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1 Introduction

The global financial crisis of 2007-2009 had an unprecedented impact on the systemic risk in national financial

systems which led policymakers to adopt macroprudential policies to address similar phenomena and sustain

financial stability. The risk associated with the economic growth is essential since negative economic growth

would imply financial instability. GDP can constitute an important indicator of contracting or expanding

economy. In this context, the International Monetary Fund (IMF) has developed a novel risk measure for

GDP growth rate, named Growth-at-Risk (GaR), which is analogous to Value at Risk (VaR) used in risk

management. Particularly, the univariate (1− p) Growth-at-Risk is defined as the lower one-sided prediction

interval that contains future realizations of GDP growth rates of a given country at (1− p) confidence level.

However, univariate GaR is too restrictive from a central monitoring perspective. Global financial systems

such as the European Central Bank desire to track economies under a joint region and determine the impact

of small peripheral economies on global central economies. That is why, the main goal of the thesis is to

provide an out-of-sample empirical analysis of joint GaR. The (1− p) joint GaR is defined as the prediction

region that contains the GDP growth rates of all economies with (1−p) coverage probability. The definition of

joint GaR is built upon the work of Brownlees & Souza (2021) who introduced a generalization of univariate

GaR prediction region. This region is based on the prediction of joint rectangular regions by a bootstrap

method of Wolf & Wunderli (2015).

We consider joint GaR forecasts at different time horizons for a panel of dependent economies. The

forecast horizons are 1, 2, 4, and 8 quarters ahead, which allow policymakers to proceed in long-term informed

decisions. The estimated GaR provides them with an indication of an expanding or loosening economy since

it represents how much the GDP growth rate will fall given a particular time frame. The forecasts are

based on Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) specifications. GARCH is

the workhorse model for handling volatility clustering in the literature. We particularly utilize the standard

GARCH of Bollerslev (1986) and the GJR GARCH of Glosten et al. (1993) with skewed Student-t residuals.

The GJR belongs to the family of asymmetric GARCH models and weights negative shocks more than the

positive ones.

This paper further contributes to the current literature of joint GaR proposed by Brownlees & Souza

(2021) by incorporating cross-sectional information to the joint GaR forecasts. This is achieved by the

multivariate DCC and Copula GARCH models. The former one allows for the cross-sectional correlation of

the economies by the decomposition of the conditional covariance matrix into conditional standard deviations

and dynamic correlations. The latter one captures the cross-sectional dependence of the panel of economies

with a multivariate Student-t copula. This model links the marginal distributions of the economies with their

joint distribution using a copula function introduced by Sklar (1959) characterized by a unique dependence

parameter. Both models assume a multivariate Student-t distribution for the innovations.

To our best knowledge, our work is the first to incorporate cross-sectional information and address joint

GaR in the multivariate GARCH framework, namely the DCC and the Copula GARCH models. The back-
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testing of joint GaR forecasts is based on the unconditional coverage test of Kupiec (1995) and two variants

of the Dynamic Quantile test of R. F. Engle & Manganelli (2004) which can be interpreted as an overall

goodness-of-fit test for the GaR predictions. To conclude, the main research objective can be summarized as

follows:

"(How) does the cross-sectional information enhance the accuracy of joint GaR predictions?"

The backtesting results show that asymmetric modeling of volatility adequately improves the forecasts

when the standard algorithm of joint GaR and the multivariate Copula-GARCH are considered. The mul-

tivariate GARCH processes, DCC and Copula, deliver more accurate predictions in comparison with their

counterpart that does not consider cross-sectional information. However, forecasts of all models are char-

acterized by poor long-term predictive performance. Between DCC and Copula, the former one produces

fairly better forecasts with smaller average length and empirical coverage closer to the nominal in short-term

horizons. On the other side, Copula specifications present a stable behavior in producing predictions across

the different time horizons with empirical coverage closer to the nominal, at the cost of excessively high

average length.

Several reasons substantiate these results. DCC and Copula incorporate cross-sectional information by

considering dynamic correlation and allowing for non-Gaussian dependence, respectively across the economies.

Thus, they outperform the algorithm for joint GaR predictions without cross-sectional information. As far

as the comparison of the multivariate GARCH models is concerned, their main difference is detected in

the simulation process and standardization of residuals. Particularly, in the DCC context, the residuals are

simulated and subsequently standardized based on the shape parameter ν of the joint Student-t distribution.

On the contrary, Copula utilizes both a joint shape parameter and an extra dependence parameter θ for the

simulations, whereas the standardization step makes usage of the central moments of the skewed Student-t

distribution.

The rest of the paper proceeds as follows. Section 2 gives an overview of the existing literature. Section 3

describes the data used for the study. Section 4 analyses the implemented methodology. Section 5 presents

the empirical evidence and Section 6 concludes the thesis. Additional plots, empirical results, and proof of

the skewed Student-t moments are provided in the Appendices.

2 Literature Review

As the GaR framework is heavily related with VaR literature, we firstly make a thorough review of the

existing VaR methodologies. Secondly, we briefly comment on univariate GaR since it constitutes a building

block of joint GaR, and thus provides insights about the general context of GaR. Lastly, as the literature

background of joint GaR is limited, we remark on several attempts to capture cross-sectional information

with multivariate GARCH models.
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2.1 VaR

VaR background can be summarized into three major segments: distributional assumptions required to model

VaR, methods to estimate VaR, and backtesting techniques to evaluate the accuracy of these predictions.

C. W. Chen et al. (2012) highlight the importance of distributional assumptions over the volatility model-

ing. Financial data present a variety of stylized facts such as skewness and leptokurtosis and usually deviate

from normality. Therefore, the mixture of Normal distributions, Student-t as in the context of the multi-

variate GARCH models in this paper, or Generalized Error Distribution (GED) provide more precise VaR

estimates than the Normal distribution as shown in Zhang & Cheng (2005), Nelson (1991), and Kuester et

al. (2006).

Forecasting methods of VaR can be divided into three groups aparametric, semi-parametric and para-

metric. Abad et al. (2014) and McNeil et al. (2015) offer a solid background of the current established VaR

techniques as well of their possible combinations. Historical Simulation (HS) is an indicative example of an

aparametric technique to estimate VaR and utilizes the empirical distribution of financial returns. However,

it is heavily based on the data. As far as parametric approaches are concerned, RiskMetrics, firstly launched

by J.P. Morgan, is the most straightforward and assumes that the financial data follow a normal distribution

over time which ignores many of the observed stylized facts of financial returns. On the other side, semi-

parametric methods do not directly model the returns, but the errors. Thus, Filtered Historical Simulation

(FHS) and Monte Carlo are conducted to the residuals resulted from the specified volatility dynamics. This

paper follows the parametric path by modelling the errors resulted by univariate GARCH specifications with

a skewed Student-t distribution.

The adequacy of the VaR measures plays an important in the comparison of different forecasting methods.

The backtesting of VaR methods can be bisected as follows: standard tests about accuracy of VaR and tests

which evaluate the magnitude of the losses. Kupiec (1995) proposes an unconditional coverage test which

tests whether the observed failure rate is equal to the failure rate suggested by the confidence interval p.

However, this test does not take into account the conditional coverage since violation can cluster over time.

Escanciano & Pei (2012) overcome that limitation by implementing a data-driven weighted back-test to

evaluate HS and FHS forecasts. Alternatively, Christoffersen (1998) proposes a conditional coverage test and

considers a likelihood ratio test to examine whether the probability of observing an exception on a particular

day depends on whether a violation occurred. The Dynamic Quantile test of R. F. Engle & Manganelli (2004)

tests whether the current violations are uncorrelated with past violations, while it can be extended to include

a variety of explanatory variables, among others the returns or squared returns.

The second view on the backtesting context is based on the magnitude of the losses experienced in the

case of a violation. The interest in this approach lies on which VaR model offers the minimum loss function.

Abad et al. (2014) and Nieto & Ruiz (2016) offer a wide spectrum of backtesting context and several loss

functions such as the quadratic loss function. In our framework, we follow the work of Kupiec (1995) and

R. F. Engle & Manganelli (2004) to evaluate the distinct joint GaR predictions. Backtesting joint GaR
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forecasts with a loss function is not feasible since joint GaR is a multi-dimensional region.

2.2 Univariate GaR

As earlier denoted, univariate GaR is not the primary focus of this paper. That is why, we briefly remark on

factor-based approaches to it which incorporate (macro)economic information. Alter et al. (2019) provide a

practical guide to conduct GaR analysis consisting of three stages: a) selection of macrofinancial variables

and construction of partition of financial factors, b) estimation of the non-linear relationship between the

exogenous explanatory financial variables and the future GDP growth by Quantile Regression (QR), and c)

derivation of the conditional future growth distribution.

In the same direction, Adrian et al. (2019) assume a skewed-t distribution for the conditional distribution

of GDP growth and take into account how vulnerable the predicted GDP growth is to extreme events.

They find that downside risks to GDP growth are predicted by financial conditions while upside risks are

stable over time. De Polis et al. (2020) further consider time-varying parameters of skewed-t distribution

motivated by a number of tests (Portmanteau test, Ljung-Box extension, and Nyblom test). They argue that

GDP growth experiences significant changes in the long-run mean, shifts in the volatility, skewness of the

distribution, countercyclicality of the volatility of GDP growth, and sharp fall of the skewness of the cycle

during recessions.

Brownlees & Souza (2021) utilize the quantile regression and introduce several predictors, with NFCI (a

dynamic factor constructed from an unbalanced panel of 105 mixed-frequency indicators of U.S. financial

activity) being the most prominent among them. As QR directly links downside risk to predictors of interest,

policymakers should give great attention to its forecasting power since the chosen macroeconomic variables

of the regression must fairly represent the financial conditions of the economy. Indicative examples are the

lending standards that provide useful information about the state of financial system of an advanced bank-

dominated economy, or house prices that play a significant role for economies with large mortgage-debt. They

also consider a series of univariate GARCH models which perform similarly with QR.

Our work diverges from the framework of QR or any other endeavour to associate GDP with macroe-

conomic risk variables. However, we consider a skewed Student-t distribution since we model the volatility

dynamics of the growth rates with univariate GARCH processes characterized by skewed Student-t innova-

tions.

2.3 Joint GaR

In the context of joint GaR, univariate GARCH models do not take into account cross-dependence among the

several economies. Furthermore, macroeconomic data such as the GDP are available only in a short panel of

time series. Brownlees & Souza (2021) overcome these limitations by estimating GARCH parameters with

composite likelihood and by assuming that the dynamic GARCH coefficients are common across the distinct

countries they consider. Pakel et al. (2011) point out the pitfall of standard estimation methods such as the
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common quasi maximum likelihood to perform well in small samples and consider cross-sectional information

by suggesting also composite likelihood to pool information across the panel of time series.

There have been many attempts to capture cross-sectional dependence among variables by generalizing

GARCH models to multiple dimensions. R. F. Engle & Kroner (1995) firstly introduced the BEKK model

which handles the conditional covariance matrix in a systemwise regression and captures time-varying covari-

ances. In the same context, R. Engle (2002) proposes a Dynamic Conditional Correlation model (DCC), and

does not directly estimate the covariance matrix, but rather models it through a dynamic correlation ma-

trix. This paper adopts the aforementioned approach of dynamic correlation between the selected economies.

R. F. Engle et al. (2019) robustify DCC against large dimensions by using two tools, Composite Likelihood

and non-linear shrinkage method of Ledoit et al. (2012). However, according to Caporin & McAleer (2013)

DCC is not actually a model, bur rather a useful filter or diagnostic check for dynamic correlation.

Cross-sectional dependence in GARCH methodology can be further enhanced by combining them with

copulas which are used to describe the dependence between two random variables. Jondeau & Rockinger

(2006) shed light on the specification of the joint distribution of multivariate return series by exploiting

the skewed Student-t copula proposed by Hansen et al. (1994). In comparison with the standard Student-t

distribution, it introduces an extra parameter for asymmetry. A key feature of copulas is that they depend

on easily conditioned parameters such as the dependence parameter or the degrees of freedom in the case of

Student-t copula which is implemented in this paper.

The superiority of t copula to the Gaussian copula is substantiated by its ability to better capture the

phenomenon of dependent extreme values which is often observed in financial data. Demarta & McNeil (2005)

derive several copulas based on the t copula such as the skewed-t copula, grouped-t copula, extreme value t

copula, and lower tail t copula. As an ultimate attempt to capture asymmetric, leptokurtic, and heavy-tail

characteristics, the time-varying volatility characteristics and the extreme-tail dependence characteristics of

financial asset returns Q.-a. Chen et al. (n.d.) take advantage of the Generalized-Hyperbolic distribution (G-

H), a general class of distributions, among others, the Student’s t distribution. They additionally consider a

standard GARCH model whose standardized innovations follow a G-H distribution and they further combine

it with a multivariate time-varying copula in contrast to our work, in which the copula is static.

The estimation of copula parameters is done in various ways. Standard approaches are the method

of moments in which the theoretical moment is equated with the estimated from the sample moment, the

maximum likelihood or the pseudo maximum likelihood dependent on the data set selected for the estimation

(original or pseudo sample), and lastly the two-step estimation procedure of Inference of Margins. Salleh et

al. (2016) discuss details regarding estimation of copula parameters. This paper follows the pseudo maximum

likelihood approach. Finally, the prediction of joint GaR according to Brownlees & Souza (2021) follows the

procedure of joint rectangular prediction region of Wolf & Wunderli (2015); a region that contains all the

GDP growth rates of all the participated economies at the desired probability level.

In conclusion, the novelty of this paper is entrenched in the ensuing constituents: a) assumption of skewed
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Student-t innovations in the univariate GARCH models, and b) enrichment of current joint GaR framework

by considering a multivariate Student-t distribution in the case of multivariate GARCH models.

3 Data and Stylized Facts

We retrieve time series for GDP growth rates from the Federal Bank of St. Louis (Organization for Economic

Co-operation and Development, Main Economic Indicators (2016)). The data set analyzed in this paper

comprises monthly observations on the following five economies: i) OECD countries expanded with the

major six OECD non-member countries, namely Brazil, China, India, Indonesia, Russian Federation and

South Africa, ii) only OECD countries, iii) countries in Eurozone, iv) countries participating in the North

American Free Trade Agreement (NAFTA) which includes Mexico, the USA, and Canada, and v) the Big 4

European countries; France, Germany, Italy, and United Kingdom. After the Brexit, OECD statistics still

regards the United Kingdom in the four big European. The sample covers the time period from March 1961

to November 2020. In total, we obtain 717 time series observations for each of the five included economies

which represent the seasonally adjusted growth rates of GDP.

Table 1: Sample statistics of the five economies.

Statistics

Economies
OECD+6MajorNME OECD Eurozone NAFTA Big4Eur

Mean 3.810 2.972 2.510 3.029 2.285

Std. Dev. 1.774 2.086 2.467 2.227 2.380

Minimum -8.769 -11.513 -14.952 -10.329 -16.642

Maximum 7.345 7.323 7.949 7.947 7.291

Skewness -1.773 -1.574 -1.713 -0.930 -2.377

Kurtosis 7.108 7.008 8.522 3.180 13.522

JB-Test 1898.641 1776.243 2538.009 409.203 6177.970

{0} {0} {0} {0} {0}

LB-Testgrowthrates 3567.459 4608.721 4737.396 3908.14 3794.929

(24) {0} {0} {0} {0} {0}

LB-Testgrowthrates2 3651.563 3821.626 2272.316 3496.556 1277.773

(24) {0} {0} {0} {0} {0}

DCC-Test 17537.410

(24) {0}

Note. This table reports the descriptive statistics of the five economies. The JB test examines jointly the null

hypothesis of skewness and excess kurtosis equal to 0 and the LB test whether data are independently distributed.

The multivariate DCC test provides one statistic value and utilizes a static GARCH copula to estimate the

Constant Conditional Correlation (CCC) matrix of the null hypothesis. The curly braces include the p-values and

the parentheses the number of lags used for each of the tests. All reported numbers are rounded to 3 decimals.
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Table 1 shows the negative skewness and excessively higher kurtosis than that of the Gaussian distribution

implying asymmetry in the tail events of the distribution, concentrated in the left tail, and fat-tailed growth

rates. The rejection of null hypothesis at all standard confidence levels of Jarque-Bera test confirms the

deviation from normality. The analogous rejection of null hypothesis of Ljung Box test verifies the serial

correlation of growth rates and squared growth rates.

The pandemic crisis of 2020 had a major adverse impact in all the economies leading to their worst

historical growth rate in May of 2020, whereas their best historical performance is recorded in different

dates throughout the examined time period as Figure 2 depicts. This fact implies that economies possibly

share concurrently their downside risk. Figure 1 illustrates that all economies demonstrate high positive

dependence according to Kendall rank correlation coefficient. The proposed by Engle & Sheppard (2001)

multivariate DCC test rejects the null hypothesis of constant correlation. Therefore, it is necessary to consider

non-constant correlation across the economies. Sample correlations in Figure 3 also support that fact. The

aforementioned stylized facts for growth rates suggest the need for using a skewed fat-tailed distribution, as

well as allowing for asymmetric modelling of volatility and cross-sectional dependence of economies to gauge

the leptokurtosis, asymmetry and cross-correlation of the data.

Kendall’s Tau

Figure 1: Dependence of the five economies based on the Kendall’s Tau. The color scale fluctuates from white to

grey and finally to black indicating negative, zero, and positive association respectively. Kendall rank correlation, in

comparison with standard correlation measures as the Pearson’s, does not proceed to any distributional or linearity

assumptions but measures the dependence between two variables.
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Figure 2: The growth rates of the five economies from 3/1960 to 11/2020

Figure 3: The sample correlations between a selection of economies.
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4 Methodology

4.1 Volatility Modelling

In the ensuing GARCH models, we consider a standard GARCH(1,1), an asymmetric GARCH(1,1), a multi-

variate Dynamic Conditional Correlation GARCH(1,1), and a multivariate Copula-GARCH(1,1) model. For

notational convenience, they will be addressed as S-GARCH, GJR-GARCH, DCC-GARCH, and C-GARCH

respectively. As the S-GARCH is symmetric in the sense that positive and negative shocks have the same im-

pact on volatility, the GJR-GARCH introduces a leverage term for modeling asymmetric volatility clustering;

large negative changes are more likely to be clustered than positive changes. The multivariate DCC-GARCH

of R. Engle (2002) models the individual volatilities by univariate GARCH specifications while it assumes a

dynamic correlation between the economies. The C-GARCH model utilizes the univariate GARCH specifi-

cations and accounts for the cross-sectional dependence of the economies using a copula function.

Analytically, let Yt denote the GDP growth rate of an economy at time t, then a GARCH model can be

described by two equations. Firstly, the observation equation is defined as follows

Yt = µ+
√
σ2
t zt, (1)

where µ denotes the conditional mean, σ2
t represents the conditional variance, and zt are the innovations

terms. The second equation describes the dynamics of volatility. The difference of the proposed distinct

GARCH specifications lies on the mechanism with which they model σ2
t .

As the rejection of the null hypothesis of Jarque-Bera indicated, the data deviates from the normal

distribution, presenting large skewness and kurtosis. Therefore, the distribution of the innovations zt must

assume heavy tails in order to allow for a higher likelihood of extreme events to happen and asymmetry. That

is why, we choose them to follow skewed Student-t distribution. The QQ-plot in Figure 5 verifies that skewed

Student-t distribution is better able to capture the tail events. QQ-plots of the rest economies are presented

in the Appendix A. We specifically apply the skewed Student-t distribution introduced by Fernández & Steel

(1998) and characterized by two extra parameters: the degrees of freedom (d.o.f) ν, which control the fat

tails and the skewness parameter ξ, which controls the asymmetry of the extreme events.

Standard GARCH(1,1)

The S-GARCH models the conditional volatility as

σ2
t = ω + α(Yt−1 − µ)2 + βσ2

t−1, (2)

in which ω is an offset term, the lowest value the variance can achieve in any time period, α represents how

volatility reacts to new information, and β the persistence of volatility. Higher values of β indicate that large

changes in the volatility will affect future volatilities for a long period. To guarantee that σ2
t is positive for

all t the following constraints must be satisfied: ω > 0, α ≥ 0, and β ≥ 0. Assuming that the volatility



4.1 Volatility Modelling 11

is stationary, the unconditional variance in the long run is given by σ2 = ω
1−α−β with α + β < 1. The

unknown parameters ω, α, β, µ, the d.o.f ν and the skewness parameter ξ are estimated by the maximum-

likelihood. To validate the model selection, equivalently check for the adequacy of ARCH and GARCH

orders, we construct the ACF and PACF plots of the resulted standardized squared residuals. The Partial

autocorrelation plot shows solely the correlation of two lagged observations of a time series allegedly, Xt

and Xt−k, after adjusting for the presence of all the in between terms Xt−1,. . . ,Xt−k−1. If the model is

appropriate, then the plots should present no significant autocorrelations. As depicted in the Figure 4, there

is serial correlation presented in the first lags of only the OECD+6MajorNME economy, indicating that

the model is not adequate to capture the conditional heteroscedasticity of this economy and possibly higher

orders of ARCH and GARCH could be considered.

(a) ACF Plots of the selected economies (b) PACF Plots of the selected economies

Figure 4: The (P)ACF plots show the (partial) autocorrelation of the squared standardized residuals. The

standardized residuals are estimated from fitting the entire GDP growth rates series of each economy to a

standard GARCH(1,1) model.

GJR GARCH(1,1)

The GJR-GARCH accounts for a leverage effect by adding an extra term γ in volatility equation as follows

σ2
t = ω + (α+ γIt−1) (Yt−1 − µ)2 + βσ2

t−1, (3)
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in which It−1 =

 0 if Yt−1 ≥ µ

1 if Yt−1 < µ
and the additional term γ controls the degree of asymmetry in the

conditional volatility response to the past shock. γ equal to 0 implies no asymmetric volatility, negative values

of γ imply that negative shocks will increase volatility more than positive shocks, and positive values are

interpreted analogously. To ensure the positivity of variance, we require ω > 0, α > 0, and β ≥ 0. Stationarity

assumption of volatility imposes for the long run that σ2 = ω
1−α−γP(Yt−1<µ)−β with α+ γP (Yt−1 < µ) + β <

1. The P (Yt−1 < µ) is directly related to the distributional assumption of innovations. Particularly, the

probability is equal to 1
1+ξ2 and different from 1

2 as the conditional distribution of growth rates, the skewed

Student-t distribution, is asymmetric around µ. The proof is given in Appendix C along with other derivations

concerning the skewed Student-t distribution. The unknown parameters ω, α, β, γ, µ, the d.o.f ν, and the

skewness parameter ξ are estimated by the maximum-likelihood. Following the same reasoning with the

standard GARCH, we check for the fit of GJR-GARCH with the (P)ACF plots of the squared standardized

residuals. As presented in Figure 15, there is significant autocorrelation in OECD+6MajorNME and NAFTA

economies. This indicates that the proposed GJR-GARCH specification has not sufficiently captured the

heteroscedasticity of the respective economies.

Figure 5: The QQ plots show the standardized residuals against the theoretical quantiles from Normal,

Student-t and skewed Student-t distributions. The parameters in skewed Student-t are location, scale,

skewness and degrees of freedom and are estimated from fitting the entire Eurozone GDP growth rates

series to a standard GARCH(1,1) model by MLE. The standardized residuals are estimated from fitting the

entire Eurozone GDP growth rates series to a standard GARCH(1,1) model by QMLE.
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4.2 Multivariate GARCH

The suggested multivariate GARCH models, DCC and Copula, built upon the univariate GARCH specifi-

cations assume a multivariate Student-t distribution for the economies and take into account a particular

dependence structure: correlation and copula, respectively. To substantiate the multivariate distribution of

the residuals, we resort to a test of multivariate Student-t distribution with Monte Carlo simulations intro-

duced by Santoso et al. (2021). The main idea of the test is to randomly generate simulation datasets which

have the same dimension with our research data (in our case the standardized residuals zt = Yt−µ√
σ2
t

estimated

by QMLE) and follow multivariate Student-t distribution with three different numbers of degrees of freedom.

Subsequently, we compute the multivariate skewness and kurtosis of research data. Then, we compute the

p− value for both multivariate skewness and kurtosis by computing the percentage of skewness and kurtosis

value of simulation data that is bigger than skewness and kurtosis value of research data. We reject the null

hypothesis that innovations follow a multivariate Student-t distribution if p− value < α with α the specified

significance level. Multivariate skewness and kurtosis according to Mardia (1970) are defined respectively as:

b1,p =
1

n2

n∑
i=1

n∑
j=1

[
(xi − x)

′
S−1 (xj − x)

]3
, (4)

b2,p =
1

n

n∑
i=1

[
(xi − x)

′
S−1 (xi − x)

]2
, (5)

where n is the sample size, x is a p × 1 vector of random variables, and S is the biased sample covariance

matrix of x equal to S = 1
n

∑n
i=1

[
(xi − x) (xi − x)

′], and x the sample mean. Table 2 shows the results. We

notice that as the degrees of freedom increase, the p-values decrease. The hypothesis that the aparametric

standardized residuals follow a multivariate Student-t distribution with d.o.f= 3 and 7 is accepted at 2% and

5% significance levels.

Table 2: Multivariate Student-t Test

Number of Simulations=10000

p-values p-values

Economy Skewness df=3 df=7 df=11 Kurtosis df=3 df=7 df=11

OECD+6MajorNME -0.119 -1.175

OECD -0.441 -0.713

Eurozone -0.558 0.804

NAFTA -0.0996 -0.442

Big4Eur -0.223 0.294

Multi 5.680 0.949 0.026 0.000 54.307 1 0.415 0.009

This table reports the output results for Multivariate-t data test. The standardized residuals are estimated from

fitting the entire GDP growth rates series of each economy to a standard GARCH(1,1) model by QMLE. All

reported numbers are rounded to 3 decimals.
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Dynamic Conditional Correlation GARCH

The DCC GARCH of R. Engle (2002) allows for time varying dynamics of the correlation and instead of

directly estimating the covariance matrix Σt of the five distinct economies Y 1
t , . . . , Y

5
t at time t, it models Σt

through a conditional correlation matrix Rt as

Σt = DtRtDt where Dt = diag{σii,t} with i = 1, . . . , 5, (6)

and the diagonal entries σii,t are modeled as univariate GARCH processes following equations 2 and 3. The

i represents each one of the five economies. To render the conditional correlation matrix Rt positive definite,

we firstly define Qt as follows

Qt = (1− α̃− β̃)Q̃+ α̃zt−1z
′
t−1 + β̃Qt−1 with zt−1 = D−1

t−1(Yt−1 − µ), (7)

where α̃ and β̃ have non-negative values and their sum must be smaller than 1 to ensure that Qt is station-

ary and positive definite. Q̃ is the unconditional covariance matrix of the standardized residuals zt. The

conditional correlation matrix Rt can then be constructed as

Rt = Q
∗−1/2
t QtQ

∗−1/2
t , (8)

where Q∗t is the diagonal matrix of Qt.

In order to comprehend the estimation process of the parameters in DCC models, we will firstly explain

the estimation under the multivariate Gaussianity assumption which is done in the following two-step manner

by decomposing the normal log-likelihood in two parts; the volatility and the correlation. In the first one, the

parameters of the univariate GARCH models are estimated, and consequently the conditional variances σ2
ii.

Thus, the standardized disturbances are computed. In the second step, given the resulted parameters of the

maximization of volatility component, the remaining parameters α̃ and β̃ scalars, as well the Q̃ matrix, are

estimated. Specifically, the unconditional covariance matrix Q̃ is estimated with the approach of correlation

targeting; Q̃ is replaced by the unconditional correlation matrix of the standardized shocks. Nevertheless,

in cases such as the multivariate Student-t, due to the presence of the shape parameter ν, the estimation

must be done in one step to guarantee that the shape parameter is jointly estimated for all the GARCH-type

models. Hence, to stay in the context of the two-step estimation, we follow the work of Ghalanos (2020), and

estimate in the first step the five univariate GARCH models by quasi maximum likelihood, and subsequently

estimate the correlation part along with the parameter ν of the joint Student-t density.

Copula-GARCH

Copula-GARCH models overcome the standard linear correlation coefficient and capture the dependence

across the innovation terms zt by specifying a function C. Algorithm 2 describes analytically the procedure

of utilizing univariate GARCH specifications in the multivariate Copula-GARCH framework. That is why we

focus now on modeling the joint distribution of the innovations terms across the five economies. According to
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Sklar (1959) any joint distribution function may be decomposed into its marginal distributions and a copula

function that completely describes the dependence between the n variables. Specifically, let U1, . . . , Un be

random variables with CDFs F1, . . . , Fn respectively, then:

F (u1, . . . , un) = C(F1(u1), . . . , Fn(un)), (9)

where F is the joint distribution function of U1, . . . , Un. The copula function C is uniquely determined on

[0, 1]n when the margins F1, . . . , Fn are continuous. To estimate the joint distribution in our framework,

we deploy a multivariate meta-Student-t model to capture the fat tail property. A meta-Student-t model

is defined according to Demarta & McNeil (2005) when arbitrary marginal distributions are coupled with

a Student-t copula and these marginals are called meta-Student-t distributions. Specifically, the Student-t

copula belongs to the class of elliptical copulas and is defined as:

C(u1, . . . , un) = tθ,ν(t−1
ν1 (u1), . . . , t−1

νn (un)), (10)

where tθ,ν is the multivariate Student-t with dependence parameter θ and degrees of freedom ν, and t−1 is

the inverse function of the univariate Student-t. Here n is equal to 5; the total number of the economies. The

copula parameters will be estimated using the residuals resulted from S-GARCH(1,1) and GJR-GARCH(1,1)

processes with the skewed Student-t innovations.

As a result, the issue about the estimation of the parameters θ and ν is raised. In this paper, the proposed

method to estimate them is the method of pseudo maximum likelihood. This method instead of directly

utilizing the standardized residuals zt resulted from the univariate GARCH models, it converts the variates

to pseudo-observations (normalized ranked data). Consequently, we practically consider that there is no

information regarding the marginals of the innovations and use their empirical CDF instead of their assumed

parametric distribution. Each joint pseudo-observation (u1t, . . . , u5t) is defined as (Rank(z1t)
n+1 , ..., Rank(z5t)

n+1 ) for

t = 1, . . . , end of training sample. Division by n+ 1 ensures that the maximum of Rank(zkt)
n+1 with k = 1, . . . , 5

is n
n+1 < 1. This is substantiated by the Sklar’s Theorem that states that a copula is a function of uniform

marginals. Hence, we need to transform the marginals of the standardized residuals to the standard uniform

marginals to obtain the pseudo observations. Subsequently, we fit the pseudo sample to a five-variate Student-

t distribution using the maximum likelihood, in which the total number of the unknown parameters is two:

the dependence parameter θ and the degrees of freedom ν of the joint Student-t distribution. To summarize,

the parametric assumptions for the marginals of the residuals are not taken into account and the copula

parameters are estimated from the empirical residual observations using the pseudo-log-likelihood method.

4.3 Forecasting Joint GaR

Firstly, we repeat the joint GaR definition using mathematical notation. Analytically, the d-step ahead

(1− q)(1− p) joint GaR is defined as:

P
(
at least dqne growth rates Yi,t+d are not in GaRjointt+d

)
= p, (11)
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where dqne denotes the smallest integer greater than or equal to qn, n represents the total number of the

economies, q the percentage of the system for which coverage is desired, Yi,t+d the d-month GDP growth rate

of economy i, GaRjointt+d the d month n-dimensional GaR region and p the confidence level. Therefore, the

(1− q)(1− p) joint GaR contains the GDP growth rates of (1− q) of the countries with (1− p) probability.

No cross-sectional Information

Based on the volatility modelling, we can predict the joint GaR. As the d-month GaR does not have a closed

form and the setting of all the considered GARCH processes is fully parametric, its estimation is based

exclusively on Monte Carlo and Historical simulations. Algorithm 1 describes the procedure for estimating

joint GaR in which no cross-sectional information is considered. We highlight step 1. Let z be a skewed

Student-t distributed random variable. The absolute moments, required for deriving the central moments,

are

M1 =

√
ν
πΓ(ν−1

2 )

Γ(ν2 )
and M2 =

ν

ν − 2
(12)

The mean and the variance are consequently defined as

E(z) = M1(ξ − ξ−1) and V ar(z) = (M2 −M2
1 )(ξ2 + ξ−2) + 2M2

1 −M2, (13)

and expressed in terms of both the shape and skewness parameters. Thus, the standardization of a skewed

Student-t random variable z to zero mean and unit variance is made by using the moments given above in

the following manner z−E(z)√
V ar(z)

. Appendix C includes analytical derivation of absolute and central moments

based on the work of Ghalanos (2020) and Kirkby et al. (2019).

All the estimated parameters result from the distinct GARCH specifications. The conducted number

of simulations m is 3000, the quantiles of interest are 98% and 95%, and the coverage probabilities of the

panel of the n = 5 economies are 60% and 20% and therefore according to definition from Equation 11,

p = 0.02, 0.05, and q = 0.4, 0.8 respectively. We implement a rolling estimation window, where the end of the

first training sample is the 607th observation. The first five steps conclude the Monte Carlo simulation for

each economy i which results in a 3000×5 simulated matrix. The last four steps describe the construction of

an empirical quantile ddqnep that controls all the panel of the economies dependent on the desired probabilities

and resulted from the standardized simulated residual matrix of step 6.

With cross-sectional Information

4.3.1 DCC-GARCH

For the prediction of GaR with DCC-GARCH, we will provide no analytical algorithm as it follows straight-

forward from the joint GaR with no cross-sectional information and we work similarly with the resulted

residuals. Nevertheless, it will be given attention to the multi-step ahead forecast of the correlation matrix

R which renders DCC computationally cumbersome. The d-step ahead evolution of Equations (7) and (8)
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Algorithm 1 Joint d -month GaR(d = 3, 6, 12, 24)

1: Simulate at the end of the sample d standardized innovations zt+1, . . . , zt+d as i.i.d. skewed standardized

Student-t distributed random variables with corresponding degrees of freedom ν̂ and skewness ξ̂

2: Predict next month volatility σ̂t+1 utilizing the last period information Yt and σ̂t and the estimated

parameters from GARCH . Utilize equations 4 and 5

3: Predict Yt+1 as Ŷt+1 = µ̂+ σ̂t+1zt+1

4: Repeat steps 2-3 d times to obtain one simulated path Ŷt+1, . . . , Ŷt+d . Ŷt+d constitutes the first

simulated d-month GDP growth rate symbolized as Ŷ 1
t+d

5: Repeat steps 1-4 m times for each country i and obtain a simulated sample of GDP growth rates

Ŷ 1
i,t+d, ..., Ŷ

m
i,t+d with i = 1, . . . , 5 and m = 1, . . . , 3000

6: Construct a standardized simulated residualm×nmatrix as follows z̃mi =
(
Ŷ mi,t+d − µ̂i,t+d

)
/
√
σ̂2
i,t+d

where µ̂i,t+d and σ̂2
i,t+d denote the mean and variance of the simulated sample Ŷ 1

i,t+d, . . . , Ŷ
m
i,t+d

7: Define Umdqne as the qn-smallest element of {z̃mi}ni=1

8: Compute the multiplier ddqnep as the pth empirical quantile of the statistics U1
dqne, . . . , Um

dqne

9: Construct the (1 − q)(1 − p) joint GaR region as GaRjointt+d =
(
GaRjointi,t+d,∞

)
× · · ·×

(
GaRjointn,t+d,∞

)
where GaRjointi,t+d = µ̂i,t+d + d

dqne
p

√
σ2
i,t+d

are as follows:

Qt+d = (1− α̃− β̃)Q̃+ α̃Et(zt+d−1z
′
t+d−1) + β̃Qt+d−1, (14)

Rt+d = Q
∗−1/2
t+d Qt+dQ

∗−1/2
t+d , (15)

with E(zt+d−1z
′
t+d−1|It+d−2) = Rt+d−1, and we set the unconditional matrix of the standardized residuals Q̃

approximately equal to the correlation matrix R (Q̃ ≈ R) and Et(Qd+1) = Et(Rd+1) following the findings

of Engle & Sheppard (2001) that this approximation provides the least bias.

The main difference from Algorithm 1 is that we employ for the simulations the standardized residuals

resulted from the correlation matrix R with degrees of freedom ν of the multivariate Student-t. Hence,

the skewed Student-t marginals of the innovations are not directly utilized for the standardization as in

Algorithm 1. The individual degrees of freedom and skewness parameters are estimated though in the

volatility component of the likelihood and participate in the estimation of the correlation matrix R and the

shape parameter ν of the joint distribution. The standardization of residuals is done by rescaling with the

factor
√

ν
ν−2 to obtain variance equal to 1.

4.3.2 Copula-GARCH

As already stated, copulas take into account a different dependence structure than the standard linear

correlation. Algorithm 2 presents the procedure analytically. In comparison with DCC, besides the degrees

of the multivariate Student-t distribution, copula introduces the extra parameter θ for the simulations and
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utilizes the central moments of skewed Student-t to transform the marginals of the simulated five-variate

observations to standardized skewed Student-t innovations. The main difference from Algorithm 1 lies in steps

2-4, where we simulate the residuals from a multivariate Student-t distribution with dependence parameter

θ and degrees of freedom ν. Steps 2-4 from Algorithm 2 are "analogous" to the first step of Algorithm 1,

while the rest methodology is similar. In step 4, the copula remains invariant under the transformation of

the marginals as Demarta & McNeil (2005) remark. The same property of invariance holds for the parameter

θ since the dependence in the joint Student-t distribution is similar with the dependence in the copula of

the multivariate Student-t distribution after the transformation. Equivalently, copula and marginals contain

information that are mutually exclusive. This substantiates the independence copula when θ reaches its lower

bound 0. Comonotonicity, the perfect positive dependence between the economies, is achieved at the upper

bound of θ = 1.

Algorithm 2 Copula-GARCH Joint d -month GaR(d = 3, 6, 12, 24)

1: Estimate at the end of the sample the GARCH-skewed Student t model for each economy

2: Fit a Student-t copula to the standardized residuals

3: Simulate at the end of the sample d five-variate observations from the multivariate Student-t copula

4: Transform their marginals to standardized skewed Student-t innovations using their individual shape

and skewness parameters as estimated by the univariate GARCH models

5: Repeat steps 2-9 from Algorithm 1

In summary, the joint GaR in all models is based on the simulated residual matrix resulted by the two

univariate GARCH models and their multivariate extensions. The empirical quantile ddqnep constructed by

taking the qn-smallest element of each row of the simulated residual matrix is the main factor that renders

the predicted GaR region joint and distinct from the standard established approaches to forecast univariate

GaR.

4.4 Backtesting

For the backtesting of joint forecasts, we will examine two approaches that examine the accuracy of the

GaR models, namely the violation test of Kupiec (1995) and the Dynamic Quantile test of R. F. Engle &

Manganelli (2004). We also report the empirical average coverage and average length of joint GaR forecasts.

As we used a rolling estimation window, we recursively forecast and evaluate the joint GaR forecasts starting

from the 610th observation. Each estimation window dependent on the forecast horizon d will produce

T = 717− 610 + 1− d predictions.

Kupiec Test

The violation test of Kupiec Kupiec (1995) falls in the class of the unconditional coverage tests and examines

whether the observed failure rate is equal with the one suggested by the model. In general, a violation occurs
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when the loss is more than the predicted GaR. However, in the joint GaR context the indicator function is more

complicated. If the joint region was built upon the assumption that at least dqne growth rates are not in the

joint GaR, then the indicator violation function is defined as I{at least dqne growth rates Yi,t are below the ˆGaR
joint
i,t

}
with i = 1, . . . , 5. Analytically, the test is based on the binomial distribution approach and it employs a

likelihood ratio to test whether the probability of exceptions concedes with the probability p implied by the

GaR confidence level. If the data suggests that the probability of exceptions is different than p, the GaR

model is rejected. The test statistic is:

LR = −2 log

(
(1− p)N−xpx(

1− x
N

)N−x ( x
N

)x
)

d→ χ2(1), (16)

where x is the number of violations, and N the number of observations. The likelihood in the numerator

results from the null hypothesis, while the one in the denominator is implied by the data. The statistic is

asymptotically distributed as a chi-square variable with 1 degree of freedom χ2(1).

In this context, we also report the average length of joint GaR forecasts following the work of Brownlees

& Souza (2021) which is defined as

L̂joint =
1

n

n∑
i=1

(
1

T

T∑
t=1

Q̂0.99(Yi)− ˆGaR
joint

i,t ), (17)

where T the number of predictions, n the number of economies, and Q̂0.99(Yi) denotes the unconditional 0.99

empirical quantile of the i-th series estimated on the entire sample. The average length is particularly useful

to check whether the GaR predictions are unnecessarily low. Hence, if the other criteria are equal, GaR

forecasts with a smaller length are typically preferred. However, this does not mean certainly that ˆGaR
joint

i,t

must be closer to the empirical quantile Q̂0.99(Yi). Lastly, we define the empirical average of the joint GaR

based on a success indicator function I as

Ĉjoint =
1

T

T∑
t=1

I{
at most dqne growth rates Yi,t are above the ˆGaR

joint
i,t

}, (18)

Accurate GaR forecasts have an empirical coverage close to the nominal coverage (1−p). It is straightforward

that the empirical coverage is subpart of the Kupiec’s unconditional coverage test. Nevertheless, its report

facilitates the comprehension of the risk’s under or over estimation. If the empirical coverage is smaller than

1− p, then the risk is underestimated, and conversely.

Dynamic Quantile Test

However, the unconditional coverage property of Kupiec test does not give any information regarding the

independence of violations. The independence property is essential for risk measures since they have to adopt

to new information implied by the evolution in the dynamics of returns. The Dynamic Quantile (DQ) test of

R. F. Engle & Manganelli (2004) belongs to the family of the standard statistical accuracy tests and examines

whether the hit sequence is optimal with respect to the information set generated by the hit sequence itself.
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Firstly, the notion of a hit sequence must be explained. For joint GaR, a hit function is defined as follows:

Hitt(p) = I{
at least dqne growth rates Yi,t are below the ˆGaR

joint
i,t

} − p with i = 1, .., 5 (19)

The general form of the Dynamic Quantile test in our framework is given by an AR(K) process as follows:

Hitt(p) = β0 +

K∑
k=1

βkHitt−k(p) + εt (20)

where εt is the error term and follows a discrete i.i.d. process The null hypothesis of the above linear

regression model tests jointly whether GaR forecasts have correct unconditional coverage, and whether the

present violations of the GaR are not correlated with the past violations. This is equivalent to testing the

nullity of the coefficients βk,∀k = 0, . . . ,K:

H0 : β0 = . . . = βk = 0, ∀k = 0, . . . ,K

The test is based on a Wald statistic defined as:

W =
β̂′
(∑

t−1 xt−1x
′
t−1

)
β̂

p(1− p)
d→ χ2(k + 1), (21)

where β̂ = (β0, β1, · · · , βk), xt−1 = (1, Hitt−1, · · · , Hitt−k), and k + 1 the number of the total variables for

which we test the joint nullity. The above test, if we consider no hit lags and test alone the nullity of the

coefficient β0, is equivalent to the Kupiec test. Consequently, the GaR forecasts are optimal under the null

hypothesis, if the variable Hitt(p) is uncorrelated with its own lagged values, and its expected value must be

equal to zero. Thus, the DQ test examines whether the GaR predictions satisfy some basic requirements that

every good quantile estimator must satisfy such as unbiasedness and independent hits. In this paper, we firstly

test only for the correct unconditional coverage, and subsequently for the joint hypothesis of unbiasedness

and independence of hits considering 4 lags, symbolized respectively as DQ(0) and DQ(4).

5 Results

5.1 In-Sample GARCH analysis

Table 3 reports for each economy the estimated coefficients of all the proposed GARCH models under the

distributional assumptions and estimated methods that have been explained previously. All β′s, except the

one corresponding to OECD+6MajorNME, are equal to 0 and statistically insignificant. Thus, the volatility

is not persistent. Possibly, the standout of OECD+6MajorNME economy in the S-GARCH model lies in the

fact that includes both OECD and non-OECD countries such as the China, Russian Federation, the USA,

and Germany rendering it more susceptible to volatility shocks of past realizations. As usually, under the

stationarity assumption, lower values of β are followed by higher values of α which represent the adjustment

to the past shocks of squared growth rates. All estimated α′s are statistically significant and point out the

volatility clustering. This behavioral switching is a partial repercussion of the heavy tails affirmed by the
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estimated degrees of freedom of the residuals, except in the case of OECD+6MajorNME. To summarize, only

the ARCH term has a considerable effect on the conditional variance of future signifying spiky economies.

All values of γ are positive and indicate that negative shocks will increase the volatility more than positive

shocks. However, not all γ′s are significant in the 5% confidence level. Specifically, in the cases of OECD and

Eurozone economies, the assumption of the presence of a leverage effect is not validated. In the multivariate

extension of univariate GARCH models, the shape parameter is also significant and points towards fat tails.

The significance of α̃′s and β̃′s in DCC confirm the account of a non-constant correlation model. These scalars

explain how the correlations are evolving over time. Hence, the relatively higher values of α̃′s compared with

the β̃′s, in both standard and asymmetric GARCH variants, provide a robust contribution of the realized

correlation matrix from the last period and a moderate contribution of the "long-run" correlation matrix,

respectively. We lastly find relatively high dependence parameters θ, 0.768 and 0.614, from both multivariate

Student-t Copula-GARCH models, as expected since all economies are positively associated. Therefore, from

a regulatory point of view, a negative major event such as the mortgage crisis of 2008 or the pandemic crisis

of 2020, will influence similarly all the economies.

5.2 Out-of-Sample analysis

Tables 4, 5, 6, 7 report the p-values of the Kupiec and the two variants of Dynamic Quantile tests, along with

the average empirical joint coverage and average length for each forecast horizon and forecasting method

for joint GaR. We consider two fractions of economies coverage q equal to 0.4 and 0.8 and two coverage

probabilities p equal to 0.02 and 0.05. In the Appendix B, we present the joint-GaR forecasts for other

confidence levels for the same coverage levels of economies. The analysis of the results has a threefold

purpose: i) to point out whether the GJR GARCH provides superior forecasts to the standard GARCH, ii)

to argue for the predictive power of the models with the increase of forecast horizon, and iii) to substantiate

the main argument of this paper that cross-sectional information improves the joint GaR forecasts.

Before proceeding to the analytical results, we clarify that in the cases in which the unconditional test of

Kupiec rejects the null hypothesis, while DQ(0) does not, is due to the low power of the former one in finite

samples. Additionally, when the average empirical joint coverage is 100 or 0, there is no exception or only

violations respectively, and subsequently the test statistics are not defined. Thus, no p-values are provided.

The criteria of length and coverage are mainly reported to contend for empirical properties of GaR forecasts

such as unnecessarily low predictions or over and under estimation, and they do not comprise individually

adequate measures to assess the forecasts. However, if the test of Kupiec or the variants of the Dynamic

Quantile test that examine statistical properties of the predictions provide equivalent conclusions, then the

average length or empirical coverage are utilized to determine the best model.

Algorithms 1 and 2 suffer from extremely high values of average length. In both these Algorithms,

we standardized the resulted residuals from the GARCH specifications using the central moments of the

skewed Student-t distribution, whereas in DCC we standardized them with the usage of the estimated shape
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parameter of the multivariate Student-t distribution. Particularly, between DCC and Copula GARCHmodels,

the latter one burdens the simulation procedure with the extra dependence parameter θ. The marginals of

the residuals have not been utilized in the standardization process of DCC as in Algorithms 1 and 2, and the

resulted average length of the forecasts is moderately low. In Algorithm 2, we report even higher average

length of the predictions in comparison with the Algorithm 1 due to the additional parameter of dependence

introduced in the simulation process.

For illustrative purposes, Figures 6 and 7 compare the GaR predictions (red line) resulted from the

standard univariate and multivariate GARCH processes for each economy with the actual GDP growth rates

(black line) at confidence level p = 0.05, coverage fraction of economies q = 0.4 and forecasting horizons

d = 3, 24. We notice that average length rapidly grows in all three models with the concurrent increase

of time horizon. Nevertheless, in the case of DCC the rise is more modest since it generates lower GaR

predictions, but fairly closer to the real GDP growth rates. It is noteworthy that our work is based on

monthly GDP growth rates, and we thus produce monthly forecasts, while most of the work done in the

literature related with macroeconomic variables is built upon quarterly data. Therefore, despite the fact that

24-months represent the same time horizon as 8-quarters, the former case is more susceptible to errors due

to the longer forecasting time horizon.

Standard vs GJR GARCH

The standard GARCH underperforms when compared against its asymmetric counterpart, except for the

setting of multivariate DCC. Analytically, DCC-S-GARCH produces d-month forecasts with average empirical

coverage closer to the nominal at all p and q levels, but with higher average lengths. However, the differences

in lengths belong to the same order of magnitude. On the contrary, the univariate and multivariate Copula

asymmetric GARCH specifications ameliorate the joint GaR predictions, since we report average empirical

coverage closer to the nominal at all p and q levels with the cost of higher average lengths. The Kupiec and

DQ(0) tests, when defined, can not support the supremacy of either GARCH variant. Both models reject

the hypothesis of independent violations. To better comprehend the performance switching of standard and

asymmetric GARCH processes, we refer to Figures 8, 9, and 10. The conditional volatility from GJR-GARCH

presents a stable pattern, while the one from S-GARCH abruptly increases. This is substantiated by the

standard GARCH coefficients that marginally sum to 1 resulting in an exploding behavior of the volatility.

In the case of OECD and NAFTA economies, the plots are similar since the coefficients resulted from both

GARCH specifications approach the same sum. The superiority of asymmetric variant of Copula-GARCH

model is clearly visible in the subplot 10a in which C-S-GARCH generates slightly more extreme bivariate

observations in the lower tail. The worsened behavior of DCC-GJR-GARCH in comparison with its standard

counterpart is due to estimating correlations between economies as negative, when in fact they are mainly

positively associated.
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Long-term predictive ability

The predictions of joint GaR exacerbate with the rise of the forecast horizon. Hence, it is essential to

highlight in our context, the magnitude of such deteriorating performance and the corresponding implications

for policymakers. The average length distinguishably increases with the concurrent increase of forecast

horizon, while the average empirical coverage diverges even further from the nominal rate. This is due to

the distributional misspecification errors resulted from the simulated residuals. The null hypothesis of the

unconditional test of Kupiec, along with its analogous version DQ(0), when defined, is never rejected in

the short-term horizon of 3-months. Nevertheless, independent violations are never observable. From a

monitoring perspective, policymakers can accurately predict the joint GaR in the short term and proceed to

relevant macroprudential regulations in the economy. As a final remark for the predictability power of the

algorithms in terms of time horizon, we highlight that the thesis is based on monthly GDP growth rates and

corresponding monthly forecasts, in contrast to the established macroeconomic research methods that engage

with quarterly data. In terms of forecast horizon, our monthly predictions are equivalent to d-quarters ahead,

but they are more susceptible to compounding errors due to model misspecifications.

Without vs With Cross Sectional Information

Algorithm 1 does not incorporate cross-sectional information across the panel of selected economies, underper-

forming in comparison with the multivariate GARCH processes. This makes evident that in reality different

economies affect each other, and consideration of no structure of dependence (dynamic correlation or copula

function) worsens the predictions of macroeconomic variables. We distinguish two important aspects of the

results that support the underperformance of Algorithm 1. Firstly, the unconditional test of Kupiec and its

analogous version DQ(0) reject the null hypothesis in all the cases of d-month forecasts at all p and q levels.

Secondly, as can be shown by Tables 4, 5, 6, and 7, DCC and Copula substantially outperform Algorithm 1 in

all the respective backtesting criteria. Comparison of DCC and Copula is more challenging and no conclusive

evidence can be obtained. Analytically, DCC consistently produces smaller average length in contrast to the

excessively high length of Copula models. However, Copulas persistently generate forecasts with empirical

coverage closer to the nominal in all d-month horizons forecasts, whereas in DCC the corresponding coverage

substantially decreases. Particularly, C-S-GARCH succeeds to not reject the null hypothesis for the 24-month

predictions at the higher fraction 0.8 at both probability levels. However, the reported average lengths are

extremely high; a fact supported by subplot 7c. For this reason, the aforementioned success of independent

hits is not ideal, since unnecessarily low joint GaR predictions are produced.
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Table 3: In-sample GARCH analysis.

Model

Economies
OECD+6MajorNME OECD Eurozone NAFTA Big4Eur

S-GARCH(1,1)

µ 3.579 2.095 1.710 2.000 1.280

ω 0.028 0.115 0.092 0.219 0.099

α 0.825 0.999 0.999 0.999 0.999

{0} {0} {0} {0} {0.007}

β 0.174 0.000 0.000 0.000 0.000

{0} {1} {1} {1} {1}

ξ 0.399 0.269 0.255 0.320 0.290

{0} {0} {0} {0} {0.015}

ν 58.143 6.200 6.727 6.781 6.850

{0.580} {0.035} {0} {0} {0.010}

GJR–GARCH(1,1)

µ 4.420 2.095 1.710 4.389 3.126

ω 0.056 0.115 0.092 0.228 0.090

α 0.822 1.000 1.000 0.669 0.810

{0} {0} {0} {0} {0}

β 0.000 0.000 0.000 0.000 0.000

{1} {1} {1} {1} {1}

γ 0.298 -0.006 -0.003 0.540 0.316

{0.013} {0.974} {0.986} {0.100} {0.011}

ξ 2.874 0.269 0.255 3.310 3.327

{0} {0} {0} {0} {0}

ν 6.946 6.185 6.709 4.774 5.994

{0} {0} {0} {0.004} {0}

DCC-S-GARCH(1,1)

ν 6.795 α̃ 0.782 β̃ 0.188

{0} {0} {0}

DCC-GJR-GARCH(1,1)

ν 11.266 α̃ 0.718 β̃ 0.255

{0} {0} {0.002}

C-S-GARCH(1,1)

ν 3.080 θ 0.768

{0.009}

C-GJR-GARCH(1,1)

ν 11.439 θ 0.614

{0.012}

Note. This table reports the optimal parameters of GARCH processes as estimated from fitting the entire sample

series to the S-GARCH and GJR-GARCH, and to their multivariate extensions, DCC and Copula . The curly

braces include the p-values for the null hypothesis of significance of the estimated parameters. All reported

numbers are rounded to 3 decimals.
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(a) Standard GARCH joint GaR predictions vs real GDP

growth rates

(b) Standard DCC joint GaR predictions vs real GDP

growth rates

(c) Standard Copula-GARCH joint GaR predictions vs

real GDP growth rates

Figure 6: Plots of joint GaR predictions (red line) and real GDP growth rates (black line) for confidence

level p = 0.05, economies coverage q = 0.4 and forecasting horizon d = 3
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(a) Standard GARCH joint GaR predictions vs real GDP

growth rates

(b) Standard DCC joint GaR predictions vs real GDP

growth rates

(c) Standard Copula-GARCH joint GaR predictions vs

Real GDP growth rates

Figure 7: Plots of joint GaR predictions (red line) and real GDP growth rates (black line) for confidence

level p = 0.05, economies coverage q = 0.4 and forecasting horizon d = 24
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Figure 8: The plot shows the conditional volatilities as resulted from fitting the entire sample series to the

considered standard (black line) and asymmetric (red line) GARCH(1,1).

Figure 9: The plot shows the dynamic conditional correlations between a selection of economies. The black

and red lines represent respectively the dynamic correlations as resulted from fitting the entire sample series

to a multivariate DCC-S-GARCH and DCC-GJR-GARCH.
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(a) Simulated bivariate observations from Student-t

copula with skewed Student-t margins vs real GDP

growth rates of the respective economies

(b) Simulated bivariate observations from Student-t

copula with Student-t margins vs real GDP growth rates

of the respective economies

(c) Simulated bivariate observations from Normal copula

with skewed Student-t margins vs Real GDP growth rates

of the respective economies

Figure 10: Plots of simulated bivariate observations from the multivariate C-S-GARCH(red dots),

C-GJR-GARCH(green dots), and real GDP growth rates (black dots). The conducted number of

simulations is 3000 with the estimated parameters from the in-sample GARCH analysis

(θ, ν) = (0.768, 3.080) and(θ, ν) = (0.614, 11, 439) for the standard and asymmetric GARCH models

respectively.
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Table 4: Joint GaR forecast evaluation with p = 0.02 and q = 0.4.

d Model Kupiec Length Cov. DQ(0) DQ(4)

3 S-GARCH(1,1) 0.000 -0.918 75.238 0.000 0.000

GJR-GARCH(1,1) 0.002 32.292 92.381 0.030 0.000

DCC-S-GARCH(1,1) 0.555 -3.437 97.143 0.598 0.000

DCC-GJR-GARCH(1,1) 0.555 -2.487 97.143 0.598 0.000

C-S-GARCH(1,1) 0.555 2.142 97.143 0.598 0.000

C-GJR-GARCH(1,1) 0.238 44.909 96.191 0.333 0.000

6 S-GARCH(1,1) 0.000 47.526 67.647 0.000 0.000

GJR-GARCH(1,1) 0.000 444.379 88.235 0.002 0.000

DCC-S-GARCH(1,1) 0.023 -4.354 94.118 0.096 0.000

DCC-GJR-GARCH(1,1) 0.000 -4.986 77.451 0.000 0.000

C-S-GARCH(1,1) 0.000 69.172 87.255 0.001 0.000

C-GJR-GARCH(1,1) 0.000 638.623 91.177 0.015 0.000

12 S-GARCH(1,1) 0.000 7086.548 60.417 0.000 0.000

GJR-GARCH(1,1) 0.000 51669.070 83.333 0.000 0.000

DCC-S-GARCH(1,1) 0.000 -4.970 75 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -6.290 17.708 0.000 0.000

C-S-GARCH(1,1) 0.000 12078.320 83.333 0.000 0.000

C-GJR-GARCH(1,1) 0.000 80096.920 85.417 0.000 0.000

24 S-GARCH(1,1) 0.000 153882489 71.429 0.000 0.000

GJR-GARCH(1,1) 0.000 641654209 82.143 0.000 0.000

DCC-S-GARCH(1,1) 0.000 -5.083 71.429 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -6.481 14.286 0.000 0.000

C-S-GARCH(1,1) 0.000 266645677 86.905 0.003 0.000

C-GJR-GARCH(1,1) 0.000 1147168533 88.095 0.005 0.000

Note. This table reports the p-values of the GaR adequacy tests considered (Kupiec,DQ without and with Hits),

the average empirical joint coverage and average length for each forecast horizon and forecasting method. All

reported numbers are rounded to 3 decimals.



5.2 Out-of-Sample analysis 30

Table 5: Joint GaR forecast evaluation with p = 0.02 and q = 0.8.

d Model Kupiec Length Cov. DQ(0) DQ(4)

3 S-GARCH(1,1) 0.000 -3.752 59.048 0.000 0.000

GJR-GARCH(1,1) - 13.884 100 - -

DCC-S-GARCH(1,1) 0.026 -4.701 94.286 0.101 0.000

DCC-GJR-GARCH(1,1) 0.002 -3.991 92.381 0.030 0.000

C-S-GARCH(1,1) 0.002 -1.524 92.381 0.030 0.000

C-GJR-GARCH(1,1) - 22.591 100 - -

6 S-GARCH(1,1) 0.000 20.919 59.804 0.000 0.000

GJR-GARCH(1,1) - 189.987 100 - -

DCC-S-GARCH(1,1) 0.000 -5.516 86.275 0.001 0.000

DCC-GJR-GARCH(1,1) 0.000 -6.210 49.020 0.000 0.000

C-S-GARCH(1,1) 0.000 36.009 82.353 0.000 0.000

C-GJR-GARCH(1,1) - 303.225 100 - -

12 S-GARCH(1,1) 0.000 2860.446 70.833 0.000 0.000

GJR-GARCH(1,1) - 14813.230 100 - -

DCC-S-GARCH(1,1) 0.000 -5.802 78.125 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -6.959 13.542 0.000 0.000

C-S-GARCH(1,1) 0.000 5867.204 85.417 0.001 0.000

C-GJR-GARCH(1,1) - 28587.600 100 - -

24 S-GARCH(1,1) 0.000 31902429 71.429 0.000 0.000

GJR-GARCH(1,1) - 88055804 100 - -

DCC-S-GARCH(1,1) 0.000 -5.825 85.714 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -7.144 9.524 0.000 0.000

C-S-GARCH(1,1) 0.009 99222677 92.857 0.067 0.000

C-GJR-GARCH(1,1) - 230153302 100 - -

Note. This table reports the p-values of the GaR adequacy tests considered (Kupiec,DQ without and with Hits),

the average empirical joint coverage and average length for each forecast horizon and forecasting method. All

reported numbers are rounded to 3 decimals.
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Table 6: Joint GaR forecast evaluation with p = 0.05 and q = 0.4.

d Model Kupiec Length Cov. DQ(0) DQ(4)

3 S-GARCH(1,1) 0.000 -1.882 55.238 0.000 0.000

GJR-GARCH(1,1) 0.000 26.123 80.952 0.000 0.000

DCC-S-GARCH(1,1) 0.126 -4.751 91.429 0.191 0.000

DCC-GJR-GARCH(1,1) 0.251 -4.830 92.381 0.312 0.000

C-S-GARCH(1,1) 0.251 -0.065 92.381 0.312 0.002

C-GJR-GARCH(1,1) 0.251 34.454 92.381 0.312 0.000

6 S-GARCH(1,1) 0.000 38.615 52.941 0.000 0.000

GJR-GARCH(1,1) 0.000 354.026 78.431 0.000 0.000

DCC-S-GARCH(1,1) 0.000 -5.406 67.647 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -6.384 11.765 0.000 0.000

C-S-GARCH(1,1) 0.000 51.866 77.451 0.000 0.000

C-GJR-GARCH(1,1) 0.007 468.338 88.235 0.034 0.000

12 S-GARCH(1,1) 0.000 5681.884 45.833 0.000 0.000

GJR-GARCH(1,1) 0.000 37639.130 78.125 0.000 0.000

DCC-S-GARCH(1,1) 0.000 -5.666 53.125 0.000 0.000

DCC-GJR-GARCH(1,1) - -6.903 0 - -

C-S-GARCH(1,1) 0.000 8817.945 77.083 0.000 0.000

C-GJR-GARCH(1,1) 0.000 52545.610 82.292 0.001 0.000

24 S-GARCH(1,1) 0.000 113218951 50 0.000 0.000

GJR-GARCH(1,1) 0.000 397525472 82.143 0.002 0.000

DCC-S-GARCH(1,1) 0.402 -5.731 69.048 0.333 0.000

DCC-GJR-GARCH(1,1) - -7.040 0 - -

C-S-GARCH(1,1) 0.000 181561159 83.333 0.004 0.000

C-GJR-GARCH(1,1) 0.001 630391409 85.714 0.015 0.000

Note. This table reports the p-values of the GaR adequacy tests considered (Kupiec,DQ without and with Hits),

the average empirical joint coverage and average length for each forecast horizon and forecasting method. All

reported numbers are rounded to 3 decimals.
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Table 7: Joint GaR forecast evaluation with p = 0.05 and q = 0.8.

d Model Kupiec Length Cov. DQ(0) DQ(4)

3 S-GARCH(1,1) 0.000 -4.210 52.381 0.000 0.000

GJR-GARCH(1,1) - 10.956 100 - -

DCC-S-GARCH(1,1) 0.000 -5.597 84.762 0.004 0.000

DCC-GJR-GARCH(1,1) 0.000 -5.852 50.476 0.000 0.000

C-S-GARCH(1,1) 0.000 -2.674 79.048 0.000 0.000

C-GJR-GARCH(1,1) - 10.956 100 - -

6 S-GARCH(1,1) 0.000 16.347 51.961 0.000 0.000

GJR-GARCH(1,1) - 154.064 100 - -

DCC-S-GARCH(1,1) 0.000 -6.108 65.686 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -7.052 8.824 0.000 0.000

C-S-GARCH(1,1) 0.000 27.906 79.412 0.000 0.000

C-GJR-GARCH(1,1) 0.000 229.108 100 0.000 0.000

12 S-GARCH(1,1) 0.000 2158.608 56.250 0.000 0.000

GJR-GARCH(1,1) - 10696.200 100 - -

DCC-S-GARCH(1,1) 0.000 -6.203 66.667 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -7.362 6.250 0.000 0.001

C-S-GARCH(1,1) 0.000 4296.103 84.375 0.000 0.000

C-GJR-GARCH(1,1) - 18993.280 100 - -

24 S-GARCH(1,1) 0.000 15128055 58.333 0.000 0.000

GJR-GARCH(1,1) - 49191061 100 - -

DCC-S-GARCH(1,1) 0.000 -6.227 83.333 0.004 0.000

DCC-GJR-GARCH(1,1) - -7.502 0 - -

C-S-GARCH(1,1) 0.036 62428704 89.286 0.090 0.000

C-GJR-GARCH(1,1) - 116177088 100 - -

Note. This table reports the p-values of the GaR adequacy tests considered (Kupiec,DQ without and with Hits),

the average empirical joint coverage and average length for each forecast horizon and forecasting method. All

reported numbers are rounded to 3 decimals.
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6 Conclusion

In this paper, we backtest the out-of-sample joint GaR predictions for a panel of 5 economies. We rely

on the standard and asymmetric univariate GARCH models and their multivariate extensions, DCC and

Copula. Algorithm 1 provided fairly poorer results compared to the multivariate GARCH specifications that

considered cross-sectional information across the panel of the selected economies. Nevertheless, the more

accurate forecasts were produced in the 3-month horizon. Between DCC and Copula GARCH processes,

the former model built upon the standard univariate GARCH process, generated more accurate joint GaR

predictions under the average length criterion and moderately accurate empirical coverage. The asymmetric

counterpart of the multivariate Copula-GARCH produces better predictions when the empirical coverage is

concerned. Before proceeding to the recommended further research, we briefly highlight the distributional

assumptions and estimation methods of models to underline the reasons for their aforementioned predictive

performance.

Algorithm 1 is built upon univariate GARCH specifications estimated by maximum likelihood and as-

suming skewed Student-t residuals. Hence, it is subjected to distributional misspecification errors, and

additionally, it does not take into account dependence across the panel of the economies. On the other side,

Copula-GARCH introduces a dependence parameter θ among the economies and a joint shape parameter

ν, estimated aparametrically, and makes usage of the skewed Student-t marginals of the innovations. Thus,

Copula-GARCH is also susceptible to distributional misspecification errors and burdens the simulation pro-

cess with the parameter θ. In DCC however, we consider a dynamic correlation between the economies and

proceed to a two-step estimation with quasi maximum likelihood and in the standardization process the

marginals of the residuals are not utilized, but only the joint shape parameter ν.

Therefore, the superiority of DCC, in terms of reasonable average length values, reveals that the QML

estimation method and cross-sectional information greatly improve the predictions of joint GaR, whereas

the inferiority of Algorithm 1 to Algorithm 2 shows that dependence in variates in the joint GaR context is

more crucial than the distributional assumptions. As a final remark, we highlight that copulas are used for

modelling the joint behavior of random variables with a dependence structure. Combining a copula with the

appropriate margins is quite challenging and may lead to severe problems in risk management. In Figure

10, we present several scatter plots of different pair of economies with simulated bivariate observations from

Student-t and Normal copulas. We conduct three distinct combinations of copulas with margins to support

the usage of our proposed model. As illustrated, all combinations can adequately capture extreme events

especially in the lower tail. Nevertheless, bivariate Student-t copula with skewed Student-t margins is the

only one to capture extreme events in the upper tail, rendering it more suitable.
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Further Research

Our work engages with the prediction of joint GaR and in this context, we address issues such as the modeling

of volatility, the distributional assumptions of residuals, and the incorporation of cross-sectional information

in the multivariate GARCH framework. However, further research needs to shed light on multiple aspects

of this paper. To begin with, the Student-t copula entails two main shortcomings according to Church

(2012), i) it does not account for asymmetry in joint events, and ii) it introduces a common shape parameter

ν for all economies. It would be more realistic, to utilize an asymmetric Student-t copula with individual

degrees of freedom by attributing an individual skewness and shape parameter to each economy. Additionally,

the parameters of the copula could be varying with time since a static copula does not consider dynamic

dependence across the panel of the selected economies.

As the standard univariate GARCH specification is extended by introducing an asymmetric variant, this

could also be applied to multivariate DCC. A multivariate asymmetric DCC GARCH model, proposed by

Cappiello et al. (2006), gives more weight to negative standardized errors similarly with univariate GJR-

GARCH by presenting the indicator function in Equation 7 that describes the dynamics of the matrix Qt.

Another equally important feature of this thesis that should be investigated is the modelling of mean, which

could be more sophisticated and follow an ARMA process. Choosing the best order for ARMA-GARCH

models has been extensively studied. A standard procedure to diagnose the orders of ARMA processes is by

looking at the ACF and PACF (Partial Autocorrelation) plots of the time series as Box et al. (2015) propose.

If both plots concurrently gradually decrease, then an ARMA process should be applied. On the other side,

selection of the best ARMA-GARCH model can be conducted by the AIC (Akaike information criterion) as

suggested by Brockwell et al. (2016).
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Appendices

A Plots

Figure 11: The QQ plots show the standardized residuals against the theoretical quantiles from Normal,

Student-t and skew Student-t distributions. The parameters in skew Student-t are location, scale, skewness

and degrees of freedom and are estimated from fitting the entire OECD+6MajorNME GDP growth rates

series to a standard GARCH(1,1) model by MLE. The standardized residuals are estimated from fitting the

entire OECD+6MajorNME GDP growth rates series to a standard GARCH(1,1) model by QMLE.
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Figure 12: The QQ plots show the standardized residuals against the theoretical quantiles from Normal,

Student-t and skew Student-t distributions. The parameters in skew Student-t are location, scale, skewness

and degrees of freedom and are estimated from fitting the entire OECD GDP growth rates series to a

standard GARCH(1,1) model by MLE. The standardized residuals are estimated from fitting the entire

OECD GDP growth rates series to a standard GARCH(1,1) model by QMLE.
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Figure 13: The QQ plots show the standardized residuals against the theoretical quantiles from Normal,

Student-t and skew Student-t distributions. The parameters in skew Student-t are location, scale, skewness

and degrees of freedom and are estimated from fitting the entire NAFTA GDP growth rates series to a

standard GARCH(1,1) model by MLE. The standardized residuals are estimated from fitting the entire

NAFTA GDP growth rates series to a standard GARCH(1,1) model by QMLE.
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Figure 14: The QQ plots show the standardized residuals against the theoretical quantiles from Normal,

Student-t and skew Student-t distributions. The parameters in skew Student-t are location, scale, skewness

and degrees of freedom and are estimated from fitting the entire Big4Eur GDP growth rates series to a

standard GARCH(1,1) model by MLE. The standardized residuals are estimated from fitting the entire

Big4Eur GDP growth rates series to a standard GARCH(1,1) model by QMLE.
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(a) ACF Plots of the selected economies (b) PACF of the selected economies

Figure 15: The (P)ACF plots show the autocorrelation of the squared standardized residuals. The

standardized residuals are estimated from fitting the entire GDP growth rates series of each economy to a

GJR-GARCH(1,1) model.
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B Additional Tables

Table 8: Joint GaR forecast evaluation with p = 0.1 and q = 0.4.

d Model Kupiec Length Cov. DQ(0) DQ(4)

3 S-GARCH(1,1) 0.000 -2.560 39.048 0.000 0.000

GJR-GARCH(1,1) 0.000 21.507 76.191 0.001 0.000

DCC-S-GARCH(1,1) 0.000 -5.490 53.333 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -6.117 3.810 0.000 0.000

C-S-GARCH(1,1) 0.000 -1.447 69.524 0.000 0.000

C-GJR-GARCH(1,1) 0.166 26.962 85.714 0.210 0.000

6 S-GARCH(1,1) 0.000 32.114 38.235 0.000 0.000

GJR-GARCH(1,1) 0.000 289.717 76.471 0.001 0.000

DCC-S-GARCH(1,1) 0.000 -5.899 38.235 0.000 0.000

DCC-GJR-GARCH(1,1) - -6.991 0 - -

C-S-GARCH(1,1) 0.000 40.581 60.784 0.000 0.000

C-GJR-GARCH(1,1) 0.000 359.250 77.451 0.002 0.000

12 S-GARCH(1,1) 0.000 4651.460 38.542 0.000 0.000

GJR-GARCH(1,1) 0.001 28215.790 78.125 0.004 0.000

DCC-S-GARCH(1,1) 0.000 -6.029 40.625 0.000 0.000

DCC-GJR-GARCH(1,1) - -7.249 0 - -

C-S-GARCH(1,1) 0.000 6696.024 62.500 0.000 0.000

C-GJR-GARCH(1,1) 0.001 36537.050 78.125 0.004 0.000

24 S-GARCH(1,1) 0.000 83160445 35.714 0.000 0.000

GJR-GARCH(1,1) 0.029 258307014 82.143 0.060 0.000

DCC-S-GARCH(1,1) 0.000 -6.083 58.333 0.000 0.000

DCC-GJR-GARCH(1,1) - -7.367 0 - -

C-S-GARCH(1,1) 0.000 126108920 67.857 0.000 0.000

C-GJR-GARCH(1,1) 0.029 364148022 82.143 0.060 0.000

Note. This table reports the p-values of the GaR adequacy tests considered (Kupiec,DQ without and with Hits),

the average empirical joint coverage and average length for each forecast horizon and forecasting method. All

reported numbers are rounded to 3 decimals.
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Table 9: Joint GaR forecast evaluation with p = 0.1 and q = 0.8.

d Model Kupiec Length Cov. DQ(0) DQ(4)

3 S-GARCH(1,1) 0.000 -4.581 47.619 0.000 0.000

GJR-GARCH(1,1) - 8.695 100 - -

DCC-S-GARCH(1,1) 0.008 -6.098 59.048 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -6.784 8.571 0.000 0.000

C-S-GARCH(1,1) 0.000 -3.428 65.714 0.000 0.000

C-GJR-GARCH(1,1) - 13.341 100 - -

6 S-GARCH(1,1) 0.000 12.793 46.078 0.000 0.000

GJR-GARCH(1,1) - 127.535 100 - -

DCC-S-GARCH(1,1) 0.000 -6.382 51.961 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -7.428 8.824 0.000 0.000

C-S-GARCH(1,1) 0.000 21.748 66.667 0.000 0.000

C-GJR-GARCH(1,1) - 178.449 100 - -

12 S-GARCH(1,1) 0.000 1622.515 54.167 0.000 0.000

GJR-GARCH(1,1) - 8002.794 100 - -

DCC-S-GARCH(1,1) 0.000 -6.428 54.167 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -7.591 4.167 0.000 0.000

C-S-GARCH(1,1) 0.004 3167.537 80.208 0.016 0.000

C-GJR-GARCH(1,1) - 12982.720 100 - -

24 S-GARCH(1,1) 0.000 4606387 44.048 0.000 0.000

GJR-GARCH(1,1) - 17706366 100 - -

DCC-S-GARCH(1,1) 0.000 -6.459 58.333 0.000 0.000

DCC-GJR-GARCH(1,1) - -7.728 0 - -

C-S-GARCH(1,1) 0.013 37798656 80.952 0.035 0.001

C-GJR-GARCH(1,1) - 55198241 100 - -

Note. This table reports the p-values of the GaR adequacy tests considered (Kupiec,DQ without and with Hits),

the average empirical joint coverage and average length for each forecast horizon and forecasting method. All

reported numbers are rounded to 3 decimals.
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Table 10: Joint GaR forecast evaluation with p = 0.15 and q = 0.4.

d Model Kupiec Length Cov. DQ(0) DQ(4)

3 S-GARCH(1,1) 0.000 -2.965 37.143 0.000 0.000

GJR-GARCH(1,1) 0.018 18.894 76.191 0.034 0.000

DCC-S-GARCH(1,1) 0.000 -5.855 23.810 0.000 0.000

DCC-GJR-GARCH(1,1) - -6.683 0 - -

C-S-GARCH(1,1) 0.000 -2.195 46.667 0.000 0.000

C-GJR-GARCH(1,1) 0.000 22.807 78.095 0.000 0.000

6 S-GARCH(1,1) 0.000 28.306 35.294 0.000 0.000

GJR-GARCH(1,1) 0.024 253.818 76.471 0.042 0.000

DCC-S-GARCH(1,1) 0.000 -6.121 19.608 0.000 0.000

DCC-GJR-GARCH(1,1) - -7.248 0.000 - -

C-S-GARCH(1,1) 0.000 34.220 40.1960 0.000 0.000

C-GJR-GARCH(1,1) 0.024 300.485 76.471 0.042 0.000

12 S-GARCH(1,1) 0.000 4044.049 35.417 0.000 0.000

GJR-GARCH(1,1) 0.041 23365.100 77.083 0.065 0.000

DCC-S-GARCH(1,1) 0.000 -6.206 27.083 0.000 0.000

DCC-GJR-GARCH(1,1) - -7.417 0 - -

C-S-GARCH(1,1) 0.000 5519.040 44.792 0.000 0.000

C-GJR-GARCH(1,1) 0.041 28520.150 77.083 0.065 0.000

24 S-GARCH(1,1) 0.000 66522731 32.143 0.000 0.000

GJR-GARCH(1,1) 0.474 193911469 82.143 0.494 0.000

DCC-S-GARCH(1,1) 0.000 -6.256 46.429 0.000 0.000

DCC-GJR-GARCH(1,1) - -7.533 0 - -

C-S-GARCH(1,1) 0.000 95909366 46.429 0.000 0.000

C-GJR-GARCH(1,1) 0.474 250133948 82.143 0.494 0.000

Note. This table reports the p-values of the GaR adequacy tests considered (Kupiec,DQ without and with Hits),

the average empirical joint coverage and average length for each forecast horizon and forecasting method. All

reported numbers are rounded to 3 decimals.
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Table 11: Joint GaR forecast evaluation with p = 0.15 and q = 0.8.

d Model Kupiec Length Cov. DQ(0) DQ(4)

3 S-GARCH(1,1) 0.000 -4.815 45.714 0.000 0.000

GJR-GARCH(1,1) - 7.328 100 - -

DCC-S-GARCH(1,1) 0.000 -6.342 49.524 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -7.205 8.571 0.000 0.000

C-S-GARCH(1,1) 0.000 -3.867 60.952 0.000 0.000

C-GJR-GARCH(1,1) - 11.078 100 - -

6 S-GARCH(1,1) 0.000 10.625 44.118 0.000 0.000

GJR-GARCH(1,1) - 111.928 100 - -

DCC-S-GARCH(1,1) 0.000 -6.506 46.078 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -7.589 7.843 0.000 0.000

C-S-GARCH(1,1) 0.000 18.003 62.745 0.000 0.000

C-GJR-GARCH(1,1) - 150.140 100 - -

12 S-GARCH(1,1) 0.000 1299.287 53.125 0.000 0.000

GJR-GARCH(1,1) - 6488.822 100 - -

DCC-S-GARCH(1,1) 0.000 -6.546 52.083 0.000 0.000

DCC-GJR-GARCH(1,1) 0.000 -7.709 3.125 0.000 0.000

C-S-GARCH(1,1) 0.002 2498.753 72.917 0.008 0.000

C-GJR-GARCH(1,1) - 9979.517 100 - -

24 S-GARCH(1,1) 0.000 -518012.800 33.333 0.000 0.000

GJR-GARCH(1,1) 0.000 -90550.670 97.619 0.000 0.000

DCC-S-GARCH(1,1) 0.000 -6.583 47.619 0.000 0.000

DCC-GJR-GARCH(1,1) - -7.848 0 - -

C-S-GARCH(1,1) 0.002 24423102 71.429 0.006 0.000

C-GJR-GARCH(1,1) 0.000 23526930 97.619 0.000 0.000

Note. This table reports the p-values of the GaR adequacy tests considered (Kupiec,DQ without and with Hits),

the average empirical joint coverage and average length for each forecast horizon and forecasting method. All

reported numbers are rounded to 3 decimals.
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C Derivation of Skewed Student-t Moments

Statement: Let z be a random variable. Then, its density function given a shape parameter ν and a

skewness parameter ξ according to Ghalanos (2020) can be represented as

fν,ξ(z) =
2

ξ + ξ−1

[
fν(ξz)1z<0 + fν

(
ξ−1z

)
1z>0

]
, (22)

where ξ ∈ R+. The absolute moments, required for deriving the central moments, are generated from the

following function

Mr = 2

∫ ∞
0

zrfν(z)dz (23)

The mean and variance are then defined as

E(z) = M1

(
ξ − ξ−1

)
Var(z) =

(
M2 −M2

1

) (
ξ2 + ξ−2

)
+ 2M2

1 −M2,
(24)

where

M1 =

√
ν
πΓ(ν−1

2 )

Γ(ν2 )
and M2 =

ν

ν − 2
(25)

Proof : Based on equation 23, we have M1 = 2
∫∞

0
zfν(z)dz and M2 = 2

∫∞
0
z2fν(z)dz. Hence,

Eν,ξ(z) = 2
ξ+ξ−1

[∫ 0

−∞ zfν(ξz)dz +
∫∞

0
zfν(z | ξ)dz

]
= 2

ξ+ξ−1

[
−1
ξ2

∫ 0

−∞ fν(u)du+ ξ2
∫∞

0
fν(u)du

]
=

M1

ξ+ξ−1 (ξ − ξ−1)(ξ + ξ−1) = M1(ξ − ξ−1),

and

Eν,ξ(z
2) = 2

ξ+ξ−1

[∫ 0

−∞ z2fν(ξz)dz +
∫∞

0
z2fν(z | ξ)dz

]
= 2

ξ+ξ−1

[
1
ξ3

∫ 0

−∞ u2fν(u)du+ ξ3
∫∞

0
u2fν(u)du

]
=

M2

ξ+ξ−1 (ξ + ξ−1)(ξ2 − 1 + ξ−2),

and thus

V arν,ξ(z) = M2(ξ2 − 1 + 1
ξ2 )−M2

1 (ξ2 − 2 + 1
ξ2 ) = (M2 −M2

1 )(ξ2 + 1
ξ2 )−M2 + 2M2

1 .

For k ∈ N+ with 0 < k < ν and for T ∼ St(t | 0, 1, ν), the raw and absolute moments according to Kirkby et

al. (2019) satisfy

E
(
T k
)

=


Γ( k+1

2 )√
π
· νk/2∏k/2

i=1( ν2−i)
, k even

0, k odd
(26)

and

E
(
|T |k

)
=
νk/2Γ((k + 1)/2)Γ((ν − k)/2)√

πΓ(ν/2)
, (27)

where the moments M2 and M1 result respectively from Equations 26 and 27 by substituting k = 2 in the

former equation and k = 1 in the latter one.

After the previous derivations, the proof of the probability P (z < 0) results now directly as follows

P (z < 0) =
2

ξ + ξ−1

∫ 0

−∞
fν(ξz)dz =

2

ξ + ξ−1

1

ξ

∫ 0

−∞
fν(u)du =

2

ξ2 + 1

1

2
=

1

ξ2 + 1
(28)
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