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Abstract

The credit industry is in fast growth which yields reasoning to develop new models to predict credit scores
more accurately. The logistic regression is the industry workhorse because of its ease of interpretation, which
is required by regulators and credit risk managers in credit scoring applications. State-of-the-art machine
learning models such as random forest and XGBoost are known to outperform the traditional statistical
models, but lack interpretability. As such, this research investigates whether the standard framework of the
logistic regression can be improved by extracting information from random forest and XGBoost, in terms of
single-variable transformations and generated interaction terms. We assess the performance using the Gini
Coefficient, the Brier Score and the percentage of correctly classified observations. The study is conducted on
a data set containing the characteristics and transactional behavior of 35,660 self-employed persons and small
business owners with an active bank account at Knab, a Dutch online bank. It is found that transforming the
original set of predictors enhanced with generated interaction terms, results in a model that outperforms the
standard logistic regression substantially. Moreover, this revised logistic regression performs competitively
to random forest, while preserving its simple interpretation.
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1 Introduction

There is a fast growth in the credit industry, leading to extensive use of credit scoring models
for the credit admission evaluation (Huang et al. 2007). Banking institutions apply credit
scoring to classify both retail and corporate applicants as either accepted or rejected based
on their creditworthiness. Borrowers with a high credit score are classified as acceptable
applicants which get access to credit, while borrowers with a low score are classified as un-
acceptable applicants and are rejected or get access with less favorable conditions.

In the credit industry, credit risk managers try to increase the credit volume while mini-
mizing their exposure to default. To do so, there is a need for new models and techniques to
predict credit scores more accurately. As stated by Huang et al. 2007, more accurate credit
scoring has several benefits: (1) reduce the credit analysis cost, (2) decide faster on credit
admission, (3) control existing accounts more closely, and (4) prioritize credit collections.
Additionally, Henley et al. 1997 has shown that improving the accuracy even by a fraction
of a per cent could translate into significant future savings.

There is a wide range of credit scoring techniques available, consisting of both statistical
and machine learning techniques. One of the most frequently used, and therefore the industry
workhorse, is the logistic regression (Crook et al. 2007). The main reason for the popularity
of the traditional logistic regression is its ease of interpretation. The Basel capital accord
does not only encourage banks to develop an accurate credit scoring model, but also requires
it to be easily interpretable (Van Gestel et al. 2005). There are many studies that prove
that the traditional statistical model can be outperformed by machine learning techniques
like random forest, neural networks and support vector machines in credit scorecard appli-
cations (Dumitrescu et al. 2018, Crook et al. 2007, Kumar and Ravi 2007, Luo et al. 2017
among many others). However, while these ensemble or deep learning models benefit from
big data and achieve high accuracy, they end up in a black box, indicating that these models
are unable to capture and present the relationship between the predictors and the target
variable. This makes these machine learning methods undesirable for regulators and credit
risk managers. Ideally, a bank would use a credit scoring model that performs as accurate as
these complex black box models, with the ease of interpretation as obtained with the logistic
regression. Consequently, the objective of this research is to improve the framework of the
logistic regression in credit scoring applications by using information obtained from complex
machine learning techniques, while preserving the simple interpretation. In addition, we in-
vestigate whether the revised logistic regression can perform competitively to the stand-alone
machine learning models.
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Blöchlinger and Leippold 2006 investigate the economic benefits from using credit scoring
models and conclude that even small differences in discriminatory power lead to economically
significant variation in the profitability of a bank’s credit business. Moreover, their study
shows that an increase in the performance of a bank’s credit scoring model negatively affects
the market share and profit of other banks. Berger et al. 2005 analyze the effects of credit
scoring on the quantity, price and risk of small business credit. They find that this technique
causes an increase in the availability of small business credit for higher average prices, in
particular for enterprises with relatively higher risk levels. Since small and medium sized
entities are major contributors to the strength of local economies (Dumitrescu et al. 2018),
these findings yield economic relevance to the use and accuracy of credit scoring models.

In addition to reasons of profitability, accurate credit scoring is of importance for reg-
ulators since the Basel capital accord requires banks to hold an adequate financial buffer
to ensure that they are sufficiently resilient to withstand losses in times of stress and as a
consequence of counterparty credit risk1. This required financial buffer depends on the total
credit risk that banks face, which can be both overstated and understated if the bank uses
an inaccurate credit scoring model (Dumitrescu et al. 2018).

According to Crook et al. 2007 and Dumitrescu et al. 2018 the main reason that machine
learning techniques such as support vector machines, neural networks and tree-ensemble
methods outperform traditional statistical models is due the fact that the latter fails to fit
non-linear effects. In addition to this, there is empirical and theoretical evidence that homo-
geneous ensemble classifiers (such as random forest and gradient boosting machines) improve
the predictive accuracy of credit scoring models by pooling the predictions of various base
models (Paleologo et al. 2010, Finlay 2011, Chen and Guestrin 2016). The reasoning be-
hind this is the Strong Law of Large Numbers, which ensures that adding more trees does
not cause overfitting of the model, but produces a limiting value of the generalization error
(Breiman 2001). The two most well-known algorithms in this classifier family are the bagging
algorithm and the boosting algorithm. These algorithms average the predictions of multiple
base models in case of a numerical response, and apply the majority rule in case of class
labels. The bagging algorithms use bootstrapping to create an ensemble of independent base
models (Breiman 1996), whereas the boosting algorithms iteratively create base models that
depend on the errors made in the previous model (Freund, Schapire, et al. 1996). We will
apply both algorithms in this research as stand-alone machine learning techniques, but also
as underlying models to extract information from.

Baesens et al. 2003 benchmarked state-of-the-art classification algorithms on eight credit
scoring data sets. They found that least-squares support vector machines and neural network

1https://www.bis.org/publ/bcbs189.htm
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perform very well, albeit not significantly better than the traditional statistical methods, for
the majority of the data sets. The updated version of this paper that was published in
2015 (Lessmann et al. 2015) performs the same research in which several advancements are
added to the study, among which novel classification algorithms. In contrast to Baesens
et al. 2003, they find that the neural network classifier performs only mediocre, and again
not significantly better than logistic regression. Another important finding is that the best-
performing homogeneous ensemble method is the random forest, outperforming the support
vector machines, neural networks, boosting algorithms and also the logistic regression.

Brown and Mues 2012 perform an experimental comparison on several classifiers for credit
scoring data sets with large class imbalance. A common characteristic of credit scoring data
sets is high class imbalance since the number of non-defaulting customers is generally much
higher than the number of defaults in a credit portfolio. They find that the random forest
and gradient boosting classifiers are the best-performing models while handling the data im-
balance issue. This yields extra support that bagging and boosting algorithms are adequate
models in this credit scoring research.

In order to improve the logistic regression by means of machine learning techniques, we
propose the following methodology. First, we apply two tree-ensemble classifiers to the data
set, namely random forest (bagging algorithm) and XGBoost (boosting algorithm), and their
predictive performance is compared to that of the logistic regression. In order to obtain a fair
benchmark model, stepwise selection (both forward and backward) and LASSO are applied to
the logistic regression with the original set of predictors, of which the best-performing model
is used as a benchmark. In a next step, generated and transformed features such as higher
order interactions and discretized variables are extracted from the aforementioned machine
learning methods to incorporate in the logistic regression. Particularly, the predictors in
the logistic regression are chosen by means of the Surrogate Assisted Feature Extraction for
Model Learning (SAFE ML) method and the Hybrid Statistical Inference Approach (Hybrid
Approach).

The SAFE ML method, proposed by Gosiewska et al. 2019, transforms the input vari-
ables based on the response of the complex black box model, referred to as the surrogate
model. The transformation consists of discretizing continuous variables and clustering cat-
egories of categorical variables based on the model’s output conditional on the respective
variable. With this approach the variables are transformed to new features, after which they
are extracted from the complex model and incorporated in the logistic regression. With this
technique Gosiewska et al. 2019 investigate whether a transparent glass box model (i.e. re-
vised logistic regression) can be created by extracting information from the black box model,
with a performance close to the black box model. They find that the revised logistic re-
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gression outperforms the standard logistic regression and even outperforms the black box
model for several (artificial) data sets. We apply the SAFE ML method in order to construct
a revised logistic regression with the same goal, but contribute to the existing literature in
three different ways. Firstly, Gosiewska et al. 2019 only use XGBoost as the surrogate model,
whereas we also use random forest for this purpose. Secondly, we apply the methodology for
the first time to a credit scoring data set. Thirdly, the SAFE ML method will be applied
to the original set of input variables to construct one model, but also to the set of variables
that is augmented with new features that are created by the Hybrid Approach to construct
a second model.

The Hybrid Approach, proposed by Levy and O’Malley 2020, captures interactions be-
tween variables from tree-ensemble methods and extracts these as newly generated features
to include in the original set of predictors. In this way, new relationships between second-
order interactions and the target variable can be captured where the logistic regression is
unable to. The constructed interactions are based on SHAP interaction values (Lundberg,
Erion, et al. 2018), which are on their turn based on the SHAP values. The SHapley Ad-
ditive exPlanation (SHAP) values, as introduced by Lundberg and Lee 2017, represent the
attribution of each single feature on the model’s output. Lundberg and Lee 2017 state that
this is the only consistent feature attribution method. The SHAP values are extended to the
SHAP interaction values to consider the impact of pairwise interactions on a given model
prediction. The interaction terms with the highest SHAP interaction values, and thus the
most promising interactions, are included as predictors in the logistic regression. Levy and
O’Malley 2020 perform a benchmark study on 556 data sets and find that the random forest
as a stand-alone machine learning technique significantly outperforms the logistic regression.
A more interesting finding is that also the Hybrid Approach significantly outperforms the
standard logistic regression. We apply the same method but deviate in two aspects from
what is done by Levy and O’Malley 2020: (1) we perform the Hybrid Approach not only in
combination with random forest, but also in combination with XGBoost, and (2) the most
promising second-order interaction terms will be added to the original set of predictors to
construct the Hybrid model, and subsequently this new set will be transformed by means of
the SAFE ML method to construct a second model. In this manner, the SAFE ML method
and the Hybrid Approach generate separate models, but are also entwined in order to combine
the best data representation of single features with new relationships between interactions
and the target. This is an extention of Levy and O’Malley 2020 and Gosiewska et al. 2019
who apply both techniques separately.

As mentioned before, the stand-alone machine learning models end up in a black box.
This means that it is impossible to find the drivers in the model, let alone their exact relation-
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ship with the the probability of default. By applying SAFE ML and the Hybrid Approach,
it is possible to extract all the relevant information from the machine learning models and
include these transformed and generated features in the logistic regression. For example, if
the Hybrid Approach captures {Number of Transactions · Percentage of Transaction Type

1} as a promising interaction term, then this predictor can be interpreted as the number of
type 1 transactions. Consequently, the logistic regression reveals the relative contribution of
this driver, and all the other drivers, to the probability of default. In this way we gain new
insights and interpretability compared to using solely machine learning techniques.

The different models will be evaluated and compared by means of five different perfor-
mance measures, covering the three different facets of performance in classification scorecards:
the discriminatory ability of the models (as measured by the Gini coefficient), the accuracy of
probability predictions (as measured by the Brier Score), and the correctness of categorical
predictions (as measured by the overall percentage of correctly classified observations and
per class). By doing so, we follow both benchmark studies Baesens et al. 2003 and Lessmann
et al. 2015 in which they argue that relying on various metrics that embody the different
notions of performance creates a robust and complete assessment.

Including the generated and transformed features in the logistic regression as described
above allows the proposed credit scoring model to enjoy the exploratory and predictive abili-
ties of machine learning techniques in the high dimensional domain, together with the ability
of the logistic regression to reveal how the set of features vary with each other and the target
variable. As opposed to statistical modeling in combination with traditional variable selec-
tion techniques, the proposed methodology exploits second-order interactions and non-linear
transformations that might have significant explanatory power which otherwise would be
missed. This paper shows that there is much to gain from the marriage between traditional
statistical modeling and machine learning techniques, where the best attributes of each are
combined.

The focus in this paper is on self-employed persons and small business owners, which
implies corporate credit scoring. The data that is used to develop the credit scoring model
consists of characteristics of the companies and their transactional behavior. The char-
acteristics are related to the industry, geographical and general information, whereas the
transactional behavior is reflected by all the transactions that are made by the company.
For corporate credit scoring models the data generally consists of balance sheet items, profit-
and-loss-account items and macro-economic indicators (Lessmann et al. 2015). Hence, the
data in this research deviates from the variables that are generally used for corporate credit
scoring. Another aspect in which the data is different from credit scoring data is that it
does not contain loans and consequently no actual default data. Therefore insolvency of a
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customer is used as an indicator for default. Insolvency is determined by comparing the bal-
ance on the customer’s bank account against a specific threshold. Additionally, we perform
a sensitivity analysis by means of a dynamic threshold that affects the number of defaults in
the data set, such that the robustness of the model with respect to increasing class imbalance
is investigated. The data contains 35,660 customers with an active bank account at Knab, a
Dutch online bank, in the period January 2018 to December 2020.

The results show that the benchmark performance is substantially improved upon by the
stand-alone machine learning models. This confirms that the chosen models are adequate
competing classifiers in this research. Extracting information from these complex machine
learning models by means of the SAFE ML method, to incorporate in the logistic regression
also outperforms the standard logistic regression in terms of the majority of the performance
metrics. Extracting interaction terms from the random forest and XGBoost models by means
of the Hybrid Approach leads to an underperformance compared to the benchmark. However,
combining both methodologies, such that also the identified interaction terms are transformed
by the SAFE ML method, yields a revised logistic regression model that substantially out-
performs the benchmark. In particular, there is an improvement of the Gini coefficient of
more than 10% and an increase in the PCC for the default class of 9.15%. Moreover, when
this technique is applied in combination with random forest, we find the best performance
among the interpretable models, performing competitively to the stand-alone machine learn-
ing models.

In addition to improving the performance of the standard framework of the logistic regres-
sion, we also gain more insights into the drivers in the model. Namely, the interpretability
characteristic of the logistic regression allows us calculate the marginal effect of each predictor
on the probability of default. Applying this characteristic to the new features constructed
by the SAFE ML method and the Hybrid Approach, allows us to gain interpretability in
two ways. Firstly, we calculate the coefficient per single-variable for different intervals. For
example, the variable Days without Tax Payments is transformed into four binary features
for the intervals [-∞, 13.48], [13.48, 22.54], [22.54, 28.06], and [28.06, ∞]. These obtain
a different estimated coefficient representing the marginal effect, leading to more detailed
insights. Secondly, we calculate the coefficients for interpretable interaction terms. For ex-
ample, the interaction term {Number of Transactions · Percentage of Transaction Type

3} is generated and transformed into binary features for different intervals. This leads to
new insights arising from the newly constructed interaction term, and more detailed insights
as a consequence of the discretization.

From the results can be concluded that the logistic regression is an adequate model for
credit scoring applications since it performs well on the credit scoring data set and out-
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performs two of the proposed models. Nonetheless, enhancing the logistic regression with
information extracted from complex machine learning techniques in terms of single-variable
transformation and pairwise interactions, outperforms the industry workhorse substantially.
This implies that the standard framework of the traditional logistic regression can be im-
proved by means of machine learning techniques, while preserving its simple interpretation.

The rest of the paper is organized as follows. Section 2 provides a description of the data
that is used to develop the models. Section 3 describes the methodology of the proposed
techniques and summarizes the classification performance criteria. The results are discussed
in Section 4. Finally, in Section 5 the conclusions are drawn from this research together with
a discussion of the limitations and interesting further research.

2 Data

2.1 Features

The data that is used for this research consists of self-employed persons and small business
owners (referred to as customers) that have an active bank account at Knab. The data
set contains all the transactions of 35,660 customers over the period January 2018 to De-
cember 2020 (∼ 9.6 million transactions). For each transaction various specifications are
available such as the type of the transaction, the amount, a tax indicator and more. Us-
ing these specifications we have constructed the following variables: Net Inflow, Tax, Crypto
Trader, Money Service, Fraud Victim, High Risk Country, Medium Risk Country, Number of

Transactions, Percentage of Type 1 Transactions, Percentage of Type 2 Transactions,
Percentage of Type 3 Transactions, Percentage of Negative

Transactions and the Days without Tax Payments. We pool the specifications of the trans-
actions per month for the corresponding customer to be used as a predictor. As an example,
let customer X have 200 transactions in a certain month. Then for the feature Net Inflow

the amount of each transaction in the respective month is summed over the 200 transac-
tions, yielding the Net Inflow for customer X as a predictor. Next to this, the data contains
characteristics of the customers such as the industry (SBI Sector), geographical information
(Province) and general information such as the number of Existing Days, the number of
Employees and the number of Registered Days at Knab. Table 1 shows some descriptive
statistics of the continuous and binary variables corresponding to the transactional behavior
and the characteristics of the customers. Refer to Tables 11 - 14 in the Appendix for more
descriptive statistics and a list with the description of all features.

7



Table 1: Descriptive statistics of the continuous and binary variables corresponding to the transactional
behavior and characteristics of the customers. Refer to Table 11 in the Appendix for the descriptions of the
variables

Features Type Mean Stand. Dev. Min Max

Net Inflow Transactional behavior 390.6020 20220.1900 -4192296 1793273
Tax Transactional behavior -1037.1693 4056.0458 -291407 214899
Number of Transactions Transactional behavior 23.2934 32.0348 0 2007
Days without Tax Payments Transactional behavior 26.9099 4.8144 1 30
Crypto Trader Transactional behavior 0.0010 0.0316 0 1
Money Service Transactional behavior 0.0508 0.2196 0 1
Fraud Victim Transactional behavior 0.0112 0.1052 0 1
High Risk Country Transactional behavior 0.0005 0.0225 0 1
Medium Risk Country Transactional behavior 0.0131 0.1139 0 1
Percentage of Type 1 Transactions Transactional behavior 0.5478 0.2984 0 1
Percentage of Type 2 Transactions Transactional behavior 0.2329 0.2257 0 1
Percentage of Type 3 Transactions Transactional behavior 0.2131 0.2883 0 1
Percentage of Negative Transactions Transactional behavior 0.7052 0.2160 0 1
Employees Characteristic 0.9597 1.9610 0 200
Registered Days Characteristic 740.2282 408.6101 24 1976
Existing Days Characteristic 2196.8935 3111.8139 24 43812

2.2 Target

Since the data does not contain loans and consequently no actual default data, we use in-
solvency of a customer as an indicator for default in case that the customer would actually
have a loan. The insolvency is calculated as follows. When a customer has a lower balance
on their bank account than a certain threshold for 90 consecutive days in a time-frame of
one year ahead, this customer is classified as insolvent. This is calculated for each customer
where insolvency (∼ default) is indicated with a one and solvency (∼ no default) with a zero
and used as the target variable for the credit scoring model. For the time period to determine
the (in)solvency, a forward looking rolling window of one year is used, such that the model
predicts the probability that the customer will default in the coming year. The choice for
the rolling window of one year is based on the default rate curve which is shown in Figure
1. For the purposes of application scorecards there is no strict requirement for the forecast
period. We want to model the number of expected defaults for the customers that are scored
and by selecting the cut-off where the curve flattens, the number of months of data required
is reduced, without missing material defaults after that point. This gives a good estimate of
what can be expected in terms of the total defaults.
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Figure 1: Default rate curve: showing the default rate for the different number of months for the
forward looking rolling window.

In addition, we perform a sensitivity analysis of the model by means of a dynamic thresh-
old. For this analysis the model is developed for different values of the threshold, which
affects the number of defaults among the customers. This allows to investigate the robust-
ness in model performance for increasing class imbalance and to check whether the same set
of features is of importance for the different values of the threshold. These values are de-
termined by three different principal loan amounts of AC5000, AC7500 and AC10000, where the
threshold is set equal to the monthly obligation for the respective loan including the interest
of 4%2 based on a 10-year duration. The principal loan amounts are chosen in accordance
with the default rate that follows from the corresponding thresholds, which is based on the
average default rate among SME loans at Knab over the years 2018-2020. Table 2 shows an
overview of the default rate across all customers over 2018 and 2019 for the different values
of the threshold. In the remainder of the paper we will refer to the corresponding three
different vectors with the target variable Defaults and the resulting models as Low Default
Rate (6.78%), Medium Default Rate (8.35%) and High Default Rate (9.64%).

Table 2: The default rate for the different values of the threshold.

Threshold 1: AC50.62 Threshold 2: AC75.93 Threshold 3: AC101.25

Default rate 6.78% 8.35% 9.64%

2This percentage is based on the average interest rate on loans over the years 2018-2020.
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2.3 Structure

In order to maximally profit from the extensive information in the data set regarding the
transactional behavior, the data is structured with monthly observations. This implies that
each distinct customer will appear for each month as a separate observation. For example, if
customer X has an active bank account in 2018 and 2019, this customer will appear in the
data set as a separate observation for each month: X-18-Jan,.., X-18-Dec, X-19-Jan,...,X-19-
Dec. This means that the characteristics of the customers are the same for all the months,
but the features corresponding to the transactional behavior differ because they are pooled
per month. These observations are considered as separate independent customers in the data
set. Hence, no time subscript is added, such that this does not imply a panel data set. The
choice to regard every month as a separate customer in the model is also desired by Knab for
practical reasons. Namely, in this way the model can be recalibrated every month, which is
very convenient for a big portfolio in which during every month customers enter and leave. In
order to validate this approach and motivate it from an academic perspective, we investigate
whether there is an autoregressive pattern present in the data. We establish an intuitive
understanding of the data by plotting the time series for all the independent variables in
three different ways. Firstly, we investigate the time series for all customers by means of a
scatter plot. Secondly, we plot the mean over all customers over time. Thirdly, we randomly
select 100 customers and examine the time series plot. By performing this analysis, we get
an idea whether an autoregressive pattern exists for the whole cross-section or on individual
level. Figure 2 presents the time series scatter plot for the variable Net Inflow for all 35,660
customers over the time period January 2018 to December 2019. The graph shows that the
Net Inflow does not contain any particular pattern, but seems to fluctuate around its mean.
The same inference can be drawn from Figure 3 and 4, showing the mean of Net Inflow over
time and the time series for a random sample of 100 customers, respectively. This yields the
intuitive belief that the observations for this variable are independent of each other, both on
individual level and cross sectionally. The same analysis is performed for the other variables
reflecting the transactional behavior, from which the same conclusion arises.
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Figure 2: Time series scatter plot of Net Inflow over the time period January 2018 to December
2019.

Figure 3: Mean over all customers of Net Inflow over the time period January 2018 to December
2019.
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Figure 4: Net Inflow over the time period January 2018 to December 2019 for a random sample
of 100 customers.

To statistically test for autocorrelation we plot the autocorrelation function (ACF) and
partial autocorrelation function (PACF) together with the corresponding confidence levels
for a significance level of 5%. We have chosen for this analysis instead of the rather standard
tests on autocorrelation such as the Durbin-Watson or Ljung-Box test statistics. The reason
for this is that these standard tests are applied to the residuals of a fitted linear regression
model. However, since we are applying a logistic regression, the preference is for the ACF
and PACF that do not require a pre-specified model. We plot the functions for the target
variable and all the variables reflecting the transactional behavior. In order to deal with the
cross-sectional dimension, the average over all customers is taken. Figure 5 and 6 show the
ACF and PACF for Net Inflow and the target variable, respectively, for which the lags up
to one year are included.
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(a) Autocorrelation Function

(b) Partial Autcorrelation Function

Figure 5: ACF (a) and PACF (b) of Net Inflow with corresponding confidence interval.

(a) Autocorrelation Function

(b) Partial Autcorrelation Function

Figure 6: ACF (a) and PACF (b) of the Defaults with corresponding confidence interval. This is done
for the Medium Default Rate.

Both the ACF and PACF for Net Inflow in Figure 5 show that there is evidence against
autocorrelation for lags up to one year. Figure 6a shows that there is statistically signif-
icant autocorrelation in the defaults for lags up to two months. However, the PACF as
presented in Figure 6b controls for autocorrelation that is present between observations for
a shorter lag length. In this plot can be seen that there is only significant autocorrelation
in the defaults for lag of one month, and very small and insignificant autocorrelation for the
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longer lag length. Table 3 presents the values of the PACF for the target variable and all
the variables reflecting the transactional behavior. The corresponding graphs can be found
Figure 10 in the Appendix. The bold faced values in Table 3 indicate autocorrelation that is
significantly different from zero. It can be seen that except for the lag of one or two months
for several variables, there is no significant autocorrelation in the data set. Hence, because
there is almost no statistically significant autocorrelation present among the dependent and
independent variables, there is no autoregressive pattern to be captured by using panel data.
These results support the choice to use the monthly observations of each customer as separate
customers in the model. We split the data in training and test set in such a way that each
customer only occurs in either the training set or the test set in order to avoid a biased result
in performance.

Table 3: Partial autocorrelation values for the target variable (Defaults for the Medium Default Rate)
and the variables reflecting the transactional behavior, for lags up to one year. Bold faced values indicate
significant autocorrelation for the respective lag.

Lag

1 2 3 4 5 6 7 8 9 10 11

Defaults 0.861 -0.033 -0.152 -0.068 -0.079 -0.011 -0.075 0.017 0.031 -0.146 -0.083
Net Inflow -0.114 -0.310 0.212 -0.282 0.028 0.252 0.110 0.005 0.203 -0.338 -0.099
Tax -0.396 -0.719 0.360 -0.129 0.006 -0.186 0.185 -0.197 0.050 -0.277 -0.084
Number of Transactions 0.463 0.131 0.310 -0.140 0.062 0.251 -0.042 -0.358 -0.023 -0.155 0.093
Days without Tax Payments -0.455 -0.352 0.259 0.058 -0.057 -0.141 -0.037 -0.336 -0.091 -0.116 -0.377
Crypto Trader 0.367 0.166 0.022 0.040 -0.040 -0.197 -0.142 -0.105 -0.204 -0.013 -0.172
Money Service 0.826 0.027 -0.115 0.035 0.072 -0.018 -0.071 -0.302 -0.002 -0.084 -0.106
Fraud Victim -0.326 -0.528 0.111 -0.201 -0.071 -0.377 -0.015 -0.031 0.020 -0.011 -0.033
High Risk Country 0.335 -0.003 0.175 0.056 0.033 0.038 -0.060 -0.102 0.086 -0.208 0.055
Medium Risk Country 0.530 0.433 0.182 -0.127 0.034 -0.345 0.001 -0.098 0.042 -0.236 -0.095
Percentage of Type 1 Transactions 0.295 0.206 0.251 -0.379 0.052 -0.101 -0.038 -0.209 -0.077 -0.154 -0.103
Percentage of Type 2 Transactions -0.242 -0.335 0.103 0.123 -0.054 0.099 -0.062 -0.083 0.110 -0.135 -0.042
Percentage of Type 3 Transactions 0.185 0.117 0.336 -0.146 -0.315 -0.090 -0.139 -0.099 -0.057 -0.224 -0.100
Percentage of Negative Transactions -0.399 -0.165 0.315 0.296 0.046 0.005 -0.167 -0.164 0.023 0.027 0.020

3 Methodology

This section provides a description of the models and techniques that will be used to develop
the credit scoring model. Firstly, the base model of this research, the logistic regression, is
briefly explained. Next, two machine learning techniques, random forest and XGBoost, are
described which are known to perform well in credit scoring applications and other classifica-
tion problems (Dumitrescu et al. 2018, Lessmann et al. 2015, Gosiewska et al. 2019). Lastly,
we introduce the two main methods of this research, which will entwine the framework of
logistic regression with the aforementioned machine learning techniques.
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3.1 Logistic Regression

Let (xi, yi) for i = 1, ..., n be a sample of size n where xi ∈ RM is an M -dimensional vector
of variables and yi ∈ {0, 1} is the binary target variable indicating the default of an obligor
with a one and non-default with a zero. The aim of the logistic regression in this context is
to calculate the probability that an obligor i defaults in the following year conditional on his
characteristics xi,j for j = 1, ...,M , i.e. Pr(yi = 1|xi). This follows from

log

(
Pr(yi = 1|xi)

1− Pr(yi = 1|xi)

)
= β0 +

M∑
j=1

βjxi,j = x′iβ, (1)

which can be rewritten to

Pr(yi = 1|xi) =
1

1 + exp(−x′iβ)
, (2)

where β is the vector of size M + 1 with coefficients of the predictors and a constant term.
The main reason for the popularity of the logistic regression is its ease to interpret the results
and its main drivers. Namely, the marginal effect of each feature to the target variable can
easily be calculated as follows

∂Pr(yi = 1|xi)
∂xi,j

= β̂j
exp(x′iβ̂)

1 + exp(x′iβ̂)
, (3)

where β̂ are the estimates of β.
In order to create a fair benchmark model, we apply stepwise selection, both forward

and backward, and LASSO regularization to the standard logistic regression. The best-
performing model resulting out of these three variable selection methods will be used as the
benchmark model. Stepwise selection is performed based on a significance level of 5% for
the Akaike information criterion. The penalty term for LASSO controls the regularization
strength. When this is set equal to zero, we obtain the standard logistic regression. When
we increase the penalty term, the amount of regularization is amplified. Hence, we determine
the penalty term based on a 5-fold cross validated search over a wide range of values.

3.2 Random forest

The first machine learning model that will be applied is random forest. The choice for
this machine learning technique is based on its performance in credit scoring applications
in existing literature, where it outperforms several classifier families among which support
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vector machines and neural networks (Lessmann et al. 2015). The random forest classifier
is a non-parametric tree-based classifier. It consists of an ensemble (also referred to as
forest) of individual decision trees consisting of non-linear if-then-else rules. Each decision
tree divides the feature space into a number of distinct and non-overlapping regions by
splitting features for different thresholds. Following the notation of Dumitrescu et al. 2018,
this can be formulated as follows. Let Dm,l be the data at a specific leaf m for tree l, and
θm,l = (jm,l, tm,l,j) be the candidate for splitting where jm,l = 1, ...,M refers to a predictor xi,j,
and tm,l,j refers to the threshold to which the value of the predictor is compared. Each split
divides the data for a given leaf into two new distinct subsets, Dm,l,1(θm,l) and Dm,l,2(θm,l),
where

Dm,l,1(θm,l) = (xi, yi)|xi,j ≤ tm,l,j, (4)

Dm,l,2(θm,l) = (xi, yi)|xi,j > tm,l,j. (5)

The optimal combination of the variable to split jm,l and the corresponding threshold
tm,l,j can be estimated as

θ̂m,l = (ĵm,l, t̂m,l,j) = arg max
θm,l

{
G(Dm,l)−G

(
Dm,l,1(θm,l), Dm,l,2(θm,l)

)}
, (6)

where G(·) is an error measure which is defined as

G =
K∑
k=1

p̂m,k(1− p̂m,k), (7)

where p̂m,k is the proportion of class-k observations in the m-th subset, also referred to as the
purity of each subset. In this research the classes are 1 (∼ default) and 0 (∼ non-default),
such that K = 2. There are several error measures available, from which we adopt the most
frequently used which is the Gini Index (Pal 2005) as denoted by Equation 7, such that
G(Dm,l) is the error measure for sample Dm,l and G(Dm,l,1(θm,l), Dm,l,2(θm,l)) is the average
error over the two subsets Dm,l,1 and Dm,l,2. Consequently, the optimal estimate θ̂m,l as cal-
culated by Equation 6 equals the candidate split that reduces the error measure the most.

Random forest applies smart-bagging, in which each decision tree is constructed inde-
pendently by using a random subset of the features as candidates for splitting. As opposed
to bootstrapping, this technique is applied in order to obtain an ensemble of trees that are
not highly correlated. This bagging approach pools various decision trees in order to reduce
instability. The final classification is done by means of majority voting, where each decision
tree has a unit vote for the class that occurs most according to the values of the features.
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The random forest has many hyperparameters which can be tuned in order to fit the model
to the data set. However, to prevent the time-consuming parameter tuning we focus on some
of the hyperparameters that have the biggest impact on model performance according to
Breiman 2001, namely: the number of decision trees in the forest, the maximum number
of features for splitting, the maximum depth of the individual trees, the minimum number
of observations to split on at a node and the minimum number of observations for a leaf
node. We perform a two-step approach in order to find the optimal hyperparameters, whilst
minimizing the training time. The first step in this approach is to perform a random grid
search on a wide range of parameters settings, in which not all parameters are tried out but
only a number of random combinations is taken from the specified range. The second step
consists of a non-random grid search that is performed on a narrow range around the optimal
set of hyperparameters that was found in step one, in which all the parameter settings are
fitted. Both grid searches are performed based on 5-fold cross validation.

3.3 XGBoost

The second machine learning technique that we apply to the data set is XGBoost, a scalable
implementation of the gradient boosting framework introduced by Friedman 2001. This is a
gradient tree boosting machine which generates the decision trees sequentially in which every
tree learns from the previous errors in an iterative fashion. XGBoost gained in popularity
due to its performance in the 2015 Kaggle competition3, in which 17 out of the 29 winning
solutions of classification problems XGBoost was applied, outperforming among others deep
neural networks.

Since XGBoost uses the decision tree as base model and the target variable is binary, the
model prediction is made by majority voting in a collection F of A additive tree functions:

ŷi = φ(xi) =
A∑
α=1

fα(xi), fα ∈ F , (8)

where F =
{
f(x) = wq(x)

}(
q : RM → T,w ∈ RT

)
. Here q indicates a mapping function

that assigns each observation to the corresponding leaf node, where T is the total number
of leaves in each tree and w are the weights representing the scores of the leaves. Each tree
function denoted by fα has its own set of aforementioned parameters. A prediction ŷi is made
based on the sum of the scores of the leaves which the respective observation is classified into.

3https://www.linkedin.com/pulse/present-future-kdd-cup-competition-outsiders-ron-bekkerman/

17



The regularized objective function as defined by Chen and Guestrin 2016 is as follows

L(φ) =
n∑
i=1

`(yi, ŷi) +
A∑
α=1

Ω(fα) with Ω(f) = γT +
1

2
λ||w||2, (9)

where ` is the convex training loss function and Ω the regularization function to penalize the
model complexity and avoid overfitting of the model. Since Equation 9 consists of estimation
functions as parameters (ŷi), traditional optimization techniques are incapable of optimizing
this objective function. This leads to a numerical approach in which the optimization is done
in an iterative and additive fashion. Particularly, in each iteration t the tree function ft that
is found to have the biggest improvement of the model according to the objective function
in Equation 9 is greedily added to the previous prediction:

L(t) =
n∑
i=1

`
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ Ω(ft), (10)

where ŷ(t)i is the estimation of observation i for the t-th iteration. If one would be interested
in the mathematical derivation of Equation 10 to arrive at the analytical solution of both
the optimal weights and the corresponding optimal value please refer to Chen and Guestrin
2016.

Also XGBoost requires tuning of hyperparameters to improve and fully leverage its advan-
tages over other machine learning models. The parameters can be divided into three types4:
general parameters, booster parameters and task parameters. The (learning) task param-
eters decide on the learning scenario and thus consist of the hyperparameters to be tuned
while training the model. Compared to tuning random forest, a slightly different approach
is used to tune the XGBoost model. Namely, we perform a three-step approach in which
first the optimal number of trees (A) is determined, then tree-specific hyperparameters are
tuned (such as the maximum depth of each individual tree and the minimum sum of weights
needed in a node for splitting), and finally the regularization parameters are tuned to reduce
model complexity. Once again, a random grid search on a wide range of parameter settings
is followed by a non-random grid search on a narrow range around the previously found set
of parameters.

4https://xgboost.readthedocs.io/en/latest/parameter.html
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3.4 SAFE ML

The SAFE ML method, introduced by Gosiewska et al. 2019, transfers knowledge about
relationships from a complex surrogate model to a simple model. This is done by transform-
ing single features based on the expected output of the surrogate model, and subsequently
extracting these transformed features to incorporate in a simple model, such as the logistic
regression.

The first step is to train a complex surrogate model. The SAFE ML method allows for
any class of models, which in this research will be random forest and XGBoost. After the
surrogate model is trained, we calculate the partial dependence profile. The transformations
of the features are based on the partial dependence function (Friedman 2001) which calcu-
lates the expected output of the model conditional on a specific feature. This is denoted as
follows

fj(xj) = Ex−j[F (xj, x−j)], (11)

which is approximated by

f̂j(xj) =
1

n

n∑
i=1

F (xi,j, xi,−j) (12)

where x−j denotes the subset of all features except xj and F denotes the surrogate model.
Calculating how the expected output of a model changes for varying values of the respective
variable helps to understand how the model depends on each of them.

Next, to determine the transformation of continuous and categorical variables based on
the model response the change point detection method and hierarchical clustering are used,
respectively. The change point detection method (Truong et al. 2018) identifies homogeneous
regimes in the model’s output for the range of values of the respective variable. Subsequently,
the variable is discretized based on the changing points and the regularization penalty γ,
indicating when the amplitude of the changing point is of sufficient size. The higher the value
of the penalty the smaller the number of levels of transformed variables will be created. We
perform a grid search to find the optimal value for the penalty term. This practice transforms
the original set of variables to new binary features. Figure 7 presents an illustration of the
change point detection method in a partial dependence plot for the feature Days without

Tax Payments where the changing points are indicated by the red vertical lines.
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Figure 7: Partial dependence plot for the feature Days without Tax Payments. Red vertical lines
indicate the changing points.

Based on the change point detection method, the variable Days without Tax Payments is
transformed into four binary features corresponding to the four different intervals as indicated
by the red vertical lines in Figure 7. Hence, the following features are constructed: (1) Days
without Tax Payments

[
-∞, 13.48

]
, (2) Days without Tax Payments

[
13.48, 22.54

]
, (3)

Days without Tax Payments
[
22.54, 28.06

]
, and (4) Days without Tax Payments

[
28.06,

∞
]
. We exclude the first binary feature from the set of input variables to prevent multi-

collinearity.
In case of categorical variables we use hierarchical clustering (Rokach and Maimon 2005).

In particular, divisive hierarchical clustering is performed in which the categories initially
belong to a single cluster and are iteratively splitted into individual subclusters with the
largest between-group dissimilarity, based on the model response. This results in a dendro-
gram which is cut at the desired level of (dis)similarity based on the same penalty term γ.
A visualization of this approach is shown in Figure 8.

Figure 8: Divise hierarchical clustering: categories that initially belong to a single cluster are
iteratively splitted into individual subclusters based on the model response and cut at the desired
level of similarity.
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The new binary variables that are created by means of the change point detection method
and the new clusters of categorical variables that are created by hierarchical clustering are the
predictors that will be included in the simple logistic regression model. The transformation
of the variables changes the representation of the data such that the logistic regression model
is trained with features that better capture the true relationships.

3.5 Hybrid Approach

Where the SAFE ML method transforms single features, the Hybrid Approach as proposed
by Levy and O’Malley 2020 extents this by capturing pairwise interactions between variables
to extract the most promising as new features. This technique allows statistical models to
include non-linear predictors found by tree-ensemble methods in the high-dimensional feature
space. The (non-linear) interaction terms to include are based on the SHAP interaction
values. The SHAP interaction values represent the attribution of each pairwise interaction
term on a given model prediction. They are an extension of the SHAP (SHapley Additive
exPlanation) values which represent the attribution of each single feature on the model’s
output. Lundberg, Erion, et al. 2018 show that the SHAP values are the only consistent
feature attribution method, indicating that features with a larger attribution value are always
more important than features with a lower attribution. The function of the additive feature
attribution method is defined as follows

g(z′) = φ0 +
M∑
j=1

φjz
′
j, (13)

where z′j is a binary variable indicating the presence of feature j, M is the number of input
features and φj ∈ R is the SHAP attribution value for feature j, which is defined as

φj =
∑

S⊆N\{j}

|S|!(|M | − |S| − 1)!

M !
[fx(S ∪ {j})− fx(S)], (14)

where fx(S) = E(f(x)|xS) with f as the original model, N as the set of all input features and
S being the subset of the features represented by the non-zero indices in z′. The property of
local accuracy ensures that the sum of the attribution values φj in Equation 13 equals the
output of the original model. Lundberg, Erion, et al. 2018 use the more modern Shapley
interaction index, as introduced by Fujimoto et al. 2006, as an extension to the SHAP
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interaction values as follows

Φh,j =
∑

S⊆N\{h,j}

|S|!(M − |S| − 2)!

2(M − 1)!
∇h,j(S), (15)

for feature h and j when h 6= j, and

∇h,j(S) = fx(S ∪ {h, j})− fx(S ∪ {h})− fx(S ∪ {j}) + fx(S). (16)

The SHAP interaction value is constructed such that it is equally divided among the two
respective features h and j, yielding Φh,j = Φj,h such that we obtain the total attribution of
the interaction term by summing the respective interaction indices Φh,j + Φj,h. The presence
of both the SHAP value and the SHAP interaction values allow to obtain the main impact
of a feature on a given model prediction as follows

Φh,h = φh −
∑
j 6=h

Φh,j, (17)

where Φh,h indicates the main effect of feature h, which is for notational convention denoted
as the interaction between feature h and h. This isolates the interaction effect Φh,j from the
main effect Φh,h and exposes whether the random forest and XGBoost have captured relevant
relationships where the statistical model was unable to. Subsequently, the generated features
with the highest SHAP interaction values are extracted and will be included in the logistic
regression.

3.6 Performance Measures

To assess and compare the performance of the different classifiers, we apply five performance
measures covering the three different facets of performance in classification scorecards. These
three facets are the discriminatory power of the models, the accuracy of probability predic-
tions and the correctness of categorical predictions (Lessmann et al. 2015). By applying
multiple metrics and covering the different notions of performance, a robust and thorough
comparison is made between the models.

We measure the discriminatory power of the models with the Gini coefficient, which is
one of the most commonly used for this purpose (Bijak and Thomas 2012) and is unaffected
by class imbalance (Fawcett 2006). The Receiver Operating Characteristic (ROC) curve has
to constructed, which consists of the cumulative distribution functions of prediction scores
for both the default and non-default observations. The sensitivity, which is the fraction of
default observations that are predicted as default, is presented on the y-axis. The speci-
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ficity, which is the fraction of non-default observations that are predicted as non-default, is
presented on the x-axis. Subsequently, we calculate the area under the ROC curve (AUC),
which refers to the probability that a classifier gives a higher score to a randomly selected
default observation than a randomly selected non-default observation (Baesens et al. 2003).
The Gini coefficient is related to the AUC in the following way

Gini = 2 · AUC− 1. (18)

To measure the accuracy of probability predictions we apply the Brier Score, as introduced
by Brier 1950. This score calculates the mean squared error between the predicted default
probability ŷi = Pr(yi = 1|xi) and the observed value yi ∈ {0, 1} for i = 1, ...n, formally
denoted as

Brier Score =
1

n

n∑
i=1

(
ŷi − yi

)2
. (19)

The outcome is a value between zero and one, for which a lower value means higher accuracy.
The last facet to be covered is the correctness of categorical predictions. For this we

use the percentage of correctly classified observations (PCC), which refers to the fraction of
observations that are correctly classified by the model. This is denoted as follows

PCC =

∑n
i=1 I(ŷi = yi)

n
, (20)

where I(ŷi = yi) is an indicator function that is equal to one if the class into which observation
i is classified is equal to the observed class. Besides the overall PCC we also consider the
PCC for the default class and the non-default class separately. The motivation for this is
that credit risk managers can gain better insights in the corresponding costs of wrongly
classifying customers. Since the classifiers in this study produce probability predictions, we
have to transform these to discrete classes to be able to evaluate the correctness of categorical
predictions. In order to do so, the predicted probability Pr(yi = 1|xi) is compared to a
threshold τ in the following way

ŷi = 1 if Pr(yi = 1|xi) > τ,

ŷi = 0 if Pr(yi = 1|xi) < τ.
(21)

Practically, the threshold value would be chosen based on the costs that are associated with
accepting bad customers and rejecting good customers (Hand 2005). However, since this
information is not available, we set the threshold such that the fraction of default observations
is equal to the prior default rate in the training set (Lessmann et al. 2015).

23



4 Results

This section consist of four parts in which the performance of the different classifiers are
evaluated and compared. First, the choice of the benchmark model is determined based on
the performance of the logistic regression in combination with the best-performing variable
selection technique. Secondly, the benchmark model is compared to all the competing clas-
sifiers for the Low Default Rate. Thirdly, we discuss new insights that result from using
the interpretability characteristic of the revised logistic regression. Lastly, the sensivitity
analysis is performed on the best-performing classifier at varying degrees of class imbalance
corresponding to the different default rates. All models are evaluated based on the five
performance measures.

4.1 Benchmark model

Firstly, we select the benchmark model based on the evaluation of the performance of the
logistic regression (LR) in combination with backward elimination, forward selection and
LASSO regularization on the validation set. Tabel 4 presents the results of the base model
with the different traditional variable selection techniques.

Table 4: Performance measures of the logistic regression in combination with traditional variable selection
techniques for the different default rates. Bold face indicates the best model per metric for the respective
default rate.

High Default Rate

Gini BS PCC PCC defaults PCC non-defaults

LR with backward elimination 68.81% 0.0719 88.44% 40.04% 93.60%
LR with forward selection 68.81% 0.0719 88.44% 40.04% 93.60%
LR with LASSO 68.83% 0.0723 88.53% 40.10% 93.81%

Medium Default Rate

Gini BS PCC PCC defaults PCC non-defaults

LR with backward elimination 69.20% 0.0640 89.74% 38.58% 94.40%
LR with forward selection 69.20% 0.0640 89.74% 38.55% 94.40%
LR with LASSO 69.23% 0.0642 89.78% 38.58% 94.53%

Low Default Rate

Gini BS PCC PCC defaults PCC non-defaults

LR with backward elimination 69.98% 0.0536 91.36% 36.27% 95.37%
LR with forward selection 69.96% 0.0536 91.36% 36.25% 95.36%
LR with LASSO 70.03% 0.0536 91.36% 36.27% 95.37%
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As can be seen in Table 4, the performances between the models differ just slightly, but
for all three default rates the logistic regression regularized by LASSO performs the best.
Hence, we adopt this model as the benchmark in this study. This finding indicates that
most of the included predictors have significant explanatory power, such that the variable
selection methods end up with a very similar set of features, and thus also a very similar
model performance.

4.2 Competing Models

4.2.1 Performance Comparison

Table 5 presents the performance of the benchmark model, the stand-alone machine learning
models and the competing revised logistic regression models in terms of the five performance
measures on the test set. Bold faced values indicate the best performance per metric over
all the models, where both bold faced and underlined values indicate the best performance
among the interpretable models. In order to create a clear comparison between the models
Table 5 only shows the results for the Low Default Rate in the target variable and thus the
highest class imbalance. Performances of the best-performing models at varying degrees of
class imbalance are considered in the sensitivity analysis in the following section. If one is
interested in the full overview of the performance of all models for the different default rates,
please refer to Table 15 in the Appendix.

Table 5: Performance measures of the different models for the Low Default Rate. Bold face indicates the
best performance per metric over all the models. Bold face and underlined indicates the best performance
among the interpretable models.

Low Default Rate

Gini BS PCC PCC defaults PCC non-defaults

LR with LASSO 69.15% 0.0542 91.20% 35.10% 95.28%
Random forest 81.62% 0.0440 93.39% 51.27% 96.46%
XGBoost 84.39% 0.0435 93.57% 52.54% 96.55%
SAFE ML with RF 74.08% 0.0522 91.59% 39.08% 95.41%
SAFE ML with XGB 72.43% 0.0519 91.10% 45.11% 94.44%
Hybrid with RF 63.03% 0.0696 89.64% 23.56% 94.44%
Hybrid with XGB 61.19% 0.0588 90.05% 27.35% 94.68%
Hybrid & SAFE with RF 79.41% 0.0492 92.41% 44.25% 95.91%
Hybrid & SAFE with XGB 71.70% 0.0525 91.57% 37.93% 94.47%

Several findings emerge from Table 5. Firstly, both complex machine learning models,
random forest and XGBoost, outperform the benchmark on all performance measures, in
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particular a substantial improvement regarding the Gini coefficient is observed. This confirms
the expectation as laid down in this paper, and the earlier findings from existing literature
(e.g. Dumitrescu et al. 2018 and Lessmann et al. 2015) that the tree-based ensemble classifiers
have an advantage compared to traditional statistical models. The difference in PCC is
mainly due to the large gain in PCC for the default class. There is not a large gain in the
PCC for non-defaults because naive classifiers such as logistic regression tend to predict the
majority class, such that the PCC for this class is very high.

Applying the SAFEMLmethod to the complex classifiers also improves upon the standard
logistic regression. Again, a substantial improvement is observed for the Gini coefficient,
particularly for the SAFE ML method in combination with random forest. This indicates
that discriminatory power is gained by changing the data representation as to better present
the relationships between the predictors and the probability of default.

On the other hand, adding interaction terms to the original set of predictors in the logistic
regression has a negative impact on the performance. The number of added interaction terms
are based on the performance of the Hybrid model on the validation set. Figure 9a and 9b
show the Gini Coefficient of the Hybrid Approach applied on random forest and XGBoost,
respectively, for different numbers of added interaction terms for the Low Default Rate. The
graphs corresponding to the performance of the Hybrid models for the other default rates
can be found in Figure 11 in the Appendix.

(a) Random forest (b) XGBoost

Figure 9: Gini Coefficient of Hybrid Approach in combination with random forest (a) and XGBoost (b)
for varying number of interaction terms.

From the graphs we observe that the performance regarding the combination with random
forest increases for a certain number of interactions and then stabilizes around that value.
As such, we choose the number of interactions for a high performance, but also taking into
account the interpretability regarding the number of features to include in the model, and
the stability regarding the error in estimation of the parameters. For these reasons, thirteen
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interaction terms are added to the model with the Low Default Rate. For the Hybrid Ap-
proach in combination with XGBoost we observe another pattern. Namely, for a low number
of interactions a high performance is realized, which drops heavily when more interactions
are added, to subsequently increase slightly and stabilize at a relatively low performance
of the Gini Coefficient of around 50%. As such, we augment the set of original predictors
with a low number of interaction terms. For the Hybrid Approach in combination with both
random forest and XGBoost the performance is worse than the benchmark in terms of all
the five metrics. There is particularly an underperformance for the correctness of predictions
for the default class. These results imply that the generated second-order interaction terms
do not seem to expose relevant relationships with the probability of default. Another reason
might be that the interaction terms have a non-linear relationship with the target variable as
identified by random forest or XGBoost, which cannot be captured by the logistic regression.
This can cause a lot of noise, leading to a bad performance.

However, when we transform the original set of predictors augmented by the identified
interaction terms by means of the SAFE ML method, there is a substantial improvement
regarding all performance measures. In particular, when we apply this technique in combina-
tion with random forest, this results in the best-performing model for all the metrics, except
for the PCC for the default class which is second-best among the interpretable models. The
biggest outperformance is observed for the Gini coefficient, where the combination of the
Hybrid Approach with the SAFE ML method on random forest shows an improvement of
more than 10% compared to the benchmark. Taking into account Henley et al. 1997 who
state that an increase in discriminatory power even by a fraction of a per cent could translate
into significant future savings, this improvement can have a very large impact. Additionally,
the PCC for defaults increases from 35.10% to 44.25%. Since the costs associated with ac-
cepting bad applicants can be enormous, this gain in correctly classifying these applicants is
financially very beneficial. There is still a lot of room for improvement, but compared to the
benchmark this is a great step.

The Hybrid Approach in combination with the SAFE ML method applied to XGBoost
also outperforms the benchmark model, but performs worse than applying solely the SAFE
ML method in terms of the majority of the performance measures. This insinuates that the
interactions found by XGBoost do not constitute to relevant relationships with the proba-
bility of default, even after changing the data representation with the SAFE ML method.
As such, XGBoost performs the best as an individual classifier but does not contribute to
the performance when we extract information in terms of interaction terms or single-variable
transformations from the model.
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The revised logistic regression as constructed by the Hybrid Approach in combination
with the SAFE ML method applied to random forest does not outperform the complex
machine learning models, but it does perform competitively, especially in comparison to the
random forest. In particular, the difference in the Gini coefficient is slightly more than 2%
and the Brier Score differs by just 0.0052. This implies that the discriminatory power and
the accuracy of probability predictions is very comparable between random forest and the
revised logistic regression, whereas there is a huge gain in interpretability.

4.2.2 Interpretability characteristic

In this section we discuss some insights that are obtained using the interpretability char-
acteristic of the revised logistic regression. In particular, several coefficients of predictors
in the best-performing interpretable model are compared to those of the standard logistic
regression. We focus on two different aspects: (1) the impact of individual variables in the
standard LR versus the individual variables transformed to binary features by SAFE ML in
the revised LR, and (2) the impact of individual variables in the standard LR versus the
interaction terms as constructed by the Hybrid Approach and transformed by SAFE ML in
the revised LR. For both aspects we consider one variable as an example in order to reveal
the interpretability characteristic.

Table 6 presents the impact of the variable Days without Tax Payments as individual
predictor in the standard logistic regression with LASSO and as transformed binary features
in the revised logistic regression (Hybrid & SAFE with RF). The SAFE ML method has
transformed the continuous variable into four binary variables corresponding to four differ-
ent intervals. The first binary variable is excluded from the set to prevent multicollinear-
ity among the independent variables. The remaining variables obtain a coefficient as es-
timated by the logistic regression. The negative coefficients for customers that have 13-28
days without paying tax (Days without Tax Payments

[
13.48,22.54

]
and Days without Tax

Payments
[
22.54,28.06

]
) indicate that all else being equal, these customers are less likely to

go in default than customers that have less than 13 days or more than 28 days without paying
tax. The p-values indicate that these newly constructed features are statistically significant.
The standard logistic regression estimates the coefficient of Days without Tax Payments as
positive without making any distinction for different values of the variable. For this the
interpretation is that all else being equal, customers with more days without paying tax are
more likely to default. Hence, in addition to improving the performance of the standard
framework of the logistic regression, we also gain more insights into the drivers in the model.
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Table 6: Predictor variable Days without Tax Payments with estimated coefficients for benchmark model
(LR with LASSO) and revised logistic regression (Hybrid & SAFE with RF)

LR with LASSO Hybrid & SAFE with RF

Predictor Coefficient p-value Predictor Interval Coefficient p-value

Days without Tax Payments 0.0507 0.0000 Days without Tax Payments
[
-∞, 13.48

]
- -

Days without Tax Payments
[
13.48, 22.54

]
-0.1874 0.0000

Days without Tax Payments
[
22.54, 28.06

]
-0.2772 0.0000

Days without Tax Payments
[
28.06, ∞

]
0.3882 0.0000

Table 7 presents the impact of the interaction term {Number of Transactions · Percentage
of Type 3 Transactions} as generated by the Hybrid Approach and transformed to bi-
nary features by means of the SAFE ML method. The individual variables Number of

Transactions and Percentage of Type 3 Transactions, their estimated coefficients in the
standard logistic regression and corresponding p-values are also shown. The newly generated
interaction term is easy to interpret, namely it corresponds to the number of type 3 transac-
tions. When we include the variables individually in the standard framework, the estimated
coefficient for Number of Transactions is negative (-0.0217), and for Percentage of Type 3

Transactions is positive (1.9598), both statistically significant. In contrast to this, Table 7
shows that the estimated coefficient for the interaction term is positive but deviating for all
the different intervals. The p-values also show that three of the four features are statistically
significant for a significance level of 5%, and all four for a significance level of 10%. Hence, we
are not limited to the argument that all else being equal, customers are more likely to default
for more type 3 transactions, but we can specify the impact for several ranges. This yields
additional insights into the impact of the predictors, in this case the types of transactions
made by the customer.

Table 7: Generated interaction terms {Number of Transactions · Percentage of Type 3 Transactions}

with estimated coefficients for the revised logistic regression (Hybrid & SAFE with RF) and corresponding
individual variables with estimated coefficients in the benchmark model (LR with LASSO).

LR with LASSO Hybrid & SAFE with RF

Predictor Coefficient p-value Predictor Interval Coefficient p-value

Number of Transactions

blablabla
-0.0217

blablabla
0.0000

blablabla
{Number of Transactions

· Percentage of Type 3 Transactions}

[
-∞, 2.52

]
- -

Percentage of Type 3 Transactions

blablabla
1.9598

blablabla
0.0000

blablabla
{Number of Transactions

· Percentage of Type 3 Transactions}

[
2.52, 3.53

]
0.9131 0.0983

{Number of Transactions

· Percentage of Type 3 Transactions}

[
3.53, 5.49

]
0.5262 0.0455

{Number of Transactions

· Percentage of Type 3 Transactions}

[
5.49, 13.01

]
0.3482 0.0203

{Number of Transactions

· Percentage of Type 3 Transactions}

[
13.01, ∞

]
1.1833 0.0143
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The variables that are used as examples are chosen based on their significant impact on the
probability of default for the different intervals and their ease of interpretation. Other insights
that can be obtained from this model are for example the number of type 1 transactions
(Number of Transactions · Percentage of Type 1 Transactions) together with the money
that is earned with it (Net Inflow · Percentage of Type 1 Transactions) or the relation
between the number of days that a company exists and the days that it is registered at Knab
(Registered Days · Existing Days). The main takeaway from the results in Table 6 and
7 is that the revised logistic regression retains the ability to interpret the outcome of the
model by providing the exact relationship between the predictors and the target variable,
and additionally yields more detailed insights from the discretization and new insights from
the generated interaction terms.

4.2.3 Sensitivity analysis

The focus of the sensitivity analysis regarding the class imbalance is divided in three aspects:
(1) the performance of the classifiers, (2) the generated interaction terms, and (3) the created
clusters of categorical variables. We evaluate among the best-performing model per default
rate to what extent these aspects differ, in order to determine how sensitive the model is
with respect to class imbalance. As shown in Table 5 in Section 4.2.1 the best-performing
model for the Low Default Rate is the combination of the Hybrid Approach with the SAFE
ML method applied on random forest. We find the same result for the other two default
rates, which can be seen in Table 15 in the Appendix. As such, we evaluate solely this best-
performing model for the varying degrees of class imbalance for the sensitivity analysis.

Table 8 presents the performance of the model for the different default rates. We find
several interesting results and patterns by comparing the five performance measures. To
start, the classifier shows an increasing pattern in performance for higher class imbalance in
terms of the Brier Score, the PCC and the PCC for the non-defaults class. Particularly, as the
default rate decreases from 9.64% to 8.35% to 6.78%, an increasing performance in the Brier
Score is observed of 0.0675 to 0.0618 to 0.0492, respectively. From this we can argue that the
accuracy of probability predictions actually improves for higher class imbalance. The same
inference is drawn for the correctness of categorical predictions, since both the overall PCC
and PCC for the non-defaults class show a similar pattern. Another remarkable finding is the
difference in the Gini Coefficient between the High Default Rate and the Low Default Rate.
In particular, the classifier in the Low Default Rate scores almost 4.5% higher, indicating
that also the discriminatory ability of the model improves for higher class imbalance.
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Table 8: The performance of the Hybrid Approach in combination with SAFE ML applied to random
forest for the different default rates.

Performance

High Default Rate Medium Default Rate Low Default Rate

Gini 74.93% 73.70% 79.41%
Brier Score 0.0675 0.0618 0.0492
PCC 89.45% 90.15% 92.41%
PCC defaults 45.16% 41.12% 44.25%
PCC non-defualts 94.18% 94.61% 95.91%

Since credit scoring data sets often experience high class imbalance (Brown and Mues
2012), naive classifiers tend to predict the majority class, such that the performance on both
the correctness of categorical predictions for the default class as the accuracy of probability
predictions is relatively poor (Baesens et al. 2003). The results as shown in Table 8 proof that
the performance of the revised logistic regression actually improves on all the three notions of
performance for higher class imbalance for the given default rates, which is a very desirable
finding for practitioners of credit scoring.

Table 9 shows the interaction terms as constructed by the model for the different default
rates. We use a specific notational convention whereby the interaction terms that occur for
two different default rates are denoted in bold face, and interactions that occur for all three
default rates are underlined and denoted in bold face.

A first clear observation is that the number of identified interaction terms differ among the
varying class imbalance: nine for the model corresponding to the High Default Rate, sixteen
for the Medium Default Rate, and thirteen for the Low Default Rate. These results show that
higher class imbalance demands more interaction terms to reach the optimal performance. As
such, the number of identified interaction terms is not robust with respect to class imbalance.

Another interesting result is that eight of the nine interaction terms for the High Default
Rate are also identified for the other two default rates. For the Low Default Rate twelve
out of the thirteen also occur in the model with the Medium Default Rate. This indicates
that there is a high recurrence of interaction terms for varying default rates, meaning that
almost the complete set of interactions is a subset of a model with a larger set. This is
because the interaction terms are included one by one based on the highest contribution
of the pairwise interaction. From these two findings we can conclude that the number of
identified interaction terms is not robust with respect to class imbalance, but the importance
of the interactions is.
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Table 9: The generated interaction terms for the different default rates. Interactions indicated in
bold occur for two default rates and interactions that are underlined and indicated in bold occur for
all three default rates.

Interaction terms

High Default Rate Medium Default Rate Low Default Rate

{Net Inflow · Number of Transactions} {Net Inflow · Number of Transactions} {Net Inflow · Number of Transactions}
{Number of Transactions

· Percentage of Type 1 Transactions}
{Number of Transactions

· Percentage of Type 1 Transactions}
{Number of Transactions

· Percentage of Type 1 Transactions}
{Percentage of Type 1 Transactions

· Percentage of Type 3 Transactions}
{Percentage of Type 1 Transactions

· Percentage of Type 3 Transactions}
{Percentage of Type 1 Transactions

· Percentage of Type 3 Transactions}
{Number of Transactions

· Percentage of Type 3 Transactions}
{Number of Transactions

· Percentage of Type 3 Transactions}
{Number of Transactions

· Percentage of Type 3 Transactions}
{Existing Days

· Number of Transactions}
{Existing Days

· Number of Transactions}
{Existing Days

· Number of Transactions}
{Net Inflow

· Percentage of Type 3 Transactions}
{Net Inflow

· Percentage of Type 3 Transactions}
{Net Inflow

· Percentage of Type 3 Transactions}
{Registered Days · Existing Days} {Registered Days · Existing Days} {Registered Days · Existing Days}
{Net Inflow

· Percentage of Type 1 Transactions}
{Net Inflow

· Percentage of Type 1 Transactions}
{Net Inflow

· Percentage of Type 1 Transactions}
{Registered Days

· Number of Transactions}
{Net Inflow · Tax}

blablabla
{Registered Days

· Number of Transactions}
{Percentage of Type 3 Transactions

· Percentage of Negative Transactions}
{Percentage of Type 3 Transactions

· Percentage of Negative Transactions}
{Registered Days

· Percentage of Type 3 Transactions}
{Registered Days

· Percentage of Type 3 Transactions}
{Net Inflow

· Percentage of Negative Transactions}
{Net Inflow

· Percentage of Negative Transactions}
{Existing Days

· Percentage of Type 3 Transactions}
{Existing Days · Net Inflow}
blablabla

{Number of Transactions

· Percentage of Negative Transactions}
{Percentage of Type 1 Transactions

· Percentage of Negative Transactions}
{Net Inflow

· Days without Tax Payments}

The last focus point of the sensitivity analysis is the difference in the created clusters
of categories for the three categorical features: Legal Entity Type, Industry and Province.
The corresponding clusters are shown in Table 10 as created by the model for the varying
degrees of class imbalance. It can be seen that for Industry and Province the number of
created clusters is similar among the three default rates. This is however not the case for Legal
Entity Type, where the model with the Low Default Rate creates a separate cluster for each
category. It can be argued that the number of clusters is semi robust to the class imbalance.
However, few to almost no similarities can be observed within the created clusters among
the models. This indicates that the specific construction of clusters is not robust for varying
default rates, such that clusters can be very different for higher or lower class imbalance.
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Table 10: The created clusters of categorical variables for the different default rates.

Categorical Clusters

High Default Rate Medium Default Rate Low Default Rate

Legal Entity Type

1. Besloten Vennootschap-Maatschap-Stichting
2. Eenmanszaak-Venootschap Onder Firma

Legal Entity Type

1. Eenmanszaak-Stichting-Venootschap Onder
Firma

2. Besloten Vennootschap-Maatschap

Legal Entity Type

1. Eenmanszaak
2. Maatschap
3. Stichting
4. Vennootschap
5. Besloten Vennootschap

Industry (SBI Codes)
1. A-B-K-L-M-O-S-T
2. E-F-I-N
3. C-J-R
4. D-H-P-Q
5. G

Industry (SBI Codes)
1. A-D-E-H-J-K-M-O-P-T
2. F-G
3. C-L-N-R-Q-S
4. B-I

Industry (SBI Codes)
1. A-B-E-F-M-O-P-Q-T
2. C-J-K-N-R-S-
3. D-G-I
4. H-L

Province

1. Drenthe-Zuid Holland-Noord Holland
2. Flevoland-Friesland-Groningen-Noord Brabant
3. Gelderland-Zeeland
4. Limburg-Overijssel-Utrecht

Province

1. Drenthe-Friesland-Zeeland-Zuid Holland
2. Flevoland-Gelderland-Limburg
3. Groningen
4. Noord Brabant-Noord Holland-Overijssel-Utrecht

Province

1. Drenthe-Zuid Holland-Noord Holland-Friesland
-Noord Brabant

2. Flevoland-Zeeland
3. Gelderland-Limburg-Utrecht
4. Groningen-Overijssel

5 Conclusion

In this paper is investigated whether we can improve the standard framework of the logistic
regression by means of complex machine learning techniques in credit scoring applications.
The traditional logistic regression is the industry workhorse in credit scoring because of its
ease of interpretation, which is an important characteristic for both regulators and credit risk
managers. Hence, the revised model does not only endeavor to improve the performance of
the standard framework, but should also preserve its simple interpretation. Additionally, we
investigated whether the revised logistic regression performs competitively to the stand-alone
black box models. The benchmark model is constructed by applying LASSO regularization
to the logistic regression. We use random forest and XGBoost as individual classifiers and
as underlying models to extract relevant information from in terms of transformed single-
variables and constructed interaction terms, to include in the revised logistic regression.
We assess the comparison between the benchmark model and the competing models on five
performance measures covering the different facets of classifier performance. The study is
conducted on a credit scoring data set containing characteristics and transactional behavior
of self-employed persons and small business owners. The data does not contain defaults of
the customers, such that we have approximated this by insolvency. In doing so, we have
constructed a varying default rate among the customers, resulting in three different sets of
the target variable in order to perform a sensitivity analysis.
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We find that the two black box machine learning models substantially outperform the
benchmark model on all five performance measures. This confirms the prior expectation that
more advanced classifiers have an advantage compared to the traditional statistical model.
This might indicate that the respective data set is non-linear. Changing the data representa-
tion by discretizing the continuous variables and clustering the categorical variables by means
of the SAFE ML method also improves performance compared to the benchmark. This is the
first model to combine machine learning techniques with the logistic regression, and proofs
that the performance of the standard framework can be improved, while preserving the abil-
ity to identify the drivers and interpret the corresponding relationships with the probability
of default.

However, the second technique that we use in order to reach this goal results in less
promising findings. Namely, enhancing the original set of predictors with interaction terms
as identified by the Hybrid Approach leads to underperformance compared to the benchmark,
in particular a worse performance for all the measures results from applying this technique.
In contrast to this, we find the best performance among all interpretable models when the
Hybrid Approach and the SAFE ML method are combined. In other words, when the iden-
tified interaction terms are added to the original set of predictors and transformed into a
set of new binary features, a substantial outperformance of the benchmark is realized. From
these results we can conclude that the interaction terms identified by the Hybrid Approach
lead to relevant features, but the true relationships with the probability of default can only
be captured after transforming the respective set to newly engineered features. Combining
these newly engineered features with the interpretability characteristic of the revised logis-
tic regression, allows us to gain new and more detailed insights into the predictors in the
model. Additionally, the sensitivity analysis also proofs that the performance of the model
is robust with respect to varying default rates and performs well in the presence of large
class imbalance. Most importantly, the results proof that we can improve the framework of
the traditional logistic regression by means of machine learning techniques, while preserving
its simple interpretation. An additional inference can be drawn, that not only the revised
logistic regression outperforms the standard framework, it also performs competitively to
the random forest classifier. By using the proposed methodology, any financial institution
could increase future savings (Henley et al. 1997), accurately determine the financial buffer
as required by the Basel capital accord and simultaneously easily interpret the marginal con-
tribution of each predictor.

We encountered several limitations while conducting this research. The methodology as
described in this paper determines the optimal number of interaction terms based on the
performance of the Hybrid Approach. This set is added to the original set of predictors
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and used for both the Hybrid Approach, as well as for the combination with the SAFE ML
method. However, it might not be the optimal set of interaction terms after performing the
transformations by means of the SAFE ML method. This causes higher uncertainty with
respect to parameter estimation because the set is assumed to be good. Secondly, the ap-
plied methodology demands extensive computation power, such that running the different
algorithms for large data sets takes a lot of time to complete. This is less practical when the
model has to be recalibrated by, for example, credit risk managers on a frequent base.

Further research that could be interesting based on the findings in this paper would be
to firstly develop an algorithm that entwines the methodologies of the Hybrid Approach and
the SAFE ML method in one step. Such an algorithm would allow the model to include the
optimal number of interaction terms, while taking into account that these will be discretized
after including them in the original set of predictors. In this way, the uncertainty regard-
ing the selection of the interaction terms of the first step is eliminated. Another interesting
topic for future work is to apply SHAP values in the SAFE ML method as alternative to
the partial dependence function. In this way, a consistent feature attribution method is ap-
plied to determine the model’s output. Lastly, another practical extension of this research
would be to create a faster algorithm or heuristic to lower the required computational power
and consequently diminish the running time, such that recalibration of the model is more
pragmatic.
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A Appendix

A.1 Additional Feature Information

A.1.1 Feature Descriptions

Table 11: Descriptions of the features corresponding to the characteristics of the customers and
their transactional behavior.

Features Type Description

Employees Characteristic The number of employees in the company.
Registered Days Characteristic The number of days that the company is registered at Knab.
Existing Days Characteristic The number of days since the foundation of the company.

SBI Sector Characteristic
The industry in which the company is active, where SBI stands for
Standaard Bedrijfsindeling. In english this is referred to as
Standard Industrial Classification (SIC).

Province Characteristic The province in which the company is located.

Legal Entity Type Characteristic
The type of the entity of the company. The different entity types are:
Besloten Vennootschap, Eensmanszaak, Maatschap, Stichting and
Vennootschap Onder Firma

Net Inflow Transactional behavior The net amount of all incoming (+) and outgoing (-) transactions.
Tax Transactional behavior The net amount of all incoming (+) and outgoing (-) transactions related to tax.
Number of Transactions Transactional behavior The total number of transactions made.
Days without Tax Payments Transactional behavior The number of consecutive days that no tax is paid.
Crypto Trader Transactional behavior Indicator whether the company trades in cryptocurrency.

Money Service Transactional behavior
Indicator that the company might be registered at another bank.
Determined by checking the contra account holder on a list of money service
businesses.

Fraud Victim Transactional behavior
Indicator that the company might be a victim of fraud. Determined
by keywords in the transaction description.

High Risk Country Transactional behavior
Indicator whether the company has incoming or outgoing transactions
to a high risk country.

Medium Risk Country Transactional behavior
Indicator whether the company has incoming or outgoing transactions
to a medium risk country.

Transaction Type Transactional behavior

The type of the transaction. The different transaction types are:
Type 1 {Urgent Incoming, International Incoming, SEPA Incoming, Payment
Request Incoming, SEPA Direct Ideal, SEPA ID Deposit Ideal, Term
Deposit, Automatic Rebalancing, Fee, Interest}
Type 2 {Urgent Outgoing, International Outgoing, SEPA Outgoing Ex
Ideal, Payment Request Outgoing, SEPA Direct Debit Denial, SEPA
Outgoing Ideal, Instant Payment, Costs International Outgoing, Costs
Urgent Outgoing, International Return}
Type 3 {ATM Foreign, ATM Euro, Fuel Foreign, Fuel Euro, POS Foreign,
OVB Manual OPS, SEPA Internal, Unknown}
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A.1.2 Descriptive Statistics: Characteristics

Table 12: Descriptive statistics of features corresponding to the characteristics of the customers.

Features Continuous/Categorical Mean Stand. Dev. Min Max Skew Kurt

Employees Continuous 0.9597 1.9610 0 200 62.3768 6018.4151
Registered Days Continuous 740.2282 408.6101 24 1976 0.5350 -0.4193
Existing Days Continuous 2196.8935 3111.8139 24 43812 6.1467 64.7674
SBI Sector Categorical - - - - - -
Province Categorical - - - - - -
Legal Entity Type Categorical - - - - - -

A.1.3 Descriptive Statistics: Transactional Behavior

Table 13: Descriptive statistics of features corresponding to the transactional behavior of the customers.
There is a total of approximately 9,6 million transactions over the time period January 2018 to December
2020.

Features Type Mean Stand. Dev. Min Max Skew Kurt

Net Inflow Continuous 390.6020 20220.1900 -4192296 1793273 -15.8417 5636.6415
Tax Continuous -1037.1693 4056.0458 -291407 214899 -11.8663 355.9228
Number of Transactions Continuous 23.2934 32.0348 0 2007 7.1150 172.4530
Days without Tax Payments Continuous 26.9099 4.8144 1 30 -2.0332 4.0008
Crypto Trader Binary 0.0010 0.0316 0 1 31.5725 994.8211
Money Service Binary 0.0508 0.2196 0 1 4.0902 14.7210
Fraud Victim Binary 0.0112 0.1052 0 1 9.2914 84.3294
High Risk Country Binary 0,0005 0.0225 0 1 44.3734 1966.9959
Medium Risk Country Binary 0.0131 0.1139 0 1 8.5508 71.1156
Percentage of Type 1 Transactions Continuous 0.5478 0.2984 0 1 -0.6459 -0.7306
Percentage of Type 2 Transactions Continuous 0.2329 0.2257 0 1 0.8184 -0.1422
Percentage of Type 3 Transactions Continuous 0.2131 0.2883 0 1 1.9279 2.5271
Percentage of Negative Transactions Continuous 0.7052 0.2160 0 1 -0.6071 0.1469
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A.1.4 Industry SBI Codes

Table 14: Standaard Bedrijfsindeling (English: Standard Industrial Classification). Source:
https://www.kvktoegankelijk.nl/sbi2019nederlands/

SBI Code Industry

A Landbouw, bosbouw en visserij
B Winning van delfstoffen
C Industrie
D Productie en distributie van en handel in elektriciteit, aardgas, stoom en gekoelde lucht
E Winning en distributie van water; afval- en afvalwaterbeheer en sanering
F Bouwnijverheid
G Groot- en detailhandel; reparatie van auto’s
H Vervoer en opslag
I Logies-, maaltijd- en drankverstrekking
J Informatie en communicatie
K Financiële instellingen
L Verhuur van en handel in onroerend goed
M Advisering, onderzoek en overige specialistische zakelijke dienstverlening
N Verhuur van roerende goederen en overige zakelijke dienstverlening
O Openbaar bestuur, overheidsdiensten en verplichte sociale verzekeringen
P Onderwijs
Q Gezondheids- en welzijnszorg
R Cultuur, sport en recreatie
S Overige dienstverlening
T Huishoudens als werkgever; niet-gedifferentieerde productie van goederen en diensten door huishoudens voor eigen gebruik
U Extraterritoriale organisaties en lichamen
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A.1.5 Partial Autocorrelation Functions

(a) Defaults

(b) Net Inflow

(c) Tax

(d) Number of Transactions

(e) Days without Tax Payments

Figure 10: Partial Autocorrelation Functions for the target variable Defaults and all the variables reflecting
the transactional behavior together with the corresponding confidence level. This is done for the set with the
overall default rate of 8.35%.
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(f) Crypto Trader

(g) Money Service

(h) Fraud Victim

(i) High Risk Country

(j) Medium Risk Country

(k) Percentage of Type 1 Transactions

Figure 10: Partial Autocorrelation Functions for the target variable Defaults and all the variables reflecting
the transactional behavior together with the corresponding confidence level. This is done for the set with the
overall default rate of 8.35%.
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(l) Percentage of Type 2 Transactions

(m) Percentage of Type 3 Transactions

(n) Percentage of Negative Transactions

Figure 10: Partial Autocorrelation Functions for the target variable Defaults and all the variables reflecting
the transactional behavior together with the corresponding confidence level. This is done for the set with the
overall default rate of 8.35%.
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A.2 Classifier Performance

Table 15: Performance measures of the different models for the different default rates. Bold face indicates
the best performance per metric over all the models. Bold face and underlined indicates the best performance
among the interpretable models.

High Default Rate

Gini BS PCC PCC defaults PCC non-defaults

LR with LASSO 68.99% 0.0718 88.41% 39.93% 93.59%
Random forest 80.91% 0.0579 91.39% 55.39% 95.24%
XGBoost 83.29% 0.0579 91.56% 56.22% 95.33%
SAFE ML with RF 74.23% 0.0685 89.33% 44.76% 94.09%
SAFE ML with XGB 72.89% 0.0693 89.00% 43.01% 93.91%
Hybrid with RF 65.79% 0.0789 87.07% 33.06% 92.84%
Hybrid with XGB 67.77% 0.0759 87.96% 37.58% 93.34%
Hybrid & SAFE with RF 74.93% 0.0675 89.45% 45.16% 94.18%
Hybrid & SAFE with XGB 72.08% 0.0695 88.59% 40.81% 93.69%

Medium Default Rate

Gini BS PCC PCC defaults PCC non-defaults

LR with LASSO 69.59% 0.0639 89.73% 38.48% 94.39%
Random forest 81.90% 0.0515 92.28% 53.77% 95.79%
XGBoost 84.04% 0.0515 92.54% 55.32% 95.93%
SAFE ML with RF 70.07% 0.0635 90.00% 40.19% 94.52%
SAFE ML with XGB 70.24% 0.0637 89.57% 37.53% 94.31%
Hybrid with RF 61.61% 0.0830 88.83% 33.18% 93.89%
Hybrid with XGB 66.01% 0.0688 88.53% 31.47% 93.73%
Hybrid & SAFE with RF 73.70% 0.0618 90.15% 41.12% 94.61%
Hybrid & SAFE with XGB 70.88% 0.0636 89.76% 38.69% 94.41%

Low Default Rate

Gini BS PCC PCC defaults PCC non-defaults

LR with LASSO 69.15% 0.0542 91.20% 35.10% 95.28%
Random forest 81.62% 0.0440 93.39% 51.27% 96.46%
XGBoost 84.39% 0.0435 93.57% 52.54% 96.55%
SAFE ML with RF 74.08% 0.0522 91.59% 39.08% 95.41%
SAFE ML with XGB 72.43% 0.0519 91.10% 45.11% 94.44%
Hybrid with RF 63.03% 0.0696 89.64% 23.56% 94.44%
Hybrid with XGB 61.19% 0.0588 90.05% 27.35% 94.68%
Hybrid & SAFE with RF 79.41% 0.0492 92.41% 44.25% 95.91%
Hybrid & SAFE with XGB 71.70% 0.0525 91.57% 37.93% 94.47%
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A.3 Performance Hybrid Approach

(a) Hybrid RF - High Default Rate (b) Hybrid XGB - High Default Rate

(c) Hybrid RF - Medium Default Rate (d) Hybrid XGB - Medium Default Rate

(e) Hybrid RF - Low Default Rate (f) Hybrid XGB - Low Default Rate

Figure 11: Gini Coefficient of Hybrid Approach in combination with random forest (a), (c), (e) and
XGBoost (b), (d), (f) for varying number of interaction terms for the different default rates.
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A.4 Programming Codes

The programming codes are contained in two separate files: (1) Main Code.py, (2) Perfor-
mance Measures.py. Both codes are briefly described in the following sections.

A.4.1 Main Code

The models that are described in the Methodology, Section 3, are developed and programmed
in Main Code.py. The structure of the code follows the structure of the paper:

• Data connection
• Install packages
• Load & structure data
• Logistic Regression
• Random forest
• XGBoost
• SAFE ML method
• Hybrid Approach
• Combination of Hybrid and SAFE ML

The data is first imported from the database of Knab, after which required open source
packages are installed. The tables are loaded and structured to implement in the different
models. This includes among other things constructing dummy variables for the categorical
variables. The logistic regression is first developed for all the variables, then in combination
with stepwise selection (backward and forward) and lastly with LASSO. LASSO first requires
tuning of the regularization term. Subsequently, the other models are tuned and trained
as described in the Methodology section, after which they are run in order to obtain the
corresponding performance on the test set.

A.4.2 Performance Measures

The performance measures that are described in the Methodology, Section 3.6, are developed
and programmed in the code called Performance Measures.py. The structure of the code is
as follows:

• Gini Coefficient
• Brier Score
• Overall PCC
• PCC default class
• PCC non-default class

These are the metrics used to evaluate and compare the different models.
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