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Abstract

Growth-at-Risk (GaR) is a measure that enables policy-makers to gain insights in the future

behaviour of the economy. Therefore, predicting it adequately is essential for policy-makers.

Quantile regressions are the foundation for the estimation, however due to overestimating the

likelihood of future recessions the estimates are contaminated. The Bayesian GaR model imposes

Bayesian inference on a quantile regression to take the left tail of the future distribution of GDP

growth accurately into account during recessions. This paper implements the Markov switching

model to determine whether GaR predictions can be improved. The results suggest that the

Bayesian GaR model is generally the superior fit when it comes to predicting GaR. This is likely

due to the fact that the Bayesian GaR model takes parameter uncertainty into account when

predicting the distribution of future GDP growth.
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1 Introduction

The macro economy and its developments are of great interest to society, as the negative repercus-

sions are vital to take into account. In order to learn the behaviour of the economy in the present

and in the future we focus on macroeconomic variables measuring economic growth. In this paper,

we analyse Gross Domestic Product (GDP) growth and predict its distribution in the future.

When analysing GDP growth an interesting characteristic revolves around the risk of it dropping,

implying decline in economic activity. Growth-at-Risk (GaR) is a quantile from the distribution of

future GDP growth that quantifies macroeconomic risk in terms of economic growth. Hence, the

GaR measure enables us to learn the magnitude of the risk involved in the economy. Estimating

the GaR has become more popular over the recent years, as shown in Adrian et al. (2019). They

estimate GaR using quantile regressions and find that GDP growth becomes left-skewed during

recessions and symmetric during expansions by modelling the full distribution of future real GDP

growth. Furthermore, the volatility that is displayed by future GDP growth is approximately entirely

contained in the left tail of the conditional distribution of GDP growth. This implies that recessions

tend to have more influence on the distribution of GDP growth compared to expansions. These

findings substantiate the relevance of further research in GaR estimation.

According to Szabo (2020) quantile regressions provide inadequate GaR predictions. Specifically,

quantile regressions model the quantiles separately, which leads to overestimating the likelihood of

future recessions. This suggests that other techniques may need to be developed or utilised to

estimate GaR more accurately. Overall, modelling the left tail of the distribution of GDP growth

or the likelihood of future recessions is highly relevant when predicting Growth-at-Risk. In this

paper we aim to learn how one can deal with left-skewed GDP growth during recessions in the best

manner.

In order to prevent overestimating the likelihood of future recessions multiple measures can be

taken. Szabo (2020) introduces a Bayesian GaR method, which models the quantiles simultaneously

opposed to quantile regressions. This approach ensures that the quantiles do not cross each other,

which is a common problem when implementing quantile regresssions. By imposing this restriction

the Bayesian GaR assures that information contained in the lower quantiles does not instigate GaR

of upper quantiles. Therefore, the Bayesian GaR is less likely to overestimate the likelihood of

recessions and provide accurate GaR predictions. Alternatively, one can choose to model recessions

and expansions more explicitly when predicting GaR. A Markov switching model can describe these
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periods distinctly as it transitions between different regimes, according to Hamilton (1989). We

can assume that the model continuously switches between a ‘good’ state economy and a ‘bad’ state

economy. However, this process remains unobserved, so an Expectation-Maximization algorithm is

implemented to obtain parameter estimates, as shown in Hamilton (1990). In this setting recessions

are approximated in the model through the underlying states. Therefore, a Markov switching model

is less likely to overestimate the likelihood of a future recession. This paper analyses Bayesian GaR

and Markov switching models and examines which of the two is best suited to provide accurate

predictions for future Growth-at-Risk.

Since the work of Adrian et al. (2019) interest to predict GaR has been rising in the literature, as

GaR is able to quantify macroeconomic risk in terms of GDP growth. Furthermore, the distribution

of future GDP growth displays important characteristics of the macro economy and is therefore vital

in order to consider when conducting policy-making. Moreover, GaR proves beneficial to quantify

the impact of systemic risk on future GDP growth, as stated in Prasad et al. (2019). The relation

between GDP growth and macroeconomic conditions is additionally emphasised in Adrian et al.

(2019). It is generally straightforward to evaluate GaR, as it is a quantile equivalent to Value-at-

Risk (VaR). Therefore, one can borrow numerous techniques that have been developed to model

VaR according to Brownlees and Souza (2021).

The most straightforward way to predict GaR is by implementing quantile regressions. In the

context of quantile regressions, parameter estimates are obtained by minimising the sum of quantile

weighted absolute value of errors, as shown in Prasad et al. (2019). Additionally, quantile regres-

sions link downside risk of future GDP growth to exogenous variables according to Brownlees and

Souza (2021). To describe the behaviour of future GDP growth as adequately as possible multiple

exogenous variables are included in the models. As GDP growth tends to exhibit distinct periods

differentiating between shrinking and expanding periods of growth it might prove beneficial to in-

troduce variables that distinguish between them. The National Financial Conditions Index (NFCI)

is a macro-economic variable that explains a significant amount of the variation contained in GDP

growth, as shown in Adrian et al. (2019). Other variables include financial Stress (Islami and Kurz-

Kim (2014)) or economic policy uncertainty (Baker et al. (2016)). Implementing quantile regressions

implies modelling the quantiles separately. However, as alluded to before cross-quantile effects are

not taken into account according to Szabo (2020). This causes the left tail of the distribution of

future GDP growth to be overestimated. Subsequently, this has a major impact on GaR predictions,

which might turn out inaccurate.
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Contrary to a quantile regression, the Bayesian GaR models the quantiles simultaneously. Imply-

ing that quantile crossing is avoided, as shown in Szabo (2020). This also ensures that the likelihood

of future recessions is not overestimated causing GaR predictions to be more accurate. Szabo (2020)

argues that adding informative linkage and controlling stability of predictions is vital to ensure ad-

equate GaR predictions. This is done by introducing a hierarchical prior in the Bayesian setting

that guarantees steady predictions. The addition of Bayesian priors to a quantile regression setting

has better performance than regular quantile regressions in terms of forecasting. This raises the

question whether other models can also be useful to implement when predicting GaR, specifically in

the context of overestimating the left tail of the distribution of GDP growth.

A Markov switching model, as introduced by Hamilton (1989), obtains the density of GDP growth

conditioned on lagged information and unobserved states. As mentioned before, these unobserved

states might differentiate between recessions and expansions causing the model to adept well in

the context of left-skewed GDP growth during recessions. Intuitively, the Markov switching model

should be able to estimate GaR adequately due to this characteristic. In order to predict GaR using

a Markov switching model, we first estimate the Markov switching model and then use simulation to

obtain GaR. Markov switching models have been implemented in various settings in the literature,

however they are yet to be applied to predict GaR. Therefore, it is interesting to examine whether

the Markov switching model can predict GaR more accurately than the Bayesian GaR model.

Compared to existing literature this paper estimates GaR using a Markov switching model and

the Bayesian GaR model to take the left tail of the distribution of future GDP growth more accurately

into account. In such a way, the paper offers a new perspective on GaR estimation by comparing

two methods on the accuracy of their respective GaR predictions.

The results from this paper indicate that in absence of the Covid period the Markov switching

model is relatively unable to predict GaR adequately. When the Covid period is taken into account

the conclusions are not straightforward, however the Bayesian GaR model is favoured due to the

results from the individual backtests. Overall, it turns out that the Markov switching model is inept

in differentiating between the unobserved states in a satisfactory manner, causing inadequate GaR

predictions. On the other hand, the Bayesian GaR model imposes Bayesian inference on a quantile

regression setting. This results in a posterior distribution of GaR, which reflects uncertainty revolving

around future GDP growth leading to accurate GaR predictions.

The remainder of the paper is structured as follows. In Section 2, we elaborate on the models

and techniques implemented in this paper. In Section 3, we describe the data set and explanatory
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variables that we use. In Section 4, we discuss and substantiate the results. Finally, in Section 5 we

conclude and discuss our findings.

2 Methodology

In this section, we elaborate on the methods implemented in this paper. Before thoroughly examining

the Bayesian GaR model and Markov switching model, we first introduce some notation to model

the distribution of future GDP growth.

2.1 Quantile regression

The variable of interest yt+h is the GDP growth rate at time t + h. The data is assumed to range

from t = 1, . . . , T . However, as we need to evaluate GaR predictions we split the data into a test

and train set. The train set ranges from t = 1, . . . , T − n with n the amount of out-of-sample test

observations. For ease of notation, we note T0 = T −n. We define xt = (1, yt, . . . , yt−p, z1t, . . . , zdt),

where zjt are exogenous variables with j = 1, . . . , d. The number of lagged GDP growth variables is

indicated by p+ 1 and 1 implies an intercept in the model. The variable xt is a vector of dimension

(1 × l). Adrian et al. (2019) assume that the distribution of future GDP growth Qτ (yt+h|xt), can

then be modeled as follows:

Qτ (yt+h|xt) = xtβ(τ), (1)

where β(τ) is a vector of quantile regression coefficients with length l for the τ th quantile.

2.2 Bayesian GaR

In order to model all quantiles simultaneously, we group the aformentioned vectors into matrices.

Let X = (x1, . . . ,xT0)′, Y = (y1, . . . , yT0) and Bm = (β(τ1), . . . ,β(τm)) with τ1, . . . , τm the m

quantiles in the model, such that τ1 < · · · < τm. By introducing the prior distribution pm(Bm|X)

on the quantile regression parameters, a posterior distribution can be obtained according to Feng

et al. (2015). The posterior distribution is given as follows:

p(Bm|X,Y ) ∝ pm(Bm|X)L(Y |X,Bm), (2)

where L(Y |X,Bm) represents the likelihood of GDP growth given the parameters and explanatory

variables. Feng et al. (2015) show that the likelihood can be obtained nonparameterically, meaning

the estimation is semi-parametric. This implies that we require an approximated likelihood, which

is obtained through linear interpolation.

4



2.2 Bayesian GaR Master Thesis Quantitative Finance

2.2.1 Linear interpolation

The likelihood in the Bayesian representation is undefined, so we seek to approximate it through

linear interpolation. Feng et al. (2015) argue that the probability density function (pdf) of a random

variable can be approximated by a set of predefined quantile functions. By implementing this

concept, the approximated linearly interpolated density is obtained by means of equation (3).

f̂t(yt+h|xt) =

[
m−1∑
j=1

1[yt+h∈(xtβ(τj), xtβ(τj+1))]
τj+1 − τj

xtβ(τj+1)− xtβ(τj)

]
+ 1[yt+h∈(−∞,xtβ(τ1))]τ1g1(yt+h|xt)

+ 1[yt+h∈(xtβ(τm),∞)](1− τm)g2(yt+h|xt),

(3)

where g1 is the pdf of N (xtβ(τ1), σ
2), g2 is the pdf of N (xtβ(τm), σ2) and σ2 a pre-specified pa-

rameter. By multiplying all individual densities for the respective observations, we can approximate

the entire likelihood as follows:

L(Y |X,Bm) ≈
T0∏
t=1

f̂t(yt+h|xt)

2.2.2 Metropolis-Hastings algorithm

The essential information needed to obtain samples from the posterior distribution in equation (2)

is known. In order to obtain samples that represent the posterior distribution, we use an alteration

of the Metropolis-Hastings algorithm as shown in Szabo (2020). The parameters are simulated k

times and the algorithm we implement is given in Algorithm 1.
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Algorithm 1: Metropolis-Hastings

Step 1: Set k = 0 and initialise B(0)
m by performing a quantile regression

Step 2: Approximate the likelihood L(0) =
∏T0
t=1 f̂

(0)
t (yt+h|xt,B

(0)
m ), or L(k−1) in the kth

simulation

Step 3: Pick a random τj from τ1, . . . , τm when we are at the kth iteration. Then,

randomly pick βi(τj), the ith element of β(τj) to update. In order to obtain the

replacement β∗i (τj) we compute lower and upper bounds and use these to generate

β∗i (τj) from a uniform distribution, similarly to Feng et al. (2015). This approach

ensures that quantile crossing does not occur. We replace β(k−1)i (τj),

the (i, j)th element of B(k−1)
m , by β∗i (τj) to obtain B∗m.

Step 4: Compute L∗ =
∏T0
t=1 f̂

∗
t (yt+h|xt,B∗m).

Step 5: Calculate the acceptance probability

α = min

(
1,

pm(B∗m|X)L∗

pm(B
(k−1)
m |X)L(k−1)

)
,

Let B(k)
m = B∗m with probability α and B(k)

m = B
(k−1)
m with probability 1− α.

Step 6: Repeat steps 2 to 5 until the required number of simulations is reached.

By implementing Algorithm 1 we obtain parameter samples that represent the posterior distribu-

tion of the quantile regression coefficients. We take a specific τ and select the parameter samples

corresponding to this quantile. We implement these samples in equation (1) to obtain a posterior

distribution of GaR corresponding to the τ th quantile. In order to acquire a point estimate in this

Bayesian setting we minimise an expected quadratic loss function. Solving the minimisation implies

taking the mean of the posterior distribution of GaR to obtain a point estimate.

2.3 Markov switching model

The other technique one may implement to model GDP growth is the Markov switching model, as

introduced by Hamilton (1989). The Markov switching model assumes a latent state that drives the

dependent variable, which is GDP growth in this paper. We start by introducing some notation,

in order to obtain the GaR using a Markov switching model. We assume that GDP growth can

either be in one of two regimes, because the economy is generally deemed to be in an expansion or

recession of the business cycle. We assume St = i with i = 1, 2, which represents the underlying

state at time t as done in Hamilton (1989). The model can then be formulated as follows:
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yt =


xtφ1 + εt if St = 1

xtφ2 + εt if St = 2

(4)

where φi represent the coefficient vectors for the distinct states with i = 1, 2 and εt is the error

term at time t with variance σ2i for i = 1, 2. We assume that the error term is normally distributed,

implying that the dependent variable has a Gaussian density.

2.3.1 Inference on the states

Hamilton (1989) argues that the current regime St follows a first-order Markov chain. The transition

probabilities are then given as follows:

P (St = 1|St−1 = 1) = p11

P (St = 2|St−1 = 1) = 1− p11

P (St = 2|St−1 = 2) = p22

P (St = 1|St−1 = 2) = 1− p22

Due to the latent nature of the variable St it is difficult to estimate the model. Hamilton (1989)

introduces the Hamilton filter, which uses a prediction and updating step to estimate the parameters.

We define the state variable ξt as a vector that contains the probabilities of being in a specific state at

time t. However, as the states are unobserved we need to estimate the state variable. We refer to the

estimated state variable ξ̂t|t =
(
P (St=1|It)
P (St=2|It)

)
as the filtered probability and it consists of probabilities

of the model being in a specific state at various points in time. The prediction step is defined as

follows:

ξ̂t+1|t = P ξ̂t|t,

with transition probability matrix:

P =

 p11 1− p22

1− p11 p22


Intuitively, the prediction step is relatively easy to interpret. Given all information at time t, we

implement our estimate at time t and multiply it with the transition probabilities to obtain the

estimated state variable at time t+ 1. Furthermore, the updating step is given as follows:

ξ̂t|t =

(
f(yt|St=1)
f(yt|St=2)

)
� ξ̂t|t−1

(1 1)
[(

f(yt|St=1)
f(yt|St=2)

)
� ξ̂t|t−1

] ,
7
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where � indicates element wise multiplication. By obtaining the log likelihood and rewriting the

density, one can use maximum likelihood estimation to acquire the parameter estimates. How-

ever, the structure of the likelihood is complicated. In order to obtain estimates we resort to an

Expectation-Maximization (EM) algorithm, as shown in Dempster et al. (1977).

2.3.2 Expectation-Maximization algorithm

We implement the EM algorithm due to the fact that we are dealing with a latent variable St.

However, we can rewrite the likelihood of the system in such a way that we only require the joint

likelihood of the states and yt, according to Hamilton (1990). The rewritten expression for the

likelihood is given as follows:

L(y1:T0 |θ) = logf(y1:T0 , ξ1:T0 |θ)− logf(ξ1:T0 |y1:T0 ;θ)

where y1:T0 = (y1, . . . , yT0), ξ1:T0 = (ξ1, . . . , ξT0) and θ = {p11, p22,φ1,φ2, σ
2
1, σ

2
2} contains the

coefficient parameters and probability parameters that are used to maximise the likelihood. Fur-

thermore, we define the expectation operator Ẽ(.) = Eξ1:T0 |y1:T0
(.) to show that the conditional

density is of no interest in the maximisation. The location of θ for the maximum value of the

likelihood solely depends on logf(y1:T0 , ξ1:T0 |θ), as Ẽ[ d
dθ

logf(ξ1:T0 |y1:T0 ;θ)] = 0. Therefore, we are

only interested in the joint density of y1:T0 , ξ1:T0 . We define fi(yt) = f(yt|St = i;θi) as the density

function in state i and θi the parameter vector which is a subset of θ containing φi and σ2i when

St = i for i = 1, 2. This enablus us to write the joint density as follows:

f(yt, st|st−1;θ) =



f1(yt)p11 if st = 1 and st−1 = 1

f1(yt)(1− p22) if st = 1 and st−1 = 2

f2(yt)(1− p11) if st = 2 and st−1 = 1

f2(yt)p22 if st = 2 and st−1 = 2

=[f1(yt)p11]
I(St=1)I(St−1=1) × [f1(yt)(1− p22)]I(St=1)I(St−1=2)

× [f2(yt)(1− p11)]I(St=2)I(St−1=1) × [f2(yt)p22]
I(St=2)I(St−1=2)

(5)

We take the logarithm of the expression and take the expectation operator Ẽ when initialising the

algorithm. However, this results in an unknown expression according to Hamilton (1990). Fortu-

nately, this expression closely resembles the smoothed probabilities as introduced by Kim (1994).

The smoothed estimate ξ̂t|T0 = E(ξt|IT0) is computed using the tower property and conditioning
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on the state at time t+ 1. The smoothed estimate differs compared to the filtered probability with

respect to the conditioned information. Specifically, future information is incorporated regarding

the smoothed estimate. The smoothed estimates can be obtained as follows:

ξ̂t|T0 = ξ̂t|t � P ′(ξ̂t+1|T0 � ξ̂t+1|t),

P ∗(t) = P � (ξ̂t|T0 ξ̂
′
t−1|t−1) � (ξ̂t|t−1[1 1]),

where � indicates element wise division. The required variables are defined and the Expectation-

step (E-step) of the EM algorithm can be implemented. In the E-step, we run the Hamilton filter

forward and Kim smoother backward to obtain P ∗(t) using ξ̂t|T0 . This results in the smoothed

transition probabilities given as follows:

p∗ij(t) = P (St = i, St−1 = j|θ̂, IT0) for i, j = 1, 2,

where θ̂ indicates the estimated parameters contained in θ. Note, in the first iteration of the

algorithm the parameters θ0 need to be initialised in order to obtain the smoothed transition prob-

abilities. Furthermore, we define the smoothed probabilities of being in state 1 or 2 respectively as

follows:

p∗1(t) = P (st = 1|IT0) = p∗11(t) + p∗12(t)

p∗2(t) = P (st = 2|IT0) = p∗21(t) + p∗22(t)

p∗1(t− 1) = p∗11(t) + p∗21(t)

p∗2(t− 1) = p∗22(t) + p∗12(t)

After performing the E-step and obtaining the smoothed transition probabilities we continue with

the Maximisation-step (M-step) of the algorithm. In order to perform the M-step, we examine the

joint likelihood in more detail, which is given as follows:

Ẽ[logf(y1:T0 , ξ1:T0 |θ)|θ0] = p∗1(0)log[ρ1] + p∗2(0)log[ρ2]

+

T0∑
t=1

(p∗11(t)log[p11f1(yt)] + p∗12(t)log[(1− p22)f1(yt)]

+ p∗21(t)log[(1− p11)f2(yt)] + p∗22(t)log[p22f2(yt)])

(6)

where the ρi represents the unknown distribution of ξ0, specifically P (S0 = i) = ρi for i = 1, 2. In

the M-step we maximise equation (6) with respect to the parameters of interest contained in θ. This

9
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results in the following analytical expressions for the transition probabilities, according to Hamilton

(1990):

p̂11 =

∑T0
t=1 p

∗
11(t)∑T0

t=1 p
∗
1(t− 1)

p̂22 =

∑T0
t=1 p

∗
22(t)∑T0

t=1 p
∗
2(t− 1)

The expressions for the remaining parameters contained in θ̂ need to be derived analytically from

equation (6) as well. Hamilton (1990) argues that these expressions can be obtained by solving the

following equation:
T0∑
t=1

p∗i (t)
dlog[fi(yt)]

dθi
= 0 for i = 1, 2

Note, equation (6) solely holds for the first iteration of the EM algorithm. For higher order iterations

we replace the initialised θ0 by θ̂. In every iteration we update the parameter estimates in θ̂ and

perform the EM algorithm again and keep iterating until convergence. Goodwin (1993) argues that

the estimates obtained from the EM algorithm can be implemented in the following manner to

forecast GDP growth:

ŷt+1|t = P̂ (St+1 = 1|It)(xt+1φ̂1) + P̂ (St+1 = 2|It)(xt+1φ̂2), (7)

where P̂ (St+1 = i|It) is computed using the filtered probability ξ̂t|t and estimated transition proba-

bilities for i = 1, 2. In order to obtain the distribution of future GDP growth, we simulate the error

term εt using σ̂2i and P̂ (St+1 = i|It) to obtain the simulated error term in a similar manner as in

equation (7). Specifically, we compute a weighted sum of the error terms for the two regimes. We

repeat this procedure L times to retrieve the distribution of future GDP growth. Following this, we

sort the simulated values from low to high and take the τ th quantile of the distribution to obtain

the GaR.

2.4 Evaluation criteria

The Bayesian GaR and the Markov switching model enable us to derive the conditional distribution

of future GDP growth. In order to determine which technique is most proficient predicting an

accurate GaR, multiple evaluation criteria are required. The models are validated based on their

out-of-sample performance. This is achieved by splitting the data into a train and test set. We

use the observations t = 1, . . . , T − n to train the models and validate them with the remaining

t = T − n, . . . , T . So, we use n out-of-sample observations to evaluate the models.

10
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As the GaR is a risk measure similar to the Value-at-Risk (VaR) we can use backtesting tech-

niques that exist for the VaR in the context of this paper. Particularly, we examine the number of vio-

lations that correspond with the GaR using I(Qτ (yt+h|xt) > yt+h)). The violations of a VaR measure

are i.i.d. Bernoulli distributed random variables, according to Christoffersen and Pelletier (2004). We

can aggregate them to obtain the total number of violations Z =
∑T

t=T−n I(Qτ (yt+h|xt) > yt+h)).

Then, Z follows a Binomial distribution B(n, 1− τ). When n→∞ the following linear transforma-

tion converges to a standard normal distribution:

Z − n(1− τ)√
nτ(1− τ)

∼ N (0, 1)

If Z is too high we reject the null hypothesis, implying that the GaR is not accurate enough and

therefore the respective model is unable to provide accurate GaR estimates. In the remainder of

this paper we refer to this test as the traditional backtest. In order to arrive at a robust conclusion

regarding the adequacy of the models, another backtesting technique is implemented. In this setting,

GaR is tested based on a scoring function to take the number of violations into account, according

to Nolde and Ziegel (2017). Under the null hypothesis, the test statistic of the conditional backtest

is given as follows:

H =
1√
n

Σ̂−1/2n

T∑
t=T−n

[1− τ − I(Qτ (yt+h|xt) > yt+h)] ∼ N (0, 1), (8)

where Σ̂
−1/2
n is a heteroscedastic and autocorrelation consistent estimator of the asymptotic covari-

ance matrix Σn = cov(1/
√
n
∑T

t=T−n[1−τ−I(Qτ (yt+h|xt) > yt+h)]). The metricH is asymptotically

standard normal under the null hypothesis. We reject the null hypothesis if |H| is too high indicating

that the GaR predictions are significantly inadequate, following Nolde and Ziegel (2017).

The previously mentioned evaluation criteria offer an insight into the predictive performance

for GaR of the models individually. However, to allow for a more direct comparison, we include a

comparative backtest in the analysis. The null hypothesis of the comparative backtest states that

the two models predict at least as well as one another, following Nolde and Ziegel (2017). To evaluate

the predictions we use the following scoring function:

Sb(Qτ (yt+h|xt)) = (1− τ − I(Qτ (yt+h|xt) > yt+h))yt+h + I(Qτ (yt+h|xt) > yt+h)Qτ (yt+h|xt)

where b represents the respective GaR of the Bayesian GaR (BG) or Markov switching model (MS).

We define ∆nS̄ = 1
n

∑T
t=T−n(SBG(Qτ (yt+h|xt)) − SMS(Qτ (yt+h|xt))), then the test statistic is for-

mulated as follows:

W =
∆nS̄

σ̂n/
√
n
∼ N (0, 1), (9)
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where σ̂n is the HAC estimator of the asymptotic variance σ2n = var(
√
n∆nS̄). We reject the null

hypothesis if |W | is too high.

2.5 Implementation

After elaborating on the techniques utilised in this paper, we discuss their implementation. As

alluded to before, the results are based on out-of-sample estimation. We implement a moving

window and first estimate the models using t = 1, . . . , T − n observations. In the next step we

expand the window to t = 1, . . . , T −n+ 1 and keep iterating until we reach the end of the data set.

For every iteration we re-compute σ2 in the context of the BG model as the variance of GDP growth.

Furthermore, the prior that we use for the BG model is a relatively loose multivariate normal prior,

similar to Szabo (2020). Specifically, we run a quantile regression using T − n observations and

use the respective estimates for the prior. Given a specific quantile we implement the respective

quantile parameter estimates as the prior mean. Additionally, the prior covariance matrix is diagonal,

with the respective quantile residual variance estimate on the diagonal. We choose to model 40

quantiles simultaneously in order to include the 5% and the 10% quantile. Moreover, to allow for

straightforward evaluation we take h = 1 to predict the distribution of future GDP growth one

quarter ahead. We set k = 1e5 and define half of it as burn-in period and set thinning at 10, similar

to Feng et al. (2015). In the context of the MS model we simulate L = 1e5 times as well. The

specific model specification we implement contains the explanatory variables discussed in section 3.

Moreover, we include one lagged GDP growth variable in the model based on the autocorrelation

function of the respective GDP growth series.

In order to evaluate the GaR predictions of the models, we need to adjust the context of the

estimates to fit the context of the evaluation criteria. Since, these evaluation criteria are based

on VaR risk measures. Therefore, we mirror the respective GDP growth series and GaR estimates

around the horizontal axis and take the 1−τ quantile. As we determine the quantile at the left tail of

the distribution and in the context of VaR the analysis focuses on the right tail of the distribution.
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3 Data

The main variable of interest in this paper is GDP growth. In order to arrive at robust conclusions

regarding GaR estimation, we choose to consider multiple GDP growth rates. Specifically, we choose

the US1 and German2 GDP growth. Both GDP growth rates are given in quarterly frequency from

1997 Q1 until 2020 Q4.

As alluded to before the NFCI is a sensible explanatory variable to include in a model that aims

to describe the behaviour of GDP growth, according to Adrian et al. (2019).3 Furthermore, the

NFCI seems to explain a significant amount of the variation in GDP growth, according to Brownlees

and Souza (2021). The variable constitutes as an average of numerous financial measures that gauge

economic activity. Therefore, we incorporate the variable as an explanatory variable in the models.

The NFCI is given in weekly frequency, so we convert it to quarterly frequency following the method

presented in Adrian et al. (2019). We average weekly NFCI in the quarter and if one week starts in

one quarter and ends in the following quarter, the week is attributed to the latter. Thus, we obtain

NFCI in quarterly frequency.

Another variable that can increase explanatory power of the models is affiliated with financial

stress. A Financial Stress Index (FSI) can be viewed as an indicator that generalises the current

state of the economy, which presents a direction the economy is likely to head towards, according

to Islami and Kurz-Kim (2014). The inherent construction of an FSI is likely to fit well in a model

that predicts future GDP growth. So, we include the FSI in the model as an explanatory variable as

well.4 The FSI is obtained in weekly frequency, so we convert the time series to quarterly frequency

in a similar manner as the NFCI.

Furthermore, policy measures are also likely to affect the state of the economy, as shown in

Baker et al. (2016). Specifically, uncertainty regarding policy contributes to decreasing economic

activity. The Economic Policy Uncertainty (EPU) gauges the amount of uncertainty revolving

around economic policy based on newspaper coverage frequency. By quantifying the number of a

specific set of words one is able to determine the amount of uncertainty in the economy according

to Baker et al. (2016). This variable is therefore likely able to describe the behaviour of GDP

growth well and is included in the model.5 The EPU is given in monthly frequency, so we convert to
1Obtained from https://fred.stlouisfed.org/series/A191RL1Q225SBEA
2Obtained from https://sdw.ecb.europa.eu/browse.do?node=9683074
3The NFCI is obtained from https://www.chicagofed.org/research/data/index
4The FSI is obtained from https://fred.stlouisfed.org/series/STLFSI2
5The global EPU is obtained from http://www.policyuncertainty.com/global_monthly.html
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quarterly frequency following Chow and Lin (1971). The method states that we average the monthly

EPU that constitute as a quarter and thus obtain quarterly EPU. Ultimately, we end up with a data

set that starts in 1997 Q1 and ends in 2020 Q4. In Figure 1 we plot the GDP growth series to gain

more insight into the characteristics of the series.

Figure 1: US and German GDP growth over time

Note. Quarterly US and German GDP growth is given in the figure from 1997 Q1 to 2020 Q4. Where the

blue line represents US GDP growth and the red line represents German GDP growth.

In Figure 1 the quarterly US and German GDP growth is given over time. The main difference we

observe between the two series is the variation relative to their respective mean. US GDP growth

seems a more volatile series compared to German GDP. Furthermore, the outliers of GDP growth

over time correspond with the finanical crisis in 2008 and the corona crisis in early 2020. To continue

the analysis of the series, we show the descriptive statistics of the variables in Table 1.
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Table 1: Descriptive statistics

US GDP German GDP NFCI EPU FSI

Mean 2.320 0.298 -0.360 126.601 0.041

Variance 28.191 2.507 0.255 4148.798 0.977

Skewness -0.702 -1.529 3.391 1.565 3.700

Note. In the Table descriptive statistics of the respective time series are shown, where the

mean, variance and skewness are displayed as descriptive statistics.

In Table 1 the descriptive statistics for the various variables are shown. As displayed in Figure 1 the

variation in US GDP is relatively higher than the variation in German GDP, which is reflected in the

variance of the respective series. Furthermore, the NFCI seems to exhibit relatively little variation,

whereas the EPU and FSI display relatively much variation. The GDP growth series have negative

skewness, implying that negative GDP growth has larger influence on the observations than positive

GDP growth. The contrary holds for the EPU, NFCI and FSI. Furthermore, we use Augmented

Dickey-Fuller tests to check the time series for possible non-stationarity. We find that the EPU

series is the only non-stationary series used in this paper. The EPU series is implemented without

taking first differences, as the non-stationary series does not affect parameter estimates according

to Baffes (1997). Furthermore, we normalise EPU as the EM algorithm would experience great

difficulty computing the estimated parameters due to the magnitude of the data.

In order to evaluate the models we use a moving window to predict out-of-sample GaR. As we

are evaluating GaR estimates using backtesting techniques it is relevant to consider the length of

the out-of-sample period with respect to the amount of violations that can occur. For every out-of-

sample period we choose a length of 40 quarters, as GaR estimates based on the 5% quantile are

expected to violate twice. This seems a reasonable amount of out-of-sample observations, as fewer

out-of-sample observations would allow less than two violations and more out-of-sample observations

would cause the estimation window to become too brief.
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4 Results

In this section we elaborate on the results that are obtained from the techniques discussed in the

methodology.

We start the analysis by performing the backtests discussed in the methodology in various settings

to analyse the performance of the models. Table 2 displays the results of the various backtests when

modelling US GDP growth based on the 5% quantile.

Table 2: P-values for various evaluation criteria of out-of-sample GaR predictions for US GDP

growth based on the 5% quantile

Traditional Conditional Comparative

Bayesian GaR 0.147 0.428
0.602

Markov switching 1.344e−5 0.020

Note. In this table p-values are shown for the traditional, conditional and comparative back-

tests using the respective Bayesian GaR and Markov switching model. The GaR predictions

are based on the 5% quantile from the distribution of future US GDP growth using the full

sample period. The comparative backtest shows the p-value for testing the null hypothesis

that the performance of the two methods are indifferent.

We observe discrepancies between the performance of the BG and MS model. For the BG model,

we do not reject the null hypotheses of the traditional and conditional backtests at a 5% signifi-

cance level, implying that the Bayesian GaR model predicts GaR adequately. Contrary to the BG

model, we reject the null hypotheses of both individual backtests when examining the MS model.

Furthermore, we do not reject the null hypothesis of the comparative backtest at a 5% significance

level. Therefore, the Bayesian GaR and Markov switching model predict GaR at least as well as one

another. Although the individual backtests suggest that the MS model is unable to predict GaR

adequately, the contrary holds for the BG model. These results might be due to the fact that the

GaR predictions of the respective models differ substantially in absolute terms. If the MS model

predicts relatively small GaR, its score is relatively small as well, which causes the violations to be

less penalised. Furthermore, the out-of-sample period might be too short to evaluate GaR accurately

given that these predictions are based on the 5% quantile. We continue the analysis by examining

GaR predictions for the German GDP growth series. Table 3 shows p-values from the backtests

when modelling German GDP growth based on the 5% quantile.
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Table 3: P-values for various evaluation criteria of out-of-sample GaR predictions for German

GDP growth based on the 5% quantile

Traditional Conditional Comparative

Bayesian GaR 0.468 0.616
0.128

Markov switching 2.863e−4 0.017

Note. In this table p-values are shown for the traditional, conditional and comparative back-

tests using the respective Bayesian GaR and Markov switching model. The GaR predictions

are based on the 5% quantile from the distribution of future German GDP growth using the

full sample period. The comparative backtest shows the p-value for testing the null hypothesis

that the performance of the two methods are indifferent.

From Table 3 we deduct similar results compared to Table 2. The BG model predicts GaR adequately

based on the individual backtests at a 5% significance level. However, the MS model does not predict

GaR adequately. In terms of the comparative backtest, we do not reject the null hypothesis, implying

that both models are able to predict as well as one another at a 5% significance level. The main

distinction between the results in Table 2 and Table 3 revolves around the performance between the

two models. In the context of German GDP growth, the results suggest that the GaR estimates differ

substantially in absolute terms, however insufficient to state that the MS model is outperformed by

the BG model. Overall, GaR predictions of the models are comparable in terms of performance,

though the Bayesian GaR model is favoured due to the individual backtest results. To continue our

analysis we examine the differences between the GaR predictions by means of graphs.

In Figure 2 a plot of US GDP growth and predicted out-of-sample GaR is displayed based on

the 5% quantile. The majority of the time the BG GaR seems to prove relatively accurate, however

there are a few instances where the GaR estimate is higher than the realised US GDP growth. This

holds especially in the beginning of the year 2020, which can be attributed to the corona crisis. In

the first quarter of 2020 the US economy shrunk approximately 30% and in the consecutive quarter

it expanded approximately 30%. After observing the enormous decline in economic activity, the

model adjusts and predicts continuing economic decline in the next period. In the ensuing quarter

the unusual expansion occurs and the positive and negative effects offset each other. This causes

the following prediction to converge to regular values. As is the case for the predicted BG GaR, the

MS GaR appears relatively adequate. However, there are multiple instances where the estimated

MS GaR is higher than the realised US GDP growth. This holds for the Covid period around the
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year 2020 and numerous times at the start of the out-of-sample period, although US GDP growth

does not exhibit major outliers at the start of the out-of-sample period. Generally, the MS GaR

estimates are closer to US GDP growth than the BG GaR estimates. This is potentially due to the

fact that the Bayesian GaR model takes parameter uncertainty fully into account by incorporating

the posterior distribution of the parameters. In this context, the estimates reflect more uncertainty

causing the BG GaR predictions to differ considerably compared to GDP growth in absolute terms.

Contrary to the Markov switching model, where point estimates are used that might not fully reflect

the parameter uncertainty that is inherently present in the true estimates. This might lead to the

discrepancies between the GaR predictions of the models in absolute terms. Moreover, it might also

explain the comparative backtest results.

Figure 2: US GDP growth and out-of-sample GaR predictions based on the 5% quantile

Note. This figure shows a plot of US GDP growth and their respective GaR predictions based on the 5%

quantile from 2011 Q1 to 2020 Q4. Where the blue line represents the GaR predictions using the Bayesian

GaR model and the red line GaR predictions using the Markov switching model and the black line represents

real US GDP growth.

In Figure 3 a plot of German GDP growth and predicted out-of-sample GaR is shown based on the

5% quantile. As alluded to before, the main distinction between German GDP growth and US GDP

growth is the magnitude of the outliers. Due to the less volatile nature, the performance of the
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models might be superior in the context of German GDP growth. For the BG model this appears to

be the case as the BG GaR estimates capture the trend of GDP growth more adequately in Figure 3

compared to Figure 2. Nonetheless, the Covid period remains difficult to accurately predict, causing

the GaR estimates to be inadequate. The BG GaR predictions continue to exhibit violations for this

period. We observe similar characteristics for the MS GaR estimates to those displayed in previous

plots. The estimates are relatively close to realised German GDP growth, which is likely caused by

the point estimates that are impotent when uncertainty plays a major role in the GaR predictions.

Furthermore, the response to the Covid period is stronger in the context of the Markov switching

model. This might again be due to the point estimates, which remain persistent contrary to a

posterior distribution of parameters. However, as the comparative backtest suggests it is difficult

to determine which model is better suited to predict GaR. Therefore, we extend the analysis by

examining the performance of the models in the context of the 10% quantile from the distribution

of future GDP growth.

Figure 3: German GDP growth and out-of-sample GaR predictions based on the 5% quantile

Note. This figure shows a plot of German GDP growth and their respective GaR predictions based on the

5% quantile from 2011 Q1 to 2020 Q4. Where the blue line represents the GaR predictions using the

Bayesian GaR model and the red line GaR predictions using the Markov switching model and the black line

represents real German GDP growth.
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Next, we analyse the prediction of the 10% quantile from the distribution of future GDP growth.

In Table 4 p-values are shown when modelling US GDP growth based on the 10% quantile.

Table 4: P-values for various evaluation criteria of out-of-sample GaR predictions for US GDP

growth based on the 10% quantile

Traditional Conditional Comparative

Bayesian GaR 0.598 0.672
0.077

Markov switching 0.008 0.112

Note. In this table p-values are shown for the traditional, conditional and comparative back-

tests using the respective Bayesian GaR and Markov switching model. The GaR predictions

are based on the 10% quantile from the distribution of future US GDP growth using the full

sample period. The comparative backtest shows the p-value for testing the null hypothesis

that the performance of the two methods are indifferent.

From Table 4 we observe similar results to those displayed in Table 2. Though, the MS model is

able to predict GaR adequately based on the 10% quantile according to the conditional backtest.

Furthermore, the comparative backtest implies that the models should predict at least as well as

one another at a 5% significance level. However, we reject the null hypothesis at a 10% significance

level, implying that the difference in adequacy between the GaR predictions is more apparent for

the 10% quantile. In Table 5 p-values are shown when modelling German GDP growth based on

the 10% quantile.

Table 5: P-values for various evaluation criteria of out-of-sample GaR predictions for German

GDP growth based on the 10% quantile

Traditional Conditional Comparative

Bayesian GaR 0.008 0.037
0.233

Markov switching 0.002 0.008

Note. In this table p-values are shown for the traditional, conditional and comparative back-

tests using the respective Bayesian GaR and Markov switching model. The GaR predictions

are based on the 10% quantile from the distribution of future German GDP growth using the

full sample period. The comparative backtest shows the p-value for testing the null hypothesis

that the performance of the two methods are indifferent.
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Table 5 offers a new perspective on the analysis of the models. We observe rejections of the null

hypotheses for all individual backtests, entailing that the respective GaR predictions are inadequate.

The mediocre performance might be attributed to the fact that the BG model predicts all quantiles

simultaneously. By considering cross-quantile effects the parameter values can incidentally be con-

taminated causing inadequate GaR predictions. Nonetheless, the GaR predictions of the Markov

switching model do not seem to be more adequate, which is confirmed by the comparative backtest.

Overall, it remains difficult to favour one model substantially over the other due to the results

of the comparative backtest. Therefore, we continue the analysis by examining characteristics of

the models in more detail, in order to learn why the models display their respective performance.

Figure 4 shows posterior GaR samples for predicted German GDP growth at 2020 Q4. We notice

that the GaR ranges approximately between −20% and 30%. Furthermore, the majority of the mass

is centered between −10% and 10%. This indicates that there exists a relatively large amount of

uncertainty in the out-of-sample GaR samples. These specific samples mark the start of a relatively

less volatile period after the extremely volatile Covid period in the first two quarters of 2020, as

shown in Figure 1, which explains the amount of uncertainty in the samples. This causes GaR

to be relatively unpredictable at this point in time. On the other hand, this figure confirms that

the Bayesian GaR model takes uncertainty into account in the right and left tail when predicting

GaR. The majority of the mass in the posterior distribution is located in the left tail, as negative

GDP growth causes major downsides relative to positive GDP growth. Therefore, the Bayesian GaR

model is likely to predict relatively low GaR, as displayed in previous plots.
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Figure 4: Posterior GaR samples for German GDP growth based on the 5% quantile

Note. This figure displays posterior GaR samples based on the 5% quantile for future German GDP growth

in 2020 Q4. These samples are obtained by first implementing the Bayesian GaR model to obtain samples

from the posterior distribution and then computing GaR.

In order to examine the Markov switching model in more detail, we analyse the estimated smoothed

probabilities. In Figure 5 the smoothed probability series is shown when estimating the MS model

for US GDP growth. In the plot we observe a relatively low number of points in time where it

is likely that the model is in state 2. The smoothed probabilities for state 2 are close to 1 when

real US GDP growth is extremely volatile, as the dates match with the financial crisis and corona

crisis. During these periods in time a major amount of uncertainty was present which resulted in

volatile GDP growth. Hence, the MS model is able to distinguish between the states based on the

volatile behaviour of real GDP growth at various points in time. This is corroborated by Table 6 in

Appendix A, which displays the estimated parameters of the MS model in the same setting as Figure

5. The magnitude of the state 1 estimates is relatively small compared to the state 2 estimates.

In the recession regime described by state 2, future GDP growth is relatively dependent on the

explanatory variables. This dependence might be due to the ability of the variables to describe the

behaviour of volatile GDP growth in an adequate manner, as larger estimates in absolute terms can

amplify the predictions. These predictions can vary substantially, potentially matching the volatile

behaviour of GDP growth in the recession regime. Therefore, the explanatory variables exert more

influence on future GDP growth in the recession regime. Additionally, we notice that there is a
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major amount of uncertainty present in the point estimates, as implied by their respective standard

error. The table also displays the transition probabilities, which indicate that the model is likely to

be situated in state 1 and not likely to transition to state 2. Incidentally, this means that the model

is unlikely to switch to the recession regime, implying that the predictions are overall less volatile

due to the relatively modest state 1 estimates.

Moreover, we observe a strong response from the MS model to the Covid period in terms of

the GaR predictions. Figure 5 implies that US GDP growth is relatively volatile when the model

is likely in state 2. During that time the large shrinkage of GDP growth occurs and the model

predicts shrinkage in the following period, while GDP growth has recovered and displays positive

GDP growth. In the next quarter the observed GDP growth stabilises, while the large expansion

of GDP growth in the previous quarter still leads to a low GaR forecast. These events lead to

the distinct GaR predictions displayed in previous plots during the Covid period. Although the

MS model identifies the Covid period as a recession regime, the model is not able to predict the

movements of GDP growth adequately.

Figure 5: Smoothed probability of US GDP growth over time

Note. This figure displays the smoothed probability of being in state 2 from 1997 Q1 to 2020 Q2.

In Appendix B, Figure 7 shows the smoothed probabilities when estimating the MS model for

German GDP growth. This plot is similar to the plot shown in Figure 5, however there is a clear

distinction around the year 2013, indicating that the model likely transitions to a relatively volatile
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regime around the year 2013.

Since the Covid period affects the results substantially, we examine the smoothed probabilities

in the absence of the Covid period. Figure 8 in Appendix B displays the smoothed probabilities for

US GDP growth when excluding the Covid period. As the Covid period is excluded, the transition

between regimes seems less apparent. Based on the estimates state 2 implies a relatively volatile

regime, however the discrepancy between the states is smaller in this context. This indicates that

the MS model has difficulty predicting sudden recessions accurately and fails to take uncertainty

revolving around GDP growth adequately into account. This in turn leads to inadequate GaR

predictions as displayed in previous plots. Primarily, the Covid period has major influence on the

results, therefore we also include analysis on a sample period in the absence of the Covid period.

Figure 6 shows predicted GaR and real US GDP growth based on the 5% quantile when omitting

the Covid period. The GaR predictions using the BG model are consistently below realised US GDP

growth. This confirms the impact of the Covid period on the models, along with the ability of the BG

model to track the patterns of real US GDP growth relatively well. Furthermore, the MS model fails

to predict GaR adequately alongside the variation contained in real US GDP growth. As mentioned

above, the GaR predictions of the MS model are relatively close to the realised GDP growth series

in absolute terms. Generally, the MS model is impotent in terms of predicting the variation in the

GDP growth series. This is confirmed by the comparative backtest in this context, which results in

a p-value of 0.039. Therefore, we reject the null hypothesis at a 5% significance level and find that

the Bayesian GaR model predicts GaR significantly more adequately than the Markov switching

model in the absence of the Covid period for US GDP growth.
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Figure 6: US GDP growth and out-of-sample GaR predictions based on the 5% quantile excluding

the Covid period

Note. This figure shows a plot of US GDP growth and their respective GaR predictions based on the 5%

quantile from 2009 Q2 to 2020 Q1. Where the blue line represents the GaR predictions using the Bayesian

GaR model and the red line GaR predictions using the Markov switching model and the black line represents

real US GDP growth.

Figure 9 in Appendix C shows a plot of the predicted GaR and German GDP growth based on the

5% quantile without the Covid period. The patterns and characteristics in Figure 6 are present here

as well. However, at the end of the out-of-sample period, the BG GaR predictions exhibit several

violations. Furthermore, the MS GaR predictions are relatively close to real German GDP growth,

implying that the MS model is unable to deal with small negative shocks. This is corroborated by

the comparative backtest, which has a p-value of 0.017. Thus, we reject the null hypothesis at a 5%

significance level and find that the Bayesian GaR model predicts GaR significantly more adequately

than the Markov switching model in the absence of the Covid period for German GDP growth.

Overall, the Bayesian GaR model predicts GaR more adequately than the Markov switching

model. Based on individual backtests the Bayesian GaR model is able to adequately predict GaR the

majority of the time contrary to the Markov switching model. This holds in the context of German

and US GDP growth and across the 5% and 10% quantile of the distribution of future GDP growth.
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The rationale behind these results might revolve around the inherent characteristics the two models

exhibit. The Bayesian GaR model imposes Bayesian inference on a quantile regression, resulting in

a posterior distribution of GaR. This posterior distribution contains all uncertainty captured in the

distribution of future GDP growth. Therefore, the resulting GaR predictions take left-skewed shocks

relatively accurate into account. On the other hand, the Markov switching model imposes inference

on latent states. Through estimation one obtains different parameter estimates in the distinct states

the model can transition between and implement these accordingly in the predictions. Nonetheless,

the model is incapable of distinguishing accurately between large recessions and small shocks in

real GDP growth by means of the unobserved states. Generally, this results in inadequate GaR

predictions based on the individual backtests. However, from the comparative backtests we deduct

that both models should predict at least as well as each other. Furthermore, we find that the

Covid period has substantial influence on the results, so further analysis in the absence of the Covid

period is conducted. The Bayesian GaR model is persistent in predicting GaR adequately, while

the Markov switching model falters relatively. The comparative backtest substantiates this, as the

null hypotheses are rejected. This implies that the Bayesian GaR model is significantly better in

predicting GaR than the Markov switching model.

5 Conclusion

To learn the behaviour of the macro economy multiple venues can be explored, this paper examines

the behaviour of the economy through predicting Growth-at-Risk. The main difficulty revolves

around uncertainty contained in the left tail of the distribution of future GDP growth. Negative

events, such as recessions, influence the estimates excessively. A regular quantile regression is inept

in dealing with such complexities. Therefore, we evaluate the Bayesian GaR model and the Markov

switching model to determine which model deals with left-skewed GDP growth during recessions in

the best manner.

Our analysis shows that the Markov switching model is generally unable to provide adequate

GaR predictions in terms of the individual backtests. On the other hand, the Bayesian GaR model

estimates GaR adequately based on the individual backtests in the majority of the settings. However,

the comparative backtests suggest that both models should be able to predict at least as well as

each other. We find that the Covid period has major influence on the evaluation of GaR predictions.

By evaluating the models in the absence of the Covid period, we find major discrepancies between
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the Markov switching model and the Bayesian GaR model. Therefore, we conclude that the Markov

switching model is unable to predict GaR adequately relative to the Bayesian GaR model. This is

likely due to the fact that the model is unable to clearly distinguish between large recessions and

small negative shocks in real GDP growth. Therefore, the Bayesian GaR model takes the left tail of

the distribution of future GDP growth more accurately into account. This can be explained by the

fact that the Bayesian GaR model considers all uncertainty contained in the GaR predictions when

estimating the risk measure.

The Bayesian GaR model is thus better suited at predicting GaR. Therefore, it is beneficial to

implement the model in practice to obtain adequate GaR predictions. When policy-makers obtain

these accurate estimates, they can act on them accordingly. For example, if the model signals

that a large amount of uncertainty is present in the economy, measures can be taken to restrict

spending by the government and prepare for a possible decline in economic activity. Furthermore,

new knowledge regarding the behaviour of GDP growth can also be utilised in portfolio management,

to cover potential downside risk.

Though, we conclude that the Markov switching model is unable to predict GaR adequately

there are multiple venues that might be explored further. In this paper we estimate the models

under a specific model specification. Perhaps this is sub-optimal for the Markov switching model

and other specifications might improve performance, such as auxiliary explanatory variables or

non-linear elements. However, this is beyond the scope of this paper. Furthermore, implementing

more than two states in the Markov switching model might improve the GaR predictions. On the

other hand, the Markov switching model experiences great difficulty in estimating the latent state

variables in this paper. Increasing the number of regimes might only increase the difficulty the model

experiences estimating them. Lastly, obtaining GaR predictions using other methods could offer a

new perspective. In this paper, we simulate GDP growth and obtain a distribution of future GDP

growth of which we take a specific quantile. It might be possible to model future GDP growth by

means of a GARCH model.
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Appendices

A Parameter estimates using the Markov switching model

Table 6: Point estimates using the Markov switching model for US GDP growth

State 1 estimates State 2 estimates

Constant 2.419(10.919) 30.220(121.926)

Lagged GDP 0.079(0.956) -1.804(10.680)

NFCI -1.493(16.405) 54.302(183.194)

EPU -62.810(789.014) -552.888(8.811e3)

FSI -0.002(8.386) -42.190(93.646)

p11 0.977 -

p22 - 0.742

σ21 3.3733 -

σ22 - 2.500e−4

Note. This table displays estimates using the Markov

switching model for US GDP growth with standard errors

of the estimates given in parentheses. Furthermore, the

estimates for the transition probabilities are given com-

bined with the respective estimated variance of the error

term.

30



Smoothed probabilities in various settings Master Thesis Quantitative Finance

B Smoothed probabilities in various settings

Figure 7: Smoothed probability of German GDP growth over time

Note. This figure displays the smoothed probability of being in state 2 from 1997 Q1 to 2020 Q2

Figure 8: Smoothed probability of US GDP growth over time excluding the Covid period

Note. This figure displays the smoothed probability of being in state 2 from 1997 Q1 to 2019 Q4
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C GaR predictions excluding the Covid period

Figure 9: German GDP growth and out-of-sample GaR predictions based on the 5% quantile

excluding the Covid period

Note. This figure shows a plot of German GDP growth and their respective GaR predictions based on the

5% quantile 2009 Q2 to 2020 Q1. Where the blue line represents the GaR predictions using the Bayesian

GaR model and the red line GaR predictions using the Markov switching model and the black line represents

real German GDP growth.
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