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Abstract

The term structure of credit default swap spreamkiaterest rates shows similar
stylized facts, especially in terms of persisteraryd cross correlations. We
implement the Nelson-Siegel yield curve model taHe term structure of credit

default swap spreads. The factors in our modelvevaiccording to a vector

autoregressive process. We rewrite the model te-sfgace form and estimate the
parameters in a Bayesian framework, using the maite Gibbs sampling and

extend it by adding Markov switching to the intggtand error covariance matrix

of the transition equation. We employ the modefa@cast credit default swap

spreads, finding that the model outperforms thedasts of the random walk

approach and autoregressive models directly applieitie spreads, in terms of
sum of squared prediction errors and the sign &stegerformance.
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2 Data Description

1 Introduction

1.1 Preface

A probable cause of the financial crisis from 200&s the underrating of the risks
involved in credit derivatives by investment ban&sd rating agencies. A credit
derivative is used to transfer credit risk fromegdl entity, called reference entity, to
another party, the seller of the product. This vibhg,buyer of a credit derivative receives
protection against the exposure to credit risk oéfarence entity. With the start of the
crisis, the default correlation of banks and ott@mpanies significantly increased. This
behavior is also referred to as crash correlatibome to high correlations, the

diversification effect for many products decreasedulting in a loss in value.

Since credit derivatives allow for a simple tramsfé credit risk, the market has grown
rapidly, together with the field of modeling credgk. Due to the complexity of most of

the credit derivatives, there is no common valumatinodel that rules out arbitrage

opportunities for the majority of available prodsict

The most commonly traded products are credit defauaps (CDS) and collateralized

debt obligations (CDO). In a credit default swdpe buyer agrees to pay a fixed coupon,
dependent on the contractual credit default swapasl to the seller of the product.

Usually the coupon is paid quarterly. In returre thuyer receives a payment from the
seller when a pre-specified credit event occuthatreference entity. The buyer and the
seller of the product define those credit everits, dvents which trigger the protection.

Typical credit events are bankruptcy, default opnpants (e.g. on obligations like bonds

or loans) or debt restructuring. In contrast taurasce, credit default swaps can also be
used for speculating, since the buyer does notssacéy have to be exposed to risk of

the reference entity.

The contractual spread defines the price that thyerbpays for receiving the protection.

In contrast to the contractual spread, the bre@aepread implies a value of zero for the
credit default swap. When the break-even spreadyfer than the contractual spread, the
credit default swap has a positive value for thgebusince the fixed coupon that the

1



2 Data Description

buyer pays is lower than the break even price. i&sg that other influencing factors

like interest and recovery rate have not changecteasing spreads go together with
higher implied default probabilities of the refecerentity.

The payment of the seller in case of a default deépeon properties of the contract
between the two parties, especially the notiona #re recovery rate. Settlement and
other characteristics are also defined in the esntrSince defaults are rare events,
usually occurring unexpectedly and with unknowre st the losses, the payments of the
sell-side are difficult to evaluate.

The probability that a credit event occurs (defauttbability) and the assumptions about
the recovery rate play an important role in pricergdit default swaps. Most of the

existing pricing models also rely on crucial asstioms about correlations between
default probabilities, interest rates and recoveatgs, such as the pricing models in Hull
and White (2000) or Duffie (1999).

The payments of collateralized debt obligations degved from a collection of assets
which pay a fixed coupon, e.g. loans. The exposturesk of this collection is sold in so
called tranches, which are classified by their @ety. The lowest or junior tranche has
the highest exposure to risk. In case one of teetadails to pay the coupon, the lowest
or junior tranche is the first to absorb the Idssreturn for the higher risk, the tranche
receives a higher coupon for the money investetthencollateralized debt obligation. In
contrast, the senior tranches suffer from a mueretaisk. Assuming a senior tranche
absorbs only the top thirty percent of the lossesventy percent of the assets need to
default on their payments, before the senior tranoburs any losses. Hence, for bearing
a lower risk than the junior tranche, they recevewer coupon for their investment.

High default correlations between the assets ity a default of one payment is likely
to come together with defaults of other paymentss Tncreases the risk of the product
and therefore investors require a higher compeamsatiespectively coupon on their

investment.

In 1998, Paul Wilmott, a quantitative-finance cdtemt, already claimed that "the

correlations between financial quantities are notmly unstable". This fact was ignored
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by rating agencies, banks and investors, resuitingpighly overrated products. The
widely used Gaussian copula model by Li (2000),clwhimplies a fixed correlation
structure, performed well, as long as the market stable. Nevertheless, after the crash,
the default correlation structure of the underlyprgducts changed and the model failed.
Especially in the mortgage market, this had deviastaeffects. After mortgage prices
started falling, their correlation increased rapjdéading to a decrease of collateralized
debt obligation prices. Due to high exposures tilatralized debt obligations, many
banks and other companies incurred huge losseshandcredit ratings fell, implying
higher default probabilities for the companies. §hilne credit default swap spreads for
those reference entities increased as well, reguith an increase not only in credit

default swap prices, but also in their volatility.

The importance of credit default swap spreads tsonty characterized by the valuation
of credit default swaps, but also reaches othemfiral fields. It plays an important role
for accounting and disclosure of employee beneifies,all forms of return given by a
company in exchange for service rendered by empkgyespecially for defined benefit
plans. According to the International Financial Bejng Standards (IFRS), the rate used
to discount estimated cash flows should be detethlyy reference to market yields on
high quality corporate bonds (IAS 19.78). Sincehlygated corporate bonds are not well
indexed (there is no index available for high dyatiorporate bonds), companies make
use of the swap rate plus the spread of a crethutleswap index (CDX) for highly rated
financial institutions, e.g. the iTraxx Europe. THgaxx Europe includes 125 credit
default swap investment grade credits. Normallg taference entities of the iTraxx
Europe have very high credit ratings.

Furthermore, credit spreads are not quoted in taken, i.e. they have to be calculated
from bond yields less a “risk-free” rate (usuallyedsury bond yields are used) while
credit default swap spreads are quoted. Due to itin@ortance for discounting liabilities,
the spreads are also important for risk-modeling.

Our focus is on modeling and forecasting crediadifswap spread curves, dependent on

their historical evolution. We use the Nelson ame8l (1987) model to interpolate the
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spread curve for each point in time and let thdofacevolve according to a vector
autoregressive process. To account for jumps iellexolatility and correlation of the
factors, we allow for regime switches in the constand the error covariance matrix of

the vector autoregressive model.

1.2 Literature Overview

The credit default swap in its modern form was mted by a working group of JP
Morgan Chase in 1997. Since the market grew rapidiuation of credit default swaps
and modeling of credit default swap spreads gapwgullarity very fast. Currently two
main approaches for pricing a credit default swapteDuffie (1999) and later Hull and
White (2000) base their pricing model on an arg#grree market, which means there
should be no risk-free possibility to make a prafithout own investment. Both models
within this approach make assumptions about cdroels between recovery rates,
interest rates and default probabilities, but alsotransaction costs and other market

frictions.

Another approach is based on discounted cash fldkes price of a credit default swap is
given by the present values of all cash flows, Wed by the survival probability of the
reference entity, the probability that no crediemtvoccurs till the cash flow is paid.
Schoénbucher (2003) discusses the different prigingels for credit derivatives, amongst
others credit default swaps and addresses varenovery rate, default probability and

credit spread models.

As mentioned, credit default swap spreads gainecdk nmaportance over the last decade.
Nevertheless, there only exist few models to captheir dynamics, amongst others the
model of Zhang, Zhou and Zhu (2006), which relateg spreads to equity,
macroeconomic variables and firm characteristidser& exist a number of models for
credit related spreads (for instance the Markov ehad Jarrow, Lando and Turnbull
(1997)) which try to capture the dynamics of cogterbond spreads. As discussed by
Alexopoulou, Andersson and Georgescu (2009), crgatitads of corporate bonds are

closely related to credit default swap spreadsi@nlong-run, but show higher deviations
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for spreads in the short-run. We need to take fdws into account with care. A good
model for credit spreads is not necessarily a goodel for credit default swap spreads

and vice versa.

Credit default swap spread curves and yield custesv similar stylized facts, especially
concerning the cross correlations and persistemdheorates. Since earlier models for
fitting the term structure, amongst others Vasi(Ek77), Cox, Ingersoll and Ross (1985)
or Hull and White (1990), are not able to outparfadhe random walk, we focus on the
Nelson and Siegel (1987) model, to fit the credftadlt swap spread curve. The factors
of the model evolve according to a vector autoregjue process, as implemented in
Diebold and Li (2006) for government bond yield&ey show that the model performs
significantly better than the random walk hypotkder certain forecast horizons.

The model can be represented in state-space fodnthanKalman filter is applicable to
receive the latent factors. Based on this approadiew extensions on the model have
been developed. Diebold, Rudebusch and Aruoba j2fiibmacroeconomic variables to
the transition equation of the model to explain tlypamics of the factors. Koopman,
Mallee and van der Wel (2007) allow for a time-wiagyconvexity factor and investigate
whether the overall volatility in the yields is «ant over time, finding empirical
evidence for an increase in in-sample goodnes#-d3dsed on Kim and Nelson (1999),
whO explain the estimation of state-space modetk wagime switching using classical
and Bayesian approaches, Bernadell, Coche and Myt2il05) add Markov switching to

the slope factor of the yield curve.

1.3 Contribution and Outline

The goal of this thesis is to develop a model tagutures the behavior of credit default
swap spreads. We can clearly observe a structueakbin 2007 concerning level and
volatility of the credit default swap spreads, bl#o in the shape of the term structure for
almost all reference entities. Although we can tdgnvhere the structural break occurs,

our goal is building a model to generate scenaasforecast spreads.
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We use the Nelson and Siegel (1987) model to &tdtedit default swap curve and let
the factors evolve according to a vector autoregwvesprocess, as suggested in Diebold
and Li (2006) for bond yields. To capture the dinel break(s) we introduce regime
switching for all factors of the model, i.e. foethconstant and their covariance matrix in
the transition equation. The focus of this thess lin the identification of the state
vectors and the regime vector, as well as the asitm of the parameters in the model.
The estimation of many parameters is involved dreddataset for credit default swap
spreads for different maturities is quite smalleTlarge number of parameters and the
small dataset make a classical approach for thea&tsbn less attractive. Therefore we
decide to estimate the model in a Bayesian framlewblsing a Gibbs sampling
approach, we have several advantages over thacalapproach. It is not necessary to
have a large dataset. We can have prior beliefautatize parameters and their
distributions and update those prior beliefs ugimg available data. Another advantage
occurs in the estimation itself. Gibbs samplingneates the parameters by drawing from
their distributions, conditional on the other paesens. Since we aim to add more
flexibility to the model by introducing regime swlting, we benefit from an easy

implementation in this framework.

We build upon the approach of Kim and Nelson (199®)ey estimate state-space
models with regime switching using a classical apph and Gibbs sampling.
Additionally, we propose to extend this framewonk iwo ways. We allow for
correlations in the state vector and we do not demery element of the parameter
vectors and matrices separately, but from theirtiariate distributions, as done in
Sugita (2008) for vector autoregressive models. We first order Markov switching,
leading to modifications in the estimation of thedal. To generate draws of the state
vectors and regime vector, we use multimove Gil@mpding, originally motivated by
Carter and Kohn (1994) and first implemented ina®édv switching framework by Kim
and Nelson (1998). The decision against singlentibds sampling from Carlin, Polson

and Stoffer (1992) is motivated by faster conveogeof multimove sampling.
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We test the forecast performance of the model agaive same model without regime
switching, autoregressive models on the spreadl @ad the random walk using credit
default swap spread data of Commerzbank AG. Wemasti the performance by
calculating the sum of squared forecast errors taedrelative frequency of correctly
predicted signs to measure the performance. Welwdecthat the Gibbs sampling

estimated state space models perform better tleaotbier models for all maturities.

In the next section, we describe the data we ussigihout the thesis to demonstrate the
model. In Chapter 3, we introduce the Nelson arg)&i(1987) model and let the factors
evolve according to a vector autoregressive prodesgher we present a least square
approach to estimate the model. In Chapters 3 ame ghow the results of the estimation
using the data of credit default swap spreads.naper 4, we rewrite the model in state-
space form and show how the Kalman filter can le&lue obtain the factors, conditional
on the hyperparameters. Using the Kalman filterjllustrate a Gibbs sampling approach
to estimate the hyperparameters. In Chapter 5 ddeegime switching to the model. We
point out the changes that have to be applied coedda the estimation steps in Chapter
4. Chapter 6 contains the estimation results oMhaekov switching model, obtained for
the Commerzbank dataset. In Chapter 7, we testfdhecast performance of the
presented models and compare them to the randoknandlother autoregressive models
on the spreads. In the final chapter, we summarizeesults and give recommendations

for further research.
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2 Data Description

We use credit default swap spread data on Commekzb@, one of the biggest banks in
Germany. As many other banks, their spreads suffel@n a huge, but compared to
other not seriously different, structural break2i@07. Not only the level of the spread
curve grew tremendously, but also its volatilitgwrand the shape of the curve changed
several times. This behavior can be observed inymaarkets, when jumps occur. We
use data from the 25th February 2004 to the 12tAumfust 2009 for one, three, five,
seven and ten year maturities to capture the shiaibe spread curve.

Figure 1 shows the evolvement of the spreads of r@enzbank AG over time. From
February 2004 to June 2007, the spreads were d@mgeamplying that the default
probability of Commerzbank AG was evaluated veny.ldhe one year spread reached
its minimum of 2.5 bp on the™8November 2006 and within 1.5 years reached a value

above 130 bp. Regarding Figure 1, it is obviouat the time series are not covariance

stationary.
Figure 1 — Commerzbank CDS Spread Term Structure osr Time
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The figure shows the movement of the credit defawap spreads of Commerzbank for
maturities from one to ten years in percent. The d@es from 258 February 2004 to the 12
August 2009.
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We abandon the use of the iTraxx Europe, sincectimeposition of the index changes
every half a year. It is difficult to filter the 48 that occurs due to the changes in the
companies. Further, the price of the iTraxx chamg#sonly due to the default risk of the
new companies, but also due to their correlatioits the other companies in the index.
Since the default correlation between the compargewer than one, we have a
diversification effect. This leads to smaller junmipghe level and volatility of the index,
compared to single name credit default swaps. @at  to show the impact of the
structural break to the performance of the moddle. chose to use spreads on one

reference entity to clearly highlight the effectaotredit crisis.

Since we use the Nelson and Siegel (1987) modaltmite-varying factors to capture the

evolvement of the spread curve, we shortly empkasimt credit default swap spreads
and the yields show similar stylized facts. Regagdtigure 1, we observe that the credit
default swap curve can take on various shapeseagdld curve. From 2004 to 2007, the
curve is slightly upward sloping. Immediately aftee jump in July 2007, slope increases
a lot. Further, the curve is downward sloping imuky and February 2009. The auto
correlations and cross correlations of credit défawap spreads are also very high. The
same behavior also applies for yields. Table 1 shtive first order auto and cross

correlations of the Commerzbank AG spreads.

Table 1 — Cross and Auto Correlations of CommerzbanAG CDS Spreads

auto correlation cross correlation
Maturity first order 1 year 3 year 5 year 7 year 10 year
1 year 0.9707 1.0000 | 0.9839 | 0.9596 | 0.9559 0.9505
3 year 0.9667 0.9839 | 1.0000 | 0.9882 | 0.9864 0.9829
5 year 0.9657 0.9596 | 0.9882 | 1.0000 | 0.9989 0.9969
7 year 0.9644 0.9559 | 0.9864 | 0.9989 | 1.0000 0.9983
10 year 0.9574 0.9505 | 0.9829 | 0.9969 | 0.9983 1.0000

The table contains the first order auto correlaiand cross correlations of Commerzbank AG
credit default swap spreads with five different undies., using data from the 2February
2004 to the 12 August 20009.
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3 The Nelson Siegel Model

In this chapter we explain the use of a factor rhtmeapture the term structure of credit
default swap spreads. We focus on a three-facttsoNeSiegel model. Furthermore, we
assume that the factors follow a vector autoregregwocess. In the end of this chapter
we present one approach for the estimation of tfpEetparameters, using linear least

square methods.

3.1 Credit Default Swap Spreads and Vector-Autoregressn

Credit default swap spreads for different matwitivave high auto- and cross-
correlations. We construct a vector-autoregresfit&R) model to forecast the spreads
and to build scenarios for their development ouaet TheVARmodel is a linear model

that tempts to capture the evolutionNoélifferenttime serieSwith set of observed values
yi = (Y y4 ... Y™ over a sample periot= 1, 2, 3... T, only dependent on their recent,

respectively lagged evolution
yt =C+Alyt—1+A2yt—2+"'+Akyt—k+8t' (21)

The error ternz; = (€' €% ... £'y)'denotes white noise with zero mean, covarianceima
Y and no serial correlation in the single elemeiis.orhe parameters of théARmodel
areN x N matricesA|, aN x 1 vectorof constantg and the covariance matrix of the error
termsX. The ordek of aVARmodel determines the number of lagged regressors.

The higher the order of the model, the better we fitathe data, since we add more
degrees of freedom. Nonetheless we choose a vagtoregressive model of order one.
That means the spreads at timenly depend on their most recent values (obseated
time t — 1). This way we reduce, but not eliminate, thd 1§ overfitting the model,

which in many cases results in poor forecast perémice.

! In special case of only one time series the moethices to an autoregressive modd®)(

10



3 The Nelson Siegel Model

The model can be represented in different wayssi&fe with the general matrix notation

to point out the different parameters of the mbdel
S =c+ As, +g, , (2.2)

wheres denotes a vector of spreads fodifferent maturities at timé ands; denotes
white noise with covariance matriX. Under assumption of a multivariate normal
distribution for the error terms: ~ MN(On, X), the maximum likelihood estimation
reduces to ordinary least squares (OLS) estimafitve. unbiased estimate &fis the
sample covariance matrix of the residuals.

Using a small number of spreads for different maas, e.g. five (ten), we have to
estimate 45 (165) parameters in tht&or a small number of maturities and a suffidient
large dataset, this might still be reasonable fdauthany maturities or a small dataset, our
model has too many degrees of freedom which résttitze predictive power. The
following section describes how factor models can used to limit the number of

parameters. Our main focus is on the Nelson Sibgeé-factor model.

3.2 The Nelson Siegel Model

We can relate the dynamics of the spread curve ¢ouple of factors, to reduce the
number of parameters in our model. This allowsudiig more dependent variables to
the model with limited increase of the number afapaeters.

We focus on the Nelson-Siegel mddéh Diebold and Li (2006), the model was applied

to the yield curve and tested for its forecastqrantince, achieving sustained success and

2 The concise matrix notation simplifies the equatid/e use it in latter subsequent sections, sinakoiws

for a more efficient way of presenting the formukasd results. We use the general notation here to
emphasize the difference between the constant the matriA.

% That is 5 (10) parameters for 25 (100) parameters fdx and 15 (55) parameters fBt The formula to
calculate the number of parameters is giveMByN? + N(N+ 1) / 2 = (N / 2) (1 +N).

* There are several other possible models to comsat@ongst others the Vasicek model, the Cox-

Ingersoll-Ross model and the Hull-White model.

11



3 The Nelson Siegel Model

outperforming the random walk approach. In practice widely used to fit the yield

curve e.g. by the European and other Central Bésdsie of them use the Svensson
model, an extended version). As mentioned abowestitead and the yield curve show
various similar stylized facts, especially concegnpersistency and cross-correlations

which puts forward good reasons to test the modalpreads.

The Nelson Siegel model is a factor model, whichemwapplied to yields or to spreads,
approximates the term structure. In contrast to &.grincipal component analysis, the
Nelson Siegel model is continuous in the maturities for each maturity it delivers the
corresponding yield or spread hence additionakpaiation is not necessary. In case of
credit default swap spreads, this result is adjy\ance quotes are usually only available
for certain maturities, mostly for maturities of3,7 and 10 years. For discounting assets
and liabilities and for traders of credit defawitap spread related products, maturities in
between are mandatory.

There are several representations of the NelsogeBimodel, depending on the
characteristics of the factors. The most commom fisr

S(T):[%ﬁﬂzt(l_/‘er_ j+ﬁ3(l_ﬁ —e‘“j+ V(1) . (2.3)

The spreads at timet with maturity z only depends on the levgl;, the slopes,, the
curvaturefs; and the convexity. The estimation errow(t) is normally distributed with
mean zero and standard deviatégnin the scope of this thesis we assunme be known,
which simplifies the estimatidnbecause then the model is lineagin fat, Bat.

The convexityl is usually fixed to maximize the curvature loadatga chosen maturity
(for yields this is usually a maturity between twad three years). We follow this
practice and maximize the curvature loading atttivee year maturity, resulting in a
value of 0.598 foi. Diebold and Li (2006) maximize the curvature liogdat the thirty

month maturity. Also note that they stat® month, while we express it in years.

® This assumption is quite common, although the tifleation of the model with a time-varying is

possible. We refer to Koopman, Mallee and van def §007) for further details.
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3 The Nelson Siegel Model

We again consider WARmodel of order one for the evolution of the fastagiven by
B, =c+AB_, +u,, (2.4)

wherep; denotes the vector of the Nelson Siegel factéss A2, f3)’. The vectoru; is
multivariate normally distributed with; ~ MN(O, Q). This assumption is not necessary,
but allows for an ordinary least square estimatdrthe VAR model. Note that this
assumption implies a positive probability for theetbrs to take negative values. Since
Equation (2.3), which links the factors to the spi® is linear in the factors, it is also
possible for the spreads to take negative values.ntore information on the Nelson-
Siegel model and its forecasting performance ofdyiarves, we refer to the article of
Diebold and Li (2006).

The identification of the hyperparametarsA, Q andR in the model is not straight
forward. If the factorgl; are observable variables, we could estimate thanpeters in
Equation (2.4) using multivariate least squaresweéier, the factors are unobserved.
They themselves can be estimated based on avaspi#@ad observations using Equation
(2.3), but then contain an estimation enj.

The following sections provide two solutions tostproblem. In the first one, we estimate
the Nelson-Siegel factors from Equation (2.3) faclke point in time. We receive the
estimated factorb; (estimate of;) for all time pointg up toT. Treating these factors as
if they were observed, we can estimate the hyparpeters of Equation (2.4). The

estimation errov(t), therefore is ignored.

In this thesis, we pay more attention to the secswidtion, which does not require the
assumption of observed factors. The solution pewids with a consistent estimation of
the hyperparameters and the factors of the moded. Make use of the specific
characteristics of the model. We rewrite the mageén by Equations (2.3) and (2.4) in
state-space form. Due to the assumptions we madeealmur model is linear in the

factors. This allows us to use the basic Kalmaarfil

13



3 The Nelson Siegel Model

The parameters can be estimated with several metlsogth as maximizing the

likelihood. We apply Gibbs sampling, a Bayesianrapph, to estimate the model. We
aim to add more flexibility into the model to ackeea better fit to market data. We do
this by adding regime switches to some of the hygemeters in the model. The model
becomes more complex and is non-linear in the Me&iegel factors. Nevertheless, the

Gibbs algorithm allows estimating the parametersfantors conditional on the regime.

3.3 Least Square Estimation

In this section we discuss the estimation of thelehaising ordinary and multivariate
least squares. As mentioned above, the NelsondSiegeel is linear in the parameters
S P fa. Equation (2.3) can be identified for each pomtiine, given a set of spreads
for different maturities, forn = 1, 2, 3 ...N. It provides us with an estimate fffor
eacht, denoted ab;. Combining the loadings in a matrix for all maties of all factors,

where the loading from the first factor is just@ivoby 1, provides us with matrix

1_ e—l'l/l 1_ e—l'lﬂ -
—_ e 1
rA rA

1_ e—Tz/l 1_ e—T2/1 o
1 -e 2
H= r,A r,A : (2.5)

A TN s
1 1-e 1-e _ e
I A A

Note that all elements in the matrix are known apfy since the convexityis fixed.

We estimateB; by rewriting the model in concise matrix notafiand applying linear

least squares for each point in time.

® Concise means that the constant is included avector of the other parameters, which requiraswe
add a vector of ones to the matrix of loadingsegibyH. For more information on general and concise

matrix notation in VAR models, see Litkepohl (2005)
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3 The Nelson Siegel Model

The more spreads for different maturities we inelusto the regression, the better we
can fit the spread curve for eathThe spread model and its unbiased estirhatre

given by
S = HB, +v,., (2.6)
b,=(HH) HSs,, (2.7)

wherev; is a vector of error termsi(ry), i(z2) ... w(zn))’. A common assumption is that
v; follows a multivariate normal distribution. Ther@r covariance matrix is commonly
assumed to be diagonal (respectively uncorrelaidtht reduces the number parameters
to be estimated. Nevertheless, it is not necessaapply this assumption here. We make

use of it in subsequent chapters, when the parasnate estimated with Gibbs sampling.

As discussed above, the approximation wvaitland hence contains an estimation error. If
we do not take the error into account, or in otherds, if we treat the factors as observed
values (i.e.p: = by, we can use them to estimate the parameters envéctor-

autoregressive model, given by Equation (2.4).

As applied to the previous equation, we rewrite WAR model (2.4) in concise matrix
notation, including the information over allWe can denote the collection of all factors
B. asp = (B B2 ... Br)’. We take the same step for the lagged set abfa@.", but
connect it with a vector of ones, given by

1 ﬂ1,1 /82,1 ﬂ2,1

B:; — 1 ﬂl,Z ﬂ2,2 183,2 ) (28)
1 lBl,T IBZ,T '83,T
Respectively, the matri&. is given by
& A A, As
Ac =G Az,l Az,z Az,s : (2-9)
G A Ap Ag
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3 The Nelson Siegel Model

And the model can be rewritten as
B=B:A. +u, (2.10)

The error termu is aT x N matrix of the error terms = (U1 U ... uy)’. This estimator is
equal to the maximum likelihood estimdtormpplied to each equation separately,

conditional on the others.

We estimate matriA; using multivariate least squares, as follows

Ac :Bc’Bc—l(Bc—l’B e—1)_l' (211)

3.4 Results from Least Square Estimation

The results foA andc for the Commerzbank dataset of credit default sg@peads (the
one, three, five, seven and the ten year spreats}ing at the Z1of March 2005 and
ending at the 11 of August 2009, are given by

0.925 0.040 0.04 0.067 0.011 -0.005 - 0.00
A=|0.037 0.903 - 0.020, &=| -0.058], Q= -0.005 0.008 - 0.001.
0.132 -0.063 0.82 -0.134 -0.002 -0.001 0.01

Figure 2 shows the estimatédfrom the first least square estimation. We renthgt
many statistic tests, e.g. T-tests for significantéhe parameters in théAR model are

not reliable in our case, because we ignored ttima&son error inb;.

Note that a negative value for the slope factorsdoet imply a negative slope for the
spread curve. Given timethe factor is the same for each maturity. Cruimalthe slope
of the spread curve is the loading of the slop&ofaclo see the relation of the slope

factor to the spreads, we multiply it with the loaglof the slope factor. Figure 3 shows

" See also Hamilton (1994).
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3 The Nelson Siegel Model

the loading of slope and curvature for differenttumisies with/. equal to 0.59. It further

provides fitted spread curves for different dai@se to the low available cross sectional
dimension, it fits the observed spreads quite W&k observe that the slope loading is
monotonically decreasing. Given a negative slopat, implies an upward sloping spread
curve. Only in the beginning of year 2009, we obsexr downward sloping spread curve.
We also see that the curvature loading reachesaismum for a maturity of three years,

which follows from the predefinition of.

Figure 2 — The “least square” Nelson-Siegel Factors
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The figure shows the results form estimating thdsbleSiegel factors using ordinary least
squares. We used weekly data of the credit defadtp spread for maturities one, three, five,
seven and ten years, starting at th& EBbruary 2004 to the T2f August 2009. Note that the
scale of the figure is in percentage points, ndidsis points.
Although the least square results are simple ta@iopttheir forecasting performance
differs strongly from the results attained with titeer methods that are presented further
in this thesis, as we will see later. It does notperform the random walk or
autoregressive models applied directly to the gfme&ee Chapter 7 for more detailed

information.
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3 The Nelson Siegel Model

We remark that the described procedure is not agraie as the procedure described in
the subsequent chapters, since more assumptioneaded. The assumption of observed
factors is not necessary since methods already &xisstimate models with unobserved
factors. Especially for models that are linearha factors we can obtain results without
substantial complexity. In the next chapter we @néshe model, given by Equations
(2.3) and (2.4) in state-space form and implemieatkkalman filter, our key instrument

to obtain the unobserved factors and estimate thaeMm

Figure 3 — Nelson-Siegel Loadings and Spread Curves
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The figure shows the Nelson-Siegel loadings fopsl@op-left) and curvature (top-right). The
loading for the level factor is constantly one. Tharizontal axes show the time to maturity.
Below, there are four fitted spread curves at diifé dates. The horizontal axes show the time to
maturity and the vertical axes show the spreadeirtgnt. The grey points represent the data,
from which the curve was build.
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4 State-Space Models with Gibbs Sampling

4 State-Space Models with Gibbs Sampling

In this chapter we estimate the model from Chaptasing the Kalman filter and Gibbs
sampling. In the following section, we rewrite tin@del in state-space form. We present
the Kalman filter, which we use to generate thediacin Section 4.2. We give a short
introduction to Bayesian approaches in Section #f8using on a Gibbs sampling
algorithm. The main part of the section deals wlith estimation of the state vectors and
the hyperparameters in the model. In the last aeactie identify the model using the
dataset of Commerzbank AG. In the following chapteradd Markov Switches to the
model. The combination of Bayesian statistics wailitoregressive time series and

Markov switches in mean and variance was consideyedlbert and Chib (1993).

4.1 State-Space Representation

In economics, state-space models typically deah witnamic time series that involve
unobserved variables, as in our cfiselhe basic tool to estimate this kind of models is

the Kalman Filter. A state-space model can be sgmted in the following way
5 = d+Hp, +v, , (3.1)
B, =c+AB,_, +u, withc=(,-A)np, (3.2)

where Equation (3.1) is called theeasuremengquation withg; = (8% p% ... p7)’ being
the state vector of the system withdifferent factors. In the remaining subsectionms,
assume that the error termdollow a multivariate normal distribution, whichk given by
Vi ~ MN(Oy, R) with diagonal covariance matri.

The transition equation is given by Equation (3.2). We assumdé thafollows a
multivariate normal distributioMN(Oy, Q), but we do not restri€) to be diagonal. The
vector p denotes the unconditional mean ffand the matrixly denotes an identity

matrix of sizeM.

To generate the state vector of the model, it esgary to assume thatpg)(= po and
Var(Bo) = Po, with P; the covariance matrix o, i.e. the initial state and covariance
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4 State-Space Models with Gibbs Sampling

matrix of the state are equal to their expectatidde present the optimal initialization
when we introduce the Kalman filter.

We further assume that the error temmandv; are uncorrelated. Furthermore there is no
serial correlation in the single elements of thereterm vectors which means that the
serial covariance matrices Coy(ut;) and Cowy;, Vi) for all i > O are diagonal (zero
elements on the off-diagonal). The latter two iiestms can be relaxed, but it would lead

to modifications in the Kalman filter, which is bmnd the scope of this thesis.
We already derived the state-space equations diéison Siegel model and the vector

autoregressive model for the factors in the previgection — they are given by Equations
(2.4) and (2.6). Here is the complete state-spamdein

Measuremengquation: s, = HB, +v,, with v, ~MN(O,,R)

Transitionequation: B, =c+AB,, +u,, with u, ~ MN(0,,Q)

Given a state-space representation together wighagisumptions made above, the state
vector can be generated by applying the Kalmaerfiltith appropriate initial values for
the factorglp and its covariance matrR, given the hyperparametarsA, QandR. The
matrix H is known upfront, assuming that we fix Note that the system parameters are
time invariant here, i.e. they have the same valoegach point in time. We relax this

assumption as soon as regime switches are embadddte model.

4.2 The Kalman Filter

The state vector of a state-space model can benefbtausing the Kalman filter,
conditional on the hyperparameters. The Kalmaerfiis used to calculate the state of
linear dynamic systems, startingtat 1 and working recursively till the last statecto

at timeT is reached.

Nowadays there exist several versions of the Kalfitin. The “plain” Kalman filter, as
presented in this section, can only be used ifnieasuremengéquation is linear in the
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4 State-Space Models with Gibbs Sampling

state vectdt There exist several extended versions of therfilivhich allow for non-
linearities, i.e. the extended Kalman filter, tmscented Kalman filter and for continuous
time the Kalman-Bucy filter. For a full derivatiaf the Kalman filter and the correct
initialization, we refer to Hamilton (1994) or Hay (1993).

To provide a better overview of the functionalitiytbe Kalman filter, we first describe
the filter in words and then provide a flowchartiwihe relevant equations. The steps of
the linear filter can be divided intopaedictionand arupdatingpart.

In the prediction step, we use the information frtime previous timeé — 1 to make
inference about using thetransition equation. Based on the information upte 1, we
predict the state vector for tinteassuming that we do not have the informationttier

next point in timef, yet.

In a next step, we assume that the informatiorhefdurrent time steparrives (in our
case, the new information are the spreads forréifitetimes to maturity). We use the new
information to update the predicated state vectornwore precise, we calculate the
residual between the forecasts and the new infeomaind correct for it using the

residuals itself and their error covariance matrix.

The likelihood orog-likelihood of the parameters can be calculatedhiwithe recursion.
This is necessary when the estimation of the hygrameters is done via maximizing the
likelihood.

Given a set of values for the hyperparametersstag vector for eact) starting with

time t = 1, can be calculated recursively now. The follgyvequations show, in which

order the steps have to be taken. The 3@l denotes the Kronecker product of the

matrix X with matrix Y andveqX) denotes the vectorized version of mattixmeaning

8 The assumption for a linear model in the factoisea from the derivation of the Kalman filter.
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4 State-Space Models with Gibbs Sampling

we write each column of the matrk below each other. The functid(@) denotes the
log-likelihood function, dependent on the actual deparameters. ByX|| we denote the
determinant of matriX by X* the inverse oK, as is customary. We present the filter in
notation of the spread model, given in Section 4.1:

Initialization: B,=n=(-A)"c

veqP,) = (I-ADA) " ve®)

Prediction: Bys =C+ABLys (3.3)
Pp = APy A'+Q (3.4)
UQdatll’lg nt|t-l = S _$|t-1 = $ - I-l:‘id'(-l

Ftltl = HPt|tlH +R

By =PByes + Pt|t  H F|t 1 Mye1 (3.5)
Pt|t = R|t—l - Ft)|t 1 H Ft|htll HRu 1 (3-6)
Likelihood: 1(0) =1(0) '_In((ZH) |F tt-1 l)- nt|t 1Fie- 1nt|t 1 (3.7)

We start att = 1 and repeat the steps until we redghsettingt =t + 1 after each
recursion. We attain a full set of state vectord #re log-likelihood of the parameters,

given the set of spreads and values for the hypampeters.

The optimal estimates can be obtained by differmethods. One approach is the
maximization of the likelihood function using anpappriate optimizer. Durbin and
Koopman (2001) suggest several methods to solve gpitmization problems, amongst
others the expectation maximization algorithm. Didb Rudebusch and Aruoba (2006)
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4 State-Space Models with Gibbs Sampling

use the Marquart and Berndt—Hall-Hall-Hausman #lyos. We focus on a Bayesian
approach to estimate the model. The next chaptaritbes how to estimate a state-space

model using Gibbs sampling.

4.3 The Gibbs Sampling Approach

4.3.1 Introduction to Bayesian Approaches

The classical and the Bayesian approach are ditfénenany ways. Given a dataset, the
focus of the classical approach is on estimatepashmeters that have the highest
probability to be correct. In our case, we usualhye only one dataset to anafZ@&/e
make use of maximum likelihood methods to estinthie parameters. In Bayesian
inference the parameters are stochastic varialllesy are estimated using Bayes
theorem.

The concept of probability is a different one ire ttwo approaches. In the classical
framework, probability is defined as relative freqay of occurrences, when we repeat a
process infinitely often, whereas in Bayesian iafiee, probability can be seen as the
confidence that certain events occur.

In contrast to the classical approach, the Bayesstimation does not attempt to find the
best fit estimates to the dataset. Instead we ttaderior knowledge we have about the
parameters and update this information using the d& observe. This especially has
advantages when we suffer from small datasets,ewverare afraid that observed data

might not be representative enough.

Suppose, for example, we have two chess playagingl against each other four times
in a row. Let us assume our prior belief is thaytplay equally well. Using a Bernoulli
distribution withq the probability that player one wins, we can eatax,. If player one
wins four times, the classical approach producesstimate ofj equal to one, whereas

the Bayesian approach produces a probability deperah the prior and therefore lower

° In a laboratory, you can repeat tests, alwaysngetiew datasets. You can estimate their paraméiers

each sample and finally get a distribution for plagameters. In economics that is not the case.
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4 State-Space Models with Gibbs Sampling

than one. For small datasets it might thereforeuseful to implement Bayesian

estimation instead of using a classical approach.

Bayesian statistics gained more and more populaxigr the recent decades. There are
two favored arguments, why classical approaches peferred over Bayesian
approaches. The first argument affects the chdice mrior (subjective) in the Bayesian
approach, although one can choose a non-informatiee, which means that the prior
sets no preference for any value of the parameters.

The second argument is based on the derivatior{soofhplex) posterior densities (the
concept will be explained throughout this chapt&ince they can also be computed
numerically and the development of computers andorahms for numerical
computations improved tremendously, this problemassignificant anymore (for most
of the cases). This as well explains the gaininguparity of Bayesian statistics

nowadays.

We assume that the parameters in our model aréastbc variables with probability
distributionp(0), whered denotes the set of parameters. y.eenote the observable data.

In the remaining sectiong,is the credit default swap spread for differenturities.

Let us first recall the Bayes’ theorem:

P(0,y) = p(y [0) p®)= p@® |y) py )

and therefore

p(y [0) p(®)

0 =
pOly) o)

or p(8]y) 0 p(y |0)p®). (3.8)

Sincep(y) has no operational significance (it does not ddp@n®), it will not change the
posterior density for different sets of parametérst is the reason why we can write the
proportional relationship in Equation (3.8). Notsaathatp(y | 0) is nothing else than the
likelihood functionL(0 | y) of the parameter® given the observations Defining a prior
belief via the distribution of the parametg®), we are able to calculate a posterior
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distribution, given the set of observations. Ndtat different priorg(0) lead to different

posterior distributions.

4.3.2 The Benefit of Gibbs Sampling

Implementing the approach described above for nsodéth more than one unknown
parameter, especially when they have differentrpyican lead to problems. We need to
derive the marginal and joint prior distributiomsti to get the joint posterior distribution
of the parameters.

After calculating the joint posterior density ofetunknowns using Equation (3.8), we
still need the marginal posterior distributionstbé parameters to make inference on
them. The straightforward solution involves intégma of the joint distribution of the
parameters, where in many cases analytical soltiflannot exist. Gibbs Sampling is a
Bayesian approach used to approximate joint andgimelr distributions from their
conditional distributions. That way we avoid thentiened integration problem. In a first
step we choose priors for the parameters. We folleideas of Kim and Nelson (1999)
and Sugita (2008) and choose natural conjugaterspfiar each of the parameters,
conditional on all other parameters. By naturaljegate prior we understand a prior that,
multiplied with the likelihood function, has thensa posterior distribution as the prior
(conditional on the other parameters). The condtialistributions are used to obtain the

marginal distributions. The Gibbs sampling algaritban be divided in five steps:

Initialize the set of parametedswith M the number of parameters.

2. Draw the first parameteh from its posterior distribution, conditional oretbther
parameters,, 03 ...6y and save the value.

3. Generate a draw of the second paramteonditional on the draw a@f and the
other parameters, 0, ...0\.

4. Do this for all parameters, save the values andakthe steps 1 toJtimes.

5. Discard the first draws, since they might depemdngfly on the initialization of

the first step. Take the average over the remaidiag/s to get an estimate.

To illustrate how this approach captures the mailgilistributions, we consider a simple

example. Figure 4 shows the results from Gibbs #ampn two normally distributed
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random variables with high correlation. The geregatmarginal and posterior
distributions converge at an exponential rate désired distributions. For a proof, see
Geman and Geman (1984). Given the conditionalidigions, we can approximate the
marginal distributions of the random variables withintegrating the joint distribution

over one of the parameters.

Figure 4 — A Gibbs Sampling lllustration

P AL

Correlation = 0.9

Result from 250 Gibbs sampling rounds on two nolymdistributed random variables X1 and

X2 with correlation 0.9. The dark line highlightsetfirst ten draws, initializing X1 at 0.
In the state-space model, we analyze throughostttiesis, we deal with much more
complex situations. We consider a multivariate raralistributions and a multivariate
representation of the gamma distribution, a Wistestribution. In the following sections
we describe which prior distributions we need toade and how we approximate the
marginal distributions. The mean of the generatdes represents the estimators for the
parameters.
Another issue will be the generation of the unobseéstate vector using Gibbs sampling,
since we have to generate a J xnatrix there. There are several ways to genehate t
state vector. We use multimove Gibbs sampling, wggeasted by Carter and Kohn
(1994). The latter will be described Section 4.3.6.
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4.3.3 Prior Distribution for the Transition Matri&

The assumption of independence between the emmsten themeasuremenand the
transition equations and the conditional drawing of the patans allow us to treat them
separately. We start by estimating ttransition equation. To derive the posterior
distribution of A, we first need to rewrite th&ansition equation in concise matrix
notation as discussed in Section 3.3. We expresatien (3.2) for all time points &
B.=BcA, +U. (3.9)

The likelihood function ofA;, conditional orp andQ in Equation (3.9) is proportional to

I(A.QIB)DIQ M exr{-% R . ~BcA. JB.-BLA, )}] (3.10)

A non informative prior foA; is given by the multivariate normal distributiomhere the

conditional posterior density & can be written as

vedA,)|Q.B ~ MN(ve@A, ).®, ) (3.11)

and wherea®; denotes the covariance matrixvedA.). We can derivé\; andd®; using
the results from section 4.3.1. We insert the maitate normal prior and the likelihood,
given by Equation (3.10), into Equation (3.8) aedrrange termsA.; and®; are then
given by
@, =[®; +Q O (B, BL)" (3.12)
andveqA,,) = ®,[®; ve(A ) +(Q O1) " vé@. B )] - (3.13)

The parameter& and®, have to be set before we draw the paramétgend®;.

They are prior beliefs about the parameters arid ¢beariance matrix®

For a derivation of the results in Equations (34:2) (3.13), see Sugita (2008).

19 Note that the result of the following steps widllider A; and notA. Before running the Kalman Filter
again, we need to transpose the matrix and sjplitatA andc again.
™ The initial matrixd, should have high values on the diagonal, if wetsrgure about our guess .

This ensures that we are able to capture the gisttibution of the elements K.
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Conditional onA. and B, our next step is the derivation §. Here we face another

problem, since the elements on the diagon&) afe restricted to values larger than zero.

4.3.4 Prior Distribution for the Covariance Matri@

The error covariance matri® in our model is a 3 x 3 matrix. Since it is a ausace
matrix, we should choose the natural conjugater gand therefore posterior distribution)
in such a way, that the elements on the diagormalaager or equal to zero. To achieve
this goal, we pick an inverse Wishart distributemprior for the conditional distribution
of Q. The inverse Wishart distribution is the multiede case of an inverse gamma
distribution. It produces a symmetric matrix witbsgtive values on the diagonal. Its
density function can be written as

M21Q ™ P2 exptr Q™ )/2:. (3.14)

_|Y
PQI¥.m)= 2™2 _(m/2)

Thep x p scale matriX¥ has the same size s respectivelyp = 3. The parametan
denotes the degrees of freedom Braknotes the multivariate gamma function. Since the
density in Equation (3.14) is a natural conjugat®rp the posterior density of,

conditional on all other parameters, follows theeirse Wishart distributidf

QlALB ~IW(¥,,m). (3.15)

Deriving the conditional posterior distribution Qf we get the following changes in the
scale matrix and the degrees of freedfom

Y, =(B-BA)(BBA)FY (3.16)
andm =m+ T. (3.17)

We choose a factor model in order to reduce thebeurof parameters to be estimated.

This worked perfectly foc, A andQ. We have 18 unknown parameters, independent of

2 Most programming languages do not offer the pdligito draw from an inverse Wishart distribution.
Appendix A shows how we solve this issue usingddath normal and chi-square random numbers.
13 For a detailed derivation of (3.16) and (3.17) again Sugita (2008).

28



4 State-Space Models with Gibbs Sampling

the number of maturitiesl we include in our analysis. This number change$ wie

error covariance matrik, dependent on the number of maturities

4.3.5 Prior Distribution for the Covariance Matrik

The previous sections described the way to genehaes of the parameters in the
transition equation. Now we focus on thmeasuremenequation. Since the matrix of
loadings,H, given4, is already known and our measurement equatios doecontain a
constant, we only need to estimate the covarianatibmof the errorsR. Since the
number of elements IR depends on the size gf the number of parameters increases
significantly with the number of spreads we include different maturities. For five
different maturities irs, we have a symmetric 5 x 5 matrix with 15 difféarparameters.

In the style of Diebold, Rudebusch and Aruoba (200& assume tha is diagonal.

This can reduce the number of parameters significdnThe matrixR is given by

o 0 .. O
0O o .. O

R= 2 (3.18)
0 0 .. gy

The elements oR, as before the elements of the diagonalQefshould be strictly
positive, since they denote variances of the émonsv;. The natural conjugate prior for
each variancey,, conditional onf that assures positive elements for the variances is

inverse gamma distribution with density function

(o |K,w)=% (Lig, Y™ exptw Io, ) (3.19)

Note that there are different representations efgamma distribution and the inverse

gamma distribution. It can be parameterized in $eaha scale parameter or an inverse

% 1n case we would use ten different maturities,rthmber of additional parameters reduces from 58to
Nevertheless, if we do not make this assumptiom,gitneration of draws & will not be different from
the steps taken in the previous sectiondoilhe natural conjugate prior would again be amisg Wishart

distribution.
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scale parameter, also referred to as rate paramidtershape parameter does not change
for the two representations. We make use of thie gsgameter notation.

The conditional posterior density and the paramsetéthe posterior density are given by

o,|Bp~1G (% %), (3.20)

with the two parameters
anda = (S, -pH})'(S,-BH ) + w, (3.22)
K =K, +T (3.22)

wherex denotes the shape of the gamma distribuodenotes the scale of the gamma
distribution andS is the collection of spreads for all points in&ifg ;... Sr)’. The index
nin S, andH, is a column index, implying that we only take thé¢h column of the
matrices. For further information about the deiiwatof the univariate results, see Kim
and Nelson (1999, § 7.4). Note also that this tasujust a special case of the inverse

Wishart distribution, where the dimension@fequals a 1 x 1 matrix.

4.3.6 Generating the State Matrfx

We know how to generate draws of the hyperparametér our model. But the
distributions of the hyperparameters are also ¢mmdil onp, the unobserved state vector
of the model. We consider the state vectors, afiyperparameters before, to be random
variables whose natural conjugate prior given byudtivariate normal distribution with

covariance matriP.

This state-space model is a linear Gaussian madeh dhe observationS. Multimove
Gibbs sampling, developed by Carter and Kohn (1,99€8s the following result, which

can be derived from the Markov propertypof

p(B|S) = p(B, |s>|j b, 1B,y S)- (3.23)

That means we can create the whole state vectarsigely by first generatin@+

conditional onS. Given B2 andS, we know that the density ¢% is again normally
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distributed. Going back to the notation we usedtlier state vector in the Kalman filter

for predicted variablefy.1 andpy:, we can write the densities | Sandp: | Bi+1, Sas

B IS~N (BT|T ’PTIT) (3.24)

andp, [B..,S~N By, Py, )- (3.25)

We need to derive the mean and the variance ofiligbn (3.25) in the next step.
Receiving a draw fop is straight forward. We just need to run the Kairfiier once to
provide prr and Prr. We also need to save the pathBgfand Py for all t, since these
values are necessary to drpmort <T.

We first drawpr from (3.24). The next step is drawifigh, conditional on the draw ¢
andS. Hence, we need to derie.yyr.1, gr andPr.ayry, gr, the mean and covariance matrix
of the distribution. They can be derived by rewdtithe updating part in the Kalman

filter. The final expressions are given by

BT—uT—l,BT = BT|T + PT]TA'(APHTA' + Q)_l(l3 h-APp 1[T) (3.26)

andPr_y_,, =Py -P A (AP A +Q)*P, .. (3.27)

For more information, see Kim and Nelson (1999,8.8Ne now have the instruments
to drawpr.1, using (3.25) with (3.26) and (3.27). Settifig- T -1, we can proceed. We
repeat the steps until we obtain the whole seadtiofsp. Note that for generating, we

need to know the hyperparameters. Their initialiatmight be important, since the
Kalman filter does not run for all values. For arste the initialization of the filter does

no work if| —A is not invertible.

Finally we have all building blocks to run the Gsbsampling algorithm. Note that the
order in which we start the algorithm does not ciffine results, at least not after a
sufficient number of runs. Nevertheless it makassedo initialize the hyperparameters
first and start sampling the state vector, becausalizing the state vector for each point
in time needs more effort (since it contains muadrarvalues). In most cases, it is very
difficult to come up with a good guess of the urebed variables. The next part
describes in short, how we build the algorithm.
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4.3.7 Generating the Parameters, Conditionafjon

We start generating the collection of state vecgoas described in the previous section.
Afterwards we can carry on generating the hyperpatars, step by step. We start with
the transition matriA. We need to seho and the covariance matri®, of veqA). As
mentioned before, we should choose high valuestHerelements of the covariance
matrix, the more we are unsure about our guessypespecially for the diagonal. We
should also take care that we chose the matrixigh & way, that it is invertible, since
this is necessary to calculabg.

Using aVARmodel, we imply that our process is covarianceatary, which means that
the first and the second momentgdEand Covp,) of the factors are independent of the
datet. This restriction may not be fulfilled for all dwva of the parameters. This may lead
to problems in other building blocks of the algmi, especially in the generation of the
state vectom;, e.g. we receive covariance matrices which areHemitian or have
negative eigenvalues (problems may arise drawirgmfra multivariate normal
distribution, since we need a square root of theadance matrix). Discarding these

draws, we also prevent a bias in the result whenaging over all drawa

Concerning the choice @, co, ®o, Yo, Mo, ko andwg, there exist several approaches.
The choice can significantly influence the estimatof the models. Litterman (1986)
suggests picking the priors such that the timeeses impossible to forecast. He chose
the prior covariance matrix to diagonal, where ddiion Zellner (1971)suggests a
solution, where this assumption is not necessaoyiod (1986) also suggests an
approach, based on the underlying dataset.

The choice of the prior is beyond the scope ofregearch. In this thesis, we use a trivial
initialization, setting the values to zeros andsowkere possible and high values ¥y,
such that we make up for the trivial initializatiohA andc.

'3 To test for stationarity, we can apply a unit réest. See also Hamilton (1994) for the conditiohs
covariance stationarity in vector autoregressivel@m
'8 Since the values are (with some restrictions) freehoose, it is not necessary to make use ofethos

approaches.
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In a next step, we generd@e Here we need to set the scale ma¥fix As described in
Appendix A, we need a square root ¥ (e.g. Cholesky decomposition). Therefore we
need to make sure tha¥; will be positive definite (Hermitian for Cholesky
decomposition). The initial degrees of freedogineed to be set as well. We genefte
from the inverse Wishart distribution.

The last matrix to generate R, the covariance matrix of the error terms in the
measuremenequation. Here we need to initialize the shapand scalav,. Then we
draw eacly, forn=1, 2 ...N.

We repeat the generation of the state vectors gpérparameters and save the values for

the hyperparameters until we consider our samplbe targe enough, startingjat O

1. Generate a draw of the state veqiprs
B, - ¢ ,A QR Equations (3.24) - (3.27)
2. Generate a draw of the paramefesndc:
CiiprAjy < B Q)W R Equations (3.11) - (3.13)
3. Generate a draw of the error covagamatrixQ:
Qj+1 — B0 G Aj r Rj Equations (3.15) - (3.17)
4. Generate a draw of the error covarianceixn@g:
Rin < B0 Gt A1 Qg Equations (3.20) - (3.22)
5. Repeat steps 1 to 4 until we have a safficmmumber of draws:
j=j+1.
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Again we discard the first draws, since they sthprepend on the initialization of the
hyperparameters. From the remaining draws we ta&everage to get estimates for the
hyperparameters.

4.4 Results from the Model without Regime Switching

We implement the algorithm for the Commerzbank sketteas discussed in Section 4.3.7.
We trivially choose the scale matriK, to be an identity matrix and the degrees of
freedomky andmy to be zero. The elements Af andcy, where also set to zero and the

covariance matrix ofedA.) to a diagonal matrix with £@n the diagonal.

We run the filter, discard the first 2.000 drawsl éake the average over the next 10.000

draws. The results are shown in Figure 5.

Figure 5 — The State-Space Gibbs Sampling Nelsone§el Factors
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The figure shows the results form estimating thésdle Siegel factors using the Kalman Filter
and Gibbs Sampling for the estimation, again udimg Commerzbank dataset. They were
obtained after running the algorithm 12.000 tinsas&raging over the last 10.000 outputs.
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Comparing Figure 2 and Figure 5, we observe sniiddirdnces for the time series of the
level factor. However, the factors slope and cumeadiffer strongly from the results in

Section 3.4, not only concerning their values, &lgb their correlations. Figure 6 shows
the correlation for the two estimation methodscuekated using a moving window with

data for twelve weeks. We take the state veqipfert = 1, 2 ... 12 and calculate their
correlation. The next correlations are calculatsihgi the state vectofs fort =2, 3 ...

13 and so on.

As mentioned before, the correlation between tloeofa for credit default swap spreads
takes very high values (positive and negative), maned to the correlation of the factors
for yields. Especially the correlation between leaad slope is constantly close to minus
one, except for a few dates. We observe thatdirelation between level and slope does
not differ strongly between least square estimatiomd the estimation via Gibbs
sampling, but for the other correlations, espegitiie correlation between level and

curvature, the difference is huge.

The parameters, resulting from the Gibbs samplilggriahm, averaged over the last

10.000 iterations are given by

0.850 0.137 - 0.09 0.142 0.009 -0.004 0.00
A=|0.025 0921 -0.017,c=|-0.043|, Q=|-0.004 0.005 - 0.004,
-0.001 0.049 0.99 0.015 0.002 -0.004 0.00

R 4iag =(0.00033,0.00179,0.00015,0.00012, 0.00.

At this point we should mention again, that theulissobtained from Gibbs sampling
depend on the prior distributions and the valuexhaose folA, ¢y, Do, Yo, My, ko and
wo. This is likely to be also (next to the fact tha used the Kalman filter to back out the

state vector) a reason for deviations from theltesitained in Section 3.4.
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Figure 6 — Least Squares and Gibbs Sampling Nelsd@iegel Factor Correlations
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The figure shows the cross-correlations of the dlelSiegel factors of the Commerzbank

dataset. The correlation is calculated using a npwindow over twelve weeks, which explains

the very high correlations when a jump occurs ia birthe factors at the same time.
Regarding Figure 2 or Figure 5 again, we obseratttie credit default swap spreads and
therefore the Nelson-Siegel factors are not comadsstationary over time. We do not
only observe a jump in the level of the spreads atao their slope and curvature change
significantly. Furthermore level, slope and curvatget more volatile after the jump. The
accuracy of our linear model suffers from such jamgince we assume covariance
stationarity for the/AR1) model. We therefore introduce regime switches gossible

solution to this issue in the following chapter.
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5 Regime Switching

5 Regime Switching

Observing the movement of credit default swap sigdar different reference entities

over the last couple of years, we see that a lowl lef the spread comes together with a
low volatility of the spread. At the same time, wlaserve periods with high and highly

volatile spreads. This behavior is typical for mamgrkets, e.g. jumps in the equity

market usually come together with a huge increasesir volatilities.

We want to account for this additional informationthe state-space model by allowing
for more flexibility. This results in an increasktbe parameters in the model and also in

more computational effort.

In this chapter we add regime switching to our nhdyeallowing for shifts in the level
and error covariance matrix of the factors. We mmrstwo different regimes for credit
default swap spreads to allow for low levels witvIvolatility and vice versa. We adjust

the estimation steps from the previous chaptes&oragime switching.

In Section 5.1, we present the Hamilton filter, @hprovides us with the probabilities to
be in a certain regime. In Section 5.2 we show h@igenerate the hyperparameters and
the regime vector. For the latter we make use dfimove Gibbs sampling. Finally, we
generate the transition matrix, which containsgrababilities to move from one regime

to another.

5.1 Markov-Switching Model and the Hamilton Filter

There are several models applicable, e.g. indepgnsl@itching models, which are
relatively simple to implement. We consider a mooenplex switching model, i.e. a first
order Markov switching model with two different ieges. This means that the
probability to be located in one regime only deewnd the previous regime and the
observations of the spreads. The regime at timalenoted withr;. It is equal to zero, if

we are in regime zero at timand equal to one, when we are in regime one.
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Allowing for more regimes is possible, but increasige number of parameters. Also the
parameters, for which we allow for switches, influe the number of parameters to
estimate. We decide to allow for switches in theele and the error covariance matfx

of the factors, from now denoted &g;) andQ(r;). The other hyperparameters do not

change in their notation.

We have to use a filter method to obtain the wietgme vector = (ry, r2 ...r7)", which
contains the regimes for atl from 1 to T. The transition matrixKk contains the
probabilities of shifts from one point in time toet next.Kj; is the probability to move
from regimei to regimej. Note that the rows of the matrix have to sumauprie, which
means that the matrix does not contain four, byt tvmo unknown probabilities, that we
have to estimate. The matrix can be written as

K :(KO'O KO”J or K :( oo l_KO"’]. (4.1)

Kp Ky 1-Ky, Ky

The filter method that we use, does not deliverrdgeme itself, but the probability to be
in a certain regime at time given the data up to timeand the transition probability

matrix K. Note that the matriK does not depend on the time or on the observations

The following chart shows the steps of the Hamilfp®89) basic filter, starting with time
t equal to 1. To get the filter started, we firsedéeo initialize the steady state probability
p(ro), the probability to be in regime zero or reginmeatt = 0. Then we move from
probabilities that are conditional on the set ofevations and previous regime to
probabilities that are only conditional on the eEbbservations. Finally we obtain the

joint probability ofr; andr.;, conditional on the observations up to that pmiritme.

Next to the initialization of the filter and theeps to get from the conditional probability
p(ri, realBo-t-1) to p(re | Bo—t), the probability ofr; andr.;, conditional on all information
up to timet, the flowchart contains the likelihood functiong¥lof the parameters.

Note that we do not make use of the likelihood¢siwe use Gibbs sampling to estimate
the model. For maximum likelihood estimation tecjugs, the function is crucial. It only

depends on the cumulative probability of the dhtat timet, conditional on the data of
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the previously available daf_.1. pot1 denotes the data (the state vectors) from time
zero to time.

Initialization: (r) = (IZ‘KJ(I 7K j lﬂ 2K j g (4.2)
nitialicaulvit. p 0 12 12 12 . )
Filter Steps: P(5 T B ) = P TP (1B o) (4.3)

o(r) =B —cr) —AB.,

1 1
p(Bt | rt’rt—l’BOAt—l) :TeXF{__(P (t )Q (t yl(p (t )j
(271) 7 |Q(w) 2

p(Bt |BOat—1)= ZZ p(ﬁt | r{’r:(—l’ﬁoat—l)p(r:( ’rt—llﬁmt—l)

Tt Ta

p(r:('rt_l ”30%’( ) - p(ﬁt | rt’rt—l’ﬁoat—l)p(rt ’rt—l’llsO—»t—l)

P(B, IBo..c-1)
(% By ) =D PNy [Bo.) (4.4)
Likelihood: 1(6) =1(8) +In(p (B, | B, ..)) (4.5)

N is the number of factors. In our cddequals three. A derivation for the univariate case
of these results can be found in Kim and Nelso®91% 4.2). The only difference to the

multivariate case is the probability distributionnttion of the normal distribution.
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Replacing the simple density function by the maltiate version, the steps to be taken

are equal.

Note the similarity between the steps for the estiom of the state-space model and now
the regime switching model. We first run a filteetimod to obtain the unobserved regime
vector and then, conditional on these variablestag drawing the parameters, including
the transition matriX. The following steps describe the building blobéisa successful
estimation in &/ ARmodel with regime switching using Gibbs sampling.

5.2 Estimation using Gibbs Sampling

As in the previous sections for the estimationhef state-space model, we explain how to
obtain and draw from the posterior densities of paeameters, and afterwards how to
generate the regime vector and the transition mEtriWe consider the case for switches

in the vector of constantsand the covariance matrgX.

The switches only occur in the transition equati@ince the error terms of the
measurement and the transition equation are indE@pénwe can treat the transition
equation separately. Hence the building blockshef tregime switching estimation are
shown in a vector autoregressive model of order treesame given by Equation (3.2),
assuming that the state vectors are observed. Wwatelraw the regime vector conditional

on the state vector; therefore this assumption doeaffect our building blocks.

We first focus on the estimation ofr;) andA. Both can be treated together. Further we
take a look at the estimation of the covariancerin® for different regimes in Section
5.2.2. In Section 5.2.3 we show a way to genetaettansition matriX<. In the last
section of this chapter, we generate the regimeveaising multimove Gibbs sampling,

as implemented for generating the state vectdrerptevious chapter.

5.2.1 Estimatingc(r;) andA

The estimation ot andA in Section 4.3.3 cannot be applied here, sinceaNwosv for
shifts in the vectoc. We again choose the multivariate normal priotriigtion. To
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simplify the estimation, we rewrite Equation (3.)ch that it includes the dummy

variablé’ r,

c(r) =g +rc, (4.6)
and therefore, =c,+rc +Ap,, +u,. (4.7)

We need to get rid of the regime dependencedrctivariance matri(r;) of the error
term u; ~ WN(O, Q(ry)), otherwise the selected prior cannot be used. Fowttivariate
case, there is a simple trick that can be appbate matrixQ reduces to a scalar. We
can divide the whole equation by the correspondtagdard deviation of the error term
for each point in time, conditional on the regiriée then get an adjusted regressor and

regressand with a variance of one independenteofagime.

In a multivariate scenario, we need to pre-multifflg error term with the inverse of a
root'® of the error covariance matri@(r,), denoted as (Q(ry). This results in a new
error term, which has an identity matrix as covare& matrix. Note that for very high
correlations in the matrix, a root might not exisgcause the matrix is nearly singular.
Since we are drawing the matrix, this event carunc& solution to this problem is to

redraw the covariance matrix and discard the prevdraw.

Rewriting the model in matrix notation, we get

LY Q(r)1B, = LTI, +LTQANIre, +LTQAN] A B, +, (4.8)

whereg; ~ N(O, I). To simplify the estimation, we rearrange termise Tinknown matrix

of parameters is placed between the maltriQ(r)] and the lagged facto.;. We

7 Note thatc(0) = ¢, butc(1) = ¢, + ci. The vectorc, only denotes the change énbut not the absolute
value ofc for the second regime.

8 We can use a Cholesky decomposition of the m&Jrigince it is Hermitian. Also other methods can be
used, e.g. an eigenvalue decomposition, where #gixTof eigenvectors, multiplied with the diagonal

matrix of the eigenvalues gives another root ofrtfzarix.
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rewrite the equation in such a way, that the knoggressor is on the left hand side of the

unknown parameters. The result is given by

vedL™[Q(PIB) =@ ¢ B)OLQ(RIvetc, ¢, A) +g, (4.9)
or written again in concise notation
Y = X0+ with n~N(O,1,,), (4.10)
where the regressand and the regressor are given by

11, B
X=[.. .. . |OL'Q ), 0=vedc, ¢, A) andY =vedL'[Q(DIB) .

l rt Bt—l'
The procedure to generate draws from the postdrgribution is the same as given in

section 4.3.3. For the set of parameters and \agaimder consideration, this is

01Q(r).p.x ~MN @, @, ) (4.11)

with
@, =[®; +1 OXX]™, (4.12)
and @, =@ [®;'0,+vedX'Y)]. (4.13)

In the next section, we derive the posterior distiion of the covariance matri(r:).
The idea is based on the steps in this sectionralWate the regression model in such a

way that the covariance matrix of the error t€prdoes not depend on the regime.

5.2.2 Estimating the Covariance Matr@3(r)

The estimation of the covariance matri€g®) andQ(1) in the multivariate case differs
from the univariate derivatidh We rewrite the model in such a way that the esiion
of the covariance matrix for the two regimes carsbparated. Then we estimate one of

the covariance matrices, conditional on the otlmer. o

19 See Kim and Nelson (1999, § 9.1.4) for the unatarcase.
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We first rewrite the covariance matrix as

Q(r) = Q(O)(I —r)+rQ M)=Q (O)( +r (A -1)), (4.14)

with A as a term that contains information about the camae matrix of the first regime
and the covariance matrix of the second regimeortter to estimate the covariance
matrices, we need to set the valuesAgrNote again that the initialization influences the

relation between the covariance matrices. We canesgQ(0) and respectivelx as

Q(0)=QMA™ or A=Q(0)"Q(). (4.15)
After setting the covariance matr@Q(1) we can pre-multiply Equation (4.7) with the

inverse root of)(r;) and then pre-multiply the equation with the robQ(0). The whole

pre-multiplication ternf is given by

F=LQRMAL' Q). (4.16)

so that the error covariance matrix is givenq®). The model can now be written as

FB, =F[c, +rc +AB., ]+, (4.17)

whereg; ~ N(0O, Q(0)). The covariance matri®Q(0) again follows an inverted Wishart

distribution. It is not necessary to rearrange teds in the previous section, since we
generateQ(0) conditional on the parameters. The remainirgpstare the same as in

section 4.3.4, calculating the residuals for thalesenatrix using Equation (4.17). The

posterior distribution can be written as

Q(0)10.p.x ~IW (¥, m ). (4.18)

In contrast to the estimation of the covariancerixawithout regime switching, we
needed to initialize one of the covariance matriggdditionally, we need to set the
matrix Ag. Deriving the conditional posterior distributiori @(0), the same way the
posterior distribution folQ without regime switching has been deriveee obtain the

values for the parametey andmy of the distribution. They are given by
¥, =¥Y,+E'E, (4.19)
m=m+T, (4.20)

whereE is the residual of the new equation,

43



5 Regime Switching

E=F/p-(1 x B")c || (4.21)

Drawing from distribution (4.18), we obtain an estie for Q(0). We now need to
estimate the covariance matrix for the second reg@(l). Instead of doing so, we could
also estimate\ and use the relationship between the matricesattsfiorm it toQ(1).

After rearranging again, the non-conjugate priornadtrix A is an inverse Wishart

distribution. We pre-multiply Equation (4.7) with
F*=L(A) . (4.22)

Note that the steps are similar to the previougpsstave only change the pre-
multiplication term. The likelihood functioA now only depends on the values in regime
one, but not on the values from regime zero. Téasl$ to the following posterior density

A10,8.X ~IW (¥, *m*). (4.23)

Deriving the conditional posterior distribution o, we get the following set of

parameters for the distribution

CREE e = (4.24)
m*=m* +T, (4.25)

Co
with E* = F* B—(l r BL) c, || (4.26)

I

Note again that the initialization of the matry significantly influences the discrepancy
between the covariance matrices. Given a drawA drom Equation (4.23), we can
calculateQ(1) using Equation (4.15). In contrast to the apploin the last section, we
need a two step procedure to estimate the covarianatrices. We first draw the
covariance matrix for the first regime and thengeeerate the covariance matrix for the

second regime, conditional on this matrix.
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5.2.3 Estimating the Transition MatriK

As seen before, we need a transition matixto make any inference about the

probability to be in either one or the other regimbis matrix needs to be generated as
well, using Gibbs sampling. The elements in therixakepend on the transitions that we

have from the first regime to the first regime, finst to the second regime, the second to
the first regime and the second to the second megimce we generate the transition

matrix conditional on the regime vector, we cart psunt the number of transitioag,

the transitions from regimieto regimej. We furthermore know that the elements on the
off-diagonal of K can be calculated from the elements on the didg@nece every

column has to sum up to one.

The natural conjugate prior of the diagonal elemeéntthe transition matrix is a beta
distribution (see Kim and Nelson (1999, § 9.1.R&))s a continuous distribution defined
on the interval between zero and one. The shaeneders of the distribution are given

by a andp, which need to be strictly positive. The postedmtribution can be written as

Koo [T ~beta(Uy,+ 7o Uit Z) (4.27)
and Ky |r ~beta(u,+ 7, ugt z4. (4.28)

The parametersy; denote a prior belief about the transitions anodukh therefore be
integers. By selecting;; we can change the number of transitions, giverzjpyThis
implies a different view on the expected numbetrafsitions. Note thaty; should be
larger than zero, since the beta distribution iy atefined for parameters larger than

zero. Otherwise we cannot draw the transition poodibias.
Given the regime vector, we can generate drawefttansition matrix. The regime

vector is generated conditional on the transitioatrin in the next step. We use the

Hamilton filter, described in Section 5.1 to acl@eaur goal.
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5 Regime Switching

5.2.4 Generating the Regime Vector

We generate the regime vector, conditionalpo®, Q and K using multimove Gibbs
sampling again. We first run the Hamilton filterdasave the probabilities. We can

rewrite the joint density of the regime vector sticht

o(r |B) = p(% ||s)|j p(t 70 B)- (4.29)

For a complete derivation of the multimove Gibbsphng in Equation (4.29), see Kim
and Nelson (1999, § 9.1.1) or Carter and Kohn (1984 can now start to generate the
regime vector. In a first step we take the lastatien of the Hamilton filter, which
provides us witlp(r¢ ). We only consider the probability fof = 1, given byp(1|p). We
obtain the regime corresponding to this probabihtya very simple manner. We draw a
random number from a uniform distribution. If thenmber is higher than the probability
p(1]|B), we are in regime zero; else we are in regime After generating the regime for
time T, we need to generate the regime for all the dthesnditional on the collection of

state vector§ andrw., by employing

p(rt+1|rt)p(rt “soﬂt). (4_30)
p(rt+1 |B0at)

Once this probability is calculated, we can gereedatws in the same way that we used

P [TgsBo )=

for drawingry. Following this procedure til = 1, we have a draw of the whole regime

vector.

We now have all building blocks to estimate a mdbtat combines the state-space form
with first order Markov chain regime switching wittvo regimes. The order and the
number of regimes can easily be increased; howdwerpur purpose this model is
satisfying. In the next section we introduce themmbmed procedure, i.e. how the building
blocks can be put together and how the model padon comparison to the model

without regime switching.
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6 Regime Switches in State-Space Models

6.1 Building the Algorithm for the Combined Model

Given the building blocks, we implement the Giblasnpling method to estimate the
parameters. We first must decide, how we set thanpetersAo, ¢y, ®o, Yo, Ao, My, Ko,

uijj, and in which order we implement the building Bl&cWe suggest drawing first the
state vectors, collected h since it contains many elements and is difficolinitialize.
Hence, the other parameters and the regime veded mo be initialized. A trivial
initialization for the regime vector would be toseme that it only consists of zeros or
ones. The fit of the initial values for the paraerstdoes not influence the results very
much, if we make sufficiently many draws. Howewe choice ofAq, Cy, ®o, Yo, Ao,

Mo, xo, Uj, influences the result.

After the initialization, we generate the transitimatrix K and then the regime vector
The hyperparameters are generated as the ladingtasith c(r;) andA and afterwards
Q(ry)), using the results from Sections 5.2.1 and 5Ri2ally, the covariance matrR is
generated. The described procedure is repeateldcontrergence is achieved. The first
draws should be discarded due to the bias of thialimation. Finally we take the average

of the generated parameters.

6.2 Results from the Model including Regime Switching

The initialization is basically the same as in tbase without regime switches.
Additionally we set values for the elements in tta@sition matrix<, given byu;;, which
are necessary for generating the transition prdibabi We set all of them equal to one,
giving no preference for any transition (A valuezefo is also possible, but we have to
keep in mind that the shape parameters of thedigti@ution have to be larger than one.
Unfortunately, for some draws we are not allowechéwe a switch from one specific
regime to another, resulting in a shape paraméteero). Furthermore we need to set the
matrix A to generate the covariance matrices for the twonmes. We set the elements on
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6 Regime Switches in State-Space Models

the diagonal equal to two. Finally, we need tocsgt the initial guess for the change in
the constant. Note that the more we are unsuretdbewalue, the higher we should set
the initial covariance matrix of the parameters. WBalize the elements af o equal to
zero and the diagonal of its covariance part etual®, repeating the initialization from

the previous Section 4.4.

We run the algorithm with 24.000 runs, discard fin& 4.000 estimates and take the
average over the last 20.000 draws. Since thetseBoim the Kalman filter depend on
the regime vector and vice versa, we also taketieeage over them, leaving us with the
averaged factors level slope and curvature facodsthe average of the regime that we
were in each point in time for 20.000 draws.

Figure 7 shows clearly, that a regime shift ocdagveen 2007 and 2008, as expected.
The difference in the constant is quite large. $hift in the error covariance matr@} is

quite small in an absolute sense, but relativegnséhey change a lot. The estimates are

given by
0.758 0.106 0.08 0.153 0.245
A=| 0.129 0.922 - 0.04%, c,=| —0.087|, c,+c, =| —0.143|,
-0.102 0.046 1.05 0.046 0.122
0.0029 -0.0019 0.002 0.0057 -0.0025 0.006
Q,=|-0.0019 0.0023 - 0.002[, Q,=| —0.0025 0.0031 - 0.004f,
0.0024 -0.0020 0.005 0.0060 -0.0049 0.011

R iag = (0.00131,0.00193,0.00035, 0.00025, 0.00(.

Comparing the results to previous outcomes, wesearthat the first element of matAx
is much lower than before. Compared to the modéiawit regime switching, the error

covariance matrilR shows much lower elements for the one and fo.€hgear spread.
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6 Regime Switches in State-Space Models

We further calculated the unconditional mean of fdtors, using the relation given in

(3.2) to show how level, slope and curvature diféerthe two regimes

0.372 0.895
n, =|-0.316| , p, =| -0.525|.
-0.349 0.325

Figure 7 — The State-Space Gibbs Sampling Nelsone§el Factors with two Regimes
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The figure shows the results from estimating thésdle Siegel factors using the Kalman Filter
and Gibbs Sampling for the estimation, again whiida Commerzbank dataset. This time, regime
switches are included and the number of runs iseased to 24.000, averaging over the last
20.000 draws. The factors and the regime vectotheraveraged values over the runs.

The jump in the probability of being in regime omecurs on the same date, where the

jump in level, slope and curvature occur, thatristtee 2%' July 2007. When the factors

revert to the level they had in regime zero, thebpbility of being in regime one

decreases. We clearly observe this behavior affterjamp from December 2007 to
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6 Regime Switches in State-Space Models

January 2008 and from January 2009 to February.2@0Both cases, the probability

goes down to nearly fifty percent. Both cases allewed by a jump in the factors.

The variance of the factors also increases at éngestime when the regimes change.
Including a complete shift in the variance woul@réfore fortify the gap between the
regime probabilities. Figure 8 shows the variantéhe factors (calculated on a twelve

week basis using a moving window).

Figure 8 — The State-Space Gibbs Sampling Nelsone§el Factor Volatilities
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The figure shows the yearly volatilities (standdeviations) of the Nelson Siegel factors of the
Commerzbank dataset. The volatility is calculatesthg a moving window over 12 weeks,
which explains the very high volatilities when anjo occurs in the factors.
We remark that in order to include a complete shithe variance of the factors, we need
to allow for shifts in the whole transition matri&, resulting in additional nine

parameters to estimate. Furthermore, switchds affect the probability to be either one

50



6 Regime Switches in State-Space Models

or the other regime very much. Especially in théatile area, the regime we are in

depends strongly on the direction of the changberspread.

In the next chapter we present the forecast pedoom of different models with and
without regime switching, using the Commerzbank Alataset. We measure the
performance using the sum of squared errors ofdtezasts and check the performance

of sign forecasts.

51



7 Forecasting Performance Compared

7 Forecasting Performance Compared

We know how to estimate the parameters of the nspdeé can test their forecast
performance now. We divide the Commerzbank dataseh in-sample and an out-of-
sample period. The in-sample period starts &t Ii@&rch 2005 and goes to the"™26f
December 2007. We forecast the remaining 85 spreadsach maturity (that means the
out-of-sample period starts at tH¥ 2anuary 2008 and goes to thd' Bigust 2009).

We compare the random walk approach, where thedsteof the spread next week is
equal to today’s value, to an autoregressive mofdetder one on the spreads, to a vector
autoregressive model of order one on the spreadisaathe Nelson Siegel latent factor
models with fixed convexity, set to 0.59 (which nmaes the curvature loading for the
three year maturity). The factor models are esthatith least squares, as in Section 3.3,
and with Gibbs sampling for no regime switches,jmag for the constant and for the
covariance matrix of the transition equation sefgdyaand for both together. We re-
estimate the parameters every week, using a movimgpow for the in-sample period. To
measure the performance of the models, we calctiiatsum of squared errors (SSQE)
and the sign forecast performance, the relativquigacy of correctly predicted spread
return signs. Table 2 and Table 3 show the SSQE thedpercentage of correctly

predicted signs for the mentioned models.

Table 2 — Sum of Squared Errors for Different Mode$

| Least Squares | Gibbs Sampling
Nelson Siegel Factor Model

SSQE RW AR(1) | VAR(1) | OLS | No Switch | Switch c, Q | Switch c | Switch Q
1 year 2.004 2.134 2.301 2.305 2.028 1.973 2.002 2.012
3 year 2.323 2.435 2.524 2.494 2.178 2.064 2.107 2.155
5 year 2.387 2.474 2.501 2.746 2.324 2.240 2.217 2.304
7 year 2.288 2.369 2.496 2.585 2.205 2.151 2.137 2.199
10 year 2.415 2.490 2.544 2.643 2.232 2.189 2.193 2.241

Sum 11.418 11.901 | 12.456 | 12.772 | 10.967 10.617 10.655 | 10.911

The table contains the sum of squared errors fofdlrecasts. They were calculated for different
maturities and different models, using the Commankbdataset. The out-of-sample period

starts at 2 January 2008 and goes to thé" #igust 2009. The bold values denote the lowest
realizations.
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7 Forecasting Performance Compared

Regarding the SSQE, the Nelson Siegel models, atgdrusing Gibbs sampling perform
better than the other models. The AR(1) and the {ARnodel, as well as the Nelson
Siegel factor model, estimated with least squaefopn worse than the random walk,
while the Gibbs sampling models are constantlyebdtir this dataset.

We observe the best performance for the modelsitichide a regime switch for the
constant in the transition equation, although tiffler@nce between the models, estimated

with Gibbs sampling, is still small, with or withbregime switching.

Table 3 — Sign Forecast Performance for Different Mdels

| Least Squares | Gibbs Sampling
Nelson Siegel Factor Model

SIGN | Buyand Hold | AR(1) | VAR(1) | OLS |No Switch|Switch ¢, Q|Switch c| Switch Q

1 year 0.559 0.447 0.412 | 0.400 0.541 0.576 0.565 0.565

3 year 0.571 0.424 | 0.459 | 0.471 0.600 0.588 0.588 0.600

5 year 0.559 0.447 0.435 | 0.447 0.529 0.506 0.553 0.494

7 year 0.559 0.459 0.494 | 0.412 0.576 0.529 0.541 0.624
10 year 0.559 0.459 0.494 | 0.494 0.576 0.576 0.565 0.576
Average 0.561 0.447 0.459 | 0.445 0.565 0.555 0.562 0.572

The table contains the relative value of correqthgdicted signs. They were calculated for
different maturities and different models, using tBommerzbank dataset. The out-of-sample
period starts at"® January 2008 and goes to thé"¥ugust 2009. The bold values denote the
highest realizations.
The sign forecasts fortify the better performangerahe random walk, the AR(1), the
VAR(1) and the least square estimated Nelson Siegetel. Nevertheless, the
percentage of correctly predicted signs does ritardiignificantly from the performance
of predicting always a positive sign, i.e. we aog¢ significantly outperforming a simple
buy-and-hold strated?:

We further test, whether each of the models pedosmynificantly different from the
random walk and the regime switching model in teahgheir squared prediction error.

2 Note that we did not compare the magnitude ofpifegliction errors as before in the SSQE, but oméy t

correct prediction of the signs.
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7 Forecasting Performance Compared

We apply the Diebold and Mariano (1995) statisic ¢omparing predictive accuracy

with the following null hypotheses

Ho: E[SQRIF™™] = E SQE
against: H,:E[SQES"“™] # E SQE™?) .
SQE.1; denotes the squared prediction error at timel, forecasted with information up
to timet. Since we forecast only one-step-ahead, the ingaation of the test is simple.

We calculate the average of the differedca the squared prediction errors of the two
models, given by

.y = SQEY — SQES™,

T
2 Gy -
t=1

The standard deviatiostd) of the error term is given by the standard deéwmof the

=

=[P

differences.qy, divided by the square root of
std(d) = std dy,) /v T2
We use the OLS estimator to calculate the standakdation ofd 1. Dividing the

average ofl by its standard deviation we get the Diebold aratidho (1995) statistic. It

is asymptotically normally distributed with meam@d variance 1.

We observe that the least square estimated NelswelSnodel performs significantly
different from (worse than) the random walk at th# level. None of the other

differences in the squared prediction errors igifitant at the 5% level.

Table 4 shows Diebold and Mariano (1995) statisficthe forecasts. Positive values
indicate superiority of the models against the rexfee model (the random walk in the
upper part of the table, respectively the Gibbs @arg switching model in the lower

part). The test indicates, that the random waluigerior to the models that are estimated

% The standard deviation term gets more complicat®én we want to forecast more than one step ahead,

since the difference teroh. gets serially correlated. The intedrelenotes the steps ahead.
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without Gibbs sampling. The switching model withitelves in the constant and the error
covariance matrix seems to be superior to the otioetels. The test further indicates that
the switching model with only switches in the camétperforms better than all other
models for five and seven year maturities.

At this point we mention again that the availabd¢adet is very small, which results in a
relatively small out-of-sample period. The totalnmher of forecasts for the different

maturities is only 85. The smaller the number akéasts we include in the test, the
higher the probability that we do not find evidergestatistically significant differences.

Table 4 — Diebold-Mariano Statistics for ComparingPredictive Accuracy

| Least Squares | Gibbs Sampling
RW Nelson Siegel Factor model with convexity fixed to 0.59
DM - Test AR(1) | VAR(1) OLS No Switch | Switch ¢, Q | Switch c Switch Q
1 year -1.247 | -1.578 -2.556 -0.132 0.137 0.010 -0.046
3 year -0.430 0.082 -0.631 0.500 0.806 0.700 0.586
5 year -1.241 | -0.494 -2.438 0.315 0.422 0.516 0.422
7 year -1.187 | -1.721 -2.426 0.491 0.444 0.521 0.537
10 year -1.042 | -0.473 -1.349 1.009 0.724 0.762 0.968
Least Squares | Gibbs Sampling
Switch ¢, Q Nelson Siegel Factor model with convexity fixed to 0.59
DM - Test RW AR(1) | VAR(1) OoLS No Switch Switch ¢ Switch Q
1 year -0.137 |-0.586| -1.696 -1.209 -0.544 -0.337 -0.369
3 year -0.806 |-1.033| -0.839 -1.202 -0.581 -0.422 -0.454
5 year -0.422 |-0.629| -0.808 -1.538 -0.487 0.236 -0.367
7 year -0.444 |-0.664| -1.034 -1.134 -0.321 0.142 -0.282
10 year -0.724 |-0.935| -0.750 -1.014 -0.274 -0.041 -0.329

The table contains the test statistics of the DOiblddariano test. We test, whether the
expectation of squared forecasting errors are efgualifferent models. In the upper part, we
compare the random walk with the other models.him $econd part we compare the regime
switching model with switches in the constant amel ¢covariance matrix with the other models.
Bold values denote significance at the 5% level.
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8 Conclusions

8.1 Summary

In this thesis we introduced and estimated a neditdefault swap spread curve model.
The model is based on the Nelson and Siegel (18®del for yield curves, where the

factors evolve according to a vector autoregregsigeess as in Diebold and Li (2006).

We first presented the estimation steps under Hsaimaption that the Nelson-Siegel
factors level, slope and curvature do not contairestimation error by applying least
square methods. We fixed the convexity factor, siheth the transition equation of the
state space model is linear in the factors levielpes and curvature. The observable
variables were given by spreads for different maés: Given the factors for each point
in time, we built a vector autoregressive model estimated the parameters.

Further we rewrote the model in state-space fosrsumgested by Diebold, Rudebusch
and Aruoba (2006). We illustrated the estimatiorthef state space model using Gibbs
sampling, which provided two main advantages f@& dstimation. First, we suffered
from small datasets for credit default swap spreaws only in the cross-sectional
dimension, but also in the serial dimension. Togetwith the large number of
parameters, this would have made a classical estiméess accurate. Secondly, by
implementing a Bayesian approach, we allowed favrgdreliefs in the estimation. We
used multimove Gibbs sampling as suggested by ICamte Kohn (1994) to generate the
state vector. We observed that the factors oféhstisquare model differ from the factors

in the state space model, especially in the sei$eew cross correlations.

We added more flexibility to the model by allowifay regime switching. We introduced
switches in the constant and the error covarianagixnof the transition equation in the
state-space model to capture the evolvement ofrédit default swap spread curve and
show how the parameters are estimated using Géobplsng. We generated the regime
vector by applying multimove Gibbs sampling.
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8 Conclusions

We divided a dataset of Commerzbank AG spreadsantm-sample and out-of-sample
period and created one-step-ahead forecasts. Wigedhthat the state-space model,
estimated with Gibbs sampling outperforms the ramawalk, autoregressive models on
the spreads and the least square estimated mod&trams of their sign forecast

performance and the sum of squared prediction riine superiority of the model is

statistically not significant. The available outs#mple period is very short, which
makes it difficult to prove statistical significaac

8.2 Recommendations for Further Research

The estimation of parameters in a Bayesian framlewatows for wide flexibility. Not
only the chosen distributions and the prior bel&i®ut mean and covariance influence

the results. The applied estimation techniques@kspan important role.

We decided in favor of multimove Gibbs sampling dese of its computational
efficiency, but one could also consider using ngdve Gibbs sampling, suggested by
Carlin, Polson and Stoffer (1992). Another procedto simulate from the posterior
densities of state is the simulation smoother byJbeg and Shephard (1995). It is an
alternative multimove Gibbs sampler, but insteadd@wing the random variables, it
simulates their disturbance terms. The random blsacan be constructed from the
disturbances as required. Computationally, thisr@ggh is more efficient than the

multimove Gibbs sampler by Carter and Kohn (1994).

Further, the whole model can be estimated in assidakframework. Estimation methods
have already been implemented for state space mgdeke Durbin and Koopman
(2001)), but also for state space models with regsmitching in Kim and Nelson (1999).
Nowadays, the estimation suffers also from a sioet series, but due to the high trading
volume of credit default swaps, it is likely thaifficient data is available in future, as the
time series grows. Nevertheless, it is unclear mdrethe cross-sectional dimension

increases, which restricts the quality of a cladsestimation.
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8 Conclusions

In the very beginning of this thesis, we assumedl tiine convexity factor of the model is
fixed. The loadings of the Nelson and Siegel (1980del only depend on this single
factor. A fixed convexity assumption is very commadut the factor can also be time
varying. Although this adds extra complexity to #stimation (the model is not linear in
the factors anymore), Koopman, Mallee and van delt (2007) show that the extension

leads to a significant improvement in model fit foe yield curve.

As suggested by Diebold, Rudebusch and Aruoba (2006 yield curves, some
macroeconomic variables like inflation, but alsaiigg returns or interest rates might
have influence on credit default swap spreads. Téemy be added to the transition
equation of the model. This improves the fit of thedel to the data, but might also add
more predictive power to the model.

58



Appendices

Appendices
Appendix A.  Drawing from an inverse Wishart distribution

We follow the procedure from Smith and Hocking (2P7o draw from a Wishart
distribution. We can then convert the results toirarerted Wishart distribution, since
when the matrixA™ follows a Wishart distribution witlh™ ~ W(X %, df), then the inverse
of A is inverse Wishart distributed with~ IW(X, df).

To generate draws from a Wishart distribution, veed to generate random variables
from the standard normal and the chi-square digidh. WhenA™ is of sizep x p, we
need to build a lower triangular matrix with independent samples from the standard
normal distribution on the off-diagonal. The elenseon the diagonal are square roots of
a chi-square distribution wittif —i + 1 degrees of freedom, whardenotes the position

on the diagonal in the matrix. In the end matrigwdd look like this

JXa 0 0
T z~N@©O,) Jxi, .. 0

z~N©0,1) z~NOL) .. (X; .

The next step is to compute a Cholesky decompaositicX ™, given byX™ =LL’, where
L denotes the lower triangular matrix. Building fbowing productA® =LTT'L’ ,Ais
Wishart distributed withA™? ~ W(X™, df), and therefore the inverse 8f' is inverse

Wishart distributed witi\ ~ IW(X, df).
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Appendix B.  Deriving regressand and regressor in the multit@rizodel

We start with Equation (4.8), the regression mgutetmultiplied with the inverse of the
Cholesky factorization of the error covariance matFor three factors, this can be

written as

1

@, O 0 Cuu Cuu An An Ayl X
L'[Q OCIIB =| @y @y, O |1 Co, €y Ay Ay Ag ﬂl,t te .
Wy Wy W)\ Cos Ciz Ay Ay Ag B,

ﬂ(-},t

Multiplying the equation and rearranging terms, ge¢ the results in Equation (4.9). The

regressoiX; for timet is given by

ail 0 0 Xtajll 0 0 :Blt a)ll 0 0 IBZ,a)ll 0
aiZ a)22 0 Xta)lZ )ga)ZZ 0 IBI,a)lZ ﬁlw 22 0 ﬁ Qa) 12 IB téd 22 |
0{3 C()23 C()33 th13 )ﬂa)23 ){a)33 Igla) 13 ﬁtla) 23 ﬂtfo 33 ﬁ tg,) 1318 tg,) 23"

This can be rewritten as in Equation (4.9) using iKwonecker product. The vector of

parameter® equivalently is

I

(CO,l CO,Z C0,3 Cl,l Cl,2 Cl,3 All AZl A3l AlZ A22 A32 A13 A23 3"

Note that the regressand changes to its vectovieesion.
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