probability approximation described above, the log-loss is computed for the standard PNN

and APNN. However, as the prediction of the similar point APNN is based on the mode of

the corresponding classes of the k number of similar points, the approximation process of

the conversion probability cannot be applied. Hence, for the similar point APNN the AUC

and log-loss are not computed.

Third, the accuracy is straightforward and computed as the number of correctly classified

touchpoints divided by the total number of touchpoints which had to be classified. Lastly,

the F-measure is computed as

F =
(1 + β2) · recall · precision

(β2 · precision) + recall
, (24)

where β determines if either precision or recall is weighted more heavily. In this research

β = 1 for which precision and recall are given equal weight in which case F reflects the

harmonic mean of the two. The higher the F -score, the better. In general values for the

AUC scores are higher and differ less than the values of the F -scores as the AUC has no direct

relationship to the output and the threshold used for computing the F -scores is potentially

far from optimal. However, optimizing the threshold used to compute the F -score is beyond

the scope of this research.

Although there is no one-to-one correlation between the AUC, log-loss, F -score and

accuracy, all measures tell something about the information level of the model. Hence, it is

plausible to assume that models obtaining higher accuracy rates and F -scores have a better

model performance and thus also obtain higher AUC scores and lower values for the log-loss.

31

Using this, an indication of the comparative performance of the benchmark models and the

standard PNN and APNNs can be given based on the AUC and log-loss reported by Ren et

al. (2018) for the benchmark models and the computed AUC and log-loss for the standard

PNN and APNNs evaluated in this research.

5 Results

The results can be split into four parts. First, Section 5.1 discusses the results for the bench-

mark models generated by Ren et al. (2018). Second, Section 5.2 evaluates the performance

of the standarad PNN and APNNs. Third, Section 5.3 compares the benchmark models with

the standard PNN and APNNs. Lastly, Section 5.4 elaborates upon the attribution results

generated based on the similarity between the converted touchpoints.

5.1 Results Benchmark Models

The results for the six benchmark models are shown in Table 3. These results show that

the attention based models, ARNN and DARNN, result in much better performance for the

conversion prediction than the other models based on AUC and log-loss. This is due to

the pattern recognition capability of the deep neural network applied when using sequential

modelling (Ren et al., 2018). As the AH and AMTA do not recognize much of the sequential

pattern behavior and model the additive hazard ratio of conversion for each touchpoint,

these models perform worse with respect to the deep neural network models based on both

AUC and log-loss. However, as the AMTA model includes a hazard rate for the time of

the conversion its model performance improves significantly compared to the AH model.

Further, the bagged LR model is a solid, flexible baseline model resulting in a relatively

good model performance, whereas the SP model performs worse due to a more inflexible

structure which allows for less covariates. However, the bagged LR model is slightly more

difficult to interpret compared to the intuitive SP model as described in Section 4.1.1 (Shao

& Li, 2011). For a more detailed description of the performance of these benchmark models,

the reader is referred to the paper from Ren et al. (2018).

32

Table 3 Benchmark model evaluation. Results generated by Ren et al. (2018); AUC: the higher,
the better; log-loss: the lower, the better.

Model AUC Log-Loss
Bagged Logistic Regressions (LR) 0.9286 0.3981
Simple Probabilistic (SP) 0.6718 0.5535
Additive Hazard (AH) 0.6791 0.5067
Adiitional Multi-Touch Attribution (AMTA) 0.8465 0.3897
Attention Recurrent Neural Network (ARNN) 0.9793 0.1850
Dual-Attention Recurrent Neural Network (DARNN) 0.9799 0.1591

5.2 Results PNN and APNNs

Table 5.2 shows the accuracy and F -scores of the standard PNN and different APNNs. As

expected, the standard APNN outperforms the standard PNN based on accuracy and log-

loss and achieves similar scores for the AUC and F -score. As mentioned in Section 4.3, the

values for the AUC are higher than the F -scores indicating that the threshold used in this

research to compute the F -scores is probably not optimal. However, as mentioned optimizing

this threshold is beyond the scope of this research. The improved model performance of

the standard APNN is explained by the usage of weights in computing the average cosine

similarity allowing to put more emphasis on the outcome of similar points in the prediction

of the conversion.

Further, all similar point APNNs outperform the standard PNN and APNN which is in

line with the expectation as the similar point APNN minimizes the use of uninformative

information. Besides, the similar point APNNs outperform the case if only the majority

class (no conversion) would have been predicted, which would have resulted in an accuracy

of ca. 96% as described in Section 3. The standard PNN and APNN and similar point

APNN with k = 15 achieve the lowest F -score of the evaluated models, indicating that these

models perform worst in accurately classifying a conversion, the minority class (Bekkar et

al., 2013). Hence, this indicates that including more than ca. ten touchpoints for predicting

a conversion reduces the ability of the model to correctly classify the minority class. As

mentioned earlier, the AUC and log-loss cannot be computed for the similar point APNNs

as these models do not predict a conversion probability, but predict the class based on

the most common outcome of the k-nearest neighbors, in this application the k most similar

33

touchpoints. Hence, this is a disadvantage of the similar point APNNs as it is not possible to

evaluate the uncertainty of the predictions. On the other hand, the increase in accuracy and

F -score of the similar point APNNs is due to a more efficient use of information by merely

looking at the outcome of the most similar points and ignoring irrelevant touchpoints for

predicting a conversion. Based on the accuracy and F -score the optimal value of k is k = 1

and including more points does not significantly increase model performance. Although the

accuracy is slightly higher for the similar point APNN with k = 3, 5, 9 and 15, the F -score for

the similar point APNN with k = 1 achieves by far the highest value of the evaluated models.

Hence, the similar point APNN with k = 1 is the best PNN based model to accurately predict

the minority class and therefore the similar point APNN is preferred (Bekkar et al., 2013).

Table 4 Performance evaluation standard PNN and APNNs. Results generated for ca. 2 million
touchpoints and rounded for last printed digit; Accuracy, F -measure, AUC: the higher, the better;
log-loss: the lower, the better. AUC and log-loss cannot be computed for similar point APNNs as
prediction is the actual class which cannot be transformed into a probability.

Model Accuracy (%) F -measure AUC Log-loss
PNN 70.6 0.272 0.908 0.679
APNN 71.6 0.272 0.903 0.693
Similar Point APNN - k = 1 98.3 0.540 na na
Similar Point APNN - k = 3 98.4 0.505 na na
Similar Point APNN - k = 5 98.5 0.497 na na
Similar Point APNN - k = 9 98.5 0.422 na na
Similar Point APNN - k = 15 98.4 0.273 na na

5.3 Comparison Benchmark and (A)PNNs

As advertisers and ad exchanges have different marketing strategies and objectives, this

section gives an overview of the different models and compares their performance, strengths

and weaknesses (Shao & Li, 2011). However, it is difficult to compare the results given above

for the different models for three reasons; i) this research and Ren et al. (2018) have not used

the exact same data to evaluate the models as this research used part of the Criteo dataset

and Ren et al. (2018) used undersampling, ii) Ren et al. (2018) do not provide the accuracy

and F -score of their models as done in this research, and iii) the similar point APNNs

predict the class instead of the conversion probability which disables the computation of the

AUC and log-loss. Nevertheless, as described, the accuracy, log-loss, F -score and AUC say

34

something about the performance and information level of a model. Hence, it is expected

that if the AUC and log-loss could have been computed for the similar point APNNs, the

AUCs and log-losses would increase and decrease respectively compared to the AUC and

log-loss of the standard PNN and APNN as the accuracy and F -scores increase. Hence, the

AUC and log-loss for the similar point APNN with k = 1 are expected to approach the AUC

and log-loss achieved by the ARNN and DARNN making the performance of the similar

point APNN with k = 1 comparable with the performance of the ARNN and DARNN.

The main difference between the nature of the standard PNN and different APNNs and

the nature of the ARNN and DARNN is the usage of individual touchpoints and sequential

modelling respectively for predicting a conversion and modelling attribution. Further, the

benchmark models, the bagged LR, SP, AH, and AMTA model, are not only able to predict

if a sequence is going to lead to a conversion, but also when this conversion will take place

(Ji & Wang, 2017). The standard PNN and different APNNs merely predict if a sequence

containing a certain touchpoint is going to lead to a conversion. Hence, this is a limitation

for advertisers using the standard PNN or an APNN as they lack this type of information

when optimizing their advertising strategies. On the other hand, advantages of the standard

PNN and different APNNs are that training of the models is not required, which benefits

quick generation of results, and that no sampling technique has to be used allowing all data

to be used. Also, no likelihood function has to be optimized as for the bagged LR and SP

model, which could be computationally intensive. Given all results above, Table 5 provides

an overview of the capabilities of the different models.

Based on Table 5 one can see that an advertiser or ad exchange has to make a trade-off

between on the one hand real-time usage and interpretability of the model and on the other

hand long training times and the ability and approach of attribution modelling. Although

simple implementation and interpretation of a model are always stimulating for advertisers

or ad exchanges to enhance a model, this trade-off has to be made based on the objective

of the advertiser or ad exchange. For example, if an ad exchange has to set a new pricing

scheme for advertisements which has to be based on sequential user behavior, the DARNN

is most suited in case long training time and relatively hard interpretation of a model are

35

no issue. On the other hand, if an advertiser wants to gain insights in the performance of

newly developed advertisements and avoid long training times of a model, the similar point

APNN with k = 1 is most suited as it is simple to implement.

Table 5 Model comparison. A model is able (disable) to foresee the feature in the column if a
tick (blank) is shown. The ringlet indicates that the model is able to foresee the feature, but not as
precise or accurate as models with a tick.

Model
Real-time

usage
Interpretability

Precise
attribution

Accurate conversion
prediction

Prediction of
time of conversion

Bagged LR ∼ X X X
SP ∼ X X
AH X
AMTA ∼ X
ARNN X X
DARNN X X
PNN X X
APNN X X ∼
Similar point APNN X X X

5.4 Attribution Results of Standard APNN

Compared to the bagged LR, SP, AH, AMTA, ARNN and DARNN model, the standard

APNN does not learn the attribution taking into account the outcome of all the sequences,

as it merely examines the advertisements included in sequences which actually converted.

However, as mentioned in the literature review, the rule based heuristics used for attribution

modelling also do not consider the outcome which is a disadvantage as the system can then

easily be fooled. In contrast to rule based heuristic mechanisms, the attributions computed

by the standard APNN are based on the cosine similarity which is based on the input of the

data of the converted touchpoints. Therefore, the standard APNN does not entirely ignore

the final outcome of the user sequences and is thus not easily fooled by advertisers. Hence,

the standard APNN is able to attribute credits to different advertisements and channels.

Although direct comparison of the models is not possible as described above, it does seem

that the model performance of the standard APNN is relatively bad compared to the ARNN

and DARNN based on the AUC and log-loss when it comes to conversion prediction. Also,

the standard APNN models attribution from a different angle than the ARNN and DARNN

as it bases the attribution on the relation of individual touchpoints rather than using the

36

entire user sequence. Further, the standard APNN does not require the long training times

of the model which could be the case for the ARNN and DARNN for large amounts of

data. Hence, based on the objective, an advertiser or ad exchange should take the above

aspects into consideration when choosing a model for attribution modelling. Lastly, it should

be noted that the similar point APNN with k = 1 is expected to have comparable model

performance with the ARNN and DARNN, but merely examines the relation with the most

similar touchpoint and is therefore not able to model the attribution per touchpoint.

Table 6 gives the attribution results generated by the standard APNN. It shows a list of

the 20 most popular features of the touchpoints with the highest (top x%) rewarded attribu-

tion. The nine features listed in bold in every column are always amongst the top 20 most

popular features regardless of the top x%. For example, one can see that touchpoints with

the highest attribution results are always clicked. This is in line with the expectation as it

is expected that advertisements which contributed most to the conversion are triggering and

therefore trigger the Internet user to click the advertisement. The other nineteen features

are the campaign or category IDs linked to the touchpoints with the highest rewarded attri-

bution. Unfortunately, Criteo has not disclosed the contextual information linked to these

category IDs as described in Section 3. Hence, this research is not able to provide further

insights in the success of these categories.

37

Table 6 Attribution results of standard APNN. List of 20 most popular features of touchpoints
which are rewarded the highest (top x%) attribution. The nine features in bold are always in the
top 20 most popular features regardless of the top x%.

Top 10% Top 20% Top 30% Top 40% Top 50%
Clicked Clicked Clicked Clicked Clicked
16184514 16184514 16184514 1619851 27385784
1619851 25259856 1619851 1692980 1619851
1696469 1619851 1692980 1696469 1692980
2038799 1692980 1696469 2038799 1696469
2864985 2038799 2038799 2139670 1722636
5620638 2864985 2864078 2864078 2038799
6190107 8141218 2864985 2864985 2139670
14366054 14366172 14366172 14366172 2864078
14366172 16312763 16312763 16312763 14363299
16312763 21681023 21681023 21681023 14366172
21681023 21752252 21752252 21752252 16312763
22839829 22839829 22839829 22839829 21752252
22920417 22920417 22920417 22920417 22839829
24298181 23007218 23007218 23007218 22920417
27040390 23086591 23086591 23086591 23007218
28650087 24298181 24298181 24298181 23086591
29640100 29640100 29640100 29640100 24298181
29889521 29889521 29889521 29642271 29889521
30104181 29889556 29889556 29889521 29889556

6 Conclusion and Discussion

This research contributes to the current literature of attribution modelling by introducing

new models based on the PNN which benefit both advertisers and ad exchanges. In at-

tribution modelling it is essential to seek for a model that optimizes the fairness of credit

attribution based on the contribution of the advertisement to the likelihood of a conversion,

while preserving a data-driven nature of the model and not losing the ease of implementa-

tion and interpretation of the model. This research proposes the standard APNN, a PNN

with an attention layer, which allows advertisers and ad exchanges to generate data-driven

insights and to attribute credits to advertisements based on the relation (cosine similarity)

between individual touchpoints. Further, the similar point APNN was introduced which

implements the idea of k-nearest neighbors into the model and aims to use information of

relevant touchpoints efficiently in order to make accurate predictions.

To evaluate the performance of the standard PNN and different APNNs, a dataset from

the online advertising company Criteo and six benchmark models evaluated by Ren et al.

38

(2018) are used, the bagged LR, SP, AH, AMTA, ARNN and DARNN. This research con-

cludes that from the standard PNN and different APNNs, the similar point APNN with

k = 1 results in the best model performance for conversion prediction based on the combi-

nation of model accuracy and the corresponding F -score. Hence, using the idea of k-nearest

neighbors in combination with the APNN improves the accuracy performance of the model

significantly. Although direct comparison with the results of the benchmark models is dif-

ficult, the similar point APNN with k = 1 achieves comparable model performance with

the best performing benchmark models, the ARNN and DARNN. The main advantages of

the PNN and APNNs over the benchmark models are the avoidance of long training times

and the relatively easy interpretation of the model making the models accessible for adver-

tisers and ad exchanges. However, some of the PNN based models lose precision compared

to the ARNN and DARNN which have the great pattern recognition capability used with

sequential modelling. Further, the similar point APNNs are not able to take into account

the uncertainty of the prediction as they predict a class rather than the probability of a

conversion. Hence, the similar point APNN with k = 1 is mostly suited for advertisers and

ad exchanges who want to avoid long training times and value simplicity of the model and

for advertisers who quickly want to gain insights in the performance of their newly developed

advertisements.

For attribution modelling advertisers and ad exchanges should use the standard APNN

as the similar point APNN is not capable of modelling attribution as it focuses on accurate

conversion prediction. The standard APNN does not use sequence-to-sequence modelling as

done in the ARNN and DARNN to model the attribution of the touchpoints, but approaches

attribution modelling from a different angle by computing the attribution based on the rela-

tion, cosine similarity, with the converted touchpoints. Thus, the standard APNN assumes

that advertisements which have much in common with many of the converted advertisements

are more likely to contribute to the conversion and should therefore receive higher credits.

The advantage of this approach is that the standard APNN does not require long training

times to generate attribution results. However, a disadvantage is that the standard APNN

is less accurate in predicting a conversion than most of the benchmark models and especially

compared to the ARNN and DARNN.

39

The results generated in this research provide interesting opportunities for future re-

search. First, one of the opportunities for future research is to evaluate the standard PNN

and different APNNs for a dataset containing advertisements from different channels as the

dataset used in this research merely contains different types of display advertisements. Given

the approach in the methodology it would be interesting to examine the performance of the

APNN for a dataset containing these different types of advertisements and to compare the

attribution results to the attribution results of the benchmark models. Second, it would be

interesting to examine if the standard PNN and different APNNs could include the position

of the touchpoints in the sequence and to see if this improves model performance. One way

this could be done is, by using a binary indicator for the position in addition to the sparse

input vector currently used for computing cosine similarity. Third, costs of advertisements

are an important aspect of the advertising strategy of advertisers. Therefore, it would be of

added value to include the cost factor of advertisements into the model such that advertisers

can use this when optimizing their advertising accuracy.

40

References

Anderl, E., Becker, I., Von Wangenheim, F., & Schumann, J. H. (2016). Mapping the

customer journey: Lessons learned from graph-based online attribution modeling. In-

ternational Journal of Research in Marketing , 33 (3), 457–474.

Arava, S. K., Dong, C., Yan, Z., Pani, A., et al. (2018). Deep neural net with attention for

multi-channel multi-touch attribution. arXiv preprint arXiv:1809.02230 .

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473 .

Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several

methods for balancing machine learning training data. ACM SIGKDD explorations

newsletter , 6 (1), 20–29.

Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation measures for models

assessment over imbalanced data sets. J Inf Eng Appl , 3 (10).

Dalessandro, B., Perlich, C., Stitelman, O., & Provost, F. (2012). Causally motivated

attribution for online advertising. In Proceedings of the sixth international workshop

on data mining for online advertising and internet economy (pp. 1–9).

Delacour, H., François, N., Servonnet, A., Gentile, A., & Roche, B. (2009). Les rapports de

vraisemblance: un outil de choix pour l’interprétation des tests biologiques. Immuno-

analyse & Biologie Spécialisée, 24 (2), 92–99.

Diemert, E., Meynet, J., Galland, P., & Lefortier, D. (2017). Attribution modeling increases

efficiency of bidding in display advertising. In Proceedings of the adkdd’17 (pp. 1–6).

Di Martino, M., Decia, F., Molinelli, J., & Fernández, A. (2012). Improving electric fraud

detection using class imbalance strategies. In Icpram (2) (pp. 135–141).

Drummond, C., & Holte, R. C. (2000). Explicitly representing expected cost: An alternative

to roc representation. In Proceedings of the sixth acm sigkdd international conference

on knowledge discovery and data mining (pp. 198–207).

Du, R., Zhong, Y., Nair, H., Cui, B., & Shou, R. (2019). Causally driven incremental multi

touch attribution using a recurrent neural network. arXiv preprint arXiv:1902.00215 .

Geyik, S. C., Saxena, A., & Dasdan, A. (2014). Multi-touch attribution based budget

41

allocation in online advertising. In Proceedings of the eighth international workshop on

data mining for online advertising (pp. 1–9).

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint

arXiv:1410.5401 .

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9 (8), 1735–1780.

Ji, W., & Wang, X. (2017). Additional multi-touch attribution for online advertising. In

Thirty-first aaai conference on artificial intelligence.

Ji, W., Wang, X., & Zhang, D. (2016). A probabilistic multi-touch attribution model

for online advertising. In Proceedings of the 25th acm international on conference on

information and knowledge management (pp. 1373–1382).

Kannan, P., Reinartz, W., & Verhoef, P. C. (2016). The path to purchase and attribution

modeling: Introduction to special section. Elsevier.

Kee, B. (2012). Attribution playbook–google analytics.

Lee, K.-c., Orten, B., Dasdan, A., & Li, W. (2012). Estimating conversion rate in dis-

play advertising from past erformance data. In Proceedings of the 18th acm sigkdd

international conference on knowledge discovery and data mining (pp. 768–776).

Li, H., & Kannan, P. (2014). Attributing conversions in a multichannel online market-

ing environment: An empirical model and a field experiment. Journal of Marketing

Research, 51 (1), 40–56.

Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based

neural machine translation. arXiv preprint arXiv:1508.04025 .

Mao, K. Z., Tan, K.-C., & Ser, W. (2000). Probabilistic neural-network structure deter-

mination for pattern classification. IEEE Transactions on neural networks , 11 (4),

1009–1016.

Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y., & Wang, J. (2016). Product-based

neural networks for user response prediction. In 2016 ieee 16th international conference

on data mining (icdm) (pp. 1149–1154).

Ren, K., Fang, Y., Zhang, W., Liu, S., Li, J., Zhang, Y., . . . Wang, J. (2018). Learning multi-

touch conversion attribution with dual-attention mechanisms for online advertising. In

42

Proceedings of the 27th acm international conference on information and knowledge

management (pp. 1433–1442).

Shao, X., & Li, L. (2011). Data-driven multi-touch attribution models. In Proceedings of

the 17th acm sigkdd international conference on knowledge discovery and data mining

(pp. 258–264).

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games ,

2 (28), 307–317.

Specht, D. F. (1990). Probabilistic neural networks. Neural networks , 3 (1), 109–118.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin,

I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762 .

Wang, J., Zhang, W., & Yuan, S. (2016). Display advertising with real-time bidding (rtb)

and behavioural targeting. arXiv preprint arXiv:1610.03013 .

Wang, X., Yu, L., Ren, K., Tao, G., Zhang, W., Yu, Y., & Wang, J. (2017). Dynamic

attention deep model for article recommendation by learning human editors’ demon-

stration. In Proceedings of the 23rd acm sigkdd international conference on knowledge

discovery and data mining (pp. 2051–2059).

Xu, J., Shao, X., Ma, J., Lee, K.-c., Qi, H., & Lu, Q. (2016). Lift-based bidding in ad

selection. In Proceedings of the aaai conference on artificial intelligence (Vol. 30).

Zhang, Y., Wei, Y., & Ren, J. (2014). Multi-touch attribution in online advertising with

survival theory. In 2014 ieee international conference on data mining (pp. 687–696).

Zhao, K., Mahboobi, S. H., & Bagheri, S. R. (2018). Shapley value methods for attribution

modeling in online advertising. arXiv preprint arXiv:1804.05327 .

43

A Code Data Preprocess

−−−− DATA −−−−−
Set paths f i l e z i l l a to r e t r i e v e o r i g i n a l data and save processed data
path unproces sed data = r ’ /home/ k d k r u i f f / Thes i s /Data/ c r i t e o a t t r i b u t i o n d a t a s e t . t sv ’
path proce s s ed data = r ’ /home/ k d k r u i f f / Thes i s /Data/ Part1 / c r i t e o d a t a s e t c l e a n e d . t sv ’
p a t h p r o c e s s e d d a t a d u p l i c a t e s =

r ’ /home/ k d k r u i f f / Thes i s /Data/ Part1 / c r i t e o d a t a s e t c l e a n e d d u p l i c a t e s . t sv ’

def DataPreprocess ing (path unprocessed data , pa th proce s s ed data) :

pd . s e t o p t i o n (’ d i s p l a y . max columns ’ , None)
data = pd . r ead c sv (path unprocessed data , sep=’ \ t ’) . i l o c [0 : 8 2 5 0 0 0 0 , :]
data c l eaned = data . drop ([’ a t t r i b u t i o n ’ , ’ c l i c k n b ’ , ’ c l i c k p o s ’ , ’ c o s t ’ ,

’ cpo ’ , ’ t i m e s i n c e l a s t c l i c k ’] , a x i s =1)
data c l eaned [’ s e t c a t ’] = data c l eaned . apply (lambda row : set (

[row [’ cat1 ’] , row [’ cat2 ’] , row [’ cat3 ’] , row [’ cat4 ’] , row [’ cat5 ’] ,
row [’ cat6 ’] , row [’ cat7 ’] , row [’ cat8 ’] , row [’ cat9 ’]]) , a x i s =1)

data c l eaned [’ s e t c a t ’] = data c l eaned [’ s e t c a t ’] . apply (tuple)
data c l eaned = data c l eaned . drop ([’ cat1 ’ , ’ cat2 ’ , ’ cat3 ’ , ’ cat4 ’ , ’ cat5 ’ ,

’ cat6 ’ , ’ cat7 ’ , ’ cat8 ’ , ’ cat9 ’] , a x i s =1)

CLEAR WORKSPACE
del data

d a t a s o r t e d p a r t i a l = data c l eaned . s o r t v a l u e s (by=’ uid ’)
c o l i n d e x s e q u e n c e i d = len (data c l eaned . columns . va lue s)
c o l i n d e x p o s i t i o n i d = c o l i n d e x s e q u e n c e i d + 1
d a t a s o r t e d p a r t i a l . i n s e r t (c o l i n d e x s e q u e n c e i d , ’ s equence id ’ , np . nan)
d a t a s o r t e d p a r t i a l . i n s e r t (c o l i n d e x p o s i t i o n i d , ’ p o s i t i o n i d ’ , np . nan)

s equence id = 0
p o s i t i o n i d = 1
d a t a s o r t e d p a r t i a l . i l o c [0 , c o l i n d e x s e q u e n c e i d] = sequence id
d a t a s o r t e d p a r t i a l . i l o c [0 , c o l i n d e x p o s i t i o n i d] = p o s i t i o n i d
for i in range (len (d a t a s o r t e d p a r t i a l) −1):

i f d a t a s o r t e d p a r t i a l . i l o c [i , 1] != d a t a s o r t e d p a r t i a l . i l o c [i + 1 , 1] :
s equence id += 1
p o s i t i o n i d = 1

e l i f (d a t a s o r t e d p a r t i a l . i l o c [i , 1] == d a t a s o r t e d p a r t i a l . i l o c [i + 1 , 1]
and d a t a s o r t e d p a r t i a l . i l o c [i , 5] != d a t a s o r t e d p a r t i a l . i l o c [i + 1 , 5]) :
s equence id += 1
p o s i t i o n i d = 1

d a t a s o r t e d p a r t i a l . i l o c [i + 1 , c o l i n d e x s e q u e n c e i d] = sequence id
d a t a s o r t e d p a r t i a l . i l o c [i + 1 , c o l i n d e x p o s i t i o n i d] = p o s i t i o n i d
p o s i t i o n i d += 1

Remove a l l sequences wi th one touchpo in t
data c leaned new = d a t a s o r t e d p a r t i a l . drop ([’ uid ’ , ’ convers ion t imestamp ’ ,

’ c o n v e r s i o n i d ’] , a x i s =1)
d a t a d u p l i c a t e s = d a t a s o r t e d p a r t i a l [[’ uid ’ , ’ conver s i on ’ ,

’ convers ion t imestamp ’ , ’ c o n v e r s i o n i d ’]]
d a t a s i n g l e s = d a t a d u p l i c a t e s [˜ d a t a d u p l i c a t e s . dup l i ca t ed (keep=False)]
da ta dup l i ca t e s new = d a t a d u p l i c a t e s [d a t a d u p l i c a t e s . dup l i ca t ed (keep=False)]

44

i n d i c e s d u p l i c a t e s = data dup l i ca t e s new . groupby (l i s t (data dup l i ca t e s new))
. apply (lambda x : x . index) . va lue s . t o l i s t ()

i n d i c e s s i n g l e s = d a t a s i n g l e s . groupby (l i s t (d a t a s i n g l e s))
. apply (lambda x : x . index) . va lue s . t o l i s t ()

Add column with sequence encoding
c o l i n d e x e n c o d i n g = len (data c leaned new . columns . va lue s)
data c leaned new . i n s e r t (co l i ndex encod ing , ’ encoding ’ , np . nan)
encoding = 1
e n c o d i n g s i n g l e s = 1
for i in range (len (i n d i c e s s i n g l e s)) :

data c leaned new . l o c [i n d i c e s s i n g l e s [i] , c o l i n d e x e n c o d i n g] = encoding
encoding += 1

for i in range (len (i n d i c e s d u p l i c a t e s)) :
d u p l i c a t e s = i n d i c e s d u p l i c a t e s [i]
for j in range (0 , len (i n d i c e s d u p l i c a t e s [i])) :

data c leaned new . l o c [d u p l i c a t e s [j] , c o l i n d e x e n c o d i n g] = encoding
encoding += 1

print (” Fin i shed p r e p r o c e s s i n g ”)
return data c leaned new

data c leaned new = DataPreprocess ing (path unprocessed data , pa th proce s s ed data)

Create da t a s e t wi th on ly d u p l i c a t e s (remove s i n g l e t ouchpo in t s)
d a t a c l e a n e d d u p l i c a t e s = data c leaned new [

data c leaned new . dup l i ca t ed (subset =[’ s equence id ’] , keep=False)]

Write a pandas dataframe to z ipped CSV f i l e
d a t a c l e a n e d d u p l i c a t e s . t o c s v (p a t h p r o c e s s e d d a t a d u p l i c a t e s , sep=’ \ t ’)
data c leaned new . t o c s v (path proces sed data , sep=”\ t ”)

B Code PNN and APNN
Define l o c a t i o n processed data and new l o c a t i o n f o r PNN data input and output
p a t h p r o c e s s e d d a t a d u p l i c a t e s =

r ’ /home/ k d k r u i f f / Thes i s /Data/ Part1 / c r i t e o d a t a s e t c l e a n e d d u p l i c a t e s . t sv ’
pa th proce s s ed da ta input = r ’ /home/ k d k r u i f f / Thes i s /Data/ Part2 /PNN data input . t sv ’
path proce s s ed data output = r ’ /home/ k d k r u i f f / Thes i s /Data/ Part2 /PNN data output . t sv ’

Load processed data
d a t a c l e a n e d d u p l i c a t e s = pd . r ead c sv (p a t h p r o c e s s e d d a t a d u p l i c a t e s , sep=’ \ t ’)

def tup l e t r an s f o rm (x) :
return tuple (map(int , x [1 : −1] . s p l i t (’ , ’)))

−−−−−−−−−− CREATE SPARSE SEQUENCES (PNN) −−−−−−−−−−
d a t a c l e a n e d d u p l i c a t e s = d a t a c l e a n e d d u p l i c a t e s . drop (

columns=d a t a c l e a n e d d u p l i c a t e s . columns [0] , a x i s =1)
PNN data output = pd . DataFrame (d a t a c l e a n e d d u p l i c a t e s . conver s i on)
PNN data output . t o c s v (path proces sed data output , sep=’ \ t ’)

Set number o f c a t e g o r i e s and campaigns b e s i d e c l i c k l e v e l
c a t e g o r i e s s e r i e s = d a t a c l e a n e d d u p l i c a t e s . i l o c [: , 4] . apply (tup l e t r an s f o rm) .sum()

45

c a t e g o r i e s = sorted (set (c a t e g o r i e s s e r i e s))
campaigns = sorted (set (d a t a c l e a n e d d u p l i c a t e s . campaign))
n columns = 1+len (campaigns)+len (c a t e g o r i e s)+1
data input = np . z e ro s ((d a t a c l e a n e d d u p l i c a t e s . shape [0] , n columns))
l e n b e f o r e c a t = 1 + len (campaigns)
l e n a f t e r c a t = l e n b e f o r e c a t + len (c a t e g o r i e s)

for i in range (d a t a c l e a n e d d u p l i c a t e s . shape [0]) :
print (i)
Set c l i c k to 0 or 1
data input [i , 0] = d a t a c l e a n e d d u p l i c a t e s . i l o c [i , 3]

Set campaign index to 1
campaign index = campaigns . index (d a t a c l e a n e d d u p l i c a t e s . i l o c [i , 1])
data input [i , campaign index] = 1

Set c a t e g o r i e s i n vo l v ed wi th touchpo in t to 1
s e t c a t t p = tuple (map(int , d a t a c l e a n e d d u p l i c a t e s . i l o c [i , 4] [1 : − 1] . s p l i t (’ , ’)))
for j in range (len (s e t c a t t p)) :

c a t index = c a t e g o r i e s . index (s e t c a t t p [j])

data input [i , l e n b e f o r e c a t + cat index − 1] = 1

Add sequence and po s i t i o n id
data input [i , l e n a f t e r c a t −1] = d a t a c l e a n e d d u p l i c a t e s . i l o c [i , 6]
data input [i , l e n a f t e r c a t] = d a t a c l e a n e d d u p l i c a t e s . i l o c [i , 5]

Save input data s e t
d f d a t a i np u t = pd . DataFrame (data input)
d f d a t a i np u t . t o c s v (path proce s s ed data input , sep=’ \ t ’)

C Code Model Evaluation
Retr i eve input and output data
path data input = r ’ /home/ k d k r u i f f / Thes i s /Data/ Part2 /PNN data input . t sv ’
path data output = r ’ /home/ k d k r u i f f / Thes i s /Data/ Part2 /PNN data output . t sv ’
PNN data input = pd . r ead c sv (path data input , sep=’ \ t ’)
PNN data output = pd . r ead c sv (path data output , sep=’ \ t ’)
PNN data input = PNN data input . drop (columns=PNN data input . columns [0] , a x i s =1)
PNN data output = PNN data output . drop (columns=PNN data output . columns [0] , a x i s =1)

−−−−−−−−− TEST AND TRAINING SET −−−−−−−−−
X train PNN , X test PNN , y train PNN , y test PNN =

t r a i n t e s t s p l i t (PNN data input , PNN data output , t e s t s i z e = 0 . 2 ,
random state = 1111 , s t r a t i f y = PNN data output)

Construct convers ion and non−convers ion matrix and s e t e v e r y t h in g to numpy
X test = X test PNN . va lue s
y t e s t = y test PNN . va lue s
y t r a i n = y train PNN . va lue s

−−−− MAIN −−−−
Compact PNN, APNN and ’ l a s t touch ’ PNN model

46

def PNN and APNN(x , X train , y t r a i n) :
−−−− Pattern l a y e r −−−−
cos matr ix = c o s i n e s i m i l a r i t y (x , X tra in)
cos matr ix conv = cos matr ix [np . reshape (

np . concatenate (y t r a i n ==1) ,(1 , X tra in . shape [0]))]
cos matr ix no conv = cos matr ix [np . reshape (

np . concatenate (y t r a i n ==0) ,(1 , X tra in . shape [0]))]
co s matr ix conv shape = np . concatenate (cos matr ix conv . reshape (

cos matr ix conv . shape [0] , 1))

−−−− Summation l a y e r −−−−
norm cos matr ix = cos matr ix / sum(cos matr ix [0])

−−−> PNN
p conversion PNN = sum(cos matr ix conv) / cos matr ix conv . shape [0]
p no conv PNN = sum(cos matr ix no conv) / cos matr ix no conv . shape [0]
p conv PNN = softmax ([p conversion PNN , p no conv PNN]) [0]

−−−> APNN
p conversion APNN = sum(cos matr ix conv ∗ norm cos matr ix [

np . reshape (np . concatenate (y t r a i n ==1) ,(1 , X tra in . shape [0]))]) /
cos matr ix conv . shape [0]

p no conv APNN = sum(cos matr ix no conv ∗ norm cos matr ix [
np . reshape (np . concatenate (y t r a i n ==0) ,(1 , X tra in . shape [0]))]) /
cos matr ix no conv . shape [0]

p conv APNN = softmax ([p conversion APNN , p no conv APNN]) [0]

−−−− Decis ion l a y e r −−−−
prediction PNN = 0
prediction APNN = 0
i f p conversion PNN > p no conv PNN :

prediction PNN = 1
i f p conversion APNN > p no conv APNN :

prediction APNN = 1

−−−− Max Simi lar −−−−
pred ict ion max = y t r a i n [np . argmax (cos matr ix [0] , a x i s =0)]
pred i c t ion max 3 = np . bincount (np . concatenate (

y t r a i n [np . a r g p a r t i t i o n (cos matr ix [0] , −3) [−3 :]])) . argmax ()
pred i c t ion max 5 = np . bincount (np . concatenate (

y t r a i n [np . a r g p a r t i t i o n (cos matr ix [0] , −5) [−5 :]])) . argmax ()
pred i c t ion max 9 = np . bincount (np . concatenate (

y t r a i n [np . a r g p a r t i t i o n (cos matr ix [0] , −9) [−9 :]])) . argmax ()
pred ic t ion max 15 = np . bincount (np . concatenate (

y t r a i n [np . a r g p a r t i t i o n (cos matr ix [0] , −15) [−15 :]])) . argmax ()
return cos matr ix conv shape , prediction PNN , prediction APNN , predict ion max ,

pred ict ion max 3 , pred ict ion max 5 , pred ict ion max 9 , pred ict ion max 15 ,
p conv PNN , p conv APNN

def softmax (x) :
”””Compute softmax va l u e s f o r each s e t s o f s core s in x . ”””
return np . exp (x) / np .sum(np . exp (x) , a x i s =0)

−−−−− RESULTS −−−−−

47

Evaluate p r e d i c t i on r e s u l t s
p r e d i c t i o n s = np . z e ro s ((y t e s t . shape [0] , 1 0))
co s mat r i x conv to t = np . z e r o s ((sum(y t r a i n ==1) [0] ,))
for i in range (X tes t . shape [0]) :

cos matr ix conv , pred PNN , pred APNN , pred max , pred max3 ,
pred max5 , pred max9 , pred max15 , p conv PNN , p conv APNN =

PNN and APNN(X test [i ,] . reshape (1 , X tes t . shape [1]) , X train PNN , y t r a i n)
p r e d i c t i o n s [i , 0] = pred PNN
p r e d i c t i o n s [i , 1] = pred APNN
p r e d i c t i o n s [i , 2] = pred max
p r e d i c t i o n s [i , 3] = pred max3
p r e d i c t i o n s [i , 4] = pred max5
p r e d i c t i o n s [i , 5] = pred max9
p r e d i c t i o n s [i , 6] = pred max15
p r e d i c t i o n s [i , 7] = y t e s t [i]
p r e d i c t i o n s [i , 8] = p conv PNN
p r e d i c t i o n s [i , 9] = p conv APNN
cos mat r i x conv to t += cos matr ix conv

Histogram which has to be saved
cos matr ix conv tot norm = cos mat r i x conv to t /

sum(c o s mat r i x conv to t)
h i s t a t t r i b u t i o n s = p l t . h i s t (co s mat r i x conv to t /

sum(c o s mat r i x conv to t) , b ins =100 , f a c e c o l o r=’ grey ’)
p l t . x l a b e l (” Credit At t r ibut i on Weight”)
p l t . y l a b e l (”Number o f touchpo ints ”)
p l t . t i t l e (” Credit At t r ibut i on ”)
p l t . s a v e f i g (r ’ /home/ k d k r u i f f / Thes i s / Cred i tAt t r ibut i on . png ’)

correct PNN = 0
correct APNN = 0
correct APNN max = 0
correct APNN max3 = 0
correct APNN max5 = 0
correct APNN max9 = 0
correct APNN max15 = 0
for i in range (p r e d i c t i o n s . shape [0]) :

i f p r e d i c t i o n s [i , 0] == p r e d i c t i o n s [i , 7] :
correct PNN += 1

i f p r e d i c t i o n s [i , 1] == p r e d i c t i o n s [i , 7] :
correct APNN += 1

i f p r e d i c t i o n s [i , 2] == p r e d i c t i o n s [i , 7] :
correct APNN max += 1

i f p r e d i c t i o n s [i , 3] == p r e d i c t i o n s [i , 7] :
correct APNN max3 += 1

i f p r e d i c t i o n s [i , 4] == p r e d i c t i o n s [i , 7] :
correct APNN max5 += 1

i f p r e d i c t i o n s [i , 5] == p r e d i c t i o n s [i , 7] :
correct APNN max9 += 1

i f p r e d i c t i o n s [i , 6] == p r e d i c t i o n s [i , 7] :
correct APNN max15 += 1

−−−− GENERATE TABLE WITH RESULTS −−−−
t a b l e r e s u l t s = np . z e ro s ((7 , 4))

48

Accuracy
t a b l e r e s u l t s [0 , 0] = correct PNN / p r e d i c t i o n s . shape [0]
t a b l e r e s u l t s [1 , 0] = correct APNN / p r e d i c t i o n s . shape [0]
t a b l e r e s u l t s [2 , 0] = correct APNN max / p r e d i c t i o n s . shape [0]
t a b l e r e s u l t s [3 , 0] = correct APNN max3 / p r e d i c t i o n s . shape [0]
t a b l e r e s u l t s [4 , 0] = correct APNN max5 / p r e d i c t i o n s . shape [0]
t a b l e r e s u l t s [5 , 0] = correct APNN max9 / p r e d i c t i o n s . shape [0]
t a b l e r e s u l t s [6 , 0] = correct APNN max15 / p r e d i c t i o n s . shape [0]
F−measure
t a b l e r e s u l t s [0 , 1] = f 1 s c o r e (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 0] , average=’ binary ’)
t a b l e r e s u l t s [1 , 1] = f 1 s c o r e (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 1] , average=’ binary ’)
t a b l e r e s u l t s [2 , 1] = f 1 s c o r e (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 2] , average=’ binary ’)
t a b l e r e s u l t s [3 , 1] = f 1 s c o r e (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 3] , average=’ binary ’)
t a b l e r e s u l t s [4 , 1] = f 1 s c o r e (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 4] , average=’ binary ’)
t a b l e r e s u l t s [5 , 1] = f 1 s c o r e (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 5] , average=’ binary ’)
t a b l e r e s u l t s [6 , 1] = f 1 s c o r e (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 6] , average=’ binary ’)
AUC
Compute Area Under Curve (ROC)
def AUC(y true , y prob) :

ROC AUC eval = r o c a u c s c o r e (y true , y prob)
return ROC AUC eval

t a b l e r e s u l t s [0 , 2] = AUC(p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 8])
t a b l e r e s u l t s [1 , 2] = AUC(p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 9])
t a b l e r e s u l t s [0 , 3] = l o g l o s s (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 8])
t a b l e r e s u l t s [1 , 3] = l o g l o s s (p r e d i c t i o n s [: , 7] , p r e d i c t i o n s [: , 9])

Convert r e s u l t s to dataframe
d f p r e d i c t i o n s = pd . DataFrame (p r e d i c t i o n s)
d f t a b l e r e s u l t s = pd . DataFrame (t a b l e r e s u l t s)
d f c o s m a t r i x c o n v a r r = pd . DataFrame (cos matr ix conv tot norm)

−−−− SAVE RESULTS −−−−−
p a t h p r e d i c t i o n r e s u l t s = r ’ /home/ k d k r u i f f / Thes i s /Data/ Part3 / a l l p r e d i c t i o n s . csv ’
p a t h r e s u l t s t a b l e = r ’ /home/ k d k r u i f f / Thes i s /Data/ Part3 / t a b l e r e s u l t s . csv ’
p a t h r e s u l t s a t r r = r ’ /home/ k d k r u i f f / Thes i s /Data/ Part3 / a t t r i b u t i o n r e s u l t s . csv ’
d f p r e d i c t i o n s . t o c s v (p a t h p r e d i c t i o n r e s u l t s)
d f t a b l e r e s u l t s . t o c s v (p a t h r e s u l t s t a b l e)
d f c o s m a t r i x c o n v a r r . t o c s v (p a t h r e s u l t s a t r r)

49

	Introduction
	Literature Review
	Attribution Modelling
	Rule-based Attribution Models
	Data-driven Algorithmic Models
	Machine Learning Attribution - Attention Mechanisms

	Attention based Attribution Models
	Performance Measures for Imbalanced Data

	Data Description
	Methodology
	Benchmark Models
	Bagged Logistic Regression and Simple Probabilistic Model
	Additive Hazard and Additional Multi-touch Attribution Model
	ARNN and DARNN

	PNN and Attention PNN
	Classical PNN
	Standard PNN
	Standard APNN
	Similar Point APNN
	Attribution Modelling with Standard APNN

	Performance Evaluation

	Results
	Results Benchmark Models
	Results PNN and APNNs
	Comparison Benchmark and (A)PNNs
	Attribution Results of Standard APNN

	Conclusion and Discussion
	References
	Code Data Preprocess
	Code PNN and APNN
	Code Model Evaluation

