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AAbbssttrraacctt  

The term structure of credit default swap spreads and interest rates shows similar 
stylized facts, especially in terms of persistency and cross correlations. We 
implement the Nelson-Siegel yield curve model to fit the term structure of credit 
default swap spreads. The factors in our model evolve according to a vector 
autoregressive process. We rewrite the model in state-space form and estimate the 
parameters in a Bayesian framework, using the multimove Gibbs sampling and 
extend it by adding Markov switching to the intercept and error covariance matrix 
of the transition equation. We employ the model to forecast credit default swap 
spreads, finding that the model outperforms the forecasts of the random walk 
approach and autoregressive models directly applied to the spreads, in terms of 
sum of squared prediction errors and the sign forecast performance. 
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1 Introduction 

1.1 Preface 

A probable cause of the financial crisis from 2007 was the underrating of the risks 

involved in credit derivatives by investment banks and rating agencies. A credit 

derivative is used to transfer credit risk from a legal entity, called reference entity, to 

another party, the seller of the product. This way, the buyer of a credit derivative receives 

protection against the exposure to credit risk of a reference entity. With the start of the 

crisis, the default correlation of banks and other companies significantly increased. This 

behavior is also referred to as crash correlation. Due to high correlations, the 

diversification effect for many products decreased, resulting in a loss in value.  

Since credit derivatives allow for a simple transfer of credit risk, the market has grown 

rapidly, together with the field of modeling credit risk. Due to the complexity of most of 

the credit derivatives, there is no common valuation model that rules out arbitrage 

opportunities for the majority of available products.  

 

The most commonly traded products are credit default swaps (CDS) and collateralized 

debt obligations (CDO). In a credit default swap, the buyer agrees to pay a fixed coupon, 

dependent on the contractual credit default swap spread, to the seller of the product. 

Usually the coupon is paid quarterly. In return, the buyer receives a payment from the 

seller when a pre-specified credit event occurs at the reference entity. The buyer and the 

seller of the product define those credit events, the events which trigger the protection. 

Typical credit events are bankruptcy, default on payments (e.g. on obligations like bonds 

or loans) or debt restructuring. In contrast to insurance, credit default swaps can also be 

used for speculating, since the buyer does not necessarily have to be exposed to risk of 

the reference entity.  

The contractual spread defines the price that the buyer pays for receiving the protection. 

In contrast to the contractual spread, the break-even spread implies a value of zero for the 

credit default swap. When the break-even spread is higher than the contractual spread, the 

credit default swap has a positive value for the buyer, since the fixed coupon that the 
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buyer pays is lower than the break even price. Assuming that other influencing factors 

like interest and recovery rate have not changed, increasing spreads go together with 

higher implied default probabilities of the reference entity.  

The payment of the seller in case of a default depends on properties of the contract 

between the two parties, especially the notional and the recovery rate. Settlement and 

other characteristics are also defined in the contract. Since defaults are rare events, 

usually occurring unexpectedly and with unknown size of the losses, the payments of the 

sell-side are difficult to evaluate.  

The probability that a credit event occurs (default probability) and the assumptions about 

the recovery rate play an important role in pricing credit default swaps. Most of the 

existing pricing models also rely on crucial assumptions about correlations between 

default probabilities, interest rates and recovery rates, such as the pricing models in Hull 

and White (2000) or Duffie (1999).  

 

The payments of collateralized debt obligations are derived from a collection of assets 

which pay a fixed coupon, e.g. loans. The exposure to risk of this collection is sold in so 

called tranches, which are classified by their seniority. The lowest or junior tranche has 

the highest exposure to risk. In case one of the assets fails to pay the coupon, the lowest 

or junior tranche is the first to absorb the loss. In return for the higher risk, the tranche 

receives a higher coupon for the money invested in the collateralized debt obligation. In 

contrast, the senior tranches suffer from a much lower risk. Assuming a senior tranche 

absorbs only the top thirty percent of the losses, seventy percent of the assets need to 

default on their payments, before the senior tranche incurs any losses. Hence, for bearing 

a lower risk than the junior tranche, they receive a lower coupon for their investment. 

High default correlations between the assets imply that a default of one payment is likely 

to come together with defaults of other payments. This increases the risk of the product 

and therefore investors require a higher compensation, respectively coupon on their 

investment. 

 

In 1998, Paul Wilmott, a quantitative-finance consultant, already claimed that "the 

correlations between financial quantities are notoriously unstable". This fact was ignored 
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by rating agencies, banks and investors, resulting in highly overrated products. The 

widely used Gaussian copula model by Li (2000), which implies a fixed correlation 

structure, performed well, as long as the market was stable. Nevertheless, after the crash, 

the default correlation structure of the underlying products changed and the model failed. 

Especially in the mortgage market, this had devastating effects. After mortgage prices 

started falling, their correlation increased rapidly, leading to a decrease of collateralized 

debt obligation prices. Due to high exposures to collateralized debt obligations, many 

banks and other companies incurred huge losses and their credit ratings fell, implying 

higher default probabilities for the companies. Thus, the credit default swap spreads for 

those reference entities increased as well, resulting in an increase not only in credit 

default swap prices, but also in their volatility. 

 

The importance of credit default swap spreads is not only characterized by the valuation 

of credit default swaps, but also reaches other financial fields. It plays an important role 

for accounting and disclosure of employee benefits, i.e. all forms of return given by a 

company in exchange for service rendered by employees, especially for defined benefit 

plans. According to the International Financial Reporting Standards (IFRS), the rate used 

to discount estimated cash flows should be determined by reference to market yields on 

high quality corporate bonds (IAS 19.78). Since highly rated corporate bonds are not well 

indexed (there is no index available for high quality corporate bonds), companies make 

use of the swap rate plus the spread of a credit default swap index (CDX) for highly rated 

financial institutions, e.g. the iTraxx Europe. The iTraxx Europe includes 125 credit 

default swap investment grade credits. Normally, the reference entities of the iTraxx 

Europe have very high credit ratings.  

Furthermore, credit spreads are not quoted in the market, i.e. they have to be calculated 

from bond yields less a “risk-free” rate (usually Treasury bond yields are used) while 

credit default swap spreads are quoted. Due to their importance for discounting liabilities, 

the spreads are also important for risk-modeling. 

 

Our focus is on modeling and forecasting credit default swap spread curves, dependent on 

their historical evolution. We use the Nelson and Siegel (1987) model to interpolate the 
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spread curve for each point in time and let the factors evolve according to a vector 

autoregressive process. To account for jumps in level, volatility and correlation of the 

factors, we allow for regime switches in the constant and the error covariance matrix of 

the vector autoregressive model. 

1.2 Literature Overview 

The credit default swap in its modern form was invented by a working group of JP 

Morgan Chase in 1997. Since the market grew rapidly, valuation of credit default swaps 

and modeling of credit default swap spreads gained popularity very fast. Currently two 

main approaches for pricing a credit default swap exist. Duffie (1999) and later Hull and 

White (2000) base their pricing model on an arbitrage-free market, which means there 

should be no risk-free possibility to make a profit without own investment. Both models 

within this approach make assumptions about correlations between recovery rates, 

interest rates and default probabilities, but also on transaction costs and other market 

frictions. 

 

Another approach is based on discounted cash flows. The price of a credit default swap is 

given by the present values of all cash flows, weighted by the survival probability of the 

reference entity, the probability that no credit event occurs till the cash flow is paid. 

Schönbucher (2003) discusses the different pricing models for credit derivatives, amongst 

others credit default swaps and addresses various recovery rate, default probability and 

credit spread models. 

 

As mentioned, credit default swap spreads gained more importance over the last decade. 

Nevertheless, there only exist few models to capture their dynamics, amongst others the 

model of Zhang, Zhou and Zhu (2006), which relates the spreads to equity, 

macroeconomic variables and firm characteristics. There exist a number of models for 

credit related spreads (for instance the Markov model of Jarrow, Lando and Turnbull 

(1997)) which try to capture the dynamics of corporate bond spreads. As discussed by 

Alexopoulou, Andersson and Georgescu (2009), credit spreads of corporate bonds are 

closely related to credit default swap spreads in the long-run, but show higher deviations 
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for spreads in the short-run. We need to take this fact into account with care. A good 

model for credit spreads is not necessarily a good model for credit default swap spreads 

and vice versa. 

 

Credit default swap spread curves and yield curves show similar stylized facts, especially 

concerning the cross correlations and persistency of the rates. Since earlier models for 

fitting the term structure, amongst others Vasicek (1977), Cox, Ingersoll and Ross (1985) 

or Hull and White (1990), are not able to outperform the random walk, we focus on the 

Nelson and Siegel (1987) model, to fit the credit default swap spread curve. The factors 

of the model evolve according to a vector autoregressive process, as implemented in 

Diebold and Li (2006) for government bond yields. They show that the model performs 

significantly better than the random walk hypothesis for certain forecast horizons.  

 

The model can be represented in state-space form and the Kalman filter is applicable to 

receive the latent factors. Based on this approach, a few extensions on the model have 

been developed. Diebold, Rudebusch and Aruoba (2006) add macroeconomic variables to 

the transition equation of the model to explain the dynamics of the factors. Koopman, 

Mallee and van der Wel (2007) allow for a time-varying convexity factor and investigate 

whether the overall volatility in the yields is constant over time, finding empirical 

evidence for an increase in in-sample goodness-of-fit. Based on Kim and Nelson (1999), 

wh0 explain the estimation of state-space models with regime switching using classical 

and Bayesian approaches, Bernadell, Coche and Nyholm (2005) add Markov switching to 

the slope factor of the yield curve. 

1.3 Contribution and Outline 

The goal of this thesis is to develop a model that captures the behavior of credit default 

swap spreads. We can clearly observe a structural break in 2007 concerning level and 

volatility of the credit default swap spreads, but also in the shape of the term structure for 

almost all reference entities. Although we can identify where the structural break occurs, 

our goal is building a model to generate scenarios and forecast spreads.  
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We use the Nelson and Siegel (1987) model to fit the credit default swap curve and let 

the factors evolve according to a vector autoregressive process, as suggested in Diebold 

and Li (2006) for bond yields. To capture the structural break(s) we introduce regime 

switching for all factors of the model, i.e. for their constant and their covariance matrix in 

the transition equation. The focus of this thesis lies in the identification of the state 

vectors and the regime vector, as well as the estimation of the parameters in the model.  

The estimation of many parameters is involved and the dataset for credit default swap 

spreads for different maturities is quite small. The large number of parameters and the 

small dataset make a classical approach for the estimation less attractive. Therefore we 

decide to estimate the model in a Bayesian framework. Using a Gibbs sampling 

approach, we have several advantages over the classical approach. It is not necessary to 

have a large dataset. We can have prior beliefs about the parameters and their 

distributions and update those prior beliefs using the available data. Another advantage 

occurs in the estimation itself. Gibbs sampling estimates the parameters by drawing from 

their distributions, conditional on the other parameters. Since we aim to add more 

flexibility to the model by introducing regime switching, we benefit from an easy 

implementation in this framework. 

 

We build upon the approach of Kim and Nelson (1999). They estimate state-space 

models with regime switching using a classical approach and Gibbs sampling. 

Additionally, we propose to extend this framework in two ways. We allow for 

correlations in the state vector and we do not draw every element of the parameter 

vectors and matrices separately, but from their multivariate distributions, as done in 

Sugita (2008) for vector autoregressive models. We use first order Markov switching, 

leading to modifications in the estimation of the model. To generate draws of the state 

vectors and regime vector, we use multimove Gibbs sampling, originally motivated by 

Carter and Kohn (1994) and first implemented in a Markov switching framework by Kim 

and Nelson (1998). The decision against singlemove Gibbs sampling from Carlin, Polson 

and Stoffer (1992) is motivated by faster convergence of multimove sampling. 
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We test the forecast performance of the model against the same model without regime 

switching, autoregressive models on the spreads itself and the random walk using credit 

default swap spread data of Commerzbank AG. We estimate the performance by 

calculating the sum of squared forecast errors and the relative frequency of correctly 

predicted signs to measure the performance. We conclude that the Gibbs sampling 

estimated state space models perform better than the other models for all maturities. 

 

In the next section, we describe the data we use throughout the thesis to demonstrate the 

model. In Chapter 3, we introduce the Nelson and Siegel (1987) model and let the factors 

evolve according to a vector autoregressive process. Further we present a least square 

approach to estimate the model. In Chapters 3 and 4 we show the results of the estimation 

using the data of credit default swap spreads. In Chapter 4, we rewrite the model in state-

space form and show how the Kalman filter can be used to obtain the factors, conditional 

on the hyperparameters. Using the Kalman filter, we illustrate a Gibbs sampling approach 

to estimate the hyperparameters. In Chapter 5, we add regime switching to the model. We 

point out the changes that have to be applied compared to the estimation steps in Chapter 

4. Chapter 6 contains the estimation results of the Markov switching model, obtained for 

the Commerzbank dataset. In Chapter 7, we test the forecast performance of the 

presented models and compare them to the random walk and other autoregressive models 

on the spreads. In the final chapter, we summarize our results and give recommendations 

for further research. 
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2 Data Description 

We use credit default swap spread data on Commerzbank AG, one of the biggest banks in 

Germany. As many other banks, their spreads suffered from a huge, but compared to 

other not seriously different, structural break in 2007. Not only the level of the spread 

curve grew tremendously, but also its volatility grew and the shape of the curve changed 

several times. This behavior can be observed in many markets, when jumps occur. We 

use data from the 25th February 2004 to the 12th of August 2009 for one, three, five, 

seven and ten year maturities to capture the shape of the spread curve.  

Figure 1 shows the evolvement of the spreads of Commerzbank AG over time. From 

February 2004 to June 2007, the spreads were decreasing, implying that the default 

probability of Commerzbank AG was evaluated very low. The one year spread reached 

its minimum of 2.5 bp on the 8th November 2006 and within 1.5 years reached a value 

above 130 bp. Regarding Figure 1, it is obvious, that the time series are not covariance 

stationary. 

 

Figure 1 – Commerzbank CDS Spread Term Structure over Time 
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The figure shows the movement of the credit default swap spreads of Commerzbank for 
maturities from one to ten years in percent. The data goes from 25th February 2004 to the 12th 
August 2009.  
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We abandon the use of the iTraxx Europe, since the composition of the index changes 

every half a year. It is difficult to filter the bias that occurs due to the changes in the 

companies. Further, the price of the iTraxx changes not only due to the default risk of the 

new companies, but also due to their correlations with the other companies in the index. 

Since the default correlation between the companies is lower than one, we have a 

diversification effect. This leads to smaller jumps in the level and volatility of the index, 

compared to single name credit default swaps. Our goal is to show the impact of the 

structural break to the performance of the models. We chose to use spreads on one 

reference entity to clearly highlight the effect of a credit crisis. 

 

Since we use the Nelson and Siegel (1987) model with time-varying factors to capture the 

evolvement of the spread curve, we shortly emphasize, that credit default swap spreads 

and the yields show similar stylized facts. Regarding Figure 1, we observe that the credit 

default swap curve can take on various shapes, as the yield curve. From 2004 to 2007, the 

curve is slightly upward sloping. Immediately after the jump in July 2007, slope increases 

a lot. Further, the curve is downward sloping in January and February 2009. The auto 

correlations and cross correlations of credit default swap spreads are also very high. The 

same behavior also applies for yields. Table 1 shows the first order auto and cross 

correlations of the Commerzbank AG spreads. 

 

Table 1 – Cross and Auto Correlations of Commerzbank AG CDS Spreads 

  auto correlation cross correlation 
Maturity first order 1 year 3 year 5 year 7 year 10 year 
1 year 0.9707 1.0000 0.9839 0.9596 0.9559 0.9505 
3 year 0.9667 0.9839 1.0000 0.9882 0.9864 0.9829 
5 year 0.9657 0.9596 0.9882 1.0000 0.9989 0.9969 
7 year 0.9644 0.9559 0.9864 0.9989 1.0000 0.9983 
10 year 0.9574 0.9505 0.9829 0.9969 0.9983 1.0000 

The table contains the first order auto correlations and cross correlations of Commerzbank AG 
credit default swap spreads with five different maturities., using data from the 25th February 
2004 to the 12th August 2009. 
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3 The Nelson Siegel Model 

In this chapter we explain the use of a factor model to capture the term structure of credit 

default swap spreads. We focus on a three-factor Nelson-Siegel model. Furthermore, we 

assume that the factors follow a vector autoregressive process. In the end of this chapter 

we present one approach for the estimation of the hyperparameters, using linear least 

square methods. 

3.1 Credit Default Swap Spreads and Vector-Autoregression 

Credit default swap spreads for different maturities have high auto- and cross-

correlations. We construct a vector-autoregressive (VAR) model to forecast the spreads 

and to build scenarios for their development over time. The VAR model is a linear model 

that tempts to capture the evolution of N different time series1 with set of observed values 

yt = (y1
t y

2
t … yN

t)’ over a sample period t = 1, 2, 3 ... T, only dependent on their recent, 

respectively lagged evolution 

 1 1 2 2 ...t t t k t k− − −= + + + + + ty c A y A y A y ε . (2.1) 

The error term εt = (ε1
t ε

2
t … εN

t)’denotes white noise with zero mean, covariance matrix 

Σ and no serial correlation in the single elements of εt. The parameters of the VAR model 

are N × N matrices A l, a N × 1 vector of constants c and the covariance matrix of the error 

terms Σ. The order k of a VAR model determines the number of lagged regressors.  

 

The higher the order of the model, the better we can fit the data, since we add more 

degrees of freedom. Nonetheless we choose a vector-autoregressive model of order one. 

That means the spreads at time t only depend on their most recent values (observed at 

time t – 1). This way we reduce, but not eliminate, the risk of overfitting the model, 

which in many cases results in poor forecast performance.  

 

                                                 

 
1 In special case of only one time series the model reduces to an autoregressive model (AR). 
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The model can be represented in different ways. We start with the general matrix notation 

to point out the different parameters of the model2 

 = + +t t-1 ts c As ε  , (2.2) 

where st denotes a vector of spreads for N different maturities at time t and εt denotes 

white noise with covariance matrix Σ. Under assumption of a multivariate normal 

distribution for the error terms, εt ~ MN(0N, Σ), the maximum likelihood estimation 

reduces to ordinary least squares (OLS) estimation. The unbiased estimate of Σ is the 

sample covariance matrix of the residuals. 

 Using a small number of spreads for different maturities, e.g. five (ten), we have to 

estimate 45 (165) parameters in total3. For a small number of maturities and a sufficiently 

large dataset, this might still be reasonable, but for many maturities or a small dataset, our 

model has too many degrees of freedom which restricts the predictive power. The 

following section describes how factor models can be used to limit the number of 

parameters. Our main focus is on the Nelson Siegel three-factor model. 

3.2 The Nelson Siegel Model 

We can relate the dynamics of the spread curve to a couple of factors, to reduce the 

number of parameters in our model. This allows including more dependent variables to 

the model with limited increase of the number of parameters.  

 

We focus on the Nelson-Siegel model4. In Diebold and Li (2006), the model was applied 

to the yield curve and tested for its forecast performance, achieving sustained success and 

                                                 

 
2 The concise matrix notation simplifies the equation. We use it in latter subsequent sections, since it allows 

for a more efficient way of presenting the formulas and results. We use the general notation here to 

emphasize the difference between the constant c and the matrix A. 
3 That is 5 (10) parameters for c, 25 (100) parameters for A and 15 (55) parameters for Σ. The formula to 

calculate the number of parameters is given by N + N2 + N(N + 1) / 2 = (3N / 2) (1 + N). 
4 There are several other possible models to consider, amongst others the Vasicek model, the Cox-

Ingersoll-Ross model and the Hull-White model. 
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outperforming the random walk approach. In practice it is widely used to fit the yield 

curve e.g. by the European and other Central Banks (some of them use the Svensson 

model, an extended version). As mentioned above, the spread and the yield curve show 

various similar stylized facts, especially concerning persistency and cross-correlations 

which puts forward good reasons to test the model on spreads. 

 

The Nelson Siegel model is a factor model, which, when applied to yields or to spreads, 

approximates the term structure. In contrast to e.g. a principal component analysis, the 

Nelson Siegel model is continuous in the maturities, i.e. for each maturity it delivers the 

corresponding yield or spread hence additional interpolation is not necessary. In case of 

credit default swap spreads, this result is adjuvant, since quotes are usually only available 

for certain maturities, mostly for maturities of 3, 5, 7 and 10 years. For discounting assets 

and liabilities and for traders of credit default swap spread related products, maturities in 

between are mandatory. 

There are several representations of the Nelson Siegel model, depending on the 

characteristics of the factors. The most common form is 

 1 2 3

1 1
( ) ( )t t t t t

e e
s e v

λτ λτ
λττ β β β τ

λτ λτ

− −
−   − −= + + − +   

   
. (2.3) 

The spread s at time t with maturity τ only depends on the level β1t, the slope β2t, the 

curvature β3t and the convexity λ. The estimation error vt(t) is normally distributed with 

mean zero and standard deviation σt. In the scope of this thesis we assume λ to be known, 

which simplifies the estimation5, because then the model is linear in β1t, β2t, β3t.  

The convexity λ is usually fixed to maximize the curvature loading at a chosen maturity 

(for yields this is usually a maturity between two and three years). We follow this 

practice and maximize the curvature loading at the three year maturity, resulting in a 

value of 0.598 for λ. Diebold and Li (2006) maximize the curvature loading at the thirty 

month maturity. Also note that they state τ in month, while we express it in years. 

                                                 

 
5 This assumption is quite common, although the identification of the model with a time-varying λ is 

possible. We refer to Koopman, Mallee and van der Wel (2007) for further details. 
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We again consider a VAR model of order one for the evolution of the factors, given by 

 = + +t t-1 tβ c Aβ u , (2.4) 

where βt denotes the vector of the Nelson Siegel factors (β1t, β2t, β3t)’. The vector ut is 

multivariate normally distributed with ut ~ MN(0, Q). This assumption is not necessary, 

but allows for an ordinary least square estimation of the VAR model. Note that this 

assumption implies a positive probability for the factors to take negative values. Since 

Equation (2.3), which links the factors to the spreads, is linear in the factors, it is also 

possible for the spreads to take negative values. For more information on the Nelson-

Siegel model and its forecasting performance on yield curves, we refer to the article of 

Diebold and Li (2006). 

 

The identification of the hyperparameters c, A, Q and R in the model is not straight 

forward. If the factors βt are observable variables, we could estimate the parameters in 

Equation (2.4) using multivariate least squares. However, the factors are unobserved. 

They themselves can be estimated based on available spread observations using Equation 

(2.3), but then contain an estimation error v(t). 

 

The following sections provide two solutions to this problem. In the first one, we estimate 

the Nelson-Siegel factors from Equation (2.3) for each point in time. We receive the 

estimated factors bt (estimate of βt) for all time points t up to T. Treating these factors as 

if they were observed, we can estimate the hyperparameters of Equation (2.4). The 

estimation error v(t), therefore is ignored. 

 

In this thesis, we pay more attention to the second solution, which does not require the 

assumption of observed factors. The solution provides us with a consistent estimation of 

the hyperparameters and the factors of the model. We make use of the specific 

characteristics of the model. We rewrite the model given by Equations (2.3) and (2.4) in 

state-space form. Due to the assumptions we made above, our model is linear in the 

factors. This allows us to use the basic Kalman filter.  
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The parameters can be estimated with several methods such as maximizing the 

likelihood. We apply Gibbs sampling, a Bayesian approach, to estimate the model. We 

aim to add more flexibility into the model to achieve a better fit to market data. We do 

this by adding regime switches to some of the hyperparameters in the model. The model 

becomes more complex and is non-linear in the Nelson-Siegel factors. Nevertheless, the 

Gibbs algorithm allows estimating the parameters and factors conditional on the regime. 

3.3 Least Square Estimation 

In this section we discuss the estimation of the model using ordinary and multivariate 

least squares. As mentioned above, the Nelson-Siegel model is linear in the parameters 

β1t, β2t, β3t. Equation (2.3) can be identified for each point in time, given a set of spreads 

for different maturities τn for n = 1, 2, 3 … N. It provides us with an estimate of βt for 

each t, denoted as bt. Combining the loadings in a matrix for all maturities of all factors, 

where the loading from the first factor is just given by 1, provides us with matrix H 

   

1 1

1

2 2

2

1 1

2 2

1 1
1

1 1
1

... ... ...

1 1
1

N N

N

N N

e e
e

e e
e

e e
e

τ λ τ λ
τ λ

τ λ τ λ
τ λ

τ λ τ λ
τ λ

τ λ τ λ

τ λ τ λ

τ λ τ λ

− −
−

− −
−

− −
−

    − − −    
    

    − − −   
 =    
 
 
    − − −    

    

H .  (2.5) 

Note that all elements in the matrix are known upfront, since the convexity λ is fixed. 

We estimate βt by rewriting the model in concise matrix notation6 and applying linear 

least squares for each point in time.  

                                                 

 
6 Concise means that the constant is included into the vector of the other parameters, which requires that we 

add a vector of ones to the matrix of loadings, given by H. For more information on general and concise 

matrix notation in VAR models, see Lütkepohl (2005). 

 



3 The Nelson Siegel Model 

15 

The more spreads for different maturities we include into the regression, the better we 

can fit the spread curve for each t. The spread model and its unbiased estimate bt are 

given by 

 = +t t ts Hβ v ,  (2.6) 

 ( ) 1−′ ′=t tb H H H s , (2.7) 

where vt is a vector of error terms (vt(τ1), vt(τ2) … vt(τN))’. A common assumption is that 

vt follows a multivariate normal distribution. The error covariance matrix is commonly 

assumed to be diagonal (respectively uncorrelated). That reduces the number parameters 

to be estimated. Nevertheless, it is not necessary to apply this assumption here. We make 

use of it in subsequent chapters, when the parameters are estimated with Gibbs sampling. 

 

As discussed above, the approximation with bt and hence contains an estimation error. If 

we do not take the error into account, or in other words, if we treat the factors as observed 

values (i.e. βt = bt), we can use them to estimate the parameters in the vector-

autoregressive model, given by Equation (2.4).  

 

As applied to the previous equation, we rewrite the VAR model (2.4) in concise matrix 

notation, including the information over all t. We can denote the collection of all factors 

βt as β = (β1 β2 … βT)’. We take the same step for the lagged set of factors βc
L, but 

connect it with a vector of ones, given by 

    

1,1 2,1 2,1

1,2 2,2 3,2

1, 2, 3,

1

1

... ... ... ...

1 T T T

β β β
β β β

β β β

 
 
 =
 
  
 

L
cβ .   (2.8)  

Respectively, the matrix Ac is given by 

    
1 1,1 1,2 1,3

2 2,1 2,2 2,3

3 3,1 3,2 3,3

c A A A

c A A A

c A A A

 
 =  
 
 

cA .   (2.9)  
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And the model can be rewritten as 

 'c c
L

β = β A  + u , (2.10) 

The error term u is a T × N matrix of the error terms u = (u1 u2 … uT)’. This estimator is 

equal to the maximum likelihood estimator7, applied to each equation separately, 

conditional on the others. 

 

We estimate matrix Ac using multivariate least squares, as follows 

 1
1 1 1

ˆ ( )−
− − −

′ ′=c c c c cA β β β β . (2.11) 

3.4 Results from Least Square Estimation 

The results for A and c for the Commerzbank dataset of credit default swap spreads (the 

one, three, five, seven and the ten year spreads), starting at the 21st of March 2005 and 

ending at the 11th of August 2009, are given by  

 

 

0.925 0.040 0.040
ˆ 0.037 0.903 0.020

0.132 0.063 0.825

 
 = − 
 − 

A , 

0.067

ˆ 0.058

0.134

 
 = − 
 − 

c , 

0.011 0.005 0.002
ˆ 0.005 0.008 0.001

0.002 0.001 0.017

− − 
 = − − 
 − − 

Q . 

 

Figure 2 shows the estimated bt from the first least square estimation. We remark that 

many statistic tests, e.g. T-tests for significance of the parameters in the VAR model are 

not reliable in our case, because we ignored the estimation error in bt.  

 

Note that a negative value for the slope factor does not imply a negative slope for the 

spread curve. Given time t, the factor is the same for each maturity. Crucial for the slope 

of the spread curve is the loading of the slope factor. To see the relation of the slope 

factor to the spreads, we multiply it with the loading of the slope factor. Figure 3 shows 

                                                 

 
7 See also Hamilton (1994). 
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the loading of slope and curvature for different maturities with λ equal to 0.59. It further 

provides fitted spread curves for different dates. Due to the low available cross sectional 

dimension, it fits the observed spreads quite well. We observe that the slope loading is 

monotonically decreasing. Given a negative slope, that implies an upward sloping spread 

curve. Only in the beginning of year 2009, we observe a downward sloping spread curve. 

We also see that the curvature loading reaches its maximum for a maturity of three years, 

which follows from the predefinition of λ. 

 

Figure 2 – The “least square” Nelson-Siegel Factors 
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The figure shows the results form estimating the Nelson-Siegel factors using ordinary least 
squares. We used weekly data of the credit default swap spread for maturities one, three, five, 
seven and ten years, starting at the 25th February 2004 to the 12th of August 2009. Note that the 
scale of the figure is in percentage points, not in basis points. 

Although the least square results are simple to obtain, their forecasting performance 

differs strongly from the results attained with the other methods that are presented further 

in this thesis, as we will see later. It does not outperform the random walk or 

autoregressive models applied directly to the spreads. See Chapter 7 for more detailed 

information. 
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We remark that the described procedure is not as accurate as the procedure described in 

the subsequent chapters, since more assumptions are needed. The assumption of observed 

factors is not necessary since methods already exist to estimate models with unobserved 

factors. Especially for models that are linear in the factors we can obtain results without 

substantial complexity. In the next chapter we present the model, given by Equations 

(2.3) and (2.4) in state-space form and implement the Kalman filter, our key instrument 

to obtain the unobserved factors and estimate the model.  

 

Figure 3 – Nelson-Siegel Loadings and Spread Curves 

 
The figure shows the Nelson-Siegel loadings for slope (top-left) and curvature (top-right). The 
loading for the level factor is constantly one. The horizontal axes show the time to maturity. 
Below, there are four fitted spread curves at different dates. The horizontal axes show the time to 
maturity and the vertical axes show the spread in percent. The grey points represent the data, 
from which the curve was build. 
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4 State-Space Models with Gibbs Sampling 

In this chapter we estimate the model from Chapter 3 using the Kalman filter and Gibbs 

sampling. In the following section, we rewrite the model in state-space form. We present 

the Kalman filter, which we use to generate the factors in Section 4.2. We give a short 

introduction to Bayesian approaches in Section 4.3, focusing on a Gibbs sampling 

algorithm. The main part of the section deals with the estimation of the state vectors and 

the hyperparameters in the model. In the last section we identify the model using the 

dataset of Commerzbank AG. In the following chapter we add Markov Switches to the 

model. The combination of Bayesian statistics with autoregressive time series and 

Markov switches in mean and variance was considered by Albert and Chib (1993). 

4.1 State-Space Representation 

In economics, state-space models typically deal with dynamic time series that involve 

unobserved variables, as in our case βt. The basic tool to estimate this kind of models is 

the Kalman Filter. A state-space model can be represented in the following way 

 t t t= + +s d Hβ v  , (3.1) 

 1t t t−β = c + Aβ + u  with Mc = (I - A)µ , (3.2) 

where Equation (3.1) is called the measurement equation with βt = (β1
t β

2
t … βF

t)’ being 

the state vector of the system with F different factors.  In the remaining subsections, we 

assume that the error terms vt follow a multivariate normal distribution, which is given by 

vt ~ MN(0N, R) with diagonal covariance matrix R.  

The transition equation is given by Equation (3.2). We assume that ut follows a 

multivariate normal distribution MN(0N, Q), but we do not restrict Q to be diagonal. The 

vector µ denotes the unconditional mean of βt and the matrix IM denotes an identity 

matrix of size M. 

 

To generate the state vector of the model, it is necessary to assume that E(β0) = β0 and 

Var(β0) = P0, with Pt the covariance matrix of βt, i.e. the initial state and covariance 
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matrix of the state are equal to their expectations. We present the optimal initialization 

when we introduce the Kalman filter. 

We further assume that the error terms ut and vt are uncorrelated. Furthermore there is no 

serial correlation in the single elements of the error term vectors which means that the 

serial covariance matrices Cov(ut, ut-i) and Cov(vt, vt-i) for all i > 0 are diagonal (zero 

elements on the off-diagonal). The latter two restrictions can be relaxed, but it would lead 

to modifications in the Kalman filter, which is beyond the scope of this thesis.  

 

We already derived the state-space equations of the Nelson Siegel model and the vector 

autoregressive model for the factors in the previous section – they are given by Equations 

(2.4) and (2.6). Here is the complete state-space model: 

 

 Measurement equation:  = +t t ts Hβ v , with ~ ( , )t nMNv 0 R  

 Transition equation:  = + +t t-1 tβ c Aβ u , with 3~ ( , )t MNu 0 Q  

 

Given a state-space representation together with the assumptions made above, the state 

vector can be generated by applying the Kalman filter with appropriate initial values for 

the factors β0 and its covariance matrix P0, given the hyperparameters c, A, Q and R. The 

matrix H is known upfront, assuming that we fix λ. Note that the system parameters are 

time invariant here, i.e. they have the same values for each point in time. We relax this 

assumption as soon as regime switches are embedded into the model.  

4.2 The Kalman Filter 

The state vector of a state-space model can be obtained using the Kalman filter, 

conditional on the hyperparameters. The Kalman filter is used to calculate the state of 

linear dynamic systems, starting at t = 1 and working recursively till the last state vector 

at time T is reached.  

 

Nowadays there exist several versions of the Kalman filter. The “plain” Kalman filter, as 

presented in this section, can only be used if the measurement equation is linear in the 
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state vector8. There exist several extended versions of the filter, which allow for non-

linearities, i.e. the extended Kalman filter, the unscented Kalman filter and for continuous 

time the Kalman-Bucy filter.  For a full derivation of the Kalman filter and the correct 

initialization, we refer to Hamilton (1994) or Harvey (1993).  

 

To provide a better overview of the functionality of the Kalman filter, we first describe 

the filter in words and then provide a flowchart with the relevant equations. The steps of 

the linear filter can be divided into a prediction and an updating part.  

 

In the prediction step, we use the information from the previous time t – 1 to make 

inference about t using the transition equation. Based on the information up to t – 1, we 

predict the state vector for time t, assuming that we do not have the information for the 

next point in time, t, yet. 

 

In a next step, we assume that the information of the current time step t arrives (in our 

case, the new information are the spreads for different times to maturity). We use the new 

information to update the predicated state vector or, more precise, we calculate the 

residual between the forecasts and the new information and correct for it using the 

residuals itself and their error covariance matrix. 

 

The likelihood or log-likelihood of the parameters can be calculated within the recursion. 

This is necessary when the estimation of the hyperparameters is done via maximizing the 

likelihood.  

 

Given a set of values for the hyperparameters, the state vector for each t, starting with 

time t = 1, can be calculated recursively now. The following equations show, in which 

order the steps have to be taken. The sign X⊗Y denotes the Kronecker product of the 

matrix X with matrix Y and vec(X) denotes the vectorized version of matrix X, meaning 

                                                 

 
8 The assumption for a linear model in the factors arises from the derivation of the Kalman filter. 
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we write each column of the matrix X below each other. The function l(θ) denotes the 

log-likelihood function, dependent on the actual set of parameters. By |X| we denote the 

determinant of matrix X by X-1 the inverse of X, as is customary. We present the filter in 

notation of the spread model, given in Section 4.1:  

 

Initialization: 0
-1

β = µ = (I - A) c   

 1
0( ) ( )vec vec−⊗P = (I - A A) Q  

 

Prediction: t|t-1 t-1|t-1β = c + Aβ  (3.3) 

 ′t|t-1 t-1|t-1P = AP A + Q  (3.4) 

 

Updating: t|t-1 t t|t-1 t t|t-1η = s -s = s - Hβ   

 ′t|t-1 t|t-1F = HP H + R   

 ′ -1
t|t t|t-1 t|t-1 t|t-1 t|t-1β = β + P H F η  (3.5) 

 ′ -1
t|t t|t-1 t|t-1 t|t-1 t|t-1P = P - P H F HP  (3.6) 

 

Likelihood: 
1 1

( ) ( ) ln((2 ) )
2 2

nl l π ′ -1
t|t-1 t|t-1 t|t-1 t|t-1θ = θ - | F | - η F η  (3.7) 

 

We start at t = 1 and repeat the steps until we reach T, setting t = t + 1 after each 

recursion. We attain a full set of state vectors and the log-likelihood of the parameters, 

given the set of spreads and values for the hyperparameters.  

 

The optimal estimates can be obtained by different methods. One approach is the 

maximization of the likelihood function using an appropriate optimizer. Durbin and 

Koopman (2001) suggest several methods to solve such optimization problems, amongst 

others the expectation maximization algorithm. Diebold, Rudebusch and Aruoba (2006) 
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use the Marquart and Berndt–Hall–Hall–Hausman algorithms. We focus on a Bayesian 

approach to estimate the model. The next chapter describes how to estimate a state-space 

model using Gibbs sampling.  

4.3 The Gibbs Sampling Approach 

4.3.1 Introduction to Bayesian Approaches 

The classical and the Bayesian approach are different in many ways. Given a dataset, the 

focus of the classical approach is on estimates of parameters that have the highest 

probability to be correct. In our case, we usually have only one dataset to analyze9. We 

make use of maximum likelihood methods to estimate the parameters. In Bayesian 

inference the parameters are stochastic variables. They are estimated using Bayes 

theorem.  

The concept of probability is a different one in the two approaches. In the classical 

framework, probability is defined as relative frequency of occurrences, when we repeat a 

process infinitely often, whereas in Bayesian inference, probability can be seen as the 

confidence that certain events occur.  

In contrast to the classical approach, the Bayesian estimation does not attempt to find the 

best fit estimates to the dataset. Instead we take the prior knowledge we have about the 

parameters and update this information using the data we observe. This especially has 

advantages when we suffer from small datasets, where we are afraid that observed data 

might not be representative enough. 

 

Suppose, for example, we have two chess players, playing against each other four times 

in a row. Let us assume our prior belief is that they play equally well. Using a Bernoulli 

distribution with q the probability that player one wins, we can estimate q. If player one 

wins four times, the classical approach produces an estimate of q equal to one, whereas 

the Bayesian approach produces a probability dependent on the prior and therefore lower 
                                                 

 
9 In a laboratory, you can repeat tests, always getting new datasets. You can estimate their parameters for 

each sample and finally get a distribution for the parameters. In economics that is not the case. 
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than one. For small datasets it might therefore be useful to implement Bayesian 

estimation instead of using a classical approach. 

 

Bayesian statistics gained more and more popularity over the recent decades. There are 

two favored arguments, why classical approaches are preferred over Bayesian 

approaches. The first argument affects the choice of a prior (subjective) in the Bayesian 

approach, although one can choose a non-informative prior, which means that the prior 

sets no preference for any value of the parameters. 

The second argument is based on the derivations of (complex) posterior densities (the 

concept will be explained throughout this chapter). Since they can also be computed 

numerically and the development of computers and algorithms for numerical 

computations improved tremendously, this problem is not significant anymore (for most 

of the cases). This as well explains the gaining popularity of Bayesian statistics 

nowadays. 

 

We assume that the parameters in our model are stochastic variables with probability 

distribution p(θ), where θ denotes the set of parameters. Let y denote the observable data. 

In the remaining sections, y is the credit default swap spread for different maturities. 

 

Let us first recall the Bayes’ theorem: 

 ( , ) ( | ) ( ) ( | ) ( )p p p p p= =θ y y θ θ θ y y   

and therefore 

 
( | ) ( )

( | )
( )

p p
p

p
= y θ θ

θ y
y

 or ( | ) ( | ) ( )p p p∝θ y y θ θ . (3.8) 

Since p(y) has no operational significance (it does not depend on θ), it will not change the 

posterior density for different sets of parameters. That is the reason why we can write the 

proportional relationship in Equation (3.8). Note also that p(y | θ) is nothing else than the 

likelihood function L(θ | y) of the parameters θ given the observations y. Defining a prior 

belief via the distribution of the parameters p(θ), we are able to calculate a posterior 
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distribution, given the set of observations. Note that different priors p(θ) lead to different 

posterior distributions.  

4.3.2 The Benefit of Gibbs Sampling 

Implementing the approach described above for models with more than one unknown 

parameter, especially when they have different priors, can lead to problems. We need to 

derive the marginal and joint prior distribution first to get the joint posterior distribution 

of the parameters.  

After calculating the joint posterior density of the unknowns using Equation (3.8), we 

still need the marginal posterior distributions of the parameters to make inference on 

them. The straightforward solution involves integration of the joint distribution of the 

parameters, where in many cases analytical solutions do not exist. Gibbs Sampling is a 

Bayesian approach used to approximate joint and marginal distributions from their 

conditional distributions. That way we avoid the mentioned integration problem. In a first 

step we choose priors for the parameters. We follow the ideas of Kim and Nelson (1999) 

and Sugita (2008) and choose natural conjugate priors for each of the parameters, 

conditional on all other parameters. By natural conjugate prior we understand a prior that, 

multiplied with the likelihood function, has the same posterior distribution as the prior 

(conditional on the other parameters). The conditional distributions are used to obtain the 

marginal distributions. The Gibbs sampling algorithm can be divided in five steps: 

1. Initialize the set of parameters θ, with M the number of parameters. 

2. Draw the first parameter θ1 from its posterior distribution, conditional on the other 

parameters θ2, θ3 …θM and save the value. 

3. Generate a draw of the second parameter θ2 conditional on the draw of θ1 and the 

other parameters θ3, θ4 …θM. 

4. Do this for all parameters, save the values and repeat the steps 1 to 3 J times. 

5. Discard the first draws, since they might depend strongly on the initialization of 

the first step. Take the average over the remaining draws to get an estimate. 

To illustrate how this approach captures the marginal distributions, we consider a simple 

example. Figure 4 shows the results from Gibbs sampling on two normally distributed 
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random variables with high correlation. The generated marginal and posterior 

distributions converge at an exponential rate to the desired distributions. For a proof, see 

Geman and Geman (1984). Given the conditional distributions, we can approximate the 

marginal distributions of the random variables without integrating the joint distribution 

over one of the parameters. 

 

Figure 4 – A Gibbs Sampling Illustration 

 
Result from 250 Gibbs sampling rounds on two normally distributed random variables X1 and 
X2 with correlation 0.9. The dark line highlights the first ten draws, initializing X1 at 0. 

In the state-space model, we analyze throughout this thesis, we deal with much more 

complex situations. We consider a multivariate normal distributions and a multivariate 

representation of the gamma distribution, a Wishart distribution. In the following sections 

we describe which prior distributions we need to choose and how we approximate the 

marginal distributions. The mean of the generated values represents the estimators for the 

parameters.  

Another issue will be the generation of the unobserved state vector using Gibbs sampling, 

since we have to generate a 3 × T matrix there. There are several ways to generate the 

state vector. We use multimove Gibbs sampling, as suggested by Carter and Kohn 

(1994). The latter will be described Section 4.3.6.  
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4.3.3 Prior Distribution for the Transition Matrix A 

The assumption of independence between the error terms in the measurement and the 

transition equations and the conditional drawing of the parameters allow us to treat them 

separately. We start by estimating the transition equation. To derive the posterior 

distribution of A, we first need to rewrite the transition equation in concise matrix 

notation as discussed in Section 3.3. We express Equation (3.2) for all time points as10 

 ′L
c c cβ = β A  + u . (3.9) 

The likelihood function of Ac, conditional on β and Q in Equation (3.9) is proportional to 

 /2 1
( | ) | | exp tr{ ( ) ( )}

2
Tl −  ′ ′′∝ − − −  

-1 L L
c c c c c c cA ,Q β Q Q β β A β β A , (3.10) 

A non informative prior for Ac is given by the multivariate normal distribution, where the 

conditional posterior density of Ac can be written as 

 1 1( ) | , ~ ( ( ), )vec MN vecc cA Q β A Φ  (3.11) 

and where Ф1 denotes the covariance matrix of vec(Ac). We can derive Ac1 and Ф1 using 

the results from section 4.3.1. We insert the multivariate normal prior and the likelihood, 

given by Equation (3.10), into Equation (3.8) and rearrange terms. Ac1 and Ф1 are then 

given by 

 1 [ ]′= ⊗-1 -1 L L -1
0 c cΦ Φ + Q (β β ) , (3.12) 

 and 1 1 0( ) [ ( ) ]vec vec vec ′= + ⊗-1 -1 L
c 0 c c cA Φ Φ A (Q I) ( β β ) . (3.13) 

The parameters Ac0 and Ф0 have to be set before we draw the parameters Ac and Ф1. 

They are prior beliefs about the parameters and their covariance matrix.11 

For a derivation of the results in Equations (3.12) and (3.13), see Sugita (2008).  

                                                 

 
10 Note that the result of the following steps will deliver Ac’  and not A. Before running the Kalman Filter 

again, we need to transpose the matrix and split it into A and c again. 
11 The initial matrix Ф0 should have high values on the diagonal, if we are unsure about our guess for Ac0. 

This ensures that we are able to capture the joint distribution of the elements in Ac. 
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Conditional on Ac and β, our next step is the derivation of Q. Here we face another 

problem, since the elements on the diagonal of Q are restricted to values larger than zero. 

4.3.4 Prior Distribution for the Covariance Matrix Q 

The error covariance matrix Q in our model is a 3 × 3 matrix. Since it is a covariance 

matrix, we should choose the natural conjugate prior (and therefore posterior distribution) 

in such a way, that the elements on the diagonal are larger or equal to zero. To achieve 

this goal, we pick an inverse Wishart distribution as prior for the conditional distribution 

of Q. The inverse Wishart distribution is the multivariate case of an inverse gamma 

distribution. It produces a symmetric matrix with positive values on the diagonal. Its 

density function can be written as 

 
/2 ( 1)/2 1

/2

| | | | exp( ( ) / 2)
( | , )

2 ( / 2)

m m p

mp
P

tr
p m

m

− + + −−=
Γ

Ψ Q ΨQ
Q Ψ . (3.14) 

The p × p scale matrix Ψ has the same size as Q, respectively p = 3. The parameter m 

denotes the degrees of freedom and Γ denotes the multivariate gamma function. Since the 

density in Equation (3.14) is a natural conjugate prior, the posterior density of Q, 

conditional on all other parameters, follows the inverse Wishart distribution12 

 1 1| ~ ( , )IW mcQ A ,β Ψ . (3.15) 

Deriving the conditional posterior distribution of Q, we get the following changes in the 

scale matrix and the degrees of freedom13 

 ' 'L L
1 c c c c c c 0Ψ = (β -β A )'(β -β A ) +Ψ , (3.16) 

 and 1 0m m T= + . (3.17) 

We choose a factor model in order to reduce the number of parameters to be estimated. 

This worked perfectly for c, A and Q. We have 18 unknown parameters, independent of 

                                                 

 
12 Most programming languages do not offer the possibility to draw from an inverse Wishart distribution. 

Appendix A shows how we solve this issue using standard normal and chi-square random numbers. 
13 For a detailed derivation of (3.16) and (3.17) see again Sugita (2008). 
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the number of maturities N we include in our analysis. This number changes with the 

error covariance matrix R, dependent on the number of maturities N. 

4.3.5 Prior Distribution for the Covariance Matrix R 

The previous sections described the way to generate draws of the parameters in the 

transition equation. Now we focus on the measurement equation. Since the matrix of 

loadings, H, given λ, is already known and our measurement equation does not contain a 

constant, we only need to estimate the covariance matrix of the errors, R. Since the 

number of elements in R depends on the size of st, the number of parameters increases 

significantly with the number of spreads we include for different maturities. For five 

different maturities in st, we have a symmetric 5 × 5 matrix with 15 different parameters. 

In the style of Diebold, Rudebusch and Aruoba (2006), we assume that R is diagonal. 

This can reduce the number of parameters significantly14. The matrix R is given by 

 

1

2

0 ... 0

0 ... 0

... ... ... ...

0 0 ... N

σ
σ

σ

 
 
 =
 
 
 

R . (3.18) 

The elements of R, as before the elements of the diagonal of Q, should be strictly 

positive, since they denote variances of the error terms vt. The natural conjugate prior for 

each variance σn, conditional on β that assures positive elements for the variances is an 

inverse gamma distribution with density function 

 1( | , ) (1/ ) exp( / )
( )i n np

κ
κωσ κ ω σ ω σ

κ
+= −

Γ
. (3.19) 

Note that there are different representations of the gamma distribution and the inverse 

gamma distribution. It can be parameterized in terms of a scale parameter or an inverse 

                                                 

 
14 In case we would use ten different maturities, the number of additional parameters reduces from 55 to 10. 

Nevertheless, if we do not make this assumption, the generation of draws of R will not be different from 

the steps taken in the previous section for Q. The natural conjugate prior would again be an inverse Wishart 

distribution. 
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scale parameter, also referred to as rate parameter. The shape parameter does not change 

for the two representations. We make use of the scale parameter notation. 

The conditional posterior density and the parameters of the posterior density are given by 

 1 1| ~ ( , )
2 2n IG
κ ωσ β , (3.20) 

with the two parameters 

 and 1 0n n n nω ω′ ′ ′= (S -βH ) (S -βH ) + , (3.21) 

 1 0 Tκ κ +=  (3.22) 

where κ denotes the shape of the gamma distribution, ω denotes the scale of the gamma 

distribution and S is the collection of spreads for all points in time (s0 s1… sT)’. The index 

n in Sn and Hn is a column index, implying that we only take the n-th column of the 

matrices. For further information about the derivation of the univariate results, see Kim 

and Nelson (1999, § 7.4). Note also that this result is just a special case of the inverse 

Wishart distribution, where the dimension of Q equals a 1 × 1 matrix. 

4.3.6 Generating the State Matrix β 

We know how to generate draws of the hyperparameters of our model. But the 

distributions of the hyperparameters are also conditional on β, the unobserved state vector 

of the model. We consider the state vectors, as the hyperparameters before, to be random 

variables whose natural conjugate prior given by a multivariate normal distribution with 

covariance matrix P.  

 

This state-space model is a linear Gaussian model given the observations S. Multimove 

Gibbs sampling, developed by Carter and Kohn (1994), uses the following result, which 

can be derived from the Markov property of βt 

 
1

1
1

( | ) ( | ) ( | , )
T

t t
t

p p p
−

+
=

= ∏Tβ S β S β β S . (3.23) 

That means we can create the whole state vector recursively by first generating βT 

conditional on S. Given βt+1 and S, we know that the density of βt is again normally 
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distributed. Going back to the notation we used for the state vector in the Kalman filter 

for predicted variables βt|t-1 and βt|t, we can write the densities for βT | S and βt | βt+1, S as 

 | || ~ ( , )T T T T TNβ S β P  (3.24) 

 and 
1 11| , ~ ( , )

t tt t t t t tN
+ ++ | ,β | ,ββ β S β P . (3.25) 

We need to derive the mean and the variance of distribution (3.25) in the next step. 

Receiving a draw for βT is straight forward. We just need to run the Kalman filter once to 

provide βT|T and PT|T. We also need to save the path of βt|t and Pt|t for all t, since these 

values are necessary to draw βt for t < T.  

We first draw βT from (3.24). The next step is drawing βT-1, conditional on the draw of βT 

and S. Hence, we need to derive βT-1|T-1, βT and PT-1|T-1, βT, the mean and covariance matrix 

of the distribution. They can be derived by rewriting the updating part in the Kalman 

filter. The final expressions are given by 

 1
1 1 TT T T T T T T T T T T

−
− − ′ ′| , β | | | |β = β + P A (AP A + Q) (β -µ - Aβ )  (3.26) 

 and 1
1 1 TT T T T T T T T T T

−
− − ′ ′| , β | | | |P = P - P A (AP A + Q) P . (3.27) 

For more information, see Kim and Nelson (1999, § 8.1). We now have the instruments 

to draw βT-1, using (3.25) with (3.26) and (3.27). Setting T = T -1, we can proceed. We 

repeat the steps until we obtain the whole set of factors β. Note that for generating β, we 

need to know the hyperparameters. Their initialization might be important, since the 

Kalman filter does not run for all values. For instance the initialization of the filter does 

no work if I  – A is not invertible. 

 

Finally we have all building blocks to run the Gibbs sampling algorithm. Note that the 

order in which we start the algorithm does not affect the results, at least not after a 

sufficient number of runs. Nevertheless it makes sense to initialize the hyperparameters 

first and start sampling the state vector, because initializing the state vector for each point 

in time needs more effort (since it contains much more values). In most cases, it is very 

difficult to come up with a good guess of the unobserved variables. The next part 

describes in short, how we build the algorithm. 
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4.3.7 Generating the Parameters, Conditional on β 

We start generating the collection of state vectors β as described in the previous section. 

Afterwards we can carry on generating the hyperparameters, step by step. We start with 

the transition matrix A. We need to set A0 and the covariance matrix Ф0 of vec(A). As 

mentioned before, we should choose high values for the elements of the covariance 

matrix, the more we are unsure about our guess of A0, especially for the diagonal. We 

should also take care that we chose the matrix in such a way, that it is invertible, since 

this is necessary to calculate Ф1.  

Using a VAR model, we imply that our process is covariance stationary, which means that 

the first and the second moments E(βt) and Cov(βt) of the factors are independent of the 

date t. This restriction may not be fulfilled for all draws of the parameters. This may lead 

to problems in other building blocks of the algorithm, especially in the generation of the 

state vector βt, e.g. we receive covariance matrices which are not Hermitian or have 

negative eigenvalues (problems may arise drawing from a multivariate normal 

distribution, since we need a square root of the covariance matrix). Discarding these 

draws, we also prevent a bias in the result when averaging over all draws15. 

 

Concerning the choice of A0, c0, Ф0, Ψ0, m0, κ0 and ω0, there exist several approaches.16 

The choice can significantly influence the estimation of the models. Litterman (1986) 

suggests picking the priors such that the time series is impossible to forecast. He chose 

the prior covariance matrix to diagonal, where in addition Zellner (1971) suggests a 

solution, where this assumption is not necessary. Jorion (1986) also suggests an 

approach, based on the underlying dataset.  

The choice of the prior is beyond the scope of our research. In this thesis, we use a trivial 

initialization, setting the values to zeros and ones where possible and high values for Ψ0, 

such that we make up for the trivial initialization of A0 and c0. 

                                                 

 
15 To test for stationarity, we can apply a unit root test. See also Hamilton (1994) for the conditions of 

covariance stationarity in vector autoregressive models. 
16 Since the values are (with some restrictions) free to choose, it is not necessary to make use of those 

approaches.  
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In a next step, we generate Q. Here we need to set the scale matrix Ψ0. As described in 

Appendix A, we need a square root of Ψ1 (e.g. Cholesky decomposition). Therefore we 

need to make sure that Ψ1 will be positive definite (Hermitian for Cholesky 

decomposition). The initial degrees of freedom m0 need to be set as well. We generate Q 

from the inverse Wishart distribution. 

The last matrix to generate is R, the covariance matrix of the error terms in the 

measurement equation. Here we need to initialize the shape κ0 and scale ω0. Then we 

draw each σn for n = 1, 2 … N.  

We repeat the generation of the state vectors and hyperparameters and save the values for 

the hyperparameters until we consider our sample to be large enough, starting at j = 0 

 

      1. Generate a draw of the state vectors βt: 

 1j j j j j+ ←β c , A ,Q ,R  Equations (3.24) - (3.27) 

  

      2. Generate a draw of the parameters A and c: 

 1 1 1j j j j j+ + +←c , A β ,Q ,R  Equations (3.11) - (3.13) 

  

      3.      Generate a draw of the error covariance matrix Q: 

 1 1 1 1j j j j j+ + + +←Q β ,c , A ,R  Equations (3.15) - (3.17) 

 

      4. Generate a draw of the error covariance matrix R: 

 1 1 1 1 1j j j j j+ + + + +←R β ,c , A ,Q  Equations (3.20) - (3.22) 

 

      5. Repeat steps 1 to 4 until we have a sufficient number of draws: 

1j j += . 
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Again we discard the first draws, since they strongly depend on the initialization of the 

hyperparameters. From the remaining draws we take the average to get estimates for the 

hyperparameters. 

4.4 Results from the Model without Regime Switching 

We implement the algorithm for the Commerzbank dataset, as discussed in Section 4.3.7. 

We trivially choose the scale matrix Ψ0 to be an identity matrix and the degrees of 

freedom κ0 and m0 to be zero. The elements of A0 and c0 where also set to zero and the 

covariance matrix of vec(Ac) to a diagonal matrix with 103 on the diagonal. 

 

We run the filter, discard the first 2.000 draws and take the average over the next 10.000 

draws. The results are shown in Figure 5. 

 

Figure 5 – The State-Space Gibbs Sampling Nelson-Siegel Factors 
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The figure shows the results form estimating the Nelson-Siegel factors using the Kalman Filter 
and Gibbs Sampling for the estimation, again using the Commerzbank dataset. They were 
obtained after running the algorithm 12.000 times, averaging over the last 10.000 outputs. 
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Comparing Figure 2 and Figure 5, we observe small differences for the time series of the 

level factor. However, the factors slope and curvature differ strongly from the results in 

Section 3.4, not only concerning their values, but also their correlations. Figure 6 shows 

the correlation for the two estimation methods, calculated using a moving window with 

data for twelve weeks. We take the state vectors βt for t = 1, 2 … 12 and calculate their 

correlation. The next correlations are calculated using the state vectors βt for t = 2, 3 … 

13 and so on.   

 

As mentioned before, the correlation between the factors for credit default swap spreads 

takes very high values (positive and negative), compared to the correlation of the factors 

for yields. Especially the correlation between level and slope is constantly close to minus 

one, except for a few dates.  We observe that the correlation between level and slope does 

not differ strongly between least square estimation and the estimation via Gibbs 

sampling, but for the other correlations, especially the correlation between level and 

curvature, the difference is huge.  

 

The parameters, resulting from the Gibbs sampling algorithm, averaged over the last 

10.000 iterations are given by 

 

0.850 0.137 0.099

0.025 0.921 -0.017

-0.001 0.049 0.990

− 
 =  
 
 

A  , 

0.142

0.043

0.015

 
 = − 
 
 

c ,  

0.009 0.004 0.002

0.004 0.005 0.004

0.002 0.004 0.006

− 
 = − − 
 − 

Q , 

 

(0.00033,0.00179,0.00015,0.00012,0.00009)diag =R . 

 

At this point we should mention again, that the results obtained from Gibbs sampling 

depend on the prior distributions and the values we choose for A0, c0, Ф0, Ψ0, m0, κ0 and 

ω0. This is likely to be also (next to the fact that we used the Kalman filter to back out the 

state vector) a reason for deviations from the results obtained in Section 3.4. 
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Figure 6 – Least Squares and Gibbs Sampling Nelson-Siegel Factor Correlations 

 
The figure shows the cross-correlations of the Nelson Siegel factors of the Commerzbank 
dataset. The correlation is calculated using a moving window over twelve weeks, which explains 
the very high correlations when a jump occurs in two of the factors at the same time. 

Regarding Figure 2 or Figure 5 again, we observe that the credit default swap spreads and 

therefore the Nelson-Siegel factors are not covariance-stationary over time. We do not 

only observe a jump in the level of the spreads, but also their slope and curvature change 

significantly. Furthermore level, slope and curvature get more volatile after the jump. The 

accuracy of our linear model suffers from such jumps, since we assume covariance 

stationarity for the VAR(1) model. We therefore introduce regime switches as a possible 
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5 Regime Switching 

Observing the movement of credit default swap spreads for different reference entities 

over the last couple of years, we see that a low level of the spread comes together with a 

low volatility of the spread. At the same time, we observe periods with high and highly 

volatile spreads. This behavior is typical for many markets, e.g. jumps in the equity 

market usually come together with a huge increase in their volatilities. 

We want to account for this additional information in the state-space model by allowing 

for more flexibility. This results in an increase of the parameters in the model and also in 

more computational effort. 

 

In this chapter we add regime switching to our model by allowing for shifts in the level 

and error covariance matrix of the factors. We consider two different regimes for credit 

default swap spreads to allow for low levels with low volatility and vice versa. We adjust 

the estimation steps from the previous chapter to use regime switching.  

 

In Section 5.1, we present the Hamilton filter, which provides us with the probabilities to 

be in a certain regime. In Section 5.2 we show how we generate the hyperparameters and 

the regime vector. For the latter we make use of multimove Gibbs sampling. Finally, we 

generate the transition matrix, which contains the probabilities to move from one regime 

to another. 

5.1 Markov-Switching Model and the Hamilton Filter 

There are several models applicable, e.g. independent switching models, which are 

relatively simple to implement. We consider a more complex switching model, i.e. a first 

order Markov switching model with two different regimes. This means that the 

probability to be located in one regime only depends on the previous regime and the 

observations of the spreads. The regime at time t is denoted with r t. It is equal to zero, if 

we are in regime zero at time t and equal to one, when we are in regime one. 
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Allowing for more regimes is possible, but increases the number of parameters. Also the 

parameters, for which we allow for switches, influence the number of parameters to 

estimate. We decide to allow for switches in the level c and the error covariance matrix Q 

of the factors, from now denoted as c(r t) and Q(r t). The other hyperparameters do not 

change in their notation. 

 

We have to use a filter method to obtain the whole regime vector r  = (r1, r2 …rT)’, which 

contains the regimes for all t from 1 to T. The transition matrix K  contains the 

probabilities of shifts from one point in time to the next. Ki|j  is the probability to move 

from regime i to regime j. Note that the rows of the matrix have to sum up to one, which 

means that the matrix does not contain four, but only two unknown probabilities, that we 

have to estimate. The matrix can be written as 

 0|0 0|1

1|0 1|1

K K

K K

 
=  
 

K  or 0|0 0|0

1|1 1|1

1

1

K K

K K

− 
=  − 

K . (4.1) 

The filter method that we use, does not deliver the regime itself, but the probability to be 

in a certain regime at time t, given the data up to time t and the transition probability 

matrix K . Note that the matrix K  does not depend on the time or on the observations.  

 

The following chart shows the steps of the Hamilton (1989) basic filter, starting with time 

t equal to 1. To get the filter started, we first need to initialize the steady state probability 

p(r0), the probability to be in regime zero or regime one at t = 0. Then we move from 

probabilities that are conditional on the set of observations and previous regime to 

probabilities that are only conditional on the set of observations. Finally we obtain the 

joint probability of r t and r t-1, conditional on the observations up to that point in time.  

 

Next to the initialization of the filter and the steps to get from the conditional probability 

p(r t, r t-1|β0→t-1) to p(r t | β0→t), the probability of r t and r t-1, conditional on all information 

up to time t, the flowchart contains the likelihood function (4.5) of the parameters.  

Note that we do not make use of the likelihood, since we use Gibbs sampling to estimate 

the model. For maximum likelihood estimation techniques, the function is crucial. It only 

depends on the cumulative probability of the data βt at time t, conditional on the data of 
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the previously available data β0→t-1. β0→t-1 denotes the data (the state vectors) from time 

zero to time t. 

Initialization: 

1

2 2 2
0

2 2 2

0

( ) 0

1

p r

−   ′ ′        =                   

I - K I - K I - K

1 1 1
 (4.2) 

Filter Steps: 1 0 1 1 1 0 1( , ) ( ) ( )t t t t t t tp r r p r r p r− → − − − → −=|β | |β  (4.3) 

 

 1( ) ( )t t t tr r −= − −φ β c Aβ   

 

 
( )

1
1 0 1 /2

1 1
( , , ) exp ( ) ( ) ( )

22 ( )
t t t t t t tN

t

p r r r r r
rπ

−
− → −

 ′= − 
 

β | β φ Q φ
Q

  

 

 
-1

0 1 1 0 1 1 0 1( | ) ( , , ) ( , )
t t

t t t t t t t t t
r r

p p r r p r r→ − − → − − → −=∑∑β β β | β |β   

    

 1 0 1 1 0 1
1 0

0 1

( , , ) ( , , )
( , | )

( )
t t t t t t t

t t t
t t

p r r p r r
p r r

p
− → − − → −

− →
→ −

= β | β |β
β

β |β
  

 

 
1

0 1 0( | ) ( , | )
t

t t t t t
r

p r p r r
−

→ − →=∑β β  (4.4) 

 

Likelihood: 0 1( ) ( ) ln( ( | ))t tl l pθ θ → −+= β β  (4.5) 

 

N is the number of factors. In our case N equals three. A derivation for the univariate case 

of these results can be found in Kim and Nelson (1999, § 4.2). The only difference to the 

multivariate case is the probability distribution function of the normal distribution. 
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Replacing the simple density function by the multivariate version, the steps to be taken 

are equal. 

 

Note the similarity between the steps for the estimation of the state-space model and now 

the regime switching model. We first run a filter method to obtain the unobserved regime 

vector and then, conditional on these variables we start drawing the parameters, including 

the transition matrix K . The following steps describe the building blocks for a successful 

estimation in a VAR model with regime switching using Gibbs sampling. 

5.2 Estimation using Gibbs Sampling 

As in the previous sections for the estimation of the state-space model, we explain how to 

obtain and draw from the posterior densities of the parameters, and afterwards how to 

generate the regime vector and the transition matrix K . We consider the case for switches 

in the vector of constants c and the covariance matrix Q.  

 

The switches only occur in the transition equation. Since the error terms of the 

measurement and the transition equation are independent, we can treat the transition 

equation separately. Hence the building blocks of the regime switching estimation are 

shown in a vector autoregressive model of order one, the same given by Equation (3.2), 

assuming that the state vectors are observed. Later we draw the regime vector conditional 

on the state vector; therefore this assumption does not affect our building blocks. 

 

We first focus on the estimation of c(r t) and A. Both can be treated together. Further we 

take a look at the estimation of the covariance matrix Q for different regimes in Section 

5.2.2. In Section 5.2.3 we show a way to generate the transition matrix K . In the last 

section of this chapter, we generate the regime vector r  using multimove Gibbs sampling, 

as implemented for generating the state vector in the previous chapter. 

5.2.1 Estimating c(r t) and A 

The estimation of c and A in Section 4.3.3 cannot be applied here, since we allow for 

shifts in the vector c. We again choose the multivariate normal prior distribution. To 
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simplify the estimation, we rewrite Equation (3.2) such that it includes the dummy 

variable17 r t 

 0( )t tr r= + 1c c c , (4.6) 

 and therefore 0 tr+t 1 t-1 tβ = c c + Aβ + u . (4.7) 

  We need to get rid of the regime dependence in the covariance matrix Q(r t) of the error 

term ut ~ WN(0, Q(r t)), otherwise the selected prior cannot be used. For the univariate 

case, there is a simple trick that can be applied, since matrix Q reduces to a scalar. We 

can divide the whole equation by the corresponding standard deviation of the error term 

for each point in time, conditional on the regime. We then get an adjusted regressor and 

regressand with a variance of one independent of the regime. 

 

In a multivariate scenario, we need to pre-multiply the error term with the inverse of a 

root18 of the error covariance matrix Q(r t), denoted as L -1(Q(r t)). This results in a new 

error term, which has an identity matrix as covariance matrix. Note that for very high 

correlations in the matrix, a root might not exist, because the matrix is nearly singular. 

Since we are drawing the matrix, this event can occur. A solution to this problem is to 

redraw the covariance matrix and discard the previous draw. 

 

Rewriting the model in matrix notation, we get 

 0[ ( )] [ ( )] [ ( )] [ ( )]t t t t tr r r r r+-1 -1 -1 -1
t 1 t-1 tL Q β = L Q c L Q c + L Q A β + ε  (4.8) 

where εt ~ N(0, I). To simplify the estimation, we rearrange terms. The unknown matrix 

of parameters is placed between the matrix L -1[Q(r t)] and the lagged factors βt-1. We 

                                                 

 
17 Note that c(0) = c0 but c(1) = c0 + c1. The vector c1 only denotes the change in c, but not the absolute 

value of c for the second regime. 

18 We can use a Cholesky decomposition of the matrix Q, since it is Hermitian. Also other methods can be 

used, e.g. an eigenvalue decomposition, where the matrix of eigenvectors, multiplied with the diagonal 

matrix of the eigenvalues gives another root of the matrix. 



5 Regime Switching 

42 

rewrite the equation in such a way, that the known regressor is on the left hand side of the 

unknown parameters. The result is given by 

 1 1
1 0 1( [ ( )] ) (1 ) [ ( )] ( )t t t t t tvec r r r vec− −

−
′ ⊗L Q β = β L Q c c A + ε , (4.9) 

or written again in concise notation 

 Y = Xθ+ η  with 3~ ( , )TNη 0 I , (4.10) 

where the regressand and the regressor are given by 

0 0
1

1

1

... ... ... [ ( )]

1

t

t t

r

r

r

−

−

 ′
 

= ⊗ 
  ′ 

β

X L Q

β

, 0 1( )vec=θ c c A  and 1( [ ( )] )tvec r− ′=Y L Q β . 

The procedure to generate draws from the posterior distribution is the same as given in 

section 4.3.3. For the set of parameters and variables under consideration, this is 

 1 1| ( ), , ~ ( , )tr MNθ Q β x θ Φ  (4.11) 

with 

 1 1
1 0[ ]− −′= ⊗Φ Φ + I X X , (4.12) 

 and 1
1 1 0 0[ ]vec− ′= +θ Φ Φ θ (X Y) . (4.13) 

In the next section, we derive the posterior distribution of the covariance matrix Q(r t). 

The idea is based on the steps in this section. We rewrite the regression model in such a 

way that the covariance matrix of the error term Q does not depend on the regime. 

5.2.2 Estimating the Covariance Matrix Q(r t) 

The estimation of the covariance matrices Q(0) and Q(1) in the multivariate case differs 

from the univariate derivation19. We rewrite the model in such a way that the estimation 

of the covariance matrix for the two regimes can be separated. Then we estimate one of 

the covariance matrices, conditional on the other one. 

 

                                                 

 
19 See Kim and Nelson (1999, § 9.1.4) for the univariate case. 
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We first rewrite the covariance matrix as 

 ( ) (0)( ) (1) (0)( ( ))t t t tr r r r− + = +Q = Q I I Q Q I Λ - I , (4.14) 

with Λ as a term that contains information about the covariance matrix of the first regime 

and the covariance matrix of the second regime. In order to estimate the covariance 

matrices, we need to set the values for Λ0. Note again that the initialization influences the 

relation between the covariance matrices. We can express Q(0) and respectively Λ as 

 1(0) (1) −=Q Q Λ  or 1(0) (1)−=Λ Q Q . (4.15) 

After setting the covariance matrix Q(1) we can pre-multiply Equation (4.7) with the 

inverse root of Q(r t) and then pre-multiply the equation with the root of Q(0). The whole 

pre-multiplication term F is given by 

 1 1( (1) ) ( ( ))tr
− −=F L Q Λ L Q , (4.16) 

so that the error covariance matrix is given by Q(0). The model can now be written as 

 [ ]0 tr+t 1 t-1 tFβ = F c c + Aβ + ε , (4.17) 

where εt ~ N(0, Q(0)). The covariance matrix Q(0) again follows an inverted Wishart 

distribution. It is not necessary to rearrange terms as in the previous section, since we 

generate Q(0) conditional on the parameters. The remaining steps are the same as in 

section 4.3.4, calculating the residuals for the scale matrix using Equation (4.17). The 

posterior distribution can be written as 

 1 1(0) | , , ~ ( , )IW mQ θ β x Ψ . (4.18) 

In contrast to the estimation of the covariance matrix without regime switching, we 

needed to initialize one of the covariance matrices. Additionally, we need to set the 

matrix Λ0. Deriving the conditional posterior distribution of Q(0), the same way the 

posterior distribution for Q without regime switching has been derived, we obtain the 

values for the parameters Ψ1 and m1 of the distribution. They are given by  

 0 ′+1Ψ = Ψ E E , (4.19) 

 1 0m m T= + , (4.20) 

where E is the residual of the new equation, 
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 ( )
0

  ′
  
  ′−
  

′  
  

L
1

c

Ε = F β 1 x β c

A

. (4.21) 

Drawing from distribution (4.18), we obtain an estimate for Q(0). We now need to 

estimate the covariance matrix for the second regime, Q(1). Instead of doing so, we could 

also estimate Λ and use the relationship between the matrices to transform it to Q(1). 

After rearranging again, the non-conjugate prior of matrix Λ is an inverse Wishart 

distribution. We pre-multiply Equation (4.7) with  

 1
0* ( )−=F L Λ . (4.22) 

Note that the steps are similar to the previous steps; we only change the pre-

multiplication term. The likelihood function Λ now only depends on the values in regime 

one, but not on the values from regime zero. This leads to the following posterior density 

 1 1| , , ~ ( *, *)IW mΛ θ β x Ψ . (4.23) 

Deriving the conditional posterior distribution of Λ, we get the following set of 

parameters for the distribution 

 0* * * *′+1Ψ =Ψ E E , (4.24) 

 1 0* *m m T= + , (4.25) 

 with ( )
0

* *

  ′
  
  ′−
  

′  
  

L
1

c

Ε = F β 1 r β c

A

. (4.26) 

Note again that the initialization of the matrix Λ0 significantly influences the discrepancy 

between the covariance matrices. Given a draw of Λ from Equation (4.23), we can 

calculate Q(1) using Equation (4.15). In contrast to the approach in the last section, we 

need a two step procedure to estimate the covariance matrices. We first draw the 

covariance matrix for the first regime and then we generate the covariance matrix for the 

second regime, conditional on this matrix. 
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5.2.3 Estimating the Transition Matrix K 

As seen before, we need a transition matrix K  to make any inference about the 

probability to be in either one or the other regime. This matrix needs to be generated as 

well, using Gibbs sampling. The elements in the matrix depend on the transitions that we 

have from the first regime to the first regime, the first to the second regime, the second to 

the first regime and the second to the second regime. Since we generate the transition 

matrix conditional on the regime vector, we can just count the number of transitions zi|j , 

the transitions from regime i to regime j. We furthermore know that the elements on the 

off-diagonal of K  can be calculated from the elements on the diagonal, since every 

column has to sum up to one. 

 

The natural conjugate prior of the diagonal elements in the transition matrix is a beta 

distribution (see Kim and Nelson (1999, § 9.1.2)). It is a continuous distribution defined 

on the interval between zero and one. The shape parameters of the distribution are given 

by α and β, which need to be strictly positive. The posterior distribution can be written as 

 0|0 0|0 0|0 0|1 0|1| ~ ( , )K beta u z u z+ +r  (4.27) 

 and 1|1 1|1 1|1 1|0 1|0| ~ ( , )K beta u z u z+ +r . (4.28) 

The parameters ui|j  denote a prior belief about the transitions and should therefore be 

integers. By selecting ui|j  we can change the number of transitions, given by zi|j . This 

implies a different view on the expected number of transitions. Note that ui|j  should be 

larger than zero, since the beta distribution is only defined for parameters larger than 

zero. Otherwise we cannot draw the transition probabilities. 

 

Given the regime vector, we can generate draws of the transition matrix. The regime 

vector is generated conditional on the transition matrix in the next step. We use the 

Hamilton filter, described in Section 5.1 to achieve our goal. 
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5.2.4 Generating the Regime Vector r  

We generate the regime vector, conditional on β, θ, Q and K  using multimove Gibbs 

sampling again. We first run the Hamilton filter and save the probabilities. We can 

rewrite the joint density of the regime vector such that 

 
1

1
1

( | ) ( | ) ( | , )
T

T t t
t

p p r p r r
−

+
=

= ∏r β β β . (4.29) 

For a complete derivation of the multimove Gibbs sampling in Equation (4.29), see Kim 

and Nelson (1999, § 9.1.1) or Carter and Kohn (1994). We can now start to generate the 

regime vector. In a first step we take the last iteration of the Hamilton filter, which 

provides us with p(r t| β). We only consider the probability for rT = 1, given by p(1| β). We 

obtain the regime corresponding to this probability in a very simple manner. We draw a 

random number from a uniform distribution. If the number is higher than the probability 

p(1| β), we are in regime zero; else we are in regime one. After generating the regime for 

time T, we need to generate the regime for all the other t, conditional on the collection of 

state vectors β and r t+1 by employing 

 1 0
1 0

1 0

( | ) ( | )
( | , )

( | )
t t t t

t t t
t t

p r r p r
p r r

p r
+ →

+ →
+ →

= β
β

β
. (4.30) 

Once this probability is calculated, we can generate draws in the same way that we used 

for drawing rT. Following this procedure till t = 1, we have a draw of the whole regime 

vector. 

 

We now have all building blocks to estimate a model that combines the state-space form 

with first order Markov chain regime switching with two regimes. The order and the 

number of regimes can easily be increased; however, for our purpose this model is 

satisfying. In the next section we introduce the combined procedure, i.e. how the building 

blocks can be put together and how the model performs in comparison to the model 

without regime switching. 
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6 Regime Switches in State-Space Models 

6.1 Building the Algorithm for the Combined Model 

Given the building blocks, we implement the Gibbs sampling method to estimate the 

parameters. We first must decide, how we set the parameters A0, c0, Ф0, Ψ0, Λ0, m0, κ0, 

ui|j , and in which order we implement the building blocks. We suggest drawing first the 

state vectors, collected in β, since it contains many elements and is difficult to initialize. 

Hence, the other parameters and the regime vector need to be initialized. A trivial 

initialization for the regime vector would be to assume that it only consists of zeros or 

ones. The fit of the initial values for the parameters does not influence the results very 

much, if we make sufficiently many draws. However, the choice of A0, c0, Ф0, Ψ0, Λ0, 

m0, κ0, ui|j , influences the result.  

 

After the initialization, we generate the transition matrix K  and then the regime vector r . 

The hyperparameters are generated as the last (starting with c(r t) and A and afterwards 

Q(r t)), using the results from Sections 5.2.1 and 5.2.2. Finally, the covariance matrix R is 

generated. The described procedure is repeated until convergence is achieved. The first 

draws should be discarded due to the bias of the initialization. Finally we take the average 

of the generated parameters. 

6.2 Results from the Model including Regime Switching 

The initialization is basically the same as in the case without regime switches. 

Additionally we set values for the elements in the transition matrix K , given by ui|j , which 

are necessary for generating the transition probabilities. We set all of them equal to one, 

giving no preference for any transition (A value of zero is also possible, but we have to 

keep in mind that the shape parameters of the beta distribution have to be larger than one. 

Unfortunately, for some draws we are not allowed to have a switch from one specific 

regime to another, resulting in a shape parameter of zero). Furthermore we need to set the 

matrix Λ to generate the covariance matrices for the two regimes. We set the elements on 
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the diagonal equal to two. Finally, we need to set c1,0, the initial guess for the change in 

the constant. Note that the more we are unsure about the value, the higher we should set 

the initial covariance matrix of the parameters. We initialize the elements of c1,0 equal to 

zero and the diagonal of its covariance part equal to 103, repeating the initialization from 

the previous Section 4.4. 

 

We run the algorithm with 24.000 runs, discard the first 4.000 estimates and take the 

average over the last 20.000 draws. Since the results from the Kalman filter depend on 

the regime vector and vice versa, we also take the average over them, leaving us with the 

averaged factors level slope and curvature factors and the average of the regime that we 

were in each point in time for 20.000 draws.  

Figure 7 shows clearly, that a regime shift occurs between 2007 and 2008, as expected. 

The difference in the constant is quite large. The shift in the error covariance matrix Q is 

quite small in an absolute sense, but relatively seen, they change a lot. The estimates are 

given by 
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Q , 

 

(0.00131,0.00193,0.00035,0.00025,0.00032)diag =R . 

 

Comparing the results to previous outcomes, we can see that the first element of matrix A 

is much lower than before. Compared to the model without regime switching, the error 

covariance matrix R shows much lower elements for the one and for the 10 year spread.  
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We further calculated the unconditional mean of the factors, using the relation given in 

(3.2) to show how level, slope and curvature differ for the two regimes  
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Figure 7 – The State-Space Gibbs Sampling Nelson-Siegel Factors with two Regimes 

 
The figure shows the results from estimating the Nelson-Siegel factors using the Kalman Filter 
and Gibbs Sampling for the estimation, again with the Commerzbank dataset. This time, regime 
switches are included and the number of runs is increased to 24.000, averaging over the last 
20.000 draws. The factors and the regime vector are the averaged values over the runs. 

The jump in the probability of being in regime one occurs on the same date, where the 

jump in level, slope and curvature occur, that is on the 25th July 2007. When the factors 

revert to the level they had in regime zero, the probability of being in regime one 

decreases. We clearly observe this behavior after the jump from December 2007 to 
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January 2008 and from January 2009 to February 2009. In both cases, the probability 

goes down to nearly fifty percent. Both cases are followed by a jump in the factors. 

 

The variance of the factors also increases at the same time when the regimes change. 

Including a complete shift in the variance would therefore fortify the gap between the 

regime probabilities. Figure 8 shows the variance of the factors (calculated on a twelve 

week basis using a moving window). 

 

Figure 8 – The State-Space Gibbs Sampling Nelson-Siegel Factor Volatilities 

 
The figure shows the yearly volatilities (standard deviations) of the Nelson Siegel factors of the 
Commerzbank dataset. The volatility is calculated using a moving window over 12 weeks, 
which explains the very high volatilities when a jump occurs in the factors. 

We remark that in order to include a complete shift in the variance of the factors, we need 

to allow for shifts in the whole transition matrix A, resulting in additional nine 

parameters to estimate. Furthermore, switches in A, affect the probability to be either one 
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or the other regime very much. Especially in the volatile area, the regime we are in 

depends strongly on the direction of the change in the spread. 

 

In the next chapter we present the forecast performance of different models with and 

without regime switching, using the Commerzbank AG dataset. We measure the 

performance using the sum of squared errors of the forecasts and check the performance 

of sign forecasts.   
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7 Forecasting Performance Compared 

We know how to estimate the parameters of the models; we can test their forecast 

performance now. We divide the Commerzbank dataset in an in-sample and an out-of-

sample period. The in-sample period starts at 21st March 2005 and goes to the 26th of 

December 2007. We forecast the remaining 85 spreads for each maturity (that means the 

out-of-sample period starts at the 2nd January 2008 and goes to the 12th August 2009). 

We compare the random walk approach, where the forecast of the spread next week is 

equal to today’s value, to an autoregressive model of order one on the spreads, to a vector 

autoregressive model of order one on the spreads and to the Nelson Siegel latent factor 

models with fixed convexity, set to 0.59 (which maximizes the curvature loading for the 

three year maturity). The factor models are estimated with least squares, as in Section 3.3, 

and with Gibbs sampling for no regime switches, regimes for the constant and for the 

covariance matrix of the transition equation separately and for both together. We re-

estimate the parameters every week, using a moving window for the in-sample period. To 

measure the performance of the models, we calculate the sum of squared errors (SSQE) 

and the sign forecast performance, the relative frequency of correctly predicted spread 

return signs. Table 2 and Table 3 show the SSQE and the percentage of correctly 

predicted signs for the mentioned models. 

 

Table 2 – Sum of Squared Errors for Different Models 

    Least Squares Gibbs Sampling 
        Nelson Siegel Factor Model 

SSQE RW AR(1) VAR(1) OLS No Switch Switch c, Q Switch c Switch Q 
1 year 2.004 2.134 2.301 2.305 2.028 1.973 2.002 2.012 
3 year 2.323 2.435 2.524 2.494 2.178 2.064 2.107 2.155 
5 year 2.387 2.474 2.591 2.746 2.324 2.240 2.217 2.304 
7 year 2.288 2.369 2.496 2.585 2.205 2.151 2.137 2.199 
10 year 2.415 2.490 2.544 2.643 2.232 2.189 2.193 2.241 

Sum 11.418 11.901 12.456 12.772 10.967 10.617 10.655 10.911 

The table contains the sum of squared errors for the forecasts. They were calculated for different 
maturities and different models, using the Commerzbank dataset. The out-of-sample period 
starts at 2nd January 2008 and goes to the 12th August 2009. The bold values denote the lowest 
realizations.  
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Regarding the SSQE, the Nelson Siegel models, estimated using Gibbs sampling perform 

better than the other models. The AR(1) and the VAR(1) model, as well as the Nelson 

Siegel factor model, estimated with least squares perform worse than the random walk, 

while the Gibbs sampling models are constantly better for this dataset.  

We observe the best performance for the models that include a regime switch for the 

constant in the transition equation, although the difference between the models, estimated 

with Gibbs sampling, is still small, with or without regime switching. 

 

Table 3 – Sign Forecast Performance for Different Models 

    Least Squares Gibbs Sampling 
        Nelson Siegel Factor Model 

SIGN Buy and Hold AR(1) VAR(1)  OLS No Switch Switch c, Q Switch c Switch Q 
1 year 0.559 0.447 0.412 0.400 0.541 0.576 0.565 0.565 
3 year 0.571 0.424 0.459 0.471 0.600 0.588 0.588 0.600 
5 year 0.559 0.447 0.435 0.447 0.529 0.506 0.553 0.494 
7 year 0.559 0.459 0.494 0.412 0.576 0.529 0.541 0.624 
10 year 0.559 0.459 0.494 0.494 0.576 0.576 0.565 0.576 

Average 0.561 0.447 0.459 0.445 0.565 0.555 0.562 0.572 

The table contains the relative value of correctly predicted signs. They were calculated for 
different maturities and different models, using the Commerzbank dataset. The out-of-sample 
period starts at 2nd January 2008 and goes to the 12th August 2009. The bold values denote the 
highest realizations.  

The sign forecasts fortify the better performance over the random walk, the AR(1), the 

VAR(1) and the least square estimated Nelson Siegel model. Nevertheless, the 

percentage of correctly predicted signs does not differ significantly from the performance 

of predicting always a positive sign, i.e. we are not significantly outperforming a simple 

buy-and-hold strategy20. 

 

We further test, whether each of the models performs significantly different from the 

random walk and the regime switching model in terms of their squared prediction error. 

                                                 

 
20 Note that we did not compare the magnitude of the prediction errors as before in the SSQE, but only the 

correct prediction of the signs. 
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We apply the Diebold and Mariano (1995) statistic for comparing predictive accuracy 

with the following null hypotheses 

(1) (2)
0 1| 1|: [ ] [ ]Model Model

t t t tH E SQE E SQE+ += , 

 against: (1) (2)
1 1| 1|: [ ] [ ]Model Model

t t t tH E SQE E SQE+ +≠ . 

SQEt+1|t denotes the squared prediction error at time t + 1, forecasted with information up 

to time t. Since we forecast only one-step-ahead, the implementation of the test is simple. 

We calculate the average of the difference d in the squared prediction errors of the two 

models, given by 

(1) (2)
1| 1| 1|

Model Model
t t t t t td SQE SQE+ + += − , 

1|
1

1 T

t t
t

d d
T +

=
= ∑ . 

The standard deviation std() of the error term is given by the standard deviation of the 

differences dt+1|t, divided by the square root of T  

1|( ) ( ) /t tstd d std d T+= .21 

We use the OLS estimator to calculate the standard deviation of d t+1|t. Dividing the 

average of d by its standard deviation we get the Diebold and Mariano (1995) statistic. It 

is asymptotically normally distributed with mean 0 and variance 1. 

 

We observe that the least square estimated Nelson Siegel model performs significantly 

different from (worse than) the random walk at the 5% level. None of the other 

differences in the squared prediction errors is significant at the 5% level. 

 

Table 4 shows Diebold and Mariano (1995) statistic of the forecasts. Positive values 

indicate superiority of the models against the reference model (the random walk in the 

upper part of the table, respectively the Gibbs sampling switching model in the lower 

part). The test indicates, that the random walk is superior to the models that are estimated 

                                                 

 
21 The standard deviation term gets more complicated, when we want to forecast more than one step ahead, 

since the difference term dt+h|t gets serially correlated. The integer h denotes the steps ahead. 
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without Gibbs sampling. The switching model with switches in the constant and the error 

covariance matrix seems to be superior to the other models. The test further indicates that 

the switching model with only switches in the constant performs better than all other 

models for five and seven year maturities. 

At this point we mention again that the available dataset is very small, which results in a 

relatively small out-of-sample period. The total number of forecasts for the different 

maturities is only 85. The smaller the number of forecasts we include in the test, the 

higher the probability that we do not find evidence for statistically significant differences. 

 

Table 4 – Diebold-Mariano Statistics for Comparing Predictive Accuracy 

  Least Squares Gibbs Sampling 
RW     Nelson Siegel Factor model with convexity fixed to 0.59 

DM - Test AR(1) VAR(1) OLS No Switch Switch c, Q Switch c Switch Q 
1 year -1.247 -1.578 -2.556 -0.132 0.137 0.010 -0.046 
3 year -0.430 0.082 -0.631 0.500 0.806 0.700 0.586 
5 year -1.241 -0.494 -2.438 0.315 0.422 0.516 0.422 
7 year -1.187 -1.721 -2.426 0.491 0.444 0.521 0.537 
10 year -1.042 -0.473 -1.349 1.009 0.724 0.762 0.968 

  Least Squares Gibbs Sampling 
Switch c, Q    Nelson Siegel Factor model with convexity fixed to 0.59 
DM - Test RW AR(1) VAR(1) OLS No Switch Switch c Switch Q 

1 year -0.137 -0.586 -1.696 -1.209 -0.544 -0.337 -0.369 
3 year -0.806 -1.033 -0.839 -1.202 -0.581 -0.422 -0.454 
5 year -0.422 -0.629 -0.808 -1.538 -0.487 0.236 -0.367 
7 year -0.444 -0.664 -1.034 -1.134 -0.321 0.142 -0.282 
10 year -0.724 -0.935 -0.750 -1.014 -0.274 -0.041 -0.329 

The table contains the test statistics of the Diebold-Mariano test. We test, whether the 
expectation of squared forecasting errors are equal for different models. In the upper part, we 
compare the random walk with the other models. In the second part we compare the regime 
switching model with switches in the constant and the covariance matrix with the other models. 
Bold values denote significance at the 5% level. 
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8 Conclusions 

8.1 Summary 

In this thesis we introduced and estimated a new credit default swap spread curve model. 

The model is based on the Nelson and Siegel (1987) model for yield curves, where the 

factors evolve according to a vector autoregressive process as in Diebold and Li (2006).  

 

We first presented the estimation steps under the assumption that the Nelson-Siegel 

factors level, slope and curvature do not contain an estimation error by applying least 

square methods. We fixed the convexity factor, such that the transition equation of the 

state space model is linear in the factors level, slope and curvature. The observable 

variables were given by spreads for different maturities. Given the factors for each point 

in time, we built a vector autoregressive model and estimated the parameters.  

 

Further we rewrote the model in state-space form, as suggested by Diebold, Rudebusch 

and Aruoba (2006). We illustrated the estimation of the state space model using Gibbs 

sampling, which provided two main advantages for the estimation. First, we suffered 

from small datasets for credit default swap spreads, not only in the cross-sectional 

dimension, but also in the serial dimension. Together with the large number of 

parameters, this would have made a classical estimation less accurate. Secondly, by 

implementing a Bayesian approach, we allowed for prior beliefs in the estimation. We 

used multimove Gibbs sampling as suggested by Carter and Kohn (1994) to generate the 

state vector. We observed that the factors of the least square model differ from the factors 

in the state space model, especially in the sense of their cross correlations. 

 

We added more flexibility to the model by allowing for regime switching. We introduced 

switches in the constant and the error covariance matrix of the transition equation in the 

state-space model to capture the evolvement of the credit default swap spread curve and 

show how the parameters are estimated using Gibbs sampling. We generated the regime 

vector by applying multimove Gibbs sampling. 
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We divided a dataset of Commerzbank AG spreads into an in-sample and out-of-sample 

period and created one-step-ahead forecasts. We showed that the state-space model, 

estimated with Gibbs sampling outperforms the random walk, autoregressive models on 

the spreads and the least square estimated model in terms of their sign forecast 

performance and the sum of squared prediction errors. The superiority of the model is 

statistically not significant. The available out-of-sample period is very short, which 

makes it difficult to prove statistical significance. 

8.2 Recommendations for Further Research 

The estimation of parameters in a Bayesian framework allows for wide flexibility. Not 

only the chosen distributions and the prior beliefs about mean and covariance influence 

the results. The applied estimation techniques also play an important role. 

 

We decided in favor of multimove Gibbs sampling because of its computational 

efficiency, but one could also consider using singlemove Gibbs sampling, suggested by 

Carlin, Polson and Stoffer (1992). Another procedure to simulate from the posterior 

densities of state is the simulation smoother by De Jong and Shephard (1995). It is an 

alternative multimove Gibbs sampler, but instead of drawing the random variables, it 

simulates their disturbance terms. The random variables can be constructed from the 

disturbances as required. Computationally, this approach is more efficient than the 

multimove Gibbs sampler by Carter and Kohn (1994). 

 

Further, the whole model can be estimated in a classical framework. Estimation methods 

have already been implemented for state space models (see Durbin and Koopman 

(2001)), but also for state space models with regime switching in Kim and Nelson (1999). 

Nowadays, the estimation suffers also from a short time series, but due to the high trading 

volume of credit default swaps, it is likely that sufficient data is available in future, as the 

time series grows. Nevertheless, it is unclear whether the cross-sectional dimension 

increases, which restricts the quality of a classical estimation. 
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In the very beginning of this thesis, we assumed that the convexity factor of the model is 

fixed. The loadings of the Nelson and Siegel (1987) model only depend on this single 

factor. A fixed convexity assumption is very common, but the factor can also be time 

varying. Although this adds extra complexity to the estimation (the model is not linear in 

the factors anymore), Koopman, Mallee and van der Wel (2007) show that the extension 

leads to a significant improvement in model fit for the yield curve. 

 

As suggested by Diebold, Rudebusch and Aruoba (2006) for yield curves, some 

macroeconomic variables like inflation, but also equity returns or interest rates might 

have influence on credit default swap spreads. They can be added to the transition 

equation of the model. This improves the fit of the model to the data, but might also add 

more predictive power to the model. 
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Appendices 

Appendix A. Drawing from an inverse Wishart distribution 

We follow the procedure from Smith and Hocking (1972) to draw from a Wishart 

distribution. We can then convert the results to an inverted Wishart distribution, since 

when the matrix A-1 follows a Wishart distribution with A-1 ~ W(X-1, df), then the inverse 

of A is inverse Wishart distributed with A ~ IW(X, df). 

 

To generate draws from a Wishart distribution, we need to generate random variables 

from the standard normal and the chi-square distribution. When A-1 is of size p × p, we 

need to build a lower triangular matrix T with independent samples from the standard 

normal distribution on the off-diagonal. The elements on the diagonal are square roots of 

a chi-square distribution with df – i + 1 degrees of freedom, where i denotes the position 

on the diagonal in the matrix. In the end matrix should look like this 

 

2

2
1

2
1

0 ... 0

~ (0,1) ... 0

... ... ... ...

~ (0,1) ~ (0,1) ...

df

df

df p

z N

z N z N

χ

χ

χ

−

− +

 
 
 
 =
 
 
 
 

T . 

 

The next step is to compute a Cholesky decomposition of X-1, given by X-1 = LL ’, where 

L  denotes the lower triangular matrix. Building the following product A-1 = LTT’L’ , A is 

Wishart distributed with A-1 ~ W(X-1, df), and therefore the inverse of A-1 is inverse 

Wishart distributed with A ~ IW(X, df). 
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Appendix B. Deriving regressand and regressor in the multivariate model 

We start with Equation (4.8), the regression model pre-multiplied with the inverse of the 

Cholesky factorization of the error covariance matrix. For three factors, this can be 

written as 

 
11 0,1 1,1 11 12 13

1,21 22 0,2 1,2 21 22 23

2,31 32 33 0,3 1,3 31 32 33

3,

1

0 0

[ ( )] 0
t

tt

t

t

xc c A A A

x c c A A A

c c A A A

ω
βω ω
βω ω ω
β

 
 

         +      
    

 
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-1
t tL Q β = ε .  

 

Multiplying the equation and rearranging terms, we get the results in Equation (4.9). The 

regressor Xt for time t is given by 

 

11 11 1, 11 2, 11

12 22 12 22 1, 12 1, 22 2, 12 2, 22

13 23 33 13 23 33 1, 13 1, 23 1, 33 2, 13 2, 23

0 0 0 0 0 0 0 ...

0 0 0 ...

...

t t t

t t t t t t

t t t t t t t t

x

x x

x x x

ω ω β ω β ω
ω ω ω ω β ω β ω β ω β ω
ω ω ω ω ω ω β ω β ω β ω β ω β ω

 
 
 
 
 

. 

 

This can be rewritten as in Equation (4.9) using the Kronecker product. The vector of 

parameters θ equivalently is  

 

 ( )0,1 0,2 0,3 1,1 1,2 1,3 11 21 31 12 22 32 13 23 33c c c c c c A A A A A A A A A ′ . 

 

Note that the regressand changes to its vectorized version. 
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