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Abstract

When predicting and classifying binary data, parametric methods are often used for their ease of
interpretation and evaluation; however, these models are only optimal when distributional

assumptions of a dataset are satisfied. When handling not normally distributed data,
non-parametric machine learning methods are often turned to, even though these methods can be
challenging to interpret and computationally challenging. Robust parametric methods may offer a

solution. The thesis investigates the predictive performance of non-robust parametric, robust
parametric, and machine learning methods. The study compares the different methods’

performance based on classification accuracy, with and without feature selection, using the effect
of outliers to appraise the methods. For classification accuracy, the study compares the Maximum

Likelihood estimator (ML) of the non-robust parametric method logistic regression with two
robust parametric estimators: Mallows Quasi-Likelihood (MQL) and Conditionally Unbiased

Bounded-Influence (Cubif). The study then investigates how these parametric methods perform
compared to machine-learned methods using supervised learning classifiers Naïve Bayes (NB) and
Support Vector Classifiers (SVC). The forward-stepwise selection was implemented using Bayesian
information criteria (BIC) and its robust version (RBIC) to appraise feature selection. The results

show that the parametric methods MQL and Cubif outperform ML under all contaminated
datasets. SVC reveals unreliable results in small datasets while NB proves robust. Machine

learning classifiers perform slightly worse for data with low contamination levels than parametric
ones; however, they perform well in datasets with high contamination. The study confirms that
RBIC outperforms BIC in all contaminated datasets. In the setting of no contamination, the

performance is similar or equal.

Key Words: Robust Classification, M-Estimator, Mallows Quasi-Likelihood, Cubif, Naïve Bayes,
Support Vector Classifier
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1 INTRODUCTION

1 Introduction

Supervised classification is one of the most promising areas of research implemented
by machine learning. Consequently, many supervised classification techniques have been
developed and studied in the past few decades (Kotsiantis et al., 2006). In the field of
supervised classification, classifiers construct decision boundaries aiming to assign observation
into classes. For a two-class problem in a p-dimensional feature space, these methods model
the decision boundary as a hyperplane (Hastie et al., 2017).

When it comes to predicting and classifying binary data, the typical way to proceed
is to use parametric modeling, which is simple to evaluate and interpret, or machine learning
methods, which are not easy to interpret and can be computationally challenging. The
parametric methods, such as logistic regression, will be optimal if a dataset’s distributional
assumptions are satisfied; however, logistic regression will fail to produce accurate predictions
and can give biased estimates when those assumptions are not met (Victoria-Feser, 2002).

In the era of big data, it is rare to encounter normally distributed data, making it
dangerous to rely on parametric methods solely. Practice reveals that nearly all real data
hold at least one observation in their feature space that deviates dramatically from what is
expected; those are known as outliers (Ritter and Gallegos, 1997). There is no precise and
unified concept of an outlier to date; however, two main ideas form its conceptualization:

1. Outliers are "spurious" observations that do not follow any statistical law. In such
cases, there can exist datasets consisting entirely of such outliers, which would make
these data unmanageable for statistics.

2. The second idea assumes that in many circumstances, the distributional model of the
data belongs to a given parametric family like the Gaussian distribution, which will
be of interest in this study. This concept suggests that the observations follow some
statistical law; however, in this case, they seem to appear more often than the presumed
distribution allows.

This second idea can be further stratified into two different scenarios:

(A) In the first scenario, the assumption is that there is only one or very few outliers in
the data relative to the total number of observations. In this scenario, these outliers
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1 INTRODUCTION

might be isolated events and most likely do not concern an unsuitable distributional
assumption on the data.

(B) If there are many outliers, i.e., 10%, they must be associated with a wrong distribution
choice. This idea is often associated with "heavy tails." When an analysis concern-
ing such outliers is reproduced, the outliers will resemble similarities in number and
characteristics.

In cases (1) and (2A), the easiest way a statistician can proceed is by either iden-
tifying the outliers and rejecting them to repair the properties of the data or by employing
robust parameter estimation methods. These methods attempt to remove or at least reduce
outliers’ influence, modeling the regular observations only (Ritter and Gallegos, 1997). Here
we choose the latter, robust methods.

Given the presence of outliers resulting in contaminated data, two main perspectives
to consider in high-dimensional space supervised classification are classification accuracy and
feature selection. In this paper, we appraise the effect of outliers in both aspects. The
literature often suggests that the presence of outliers can influence the performance of a
classifier, but only a few studies verify such claims. This is not the case in the regression
setting, where many studies showcase the problems that may arise when the data hold outliers
(Acuña and Rodriguez, 2004).

The primary goal of this research is to investigate and compare the classification per-
formance from classical logistic regression with robust logistic regression methods. Moreover,
the study investigates how those robust methods perform compared to supervised learning
classifiers, especially in the presence of data contaminated by outliers.

The paper aims to answer the following research questions:

• How do robust estimators (in this study, Mallows Quasi-likelihood, and Conditionally
Unbiased Bounded-Influence) perform in the classification framework in comparison
with the non-robust Maximum Likelihood estimator and with the supervised learning
classifiers (in this study, Support Vector Classifier and Naïve Bayes) in the presence of
data contaminated by outliers?

We investigate three main frameworks: (A) without feature selection, (B1) with

2



1 INTRODUCTION

feature selection using the well-studied Bayesian Information Criterion (BIC) and finally
(B2) with feature selection using its robust version RBIC developed by Machado (1993).

To evaluate those frameworks, a Monte-Carlo simulation was constructed for 16
different scenarios, including four proportions of contaminated datasets, namely 0%, 1%,
5%, and 10%. The research investigates how the methods behave when at least 30% of the
explanatory variables are not significantly different from zero.

Moreover, the study evaluates performance improvement before and after feature
selection contrasting with machine learning methods that do not require dimension reduc-
tion. Later this thesis verifies its findings by examining the public binary data from Dr.
Walberg of the University of Wisconsin Hospital regarding breast cancer tumors (Wolberg
and Mangasarian, 1990; Wolberg et al., 1994).

The paper is organized as follows: Section 1 introduces the main problems with
classification when encountering outliers in the data. Section 2 comprises a literature re-
view that contains recent studies in classical and robust binary classification. Section 3 is
dedicated to the theory and methods. We introduce the Monte-Carlo simulation design and
implementation in Section 4. The hypotheses formulated to answer the research question are
presented in Section 5. The real-world data is described in Section 6. Results, discussion, and
comparative analysis are displayed in Section 7. Finally, Section 8 is devoted to conclusions
and final remarks.
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2 LITERATURE

2 Literature

Logistic regression is one of the most traditional and applied methods in binary
datasets. It uses maximum-likelihood (ML) for parameter estimation, optimal when under-
lying assumptions about the data hold. However, it becomes unreliable when the data fails
to meet those assumptions (Victoria-Feser, 2002).

Many estimators have been proposed in an attempt to make logistic regression
more robust. Huber (1981) proposed a class of estimators called M-Estimators which were a
generalization of the maximum-likelihood (ML) estimator. The estimator operates similarly
to the standard least-squares (LS) method or the LS estimator. Like the LS estimator, the
M-estimator tries to minimize the sum of residuals. However, the M-estimators replace the
squared function with a robust function, attempting to reduce the effect of outliers. The M-
estimator class became popular not only due to its robustness but because it worked well with
generalized linear models (GLM), a resilient generalization of the traditional linear regression
presented by McCullagh and Nelder (1999). GLMs allow for the distribution of the response
variable to assume many forms, rather than being restricted to the Gaussian form, such as
it is in the normal linear regression context.

In 1989, Künsch et al. presented a subclass of the class of M-estimators called
Conditionally Unbiased Bounded-Influence (Cubif). Their estimator was based on the work
of Stefanski et al. (1986) which presented optimal bounded score functions for parameter
estimation in GLMs. The Cubif estimator is defined by restricting the score function to be
conditionally unbiased (conditional Fisher consistent) given the independent variables.

Cantoni and Ronchetti presented another estimator called Mallows Quasi-Likelihood
(MQL) in 2001. This estimator unifies the concept of Mallows-Type with the class of M-
estimators. In a sense, the estimator belongs to the M-estimator class proposed by Huber
(1981), however, its influence of deviations on y (dependent variable) and x (independent
variables) are separately bounded as in the Mallows-Type estimator proposed by Jongh et al.
(1988) (Hampel, 1974; Hampel et al., 1986). Furthermore, the estimator is built on the no-
tion of quasi-likelihood functions and robust deviances (Wedderburn, 1974; McCullagh and
Nelder, 1989; Preisser and Qaqish, 1999; Heyde, 2008)

Many papers evaluate the robustness of both estimators regarding parameters esti-
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2 LITERATURE

mation; however, only a few evaluate their classification performance. Ahmad et al. (2010)
and Habshah and Syaiba (2012) presented a comparative simulation study contrasting ML
estimator with the robust estimators Cubif by Künsch et al. (1989), Mallows-Type by Jongh
et al. (1988) and Bianco and Yohai by Bianco and Yohai (1996). Their goal is predictive
performance in the first paper, whereas parameter estimation in the second paper.

While many studies evaluate the estimator MQL for Poisson regression setting, few
explore MQL in logistic regression. Kitromilidou and Fokianos (2015) present an analysis for
robust log-linear Poisson autoregressions in the context of outliers present in the data employ-
ing the estimator MQL. Most recently, Reda Abonazel and Mohamed Saber (2020) presented
a Monte Carlo simulation for Poisson regression, where they show that the MQL estimator
outperforms the well-known weighted maximum likelihood in the presence of outliers.

Machine learning is recognized as a field of artificial intelligence, and its goal is
to study and improve algorithms that allow computers to enhance their performances with
data. The process comprises analyzing prior experiences to find reasonable and practical
regularities and patterns that a human eye might neglect (Kotsiantis et al., 2006).

Two of the most popular machine learning methods in binary classification are
Support Vector Classifiers (SVC) and Naïve Bayes (NB). Their popularity is likely due to
their similarity to logistic regression (Hastie et al., 2017).

Golpour et al. (2020) present a comparison of SVC, NB, and logistic regression in
the binary classification context, diagnosing cardiovascular diseases. They presented that all
models performed the same accuracy; however, the NB model outperformed logistic regression
and SVC in parsimony and simplicity. Colas and Brazdil (2006) investigate the performance
of SVC to K-Nearest Neighbors (KKN) and NB on binary classification tasks. Their results
show that all the classifiers achieved comparable performance on most problems; however,
SVC outperforms despite good overall performance.

The first goal of this study is to evaluate predictive performance in a logistic regres-
sion setting. This research utilizes the well-studied robust estimator Cubif and the estimator
MQL mainly studied in the Poisson setting. It compares their predictive performance with
machine learning methods (SVC and NB) considered to be non-parametric techniques, which
are generally known to outperform parametric ones when the assumptions about the data
are not met (Bhattacharjee and Chaudhuri, 2020). SVC and NB were chosen for this study
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2 LITERATURE

due to their popularity and similarities with logistic regression.

The secondary goal of this study is to investigate how the robust estimators perform
in the feature selection framework by employing two penalized criteria (BIC and Robust BIC).

Deng (1999) explains that the feature selection technique selects a subset of features
from the complete input features set to predict the response variable. The technique aims
to obtain an accuracy performance equivalent to or higher than the complete input dataset,
reducing the computational cost. The author divides the technique into three main groups;
the filters methods (i.e., correlation, χ2 test), the wrapper methods (i.e., forward selection,
backward elimination, stepwise selection), and the embedded methods (i.e., LASSO, elastic
net, ridge regression). In particular, the wrapper methods perform a sequential model selec-
tion and use penalized criteria such as Akaike’s Information Criteria (AIC) by Akaike (1998)
and Bayesian Information Criteria (BIC) by Schwarz (1978). Those criteria are well-known
and studied, and the latter will be of interest to this research.

AIC and BIC become biased when the underlying distributional assumption does
not hold. Therefore many papers have been dedicated to investigating robust alternatives
for penalized criteria (Field and Ronchetti, 1985; Hampel, 1983; Machado, 1993; Ronchetti
and Staudte, 1994; Ronchetti et al., 1997; Qian and Künsch, 1998).

Machado (1993) presents a robust version of BIC, where instead of squared de-
viances, the criterion uses Huberized deviances in an attempt to reduce the outliers’ influ-
ence. Furthermore, the criterion is mainly designed for M-Estimators, making it attractive
for the entire class of M-Estimators combined with GLMs.

Ultimately, this study investigates how the parametric methods perform in contam-
inated datasets in the feature selection context. We contrast two main frameworks B1 and
B2, which employ the criteria BIC and RBIC, respectively.

6



3 METHODOLOGY

3 Methodology

This section discusses the methods and techniques involved in this research paper.
It starts by introducing logistic regression with Generalized Linear Models (GLM). We dis-
cuss the class of M-Estimators and the three parametric estimators in Section 3.2. We first
introduce the well-known Maximum Likelihood (ML) estimator and then both robust es-
timators Mallows Quasi-Likelihood (MQL) and Conditionally Unbiased Bounded-Influence
(Cubif).

We present the machine learning classifiers, Naïve Bayes (NB) and Support Vector
Classifiers (SVC), in Section 3.3. An explanation of the performance measures investigated
in this study is approached in Section 3.4. Finally, feature selection and the criteria Bayesian
Information Criteria (BIC) and Robust Bayesian Information Criteria (RBIC) are discussed
in Section 3.5.

3.1 Logistic Regression with Generalized Linear Models (GLM)

Generalized linear models (GLM) are a resilient generalization of conventional linear
regression that enables the dependent variable to assume a discrete distributional form instead
of the traditional Gaussian distribution. The linear model assumes that E(Y | X) is equal
to a linear combination XTβ.

Nelder and Wedderburn (1972) and McCullagh and Nelder (1999) showed that the
GLM is determined by two major components: the distribution of the dependent variable
and the link function. The first shall satisfy the requirement of being a member of the
Exponential Dispersion Model family (EDMs). If that is the case, then the class of models
that connects µ = E(Y | X) to η = G(µ) = XTβ can be treated in a unified way. This is
achieved by having a function that relates the first to the latter or equivalently,

E(Y | X) = G−1(XTβ). (1)

In our simulation, the response variable has two possible outcomes, making it a
Bernoulli response. This distribution belongs to the EDM family as demonstrated by Mueller
(2004), and hence the first requirement for the GLM is fulfilled.
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3.2 M-Estimator 3 METHODOLOGY

The second component required by the model, is the link function. Which for the
Bernoulli case is, η = log

(
µ

1−µ

)
.

The Bernoulli GLM has the form of,

GLM(EDM; Link Function) =

 yi ∼ Bin(µi, 1) (random component),
log

(
µ

1−µ

)
= β0 + β1xi (systematic component).

(2)

Looking at the systematic component in Equation 2, we notice that the Bernoulli GLM is
equivalent to the logistic regression.

The parameters β̂’s are estimated by Fisher scoring, using iteratively reweighted
least-squares (IRLS) algorithm presented at Algorithm 1. The method involves repeatedly
fitting a weighted linear regression of a working response variable on the covariates; each
regression uses a new value of the parameter estimates, which in turn give new working re-
sponses and weights, and the process is iterated (Hastie et al., 2017; Dunn and Smyth, 2018).

Algorithm 1: IRLS algorithm
Result: β̂ = (β̂1, ..., β̂k)

1 Initialization: Set all β̂(0)
j = 0, forj = 0, 1, · · · , k. Calculate η(0)

i =
∑
j xij β̂

(0)
j and

µ̂
(0)
j = π̂

(0)
j = exp(η(0)

i
)

1+exp(η(0)
i

)
.

2 while
∣∣∣η(t)
i − η

(t−1)
i

∣∣∣ < εη or
∣∣∣π(t)
i − π

(t−1)
i

∣∣∣ < επ do

3 for i = 1, 2, · · · , n do

4 Set, W (i) = diag(π1(1− π1), π2(1− π2), · · · , πn(1− πn)). Here πi = π
(i−1)
i

5 Set z(i)
i = η̂

(i−1)
i + (W (i))−1(yi − π̂i(i−1))

6 Estimate β̂(i) = (XTW (i)X)−1XTW (i)z(i)

7 Set, η(i)
i =

∑
j xij β̂

(i)
j , π̂(i)

j = exp(η(i)
i

)
1+exp(η(i)

i
)

8 Return β̂(final)

3.2 M-Estimator

Huber (1964) introduced the M-estimator as a generalization of the ML estimator.
The estimator operates similarly to the standard Least-Squares method. Like the Least-
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3.2 M-Estimator 3 METHODOLOGY

Squares (LS) estimator, the M-estimator tries to minimize the sum of residuals. However,
the M-estimators replace the squared function with another function ρ, attempting to reduce
the effect of outliers. The estimator Tn = Tn(x1, · · · , xn) is defined by the minimum problem,

∑
ρ(xi, Tn) = min!, (3)

or equivalently (under some regularity conditions) by

∑
ψ(xi, Tn) = 0. (4)

Here x1, . . . , xn are independently and identically distributed observations that follows the
distribution Fβ with parameter β. We denote the likelihood of Fβ by fβ(x). The function ρ is
an arbitrary real function and when its partial derivative is satisfied ψ(x, β) = (∂/∂β)ρ(x, β),
then Tn satisfies Equation 4. The function ψ(x, β) is also known as the score function (Huber
and Ronchetti, 1981).

We assume that there exist a functional form T (F ) defined as

∫
ψ(x, T (F ))dF (x) = 0, (5)

for any probability distribution F . Furthermore, Fisher consistency is required and we say
that the estimator T (Fβ) = β is Fisher Consistent if Equation 5 is satisfied for all β (Huber
and Ronchetti, 1981).

The influence function of T in F is equal to

IF (x;T ;F ) = ψ(x, T (F ))
−
∫ ∂
∂β
ψ(x, T (F ))F (dx)

. (6)

Therefore, IF (x;T, F ) describes the effect of a single outlier in x on the estimator T (Künsch
et al., 1989). We observe in Equation 6 that the influence function of an M-estimator is
proportional to its score function ψ(x, β) (Huber and Ronchetti, 1981).

According to Huber and Ronchetti (1981) and Künsch et al. (1989), under cer-
tain conditions, M-estimators are also asymptotically normal with mean zero and covariance
matrix

V (T, F ) = E
[
IF (x;T ;F )IF (x;T ;F )T

]
. (7)

9



3.2 M-Estimator 3 METHODOLOGY

3.2.1 Maximum Likelihood Estimator (ML)

The Maximum Likelihood (ML) estimator is a estimator which obtains optimal
results when the underlying assumptions hold; however it is susceptible to outliers (Victoria-
Feser, 2002).

Dunn and Smyth (2018) derive the ML estimator’s score function and the Fisher
scoring function for the GLM setting which can be represented in the following matrix form

U = XTWM
(y − µ)
φ

,

I = XTW
X

φ
.

(8)

HereW is the diagonal matrix of working weights,M is the diagonal matrix of link derivatives
dηi/dµi and φ is the dispersion parameter. The score vector U = [U0, · · · , Up]T for β, in
Equation 8, gives the vector of derivatives of the log-likelihood with respect to the coefficient
vector β = [β0, · · · , βp].

The parameters β̂, as outlined in Section 3.1 are estimated by Fisher scoring, using
Iteratively Reweighted Least Squares (IRLS) algorithm presented at Algorithm 1. The value
of φ is not needed to obtain the estimates β̂’s (Dunn and Smyth, 2018). As shown on the
right hand side of Equation 9, it cancels out of the term I()−1U()

β̂(r+1) = β̂(r) + I(β̂(r))−1U(β̂(r))

= β̂(r) + (XTWX)−1XTWM(y − µ̂)

= (XTWX)−1XTWz.

(9)

The superscript (r) indicates the rth iterate, and all quantities on the right hand side are
evaluated at β̂(r). The working weights response vector is indicated by z = η̂ + M(y − µ̂)
(Dunn and Smyth, 2018).

We implement the GLM with ML employing the function glm() in the R package
stats. The number of iterations in the auxiliary function control.glm() is increased to 1000
and the positive convergence tolerance reduced to 0.001.
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3.2 M-Estimator 3 METHODOLOGY

3.2.2 Mallows Quasi-likelihood Estimator (MQL)

The MQL is described as a particular case in the M-estimators class, where the
influence of deviations on y and x are bounded separately; additionally, the estimator uses
continuous down weighting to limit the influence of outliers (Cantoni and Ronchetti, 2001b).

The estimator is defined as the solution of the estimating equations,

ψ(yi, µi) = ν(yi, µi)w(xi)µ′i − α(β) = 0. (10)

Here the constant α(β) is the correction term that ensures Fisher Consistency and ν(·) is a
bounded chosen function. The weight function is defined as ω(x), and finally µi = g(xTi β)−1.

To describe the estimator, we employ the notation of Cantoni and Ronchetti (2001b).
The choice of a bounded function ν(·) guarantees robustness by putting a bound on the in-
fluence function. Therefore a bounded function ν(y, µ) is proposed to control deviations in
the y − space and leverage points are down-weighted by the weights ω(x).

For the binomial particular case the MQL estimator solves the set of estimating
equations,

n∑
i=1

[
ψc(ri)ω(xi)

1
V 1/2(µi)

µ′i − α(β)
]

= 0. (11)

The Fisher consistency correction is α(β) = 1
n

∑
E[ψc(ri)]ω(xi) 1

V 1/2(µi)
µ′i. The score

function is ν(yi, µi) = ψc(ri) 1
V 1/2(µi)

, with the Pearson residuals ri = yi−µi

V 1/2(µi)
. The Huber

function ψc is defined by

ψc(r) =

 r

c sign(r)
|r| ≤ c,

|r| > c.
(12)

And its respective weight function,

ω(x) =

 x,

x
d(x) ,

if d(x) ≤ c,

if d(x) > c.
(13)

Here d(x) denotes the robust Mahalanobis distance, c is a tuning constant that determines
the asymptotic efficiency.

We implement the MQL estimator employing the function glmrob() in the R package

11



3.2 M-Estimator 3 METHODOLOGY

robustbase. We set the option of weights.on.x to robCov. This function uses the weights
based on the robust Mahalanobis distance of the design matrix (Maechler et al., 2021).
Moreover in the auxiliary function glmrob.control() we increase the number of iterations to
1000 and reduce the positive convergence tolerance to 0.001.

3.2.3 Conditionally Unbiased Bounded-Influence Estimator (Cubif)

The Cubif, just like the MQL estimator, belong to the class of M-estimators and are
defined by limiting the score function to be conditionally unbiased, given the independent
variables. Cubif accommodates the abnormal data by reducing the influence of the outliers
using continuous down weighting. This study uses the notation and definitions proposed by
Künsch et al. (1989) and adapted by Habshah and Syaiba (2012).

Refer to Equation 4 in Section 3.2 the general form of the M-estimator was defined.
Moreover, for β̂n to be consistent, the estimating equation has to be unbiased for all β
as shown in Equation 5. Fisher consistency is a minimal requirement, however, in linear
and generalized linear regressions, it can become hard to achieve. In those settings, the
estimation is too weak because it involves the distribution of the predictor x (Law et al.,
1986). Contrarily, conditional Fisher consistency does not rely on the independent variables
being random. Even if they are, it does not involve the distribution of the independent
variables, as shown in

E(ψ(y, x, β) | x) =
∫ ∫

ψ(y, x, β)Pβ(dy | x) = 0, (14)

for all β and x. Using such conditional property, Künsch et al. (1989) constructed a robust
M-estimator with the following score function

ψcond(y, x, β,B) = W (y, x, β, b, B)
{
y − g(xTβ)− c

(
xTβ,

b

h(x,B)

)}
. (15)

Here B is a dispersion matrix, h(x,B) = (xTB−1x)1/2 measures the leverage and b is bound
on the measure of infinitesimal sensitivity. The function c =

(
xTβ, b

h(x,B)

)
is a corrected bias

with corrected residuals defined by

r(y, x, β, b, B) = yi − g(xTβ)− c
(
xTβ,

b

h(x,B)

)
. (16)
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The weight function is W (y, x, β, b, B) = Wb (r(y, x, β)h(x,B)) with Wb equal to
the Huber weight function defined as Wb(x) = min(1, b

|x|). The scalar function c and the
matrix B are chosen so that the estimator is conditionally Fisher consistent for all β and x,
and such that s(ψcond) = b is guaranteed. The s(ψ) is the self-standardized sensitivity and is
defined as

s(ψ)2 = sup
y,x

ψ(y, x, β)TW (ψ, β)−1ψ(y, x, β). (17)

The sensitivity measures the maximum influence an observation has on a linear
combination of parameters, with a standardization by the asymptotic standard deviation
of this linear combination (Künsch et al., 1989). Moreover, the estimator is conditionally
Fisher consistent and has a bounded influence function for any choice of B, ensuring that
the outliers have limited influence.

We implement the Cubif estimator employing the function glmRob() in the R pack-
age robust (Wang et al., 2020). As for the other two estimators in the auxiliary function
glmRob.control() the number of iterations is increased to 1000 and the positive convergence
tolerance reduced to 0.001.

3.3 Machine Learning Classifiers

3.3.1 Naïve Bayes Classifier (NB)

The Naïve Bayes is a classifier that employs Bayes’ theorem to extract the con-
ditional posterior probabilities assuming conditional independence among the independent
variables. An NB classifier considers each independent variable to contribute individually to
the conditional posterior probability, despite any possible correlations between the features;
in other words, it assumes that given the class variables, the value of any feature is entirely
independent of other features. This study defines the NB classifier using the notation from
Majka (2020).

Using the Bayes theorem, the class-specific conditional probabilities are equal to

P (Y = Ck | X = x) = P (Y = Ck)P (X = x | Y = Ck)
P (X = x) . (18)

13
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The classifier decomposes the conditional posterior probabilities P (Y = Ck | X = x)
into the product of the likelihood P (X = x | Y = Ck) times the prior probabilities P (Y = Ck)
scaled by the marginal likelihood of the data P (X = x).

The independence assumption is generally unlikely to hold. Consequently, the in-
dependent variables are "naively" assumed to be conditionally independent, given the class
label Ck. The classifier is named after this assumption.

From Equation 18 we obtain the following

P (Y = Ck | X = x) = P (Y = Ck)P (Xi = xi | Y = Ck)
P (X1 = x1, · · · , Xp = xp)

,

P (Y = Ck | X = x) ∝ P (Y = Ck)
d∏
i=1

P (Xi = xi | Y = Ck),

logP (Y = Ck | X = x) ∝ logP (Y = Ck) +
p∑
i=1

P (Xi = xi | Y = Ck).

(19)

The denominator P (X1 = x1, · · · , Xp = xp), in the Bayesian setting, is a constant
with respect to the class label Ck. Thus the conditional probability P (Y = Ck | X = x) in
equation 19 is proportional to the numerator. Moreover, to simplify the computations we
use logarithmic transformation.

The classifier will choose the class which maximizes the log-posterior probability to
be the prediction as show by

Ĉ = arg max
k∈{1,··· ,K}

(
logP (Y = Ck) +

p∑
i=1

P (Xi = xi | Y = Ck)
)
. (20)
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Parameter estimation

The posterior probability function shown in Equation 19 can be also shown as

log P (Ck = i | X)
P (Ck = J | X) = log πigi(X)

πJgJ(X)

= log πi
∏p
k=1 gik(Xk)

πJ
∏p
k=1 gJk(Xk)

= log πi
πJ

+
p∑

k=1
log gik(Xk)

gJk(Xk)

= αi +
p∑

k=1
fik(Xk),

(21)

with αi as the log prior probabilities and f(X) the likelihood function. In this fashion, the
function fik(Xk) acts as the parameter of the model, and can be estimated in a non-parametric
way, using kernel density estimation (KDE). This study opts for such a technique as it stays
robust even when the underlying distributional assumptions do not hold. In Equation 21,
the NB can also be seen as a generalized additive model (GAM), which is a particular case
of GLM.

To estimate the k−th class conditional probability function, the following equation
is considered:

f̂hik = 1
nkhik

n∑
j=1

K

x− x(k)
i

hik

 I(y(k) = Ck). (22)

Here nk is the number of samples in the k−th class, hik is a class-specific bandwidth
that controls the smoothness (usually chosen to be as small as the data allows), K(·) is a
kernel function that defines the shape of the density curve and the indicator function controls
which observation belongs to a specific class (Silverman, 1999).

We use the R package naivebayes, employing the function naive_bayes() with
usekernel option equal true (Majka, 2017).

3.3.2 Support Vector Classifier (SVC)

Support Vector Classifier, like logistic regression, is a method that creates a hy-
perplane or decision boundary in the N-dimensional feature space that separates the data
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points into classes. SVC uses the "kernel trick" to find the best line separator which acts as
a decision boundary with the same distance from the boundary point of both classes (Hastie
et al., 2017).

This study considers the classification problem with two classes Y = {−1, 1}. The
training data consists of N pairs (xi, yi) with xi = Rp and

{
x : f(x) = xTβ + β0 = 0

}
defines

a hyperplane.

SVCs are commonly defined as a quadratic problem of the form

min
β,β0

1
2 ‖β‖

2 + C
N∑
i=1

ξi

subject to: ξi ≥ 0, yi(xTi β + β0) ≥ 1− ξi ∀i

(23)

where C is the cost hyperparameter and ξ are the slack variables which are the distance of
the datapoints to the margin.

SVCs use an implicit mapping h of the input data into a high-dimensional feature
space defined by a function that returns the inner product 〈h(x), h(x′)〉 between the images
of two data points x, x′ in the feature space, called "kernel function." The learning process
takes place in the feature space, and the data points only appear inside the dot products with
other points. This is called "kernel trick" (Karatzoglou and Meyer, 2006; Schölkopf et al.,
2000). In other words, if a projection h : X −→ H is used, the dot product 〈h(x), h(x′)〉 can be
represented by a function k, k(x, x′) = 〈h(x), h(x′)〉 , which is mathematically simpler than
directly projecting x and x′ onto the feature space H. One compelling property of the SVCs
is that, once a valid kernel function has been chosen, it is possible to work with any space
dimensions without any notable additional computational cost, as feature mapping is never
performed (Karatzoglou and Meyer, 2006).

The most popular kernel according to Schölkopf et al. (2000) and Karatzoglou and
Meyer (2006) is the radial basis function (RBF). Mueller and Massaron (2016) explain that
RBF can map and approximate almost any nonlinear function, provided that γ, the shape pa-
rameter, is tuned. In addition, it can detect complex classification rules that other algorithms
may fail to find. The RBF kernel creates a margin around every support vector, drawing
bubbles in the feature space. The γ hyper-parameter dictates expansion or restriction on the
volume of the bubbles so that they fuse and shape the classification areas. Moreover, Chung
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et al. (2003) show that RBF is very flexible and can adapt itself to different learning strate-
gies. Nevertheless, this flexibility comes at the expense of a larger variance in the accuracy
estimation.

Our study proceeds with the RBF kernel due to its high flexibility and data adapt-
ability. Equation 24 shows the mathematical form of the RBF kernel,

K(x, x′) = 〈h(x), h(x′)〉 = exp(−γ ‖x− x′‖2). (24)

When using the RBF kernel, two hyperparameters are of utmost concern to be
tuned. The first is γ, and the second is C. The hyper-parameter, γ, defines how much
influence a training example has. The penalty parameter of the regularization parameter, C,
controls the trade-off between the simplicity of the decision surface and the misclassification
of training examples.

The parameters were tuned with the function tune.svm() available in the R-package
e1071 to find the optimal hyperparameters for each dataset (Meyer et al., 2019). Further-
more, the values for C and γ were picked exponentially apart as shown by Scikit-learn.org1.
To reduce computational cost, we choose the following grid:

C = {0.01, 0.1, 1, 10, 100} ,

γ = {1, 0.1, 0.01, 0.001} .

We chose the range of values which contain combination of hyperparameters that
achieves the highest accuracy as showed by Scikit-learn.org.

3.4 Performance Measures

Supervised classification aims to build a compact model of the class labels’ dis-
tribution in terms of the input features or independent variables (Kotsiantis et al., 2006).
The resulting classifier assigns class labels to the testing observations where we know the
dependent variables’ values but not the class label’s value.

The correctness of classification can be evaluated by computing four counts which
1Scikit-learn.org, RBF SVM parameters
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constitute a confusion matrix, displayed in Table 1.

Table 1: Confusion matrix in binary classification

Predicted positive (1) Predicted negative (0)

Actual positive (1) True positive (TP) False negative (FN)
Actual negative (0) False positive (FP) True negative (TN)

From those four counts, we can obtain several performance measures divided into
three groups (Goutte and Gaussier, 2005). The first numerical value performance mea-
sures (i.e. accuracy, precision, recall), are considered biased when learning with skewed
data (Bradley, 1997; Goutte and Gaussier, 2005; Powers, 2015). The second, graphical per-
formance measures (i.e., roc-curves and precision-recall curves) are used when uncertainty
about the misclassification costs or the class distribution is not similar (imbalancement).
Graphical measures can present a classifier’s performance for various costs and class distri-
butions (Goutte and Gaussier, 2005). Finally, complex numerical measures (i.e., F1-Scores,
G-Mean, and Youden’s Index) involve combining numerical value performance measures in
one metric to solve for the imbalance problem.

To compare the classifiers’ performance, this study uses the following metrics: one
complex numerical metric (F1-Score), one graphical metric (ROC-AUC), and the Logarithmic
Loss (LL) to evaluate prediction error, or how close is the predicted value is to the true value.
The first two metrics are threshold metrics, which are sensitive to thresholds. Contrary to
LL, these metrics do not consider how close the prediction value is to the true value. They
focus only on whether the predicted value is above or below a threshold value (Liu et al.,
2014). Furthermore, to ensure reliable results, our study opted for 5-Fold cross-validated
metrics. To estimate the performance measures, we use the R packages MLmetrics (Yan,
2016).

F1-Score

The F1-score is the harmonic mean of recall and precision, taking into account all
observations that were wrongly classified. It is a representation of all false positives and false
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negatives

F1-Score = 2× Precision · Recall
Precision + Recall , Precision = TP

TP + FP , Recall = TP
TP + FN .

The F1-score is a popular evaluation metric for imbalanced data. (Goutte and
Gaussier, 2005). While not as straightforward to interpret as accuracy, F1 is more suitable
than accuracy when the data has an imbalanced class distribution. The metric values range
from 0 to 1. A high score indicates high precision and recall (Goutte and Gaussier, 2005).

Area Under a Receiver Operating Characteristics Curve (AUC)

The AUC is a performance measurement for binary classifier at various threshold
settings (Hanley and Mcneil, 1982). AUC measures the degree of separability in the ROC
curve, a two-dimensional probability curve with false positive rates (FPR) on the x-axis
against the true positive rates (TPR) on the y-axis (Bradley, 1997).

The AUC value lies within the range [0, 1], and it tells how much the model can
distinguish between classes. A perfect classifier has AUC near to the value 1. The other
extreme, near the value 0, means it has the worst measure of separability. Moreover, when
AUC is 0.5, it means the model has no class separation capacity whatsoever (Mandrekar,
2010). Furthermore, it is overall robust measure to evaluate the performance of score classi-
fiers because its calculation relies on the complete ROC curve and thus involves all possible
classification thresholds (Mandrekar, 2010).

Logarithmic Loss (Log-loss or LL)

Logarithmic Loss indicates how close the prediction probability πi is to the corre-
sponding actual value yi as defined by

LL = − 1
n

n∑
i=1

(yi log π̂i + (1− yi) log(1− π̂i)) .

The more the predicted probability diverges from the actual value, the higher the LL value.
In other words, the LL value is for a classification setting what the mean squared error is for
a regression setting (Vovk, 2015).
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3.5 Feature Selection

When it comes to feature selection using wrapper methods, Deng (1999) explains
that there are three main approaches: forward selection (FS), forward-stepwise selection
(FSS), and backward-stepwise elimination (BSE).

The first approach searches through all possible feature subsets combinations, which
becomes computationally expensive and likely infeasible when p (number of features) is rela-
tively large. To solve such an issue, one can opt for either backward stepwise elimination or
forward stepwise selection.

Backward-stepwise elimination starts with the full model and sequentially deletes
the predictor with the most negligible impact on the fit. The candidate for dropping is the
variable with the smallest Z-score. It can only be used when N > p, while FSS can always
be used (Hastie et al., 2017).

Contrarily, forward-stepwise selection starts with the intercept and sequentially adds
the predictor that most improves the model’s fit. The technique assesses candidates’ models
multiple times, in a sequence of comparisons between models, performing a sequential model
selection. Hastie et al. (2017) emphasize that the method is not computationally expensive
compared to other feature selection techniques, and because it is a constrained search, it has
a lower variance. In addition, from a robustness point of view, FSS is preferred. The bigger
the feature set, the higher the probability of outliers.

As the penalty criteria, this study investigates the performance under two alterna-
tives: the well-studied BIC and its robust version RBIC presented by Machado (1993).

The BIC is formally defined as

BIC =
∑
i

d2
i + p log(n) (25)

and the RBIC as
RBIC =

∑
i

ρc {di}+ 1
2p log(n). (26)

In both cases d equal the model’s deviances. And for the RBIC the function ρ is

20



3.5 Feature Selection 3 METHODOLOGY

the Huber function defined as

ρc(d) =


1
2d

2, |d| < c,

c |d| − 1
2c

2, |d| ≥ c.
(27)

The constant c regulates the amount of robustness. According to Wang et al. (2007)
good choices are in the range between 1 and 2. He describes that Cantoni and Ronchetti
(2001a), for example, use c = 1.20, whereas Street et al. (1988), use c = 1.25. Since we are
investigating the MQL estimator proposed by Cantoni and Ronchetti (2001b) we proceed
with c = 1.20. In both cases, the model chosen is the one with the lowest BIC or RBIC.

We perform feature selection in all models but the machine learning classifiers.
SVC, as previously mentioned, does not perform feature mapping (Karatzoglou and Meyer,
2006). Its performance is independent of the dimensionality of the feature space. SCV uses
regularisation to avoid over-fitting, which makes feature selection unnecessary. Therefore it
requires only the tuning of the hyperparameters to guarantee performance. For the NB, there
is no natural method to evaluate feature importance since the method works by determining
the conditional and unconditional probabilities correlated with the given features and predicts
the highest probability class.

Algorithm 2 provides the details of the FSS technique (Liu, 2015).

Algorithm 2: Forward-Stepwise Selection
Result: Optimal model Mj

1 Let M0 denote the null model, which contain no predictors.

2 for k = 1, · · · , p− 1 : do

3 (a) Consider all p− k models that augment the predictors in Mk with one additional

predictor;

4 (b) Choose the best among these p− k models, and call it Mk+1. Here the best is

defined as having the smallest BIC or RBIC;

5 Select a single best model Mj ∈ {M0, · · · ,Mp} using BIC or RBIC;
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4 Monte Carlo Simulation

We designed a Monte Carlo simulation to investigate how robust the GLM with
the MQL estimator and the GLM with the Cubif estimator are compared to the classical
ML estimator and non-parametric machine learning classifiers SVC and NB, in the binary
classification framework. For that, we replicate the simulation design from Bianco et al.
(2019) to generate a clean training sample.

First, we generated a training sample S of i.i.d observations (yi, xi), 1 ≤ i ≤ n, xi ∈
Rp and yi | xi ∼ Bi(1, F (γo +xTi β0)), where the intercept γ0 = 1. The covariates distribution
is Np(0,Σ), where Σ is a p×p variance-covariance matrix, defined as cov(xi, xj) = (0.6)|i−j|, a
variation of a Toeplitz matrix with correlation equal to 0.6 (Gray, 2006). The uncontaminated
setting was denoted C0.

To confront our estimators with challenging scenarios, we choose p and n such that
the ratios p/n are moderately large, with n ∈ {400, 500} and p ∈ {8, 12}. The choice of a
large sample size was to better ensure the overlapping cases in each replication. As presented
by Victoria-Feser (2002) and Habshah and Syaiba (2012), small datasets of 50 observations
or less with no overlapping cases even without contamination can lead to unidentifiable
parameter estimates.

To evaluate the gain in performance due to feature selection, we chose the true
regression parameter as β = (1, · · · , 1, 0, 0, 0, 0, 0)T ∈ Rp,. Five components are null, and the
rest are equal to one. This way, there were two settings: one where the majority of variables
were not significantly different from zero, and the second where the majority was significantly
different from zero. The number of replications was R = 300.

To study the impact of contamination, we explored three settings by adding a
proportion ε = 0.01, 0.05, or 0.10 of outliers. Here we replicated the simulation design from
Victoria-Feser (2002). We start by generating misclassified points (ỹ, x̃). First, we generated
ỹ by taking proportions ε of the response variable chosen randomly and change them from 0
to 1 or 1 to 0, which constitutes the misclassification type error. Second, we generated x̃ by
taking proportions ε of the explanatory variables and substitute them with the value l = 5.
Such replacement generates misspecification in all the explanatory variables, a phenomenon
also known as leverage. Lastly, misclassification and misspecification errors are assumed to
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be simultaneous. To add contamination to the data we used the function contaminate from
the R package simFrame (Alfons et al., 2009).

Summarizing, we considered the scenarios C1, C2, and C3 corresponding to adding
a proportion ε = 0.01, 0.05, and 0.10 outliers to the data. The study refers to these datasets as
contaminated datasets. Furthermore, we considered four different settings with two different
sample sizes and the number of features, creating in total, 16 different datasets.

Algorithm 3 describes in detail the implementation of the Monte Carlo Simulation.
Similarly to Bianco et al. (2019) this study uses K-Fold Cross-Validation to assess the models’
performances. However, instead of 10-Fold like Bianco et al. (2019) we opted for 5-Fold to
save computational time.

The sampler employed in this simulation is independent, which bootstrapped 300
distributions given the parameters configuration.

Algorithm 3: Monte Carlo Simulation Implementation
Result: F1j = (F11, · · · ,F1300), AUCj = (AUC1, · · · ,AUC300),

LogLossj = (LogLoss1, · · · ,LogLoss300), for j = (0, 1, 2, 3)

1 Initialization: Set parameters n ∈ {400, 500} and p ∈ {8, 12}

2 for i = 1, · · · , 300 do

3 Set seed equal i

4 1. Generate datasets C0, C1, C2 and C3

5 2. Initiate 5-Fold CV using datasets C0, C1, C2 and C3

6 (A) Without Feature Selection

7 • Train GLM-ML, GLM-MQL, GLM-Cubif, NB and SVC in the training sample;

8 • Access the models in the testing set and extract cross-validated performance

measures;

9 (B) With Feature Selection

10 • For GLM-ML, GLM-MQL and GLM-Cubif perform Forward-Stepwise Selection on

the training set;

11 • Access the previously obtained models in the testing set and extract

cross-validated performance measures;

12 Return: Cross-Validated F1-Score, AUC and LogLoss.
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5 Hypotheses

To answer the research question presented in Section 1 we formulated the following
hypotheses:

Hypothesis 1: MQL and Cubif will perform better than ML in scenarios C1, C2,
and C3 where there is contaminated data. The models MQL and Cubif will also perform
better than ML in simulations (n, p) = (400, 12) and (n, p) = (500, 12), where most of the
variables are significantly different from zero and consequently contain more contributing
observations, compared to simulations (n, p) = (400, 8) and (n, p) = (500, 8), where most of
the variables are not significantly different from zero. This will be indicated by higher AUC,
higher F1-score, and lower LL for MQL and Cubif.

Hypothesis 2: MQL and Cubif will perform just as well as the machine learning
methods SVC and NB in scenarios C1, C2, and C3 where there is contaminated data. This
will be indicated by higher AUC, higher F1-score, and lower LL for MQL and Cubif.

Hypothesis 3: Supervised learning classifiers will achieve higher accuracy mea-
sures in simulations (n, p) = (500, 8) and (n, p) = (500, 12), where the sample size is larger,
compared to simulations (n, p) = (400, 8) and (n, p) = (400, 12). This will be indicated by
higher AUC, higher F1-score, and lower LL for NB and SVC.

Hypothesis 4: The criterion RBIC will perform better than BIC under in scenarios
C1, C2, and C3 where there is contaminated data. This will be indicated by higher AUC,
higher F1-score, and lower LL for RBIC.
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6 Breast Cancer Data

The original dataset with the title Wisconsin Breast Cancer Database (January 8,
1991) used in this paper is publically available. It was retrieved from the Machine Learn-
ing Repository website of the University of California, Irvine (UCI) http://archive.ics.

uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/. Olvi Mangasar-
ian donated the data on July 15, 1992, and Dr. William H. Wolberg, a physician at the
University of Wisconsin Hospital at Madison, USA, created the data as it is today.

To build the database, Dr. Walberg analyzed fluid samples obtained from patients
with solid breast masses (Wolberg and Mangasarian, 1990; Wolberg et al., 1994; Borges,
1989). He employed a graphical computer program called Xcyt to investigate cytological
features based on a digital scan Wolberg et al. (1994). The same source outlines that the
program Xcyt employs a curve-fitting algorithm to estimate for each cell in the sample a
total of ten features. The software evaluates each feature on a 1 to 10 scale. Outputs closer
to 1 have a high probability of being benign, and outputs closer to 10 are more likely to be
malignant.

Breast cancer treatment success relies on how early the lumps are detected (Litin
and Nanda, 2018). Over the past decade, medical science has been increasingly investing in
technology to develop robust and accurate algorithms that can predict based on medical in-
formation whether a particular person has malignant tumors or not (Ibnouhsein et al., 2018).
This dataset aims to provide cytological information in order to allow for such investigation.

The dataset comprises nine categorical features ranging from 1 to 10, one binary
dependent variable (breast lumps), and one index variable. We present in Table 2 all features
and their respective description. Moreover, the dataset contains 16 missing values out of 699
observations; the class distribution is not equal with 458 (65.5%) of the observations classified
as benign and 241 (34.5%) as malignant.

To analyze the results, we amended the original data. First, the dependent variable’s
values were adjusted. The values of a benign tumor were reassigned to range from 2 to 0, and
the values of the malignant tumor were reassigned from 4 to 1. The values (1,0) are suitable
for binary methods such as logistic regression. We discarded the 16 missing values and the
index feature because it does not add value to the analysis—the final dataset comprises nine
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features, the dependent variable, and 683 observations.

To accommodate to the simulation framework, we scaled and centered the data
employing the function scale() from the R package base. Next, we created scenario C1, C2
and C3 by adding 1%, 5% and 10% of contamination respectively on y and x as outlined
Section 4.

The original data is not normally distributed, and the features seem to be highly
correlated, leading to singular matrices. To mitigate this issue, we opted to increase the
number of folds in the cross-validation from 5 to 10. This way, the training sample increases,
reducing the probability of singular matrices. As in the simulation framework, we replicated
R = 300 times.

Table 2: Features’ name, descriptions, and scale.

Attribute Domain

0. Sample code number id number
1. Clump Thickness 1 - 10
2. Uniformity of Cell Size 1 - 10
3. Uniformity of Cell Shape 1 - 10
4. Marginal Adhesion 1 - 10
5. Single Epithelial Cell Size 1 - 10
6. Bare Nuclei 1 - 10
7. Bland Chromatin 1 - 10
8. Normal Nucleoli 1 - 10
9. Mitoses 1 - 10
10. Breast Lump (0 for benign, 1 for malignant)
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7 Results

This section first presents the findings for all 16 scenarios of the Monte-Carlo sim-
ulation and afterward the findings for the real-world data "Breast Cancer Dataset."

7.1 Monte Carlo Simulation

The sample size n and dimension of the covariates p are (n, p) = (400, 8), (400, 12),
(500, 8) and (500, 12). The Monte-Carlo simulation with those particular parameters are
namedMC1,MC2,MC3 andMC4 respectively. Table 3, 4, 5, and 6 show the 10%—trimmed
means of the F1-Score, AUC, and LL under C0, C1, C2, and C3 for all four (n, p) pairs
respectively.

The number of observations n ∈ {400, 500} were chosen to verify the claim that
all methods deliver better results in bigger datasets. Whereas the number of features p ∈
{8, 12} were explicitly chosen to define two different scenarios where one has the majority of
variables contributing to the predictions and the other with the majority of the variables not
contributing to the predictions.

A. Simulation MC1 with (n, p) = (400, 8)

Analyzing Table 3, we observe that the highest AUC for all scenarios belongs to
SVC. The opposite occurs with the F1-Score, which in the majority is the lowest. This setting
of high AUC and low F1 is typical for skewed datasets. In a skewed dataset, the AUC value
is usually high due to a high volume of negative samples. At the same time, the F1 remains
low since it is an overall measure combining precision and recall (lower recall arises when
the dataset is skewed). SVC thrives when there is a high volume of data available. Due to
the contaminated variables introduced, this dataset is skewed. As a result, SVC struggles
to make reliable predictions. In this first set MC1, where the number of observations is
moderately large, though it is relatively small compared to the other datasets MC3 and
MC4. As most variables do not contribute to the fit (B1), the classifier struggles to predict
the classes, and the F1 dramatically reduces.
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Table 3: 10%—trimmed means of the measures F1-Score (F1), AUC, and Log-Loss (LL) under
(n, p) = (400, 8); ‘F.S’. stands for ‘Feature Selection’, C0, C1, C2 and C3 stands for datasets with
0%, 1%, 5% and 10% contaminated observations respectively; The green highlights show the best
performing method, whereas the red highlights show the worst-performing method given the three
frameworks: No feature selection (A), feature selection with BIC (B1), and feature selection with
RBIC (B2)

C0 C1 C2 C3

F.S. Method AUC F1 LL AUC F1 LL AUC F1 LL AUC F1 LL

ML 0.889 0.800 0.424 0.866 0.785 0.502 0.754 0.690 0.606 0.692 0.643 0.640
MQL 0.888 0.800 0.426 0.871 0.790 0.514 0.806 0.753 0.784 0.696 0.650 0.677
Cubif 0.889 0.800 0.424 0.870 0.790 0.504 0.805 0.749 0.668 0.716 0.685 0.691
NB 0.875 0.789 0.518 0.859 0.778 0.617 0.818 0.745 0.665 0.768 0.701 0.717

A

SVC 0.917 0.760 0.497 0.904 0.739 0.534 0.863 0.685 0.635 0.811 0.664 0.782

ML 0.891 0.803 0.419 0.871 0.788 0.498 0.764 0.695 0.624 0.693 0.625 0.658
MQL 0.890 0.802 0.422 0.869 0.789 0.510 0.647 0.622 0.707 0.690 0.660 0.673B1
Cubif 0.891 0.803 0.419 0.872 0.791 0.499 0.765 0.709 0.658 0.687 0.650 0.673

ML 0.891 0.802 0.419 0.872 0.790 0.497 0.765 0.697 0.626 0.692 0.629 0.656
MQL 0.890 0.802 0.423 0.873 0.791 0.510 0.810 0.758 0.774 0.713 0.684 0.835B2
Cubif 0.891 0.802 0.419 0.874 0.793 0.498 0.806 0.749 0.670 0.710 0.673 0.688

NB underperforms for scenarios C0, and C1; yet, its performance for C2 and C3
(the highest contaminated scenarios) is higher than MQL and Cubif for framework B1 and
B2, which makes it the best performing method in this setting. NB does not perform poorly
under C0 and C1, holding high results slightly smaller than the parametric methods. The
results show that, as expected, the performance of NB decreases due to the added contami-
nation, yet it does so at a much slower pace than the parametric methods. This shows that
the non-parametric kernel density estimation of NB used to estimate the model’s parame-
ters is more robust than parametric methods in this dataset MC2, where the underlying
assumptions regarding the data distribution do not hold.

As expected, the non-robust estimator ML does not perform well under the highly
contaminated datasets in simulation MC2, however, it is the best performing method for
scenario C0, which contains the least amount of contaminated data. Its influence function is
unbounded, which makes the estimator highly susceptible to any proportion of contamination.
In scenario C0, it is the best performing method for both feature selection settings; however,
its performance decreases for all percentages of contamination, and drastically for C2 and
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C3 at 5% and 10% level respectively.

Comparing MQL and Cubif, we observe that both methods perform the same with-
out feature selection in C0 and C1. The same does not hold after feature selection with
RBIC. The results of this simulation MC2 suggest that MQL is more suitable for data with
high proportions of contamination (i.e., 5% and 10%). In contrast, Cubif outperforms MQL
in datasets with low proportions of contamination (i.e., 0% and 1%), with similar results to
the ML estimator. It also performs well in high contamination settings. The results show that
in most cases, Cubif holds the lowest LL, indicating that its predictions on average are closer
to the true value than MQL. The low LL may be due to Cubif’s use of conditional Fisher
scoring, making it less reliant on the distribution of the independent variables. Nevertheless,
MQL appears to be more robust in highly contaminated datasets. Due to its continuous down
weighting using the Huber function and weights based on the robust Mahalanobis distance,
the MQL estimator manages to reduce the influence of the leverages added on a larger scale.

In the feature selection setting, the results show that the RBIC outperforms BIC
for all contaminated datasets (C1, C2 and C3). For C0 the performance is similar or equal,
which reinforces that BIC can be optimal for "clean" datasets; however, BIC becomes biased
in the presence of outliers. While AUC and F1-Score in all contamination scenarios for all
three parametric estimators increase comparing B2 with A, the same does not hold when
comparing B1 with A. The reason is that BIC uses square deviances while RBIC uses Huber
deviances. The bounded Huber deviances in the RBIC reduce the influence of the outliers,
allowing the feature selection technique to pick the variables which improve the fit.

B. Simulation MC2 with (n, p) = (400, 12)

Table 4 shows the results for one of the settings where the majority of the variables
are significantly different from zero.

SVC seems to perform better than the previous scenario, where most variables are
not significantly different from zero. For C0, it is by far the best performing method, with
the highest AUC and F1 and lowest LL. In C1, C2, and C3, the same does not happen.
The method holds like before the highest AUC yet most times the lowest F1-Score, making it
once more dangerous to rely solely on its results, confirming our first hypothesis that robust
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methods perform better than non-robust ones.

Table 4: 10%—trimmed means of the measures F1-Score (F1), AUC, and Log-Loss (LL) under
(n, p) = (400, 12); ‘F.S’. stands for ‘Feature Selection’, C0, C1, C2 and C3 stands for datasets with
0%, 1%, 5% and 10% contaminated observations respectively; The green highlights show the best
performing method, whereas the red highlights show the worst-performing method given the three
frameworks: No feature selection (A), feature selection with BIC (B1), and feature selection with
RBIC (B2)

C0 C1 C2 C3

F.S. Method AUC F1 LL AUC F1 LL AUC F1 LL AUC F1 LL

ML 0.951 0.872 0.292 0.925 0.848 0.450 0.768 0.702 0.610 0.687 0.636 0.645
MQL 0.950 0.870 0.305 0.931 0.858 0.509 0.862 0.815 1.115 0.701 0.654 0.798
Cubif 0.950 0.871 0.293 0.931 0.858 0.462 0.856 0.804 0.727 0.714 0.673 0.723
NB 0.943 0.863 0.334 0.928 0.853 0.458 0.876 0.808 0.612 0.817 0.752 0.735

A

SVC 0.989 0.932 0.205 0.978 0.834 0.355 0.925 0.717 0.546 0.862 0.647 0.662

ML 0.951 0.873 0.289 0.923 0.845 0.456 0.778 0.708 0.628 0.689 0.613 0.661
MQL 0.949 0.868 0.298 0.909 0.829 0.499 0.652 0.628 0.705 0.706 0.670 0.679B1
Cubif 0.951 0.872 0.289 0.920 0.842 0.474 0.758 0.704 0.674 0.671 0.634 0.679

ML 0.951 0.873 0.289 0.927 0.850 0.451 0.786 0.717 0.632 0.688 0.619 0.659
MQL 0.949 0.869 0.300 0.929 0.855 0.500 0.846 0.794 0.931 0.725 0.693 0.963B2
Cubif 0.951 0.873 0.289 0.930 0.856 0.462 0.849 0.796 0.728 0.718 0.678 0.722

With NB, the opposite occurs. In scenario C0, the results reveal that the method
is the worst performing method. However, for C2, and C3 its results are higher than all
parametric methods in all feature settings (no feature selection, feature selection with BIC
and RBIC). Moreover, in C1, it is higher than all three parametric methods before feature
selection and after with BIC.

Surprisingly ML is the best performing method after feature selection with BIC
for scenarios C0, C1, and C2. Nevertheless, these results do not imply that ML works
well under contamination; rather, BIC as feature selection criteria is a poor choice for those
datasets. As discussed previously in Section 3.5, the square deviations make BIC biased
under contaminated datasets.

RBIC still works better than BIC in this framework, and all RBIC’s performance
measures are higher than BIC for the three scenarios (C1, C2 and C3). This was not
the case when compared to before feature selection. Here we have that the majority of
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the variables are significantly different from zero, or in other words, they contribute to the
output’s prediction, which seems to play a role. For ML in all four contaminated datasets,
the metrics improve after feature selection with RBIC. The same does not hold for robust
the methods. For MQL and Cubif, the metrics improve only in C3.

Just as in the previous simulation MC1, when comparing MQL and Cubif, the first
overperforms in scenarios with highly contaminated data (C2 and C3) and the latter in
scenarios with lower contamination (C0 and C1).

C. Simulation MC3 with (n, p) = (500, 8)

This framework contains more observations than the previous one, and it is under
the scenario where most variables are not significantly different from zero.

Table 5: 10%—trimmed means of the measures F1-Score (F1), AUC, and Log-Loss (LL) under
(n, p) = (500, 8); ‘F.S’. stands for ‘Feature Selection’, C0, C1, C2 and C3 stands for datasets with
0%, 1%, 5% and 10% contaminated observations respectively; The green highlights show the best
performing method, whereas the red highlights show the worst-performing method given the three
frameworks: No feature selection (A), feature selection with BIC (B1), and feature selection with
RBIC (B2)

C0 C1 C2 C3

F.S. Method AUC F1 LL AUC F1 LL AUC F1 LL AUC F1 LL

ML 0.888 0.801 0.424 0.868 0.787 0.499 0.759 0.696 0.601 0.696 0.648 0.636
MQL 0.887 0.801 0.426 0.873 0.794 0.512 0.814 0.761 0.778 0.699 0.652 0.661
Cubif 0.888 0.801 0.424 0.872 0.793 0.503 0.809 0.754 0.661 0.720 0.689 0.683
NB 0.874 0.788 0.519 0.862 0.780 0.592 0.820 0.747 0.649 0.769 0.702 0.704

A

SVC 0.910 0.776 0.477 0.899 0.770 0.497 0.856 0.717 0.588 0.803 0.668 0.743

ML 0.891 0.804 0.420 0.872 0.791 0.495 0.767 0.700 0.621 0.692 0.627 0.654
MQL 0.890 0.802 0.422 0.872 0.792 0.507 0.648 0.624 0.707 0.695 0.663 0.670B1
Cubif 0.891 0.804 0.420 0.874 0.794 0.497 0.772 0.717 0.656 0.688 0.652 0.670

ML 0.890 0.804 0.420 0.858 0.780 0.509 0.759 0.695 0.624 0.687 0.624 0.654
MQL 0.889 0.801 0.424 0.860 0.787 0.522 0.800 0.753 0.760 0.714 0.682 0.824B2
Cubif 0.890 0.803 0.420 0.858 0.788 0.512 0.794 0.749 0.667 0.700 0.671 0.686

SVC and NB repeat the same behavior as it did in simulation MC1. SVC struggles
to predict accurate results in the contaminated scenarios, whereas NB is the best performing
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method under high contaminated scenarios (C1, C2 and C3). MQL under B2 performs
better than other methods for highly contaminated datasets (C2 and C3) whereas Cubif for
datasets with lower contamination levels (C0 and C1).

The 100 added observations do not increase the performance forA and B1, however
they do for B2. For B2, there is an improvement in all three metrics (AUC, F1, and LL)
for all three parametric models (ML, MQL and Cubif). In B2 most of the variables are non
zero, making the percentage of contributing observations higher than in A and B1. This is
likely the reason why the only performance improvement in a dataset with a higher amount
of observations was under scenario B2.

D. Simulation MC4 with (n, p) = (500, 12)

Unlike the previous framework, the performance of all metrics under all scenarios
increases, which indicates that the 100 added observations contributed to the predictive power
of the model.

In this simulation MC4, the non-parametric machine learning methods SVC and
NB are by far the best performing. SVC has the highest AUC and F1 and lowest LL under
C0 and C1 (none or low levels of contamination). This confirms that machine learning
methods, as mentioned in Section 2, perform better with greater amounts of data, as they
use available data to extract patterns and then predict results. In this simulation, most
variables contribute to the result, which means that the majority of the observations added
were relevant additions and contributed to the classifier’s performance. In the same fashion,
NB performs better than other methods under C2 and C3.

Under B2, the robust MQL is the best performing method for highly contaminated
datasets, whereas Cubif is for low contaminated datasets. There is a dramatic increase in
performance comparing B1 and B2, whereas, for A against B2, the increase in all methods
is only visible for the 10% contamination scenario (C3).
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Table 6: 10%—trimmed means of the measures F1-Score (F1), AUC, and Log-Loss (LL) under
(n, p) = (500, 12); ‘F.S’. stands for ‘Feature Selection’, C0, C1, C2 and C3 stands for datasets with
0%, 1%, 5% and 10% contaminated observations respectively; The green highlights show the best
performing method, whereas the red highlights show the worst-performing method given the three
frameworks: No feature selection (A), feature selection with BIC (B1), and feature selection with
RBIC (B2)

C0 C1 C2 C3

F.S. Method AUC F1 LL AUC F1 LL AUC F1 LL AUC F1 LL

ML 0.953 0.875 0.283 0.927 0.853 0.445 0.765 0.701 0.606 0.692 0.641 0.640
MQL 0.952 0.874 0.292 0.933 0.861 0.500 0.861 0.816 1.114 0.702 0.655 0.768
Cubif 0.953 0.875 0.285 0.933 0.861 0.460 0.855 0.806 0.722 0.720 0.681 0.720
NB 0.946 0.865 0.325 0.930 0.855 0.435 0.877 0.808 0.601 0.819 0.754 0.713

A

SVC 0.988 0.923 0.218 0.975 0.853 0.336 0.917 0.751 0.516 0.852 0.662 0.630

ML 0.954 0.876 0.280 0.925 0.850 0.451 0.774 0.707 0.627 0.689 0.622 0.656
MQL 0.952 0.873 0.287 0.909 0.831 0.499 0.637 0.615 0.709 0.712 0.676 0.674B1
Cubif 0.954 0.875 0.280 0.922 0.846 0.470 0.753 0.698 0.674 0.674 0.635 0.674

ML 0.954 0.877 0.279 0.930 0.856 0.445 0.782 0.714 0.629 0.689 0.626 0.653
MQL 0.952 0.874 0.289 0.932 0.859 0.496 0.845 0.795 0.935 0.729 0.697 0.960B2
Cubif 0.954 0.877 0.280 0.933 0.861 0.458 0.848 0.797 0.727 0.719 0.680 0.718

7.2 Breast Cancer Data

Table 7 displays the results for the Breast Cancer Dataset. SVC is the best per-
forming method, holding the highest AUC, F1, and lowest LL. The dataset comprises 683
observations where all variables contribute to the results as outlined in Section 6. The
dataset’s results resembles the scenario where (n, p) = (500, 12). This scenario holds the
largest sample size in this study, and the majority of the features as significantly different
from zero. SVC and NB have a higher performance than the parametric methods in all four
contamination settings. The results bolster that machine learning methods operate better
when there is a large volume of data available.

Like in the Monte Carlo simulation, ML becomes the worst performing method for
all contamination levels. On the other hand, MQL appears to outperform Cubif in all three
contamination settings. For C1 and C2 the performances are comparable, yet for C3 Cubif
under performs. Moreover, under framework A in contaminated datasets, MQL and Cubif,
particularly the first, display comparable performance to NB, which is a non-parametric
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method. Our results support our first hypothesis that MQL and Cubif will perform better
than ML in scenarios C1, C2, and C3 where there is contaminated data.

In the feature selection analysis, in settings with high proportions of contamination
C2 and C3 (5% and 10%), RBIC performs better than BIC, as in the Monte Carlo simu-
lation. Surprisingly, for low proportions (0% and 1%) of contamination BIC deliver better
results. There is no significant improvement comparing framework A with B1 and B2. In
fact, most values remain the same or increase and decrease by a tiny percentage. This is
because all variables contribute to the prediction, making the feature reduction unnecessary.

Table 7: 10%—trimmed means of the measures F1-Score (F1), AUC, and Log-Loss (LL) for Breast
Cancer Dataset; ‘F.S’. stands for ‘Feature Selection’, C0, C1, C2 and C3 stands for datasets with
0%, 1%, 5% and 10% contaminated observations respectively; The green highlights show the best
performing method, whereas the red highlights show the worst-performing method given the three
frameworks: No feature selection (A), feature selection with BIC (B1), and feature selection with
RBIC (B2)

C0 C1 C2 C3

F.S. Method AUC F1 LL AUC F1 LL AUC F1 LL AUC F1 LL

ML 0.995 0.952 0.096 0.990 0.941 0.183 0.968 0.900 0.367 0.928 0.777 0.478
MQL 0.994 0.950 0.180 0.988 0.946 0.314 0.968 0.930 0.801 0.944 0.914 1.367
Cubif 0.995 0.952 0.102 0.990 0.942 0.195 0.965 0.879 0.376 0.865 0.661 0.523
NB 0.993 0.961 0.287 0.993 0.957 0.312 0.990 0.937 0.313 0.982 0.917 0.381

A

SVC 0.998 0.970 0.068 0.997 0.960 0.100 0.993 0.948 0.124 0.982 0.932 0.187

ML 0.994 0.947 0.109 0.988 0.935 0.193 0.968 0.897 0.370 0.939 0.797 0.475
MQL 0.994 0.952 0.114 0.989 0.948 0.234 0.966 0.925 0.677 0.939 0.901 0.505B1
Cubif 0.993 0.947 0.112 0.989 0.940 0.198 0.968 0.903 0.380 0.938 0.821 0.505

ML 0.992 0.940 0.122 0.988 0.932 0.197 0.968 0.898 0.369 0.942 0.800 0.475
MQL 0.992 0.943 0.136 0.987 0.940 0.257 0.968 0.931 0.704 0.943 0.912 1.225B2
Cubif 0.992 0.940 0.122 0.988 0.936 0.206 0.968 0.914 0.408 0.943 0.873 0.532
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8 Concluding Remarks

8.1 Discussion

The simulation shows that robust estimators MQL and Cubif outperform the tradi-
tional ML, confirming our first hypothesis (H1). Both robust estimators hold higher perfor-
mance under contamination than ML for all pairs (n, p). The results reveal that MQL tends
to perform better than Cubif for high proportions of contamination, namely the contami-
nation conditions of 5% and 10%. Nevertheless, when analyzing the LL of both methods,
the results show that in most cases, Cubif holds a lower LL to MQL, indicating that its
predictions, on average, are closer to the true value than MQL.

When comparing the robust estimators with both supervised learning classifiers, the
results showed that SVC holds high values of AUC; however, it also held low values of F1,
implying that the model struggled to predict the classes when exposed to the contamination
that skewed the data. Still, SVC is the best performing method for the Breast Cancer Data,
supporting the argument that supervised classifiers thrive and tend to perform better than
robust parametric methods when the data is abundant and sustaining the third hypothesis
H3. NB also performed well in the Monte Carlo simulation and with the Breast Cancer
Data. NB performed slightly worse than parametric estimators in settings with low data
contamination, partially supporting our second hypothesis (H2). However, NB, like SVC,
performed better than the parametric methods in the datasets with high contamination
levels. It seemed that the performance of NB decreased due to the added contamination as
expected, yet at a much slower pace than the parametric methods.

The study confirms our fourth hypothesis (H4) for the feature selection analysis that
RBIC outperforms BIC for all contaminated datasets. In the setting of no contamination,
the performance is similar or equal, demonstrating that BIC is optimal or the same for clean
datasets; however, it becomes biased in the presence of outliers. For RBIC, on the other
hand, the results maintained high even for large proportions of contamination. Confirming
that the bounded Huber deviances reduce the influence of the outliers, allowing the feature
selection technique to pick the variables which improve the fit. The non-robust criteria
showed decreased performance compared to no feature selection, whereas the robust version
improved.
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Both non-parametric supervised learning classifiers and robust parametric methods
performed well in settings with contaminated data. The study confirmed that supervised
learning classifiers improve their performance for the settings with more observations, sus-
taining H3 and might be a better a choice for large datasets. For smaller datasets, the
parametric methods were shown to have only a slight improvement over the non-parametric
methods, yet are much smaller than the machine learning methods. As stated in Section 2,
both methods (NB and SVC) thrive in a massive volume of data once they work by analyz-
ing prior experiences to extract reasonable and practical regularities and patterns to make
predictions.

Ultimately, in regards to our third hypothesis, if the goal of a model is purely
classification, supervised learning methods achieve higher performance if there is enough data
availability. Parametric methods, particularly robust methods, are valuable for parameter
interpretation. In SVC, for example, it is not possible to extract the parameter values. NB
in such frameworks becomes an attractive option. Its performance is comparable to SVC in
large data volume, and the method allows for parameter extraction.

8.2 Limitations and Recommendations

The methodological choices were constrained by computational power and package
availability. For future studies, it is recommended to increase the sample sizes and the
number of features. The validation technique k-Fold Cross-Validation delivers better results
with more folds; therefore, using 10-Fold instead of 5-Fold might produce more accurate
results.

Other variable reduction methods should also be investigated in future studies,
especially embedded methods (i.e., LASSO, Elastic Net, Ridge Regression).

Regarding supervised learning, other popular methods can be further compared. In
future studies, for example, random forest and neural networks are worth investigating.

In the M-estimator class, several other estimators could be examined in the same
framework as this study investigated MQL and Cubif, for example, Bianco and Yohai (BY)
and Weighted Bianco and Yohai (WBY) for logistic regression by Bianco and Yohai (1996).
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