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Executive Summary

Diversification is used among investors as an important risk management technique to reduce

risk. However to make diversification effective and even a lucrative tool, one needs to under-

stand the overall behavior of different markets. More specifically one needs to know which

dependency exists between these different markets. Especially in times of crisis where huge

market downturns at one particular market can cause disastrous effects on other markets as

well. The lastest financial crisis has shown that at first sight seemingly unrelated markets,

can display dependencies in times of extreme market situations.

The multivariate normal distribution is the most popular model to estimate and simulate

market returns. However there are two problems concerning the use of this model. Firstly,

it can not model extreme market behavior. Secondly, since markets display non-normal

behavior, linear correlation is no longer an adequate measure of dependence. Because mul-

tivariate normal distributions can not reproduce extreme market behavior, it can also not

display extreme (tail) dependence. An alternative approach to resolve both problems, is by

using copula models. The great advantage of the use of a copula is that the behavior of

(return) series can be modeled separately from their interdependence structure. However

most developed copulas in the literature are either constructed to capture symmetric - non

skewed - dependence in higher dimensions, or otherwise are able to capture asymmetric tail

dependence, but they are not well constructed to fit the distribution of higher (than 2) di-

mensional relationships.

In this thesis we join together both desired characteristics by constructing a higher dimen-

sional Skewed t copula to model asymmetric tail dependence between multiple asset return

indices. Furthermore we use different kinds of models to fit each unique asset return series

as well as possible. Moreover, we use a Skewed t distribution or a combination of multiple

normal- or Student’s t distributions to fit each series separately. Next we apply these com-

binations of models in the field of risk- and portfolio management.

Goodness of fit tests show that the most advanced model (i.e. a Skewed t copula with

the marginals from either the Skewed t distribution or a mixture of Student’s t distributed

components), is preferred over others. By testing the model on a variety of risk measures

(Value-at-Risk, Conditional Value-at-Risk and Maximum Drawdown), we find that the mix-

tures of normal distributions for each return series, form the best marginal distributions.

The same result is obtained by considering portfolio optimization techniques. When we look

purely at the obtained tail dependence by the Skewed t copula, the results show that the

Skewed t copulas does identify asymmetric tail dependence between High Yield and Real

Estate. Our model also confirms that Treasury is not negative dependent with any of the

other asset categories, during times of crisis. However looking at the overall performance of



the different copulas at the different applications, we can not conclude that there is a very

large gain in performance by using the Skewed t copula. This is possibly due to the fact that

there are only few joined tail events present in that sample.

The most surprising result comes from the performance of the most simple model, that

is the multivariate normal distribution. Based on the goodness of fit tests this standard

model shows the worst performance. Also based on the different risk measures it does un-

derestimate heavy risk. However when it comes to portfolio optimization the multivariate

normal model leads to impressively good portfolio selection. Even when advanced risk mea-

sures need to be minimized at a certain required return, the model still performs very well.

Moreover, it even outperforms the most advanced model, and most of the other models as

well. This is the most welcome news to all asset-, portfolio- and risk managers, as it seems

that using the most simple model results in almost the same (in some cases even better)

portfolio choice as more advanced models. It should be noted that the performed analysis is

based on weekly data. For monthly data, tail dependence of contemporaneous returns may be

stronger, possibly leading to a different conclusion. This is left as a topic for further research.

In conclusion, when it comes to dependence, the estimation results show that the higher di-

mensional Skewed t copula provides for a potential model improvement on higher dimensional

problems. Moreover, based both on fit and the applications in the field of risk management

and portfolio optimization, it really provides for a solution to improve the ability to estimate

and reproduce the degree in which certain assets show tail dependence. And although the

choice of the marginals has a big influence on the model outcomes, the dependence between

the different assets is better captured and demonstrated by the use of a Skewed t copula

model. For instance the knowledge that Treasury is not negatively dependent with the other

assets, is a desirable result in the use of the Skewed t copula, especially in these times of

crisis where no investment gives a guaranteed insurance. One could also consider further

research on the use of so-called Markov regime-switching models which enables the use of

different copulas in different time periods.



Abstract

During the financial crisis extreme market downturns occurred on several markets at the

same time, causing deep tail dependence relationships to arise. Copula models are devel-

oped to provide for a solution to model interdependencies between different markets, in an

adequate way. However most developed copulas in the literature are either constructed in a

way that they are only capable of capturing symmetric dependence relationships in higher

dimensions (i.e. the normal- of Student’s t copula). Or otherwise they are able to capture

asymmetric tail dependence, but are not well constructed to fit higher (than 2) dimensional

relationships (i.e. the Clayton or Gumbel copula, among others). In this thesis we join to-

gether both desired characteristics by constructing a higher dimensional Skewed t copula to

model asymmetric tail dependence between multiple asset return indices. Therefore we use

an extended version of the EM algorithm of Hu (2005), for estimating multivariate Skewed

t distributions, in combination with the simplex method, to set up a new framework; an

EM-within-Simplex algorithm for estimating the Skewed t copula. Furthermore we apply

the Skewed t copula in the field of risk- and portfolio management to track its performance.

We identify in a portfolio of 6 assets (i.e. Equities, Commodities, EMD, Real Estate, Trea-

sury and High Yield) asymmetric tail dependence between High Yield and Real Estate. Our

model also confirms that Treasury is not negatively dependent with any of the other asset

categories, during times of crisis.

Keywords: copula, marginals, skewed t, mixture components, tail dependence, correlation,

risk, portfolio optimization, asset management



1 INTRODUCTION

1 Introduction

The main objective of PGGM Investments is to generate a high and stable return for their

clients. This is done through a judicious choice of a strategic investment mix and a tight

control of this mix by intensive portfolio- and risk management. The main tool to achieve

this goal is by ensuring a good diversification of risk by allocating the portfolio to different

asset classes.1 The main task of the Strategy department of PGGM is therefore to define

a well diversified portfolio which tries to ensure these high and stable returns, but which is

particularly robust in times of financial distress.

To make sure diversification will pay off, one needs to invest in different asset classes which

are not linked. Moreover, if these different investments do not have any form of dependence

in between, negative returns from one investment will be compensated by the gains of other

investments. However, if markets are strongly linked together, a negative portfolio return

on one market can cause portfolios on other markets to suffer as well.

Under ‘normal’ market conditions, dependence relationships of most financial markets are

relatively easy to estimate and diversification will pay off. But the last financial crisis gives

a classis example of changing interdependencies among assets. That is: financial distress on

one market can lead to (growing) distress on other markets as well, which were seemingly

not dependent in first place. Therefore it is crucial to understand the interdependence be-

tween different asset classes in different market seasons for defining a well diversified portfolio.

Yet this is only one important aspect of successful asset management. Another important

issue to take into account is the ability to estimate size, frequency and impact of abnormal

negative returns happening on certain financial markets. Specifically from the financial crisis,

it has become clear that portfolio returns on most financial markets are increasingly exposed

to extreme down movements than can be described by a normal distribution. The most well

known measure of dependence is linear correlation. But since markets display non-normal

behavior, linear correlation is no longer an adequate measure of dependence. This is because

the use of linear correlation is only valid (in the sense that it tells the ’whole story’ about the

dependence) under the assumption of multivariate normally distributed returns. However,

the normal distribution may not be the most desirable model to use in times of stress.

An alternative approach to model the dependence and overcome the disadvantages of using

linear correlation and the shortcomings of normal distributions, is by using a copula. The

great advantage of the use of a copula is that the behavior of each univariate asset returns

series can be modeled separately from their interdependence structure. In short, the return

series can be transformed into normally distributed variables after which one can measure

1See also http://www.pggm.nl
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1 INTRODUCTION

the dependence again by linear correlation. This time without any hurdles from the differ-

ences in marginal distributions of each asset.

With the introduction to copulas we have come to the aim of this thesis:

The aim of this thesis is to develop a copula model that is able to estimate both the depen-

dence structure between multiple assets adequately and furthermore to model the marginal

distribution of each asset in such a way that the asset returns’ historical distributions (par-

ticularly extreme returns) are well captured within the model.

There are two reasons why we prefer to use this model instead of using the historical data

itselves. First, because we do not expect that the historical combination of data points will

repeat itself in the future. Moreover, we want a approximation of the historical- dependence

and distribution, where small changes are allowed to occur. Secondly, we may want to add

Bayesian prior information to this model (or a Markov chain model for example). To be more

specific; during a crisis regime we do not know the possibility of a return to the normal regime.

There are several reasons why one may prefer to use a model instead of using directly

the empirical distribution of the historical data. First, we do not expect that the historical

combination of data points will exactly be repeated in the future. In the future, other re-

turns (and combinations of returns) will be observed that are between or beyond historical

data. Second, estimated model parameters can provide insight into processes that is not

directly observable from historical data. These are the two main reasons for using models in

this thesis. Third, the future returns may particularly depend on the latest observed data.

This behavior can be incorporated in a model, for example by assuming autoregressive (AR)

or generalized autoregressive conditional heteroskedasticity (GARCH) processes, or Markov

regime-switching behavior. Without a model, it may be difficult to take such behavior of

returns processes into account. Fourth, one may desire to add personal (expert) beliefs to

the information stemming from historical data. That is, a Bayesian prior can be specified

to incorporate prior beliefs. A formal Bayesian analysis is only possible within the context

of a model. Especially, in a Markov-regime-switching, during a new crisis regime we can not

estimate the probability of ’escaping’ this regime from historical data, as no shift from the

regime has yet been observed. That is, without prior information, one would estimate a zero

probability of ever leaving the new crisis regime, which may be considered highly undesirable.

The approaches mentioned in the latter two reasons will be left as topics for further research.

Nevertheless, in the sequel we will compare the estimated portfolio risk based on differ-

ent models with results based on the empirical data. The reason for this is that we expect

the difference between these results to be moderately small. Extreme differences are consid-

ered as an indication that the model is not well specified.

2



1 INTRODUCTION

We will investigate different methods to model the dependence and distribution of certain

assets. To make sure the model fits the assets well, we will test the model on different

aspects. First of all, we will test the fit on standard criteria i.e. log-likelihood, the Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC), which will be

explained further in the sequel. Secondly, since portfolio managers are very concerned with

a detailed description of the tail-risk they face on their investments, we will evaluate some

commonly used risk measures. These risk measures include Value-at-Risk, Conditional Value

at Risk and Maximum Drawdown. Since each risk measure focuses on somewhat different

aspects of the data, we are able to evaluate the models rigorously. At last, we will compare

the performance of the different models by using different portfolio optimization techniques.

Since PGGM is mainly interested in minimizing their overall risks, we build different opti-

mization approaches to minimize portfolio risk given a certain required return.

In this thesis, we extend the recent academic literature in four ways. First, we build a

higher dimensional Skewed t copula which is able to model skewed tail dependence that is

not captured by normal or Student t copulas. For this purpose we use a modified version

of the Expectation-Maximization (EM) algorithm of Hu (2005) which he has used to fit a

multivariate Skewed t distribution. Secondly, we will use the extended EM algorithm of

Hoogerheide (2009) to model distributions existing of a mixture of multiple Student t distri-

butions to fit the marginal distributions of the different copulas. Thirdly, we will combine the

different copula models and the different modelled marginal distributions to build a model

that is best capable of capturing extreme dependence and further the occurrence of extreme

returns in the marginal distributions. At last, we will use all different models to test their

performance in the field of risk management and portfolio optimization.

The thesis is organized as follows: In section two, we will describe the used data. In the

third section, we will make the shortcomings of the linear correlation more explicit. This

will be followed by an introduction to copulas. In the fourth section, we will describe the

estimation methods and algorithms to model both copulas and marginal distributions. In

section five, we will test the different models on their fit. In section six, we will use risk mea-

surement to test further the performance of these models. In section seven, we will evaluate

the performance of the different models in the field portfolio optimization. Next, we will

shortly evaluate the different model outcomes from their different aspects and conclude. We

will finish with suggestions for further research.

3



2 DATA

2 Data

The data2 used in this thesis consist of six total return index series taken from the data ven-

dors Bloomberg and Barclays Capital. To investigate the behavior and dependence between

different assets, PGGM suggested to use the following different index total return series of

different markets as a proxy. They give a good approximation of the overall behavior of

these different markets firstly, because these indexes are highly frequently dealt throughout

the whole world. Secondly, because these index series include data over a large span of time.

The first series we use is the S&P 500 index, which acts as a proxy for equities. The

S&P 500 index is a market-capitalization-weighted (large-cap) index. The S&P 500 includes

a representative sample of 500 leading companies in leading industries of the US economy

actively traded on the largest stock market companies; the NYSE, Euro Next and the NAS-

DAQ OMX in the United States.

The second index series is the FTSE EPRA/NAREIT North America index presents public

Real Estate. This index is derived by the National Association of Real Estate Investment

Trusts (REIT) and consists of publicly quoted real estate companies from the United States

and Canada.

Thirdly, we use the S&P GSCI index as a proxy for commodities. The S&P GSCI in-

dex is a composite index of commodity futures traded on the Chicago Mercantile Exchange.

Moreover, it contains commodities from all commodity sectors i.e. energy products (about

75% of which 55% crude oil), industrial metals (7%), agricultural products (13%), livestock

products (4%) and precious metals (2%).

Fourthly, as a proxy for the Emerging Markets Debt data, PGGM suggested to use the follow-

ing two index series. Firstly, we use the JPMorgan Emerging Markets Bonds Index (EMBI).

The JPMorgan EMBI Global diversified composite index is a market-capitalization-weighted

index containing of U.S. dollar denominated Brady bonds, Eurobonds, traded loans, and lo-

cal market debt instruments issued by sovereign and quasi-sovereign entities rated single A

or lower. Because the origin of this index descends from 1994, we use a second index to fill

in the gap from 1990 to 1994. The second index we use is the City Group Brady Bond local

currency index which is an U.S. dollar-denominated bond index issued by emerging markets,

particularly those in Latin America, and collateralized by U.S. Treasury zero-coupon bonds.

Moreover, this index is discontinued since 1994.

The fifth index we use as a proxy for the US High Yield corporate bonds market, is the

2More information can be found on http://www2.standardandpoors.com/, http://www.epra.com,

http://www.jpmorgan.com, https://live.barcap.com, http://www.ml.com/
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2 DATA

Equities Commodities EMD Real Estate Treasury High Yield

Mean 0,00151 0,00126 0,00151 0,00159 0,00105 0,00131

Median 0,0028 0,00156 0,00205 0,00331 0,00122 0,00205

Maximum 0,11407 0,12176 0,09602 0,21948 0,02340 0,05335

Minimum -0,20030 -0,21090 -0,16264 -0,21057 -0,03081 -0,11517

Std. Dev. 0,02376 0,03033 0,01741 0,02866 0,006021 0,009394

Skewness -0,82485 -0,8666 -1,92084 -0,70525 -0,50578 -3,04443

Kurtosis 7,76663 4,56837 16,88074 16,09625 1,68778 34,90347

Jarque-Bera 1060,096 227,6575 8643,056 7229,22 114,3835 43954,4

Probability 0 0 0 0 0 0

Table 1: Descriptive statistics of the weekly log (total) return series

Merrill Lynch US High Yield Master II Index.

The sixth and last index we use, is the US Treasury security index. The US Treasury

security index is an aggregated index of US-dollar denominated publicly issued Treasury

Bonds and Notes with a maturity of at least one year. The Government Bonds and Notes

must be rated investment-grade (Baa3/BBB-) or higher.

We use weekly closing prices ranging from 4/6/1990 to 5/29/2009 which we converted to

weekly log returns. There are 1000 observations in total. Furthermore, to limit the scope

of this thesis, we assume that the weekly data is i.i.d.3. Further research can be done to

overcome the increasing characteristic hurdles i.e. serial correlation and volatility variation

and clustering over time of financial data in higher frequencies such as daily data (see also

the section Further Research). Next in table 1 the data characteristics are given. Moreover,

since PGGM expects an other long term average than is determined by the sample mean

over the given period, we have demeaned the data and added the expected long term return

(see also Appendix A for further data details). In the remainder of this thesis when we refer

to these mean adjusted data we mean the empirical data.

3For monthly data auto-correlations are low as a result of the time averaging of log returns. Weekly data

may have some auto-correlation but are preferred over monthly data because otherwise there are too few

observations in the dataset to be used.
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3 METHODS

3 Methods

3.1 Pitfalls of using linear correlation

As we have noticed in the introduction of this thesis, the most well known and used depen-

dence measure, linear correlation, is not always as adequate as one might think it is. The

underlying assumptions and restrictions of the models using this measure of dependence,

may be too restrictive to get a clear understanding. Wrong model assumptions will lead

to wrong models, which will give misleading outcomes and wrong decisions. To be more

specific, a necessary condition in the use of linear correlation is that the returns used in the

model, should be multivariate normally distributed. Moreover, it is not enough to know

the marginal distributions are normally distributed, but the returns should also be jointly

multivariately normally distributed. Since it is commonly known that asset returns are not

exactly normally distributed but rather contain a negative skewness and excess kurtosis,

using linear correlation might be somewhat misleading. In other words when returns are

not jointly multivariately normally distributed, the commonly used correlation matrix is no

longer adequate to describe the inter-dependence.

This can also be verified from figure 1 where a scatter diagram from the returns series of Eq-

uities against Commodities is shown. Inside the circle returns can follow a joint multivariate

normal distribution 4. But it seems to be that the returns exhibit a larger dependence in the

3rd quadrant which can not be captured by a multivariate normal distribution. Alternative

distributions where one can use the linear correlation as dependence measure are elliptical

distributions (of which the multivariate normal is a special case). However in the case one

uses the elliptical Student’s t distribution, return series can be uncorrelated, that is have a

correlation of zero. However it is not said that the two series are independent, because there

still might exist some dependence in the tails of the distribution. This also becomes clear

from figure 1. Only in the special case when two variables are jointly normally distributed,

uncorrelatedness is equivalent to independence.

Another pitfall of linear correlation is that correlation is not invariant under transforma-

tions of the risks. For example, two random vectors X and Y generally do not have the

same correlation as log(X) and log(Y). Moreover, the two random vectors X and Y could for

example be perfectly positively (negatively) dependent and have a correlation of 1 (-1), but

it is particularly not said that the transformed random vector, log(X) and log(Y), have the

same perfect dependence. In this section it has become clear that the use of linear correlation

is not as straightforward and justified in many cases. For further details and examples of the

pitfalls and fallacies of the use of linear correlation see also Embrechts et al. (1999, 2002) or

Rachev et al. (2005).

4see Appendix A for a derivation of the normal distributed ellipse
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3 METHODS

Figure 1: Scatter plot of Equities vs Commodities

3.2 Introduction to copulas

To be able to model the interdependence between return series in an adequate way one might

consider the use of copulas. The word ‘copula’ originates from the Latin noun for a “link

or tie” that connects two different things.5. The ‘copula’ is first used in the mathematical

literature by Sklar (1959) to describe “a function that links a multidimensional distribution

to its one-dimensional margins” Sklar (1996). Throughout the nowadays literature a copula

is mainly used to refer to the dependence structure between univariate marginals. In this

thesis we will refer to a copula in the same way.

We have already noticed that a great advantage of the copula is the separate modeling

of the dependence and the marginal behavior of the univariate series. Another great ad-

vantage is that the marginal distributions do not have to be similar to each other so that

each marginal distribution can be modeled separately. Most ‘straightforward’ copulas are

the elliptical copulas. A great advantage in the use of elliptical copulas is that one is still

able to use the linear correlation as a measure of dependence in a correct way. Most com-

monly used elliptical copulas are the normal copula (better known as Gaussian copula)

and the Student’s t copula (see for some applications Cherubini et al. (2004), or Kang et

al. (2007), among others). These two copulas match close with the widely used multivariate

normal- and Student’s t distributions and are the most easy to use also in higher dimensions.

5See also http://dictionary.babylon.com/
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3 METHODS

However empirical evidence has shown that Gaussian copulas are not able to capture the

dependence between extreme - non-normal - events in equity markets as shown by Lognin

and Solnik (2001) and Ang and Chen (2002). Moreover, they also show that especially in

times of crises - i.e. in times markets show non-normal behavior - portfolio returns exhibit

larger conditional correlation during market downturns than during market upturns. This

phenomenon is called financial contagion; crisis in one market leads to down movements in

other markets as well while these markets should not be correlated based on fundamental

linkage (moreover see for example Bae et al. (2003), Hartmann et al. (2004) or Rodrigues

(2007)). Based on these empirical findings the Student’s t copula is also disqualified because

although it can be used to model tail dependence it is only good for modelling symmetric

tail dependence.

Other (bivariate) copulas like the Gumbel copula, the Clayton copula (Nelsen (2006)) or

the Joe-Clayton copula (Patton 2006a) have been introduced to better capture asymmetric

dependence structure between return series. Moreover, Gumbel copulas features higher de-

pendence at upper side with positive tail dependence and Clayton and Joe-Clayton Rotated

Gumbel’s copula features higher dependence at lower side with positive tail dependence.

Unfortunately these latter copulas are not well designed for applications in higher dimen-

sions due to computationally difficulties. Different possibilities has been proposed in the

recent literature to build a multidimensional copulas. For example Kang (2007) build a n-

dimensional hierarchical copula, in which multiple bivariate copulas are used to sum up the

n-dimensional hierarchical copulas structure. Moreover, the n-dimensional Student’s t hier-

archical copulas yield the highest log-likelihood while hierarchical Archimedean copulas, like

the Clayton, Gumbel and Frank copula, yields significantly lower log-likelihoods. However

the asymmetric correlations between the stock and bond returns is not fitted well by both the

normal and Student’s t copula. Savu and Trede (2006) developed hierarchical Archimedean

copulas which render more flexible parameters to characterize dependency between each pair

of variables. In their model, each most related pair of variables is modelled by one copula

of a particular Archimedean class and then these pairs are nested by copulas as well. Hu

(2006) studied dependence structure between a number of pairs of major stock indices by a

mixed copula approach that is a weighted sum of three copulas (normal, Gumbel and rotated

Gumbel). Dep et al. (2006) apply in this way a trivariate hierarchical Archimedean copula

structure to model sample selection and treatment effects with applications to family health

care demand.

From the studied literature it becomes clear that Archimedean copulas, structured to cap-

ture asymmetric dependence, do not allow a higher dimensional framework in a direct way.

Moreover, they need a hierarchical structure of multiple bivariate copulas in order to add

up to higher dimensions. On the contrary Gaussian and Student’s-t copulas do allow for a
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higher dimensional approach, but they are not capable to fit asymmetric dependence. It is

however not said that asymmetric copulas always outperform the elliptical copulas when it

comes to goodness-of-fit tests (Kole et al. 2006). Still it is a desired tool to be able to model

the asymmetric tail dependence in higher dimensions.

By the introduction of the so-called Skewed t distribution of Demarta and McNeil (2005)

and the Expectation-Maximization algorithm of Hu (2005), new possibilities have emerged in

order to model asymmetric dependence. Moreover, Hu (2005) introduced an efficient manner

of estimating the multivariate Skewed t distribution of Demarta and McNeil (2005). In this

thesis we will also combine the studies from Demarta and McNeil (2005) and Hu (2005) to

set up a new framework to construct a Skewed t copula from a Skewed t distribution. In this

way we are able to build a higher dimensional copula model with asymmetric dependence.

3.3 Copula theory

Before we can continue the discussion about which copula performs best in terms of fit and

which are preferred over others in some specific applications, we first need to define the cop-

ula theory behind these models. The theoretical copula framework, from which all different

types of copulas are originated, has been introduced by Sklar (1959).

Definition 3.3.1 (following McNeil, Frey and Embrechts (2005))

A d-dimensional copula C : [0, 1]d :→ [0, 1] is a function which is a cumulative distribution

function (cdf) with standard uniform marginal distribution functions. The copula notated as

C(u) = C(u1, ..., ud) with the condition of being a distribution has the following properties:

1. C(u1, ..., ud) is bounded on [0, 1] and increasing in each component ui

2. C(1, ..., 1, ui, 1, ..., 1) = ui

3. For all (a1, ..., ad), (b1, ..., bd) ∈ [0, 1]d with ai ≤ bi we have

2∑
i1=1

...

2∑
id=1

(−1)i1+...+idC(u1,i1 , ..., ud,id) ≥ 0,

where uj1 = aj and uj2 = bj ∀ j ∈ 1, ..., d.

The first property is required for any multivariate df since cdfs are always increasing. The

second property is the requirement of uniform marginals. The third property so-called

the rectangle property, ensures that if the random vector (U1, . . . , Ud)
′ has cdf C then,

P (a1 ≤ U1 ≤ b1, ..., ad ≤ Ud ≤ bd) is non-negative. These three properties characterize a

copula; if a function fulfills them, then it is a copula. Choosing a copula and some marginals

and structuring it in the right way, we will get a multivariate distribution function. This is

9
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due to the following theorem.

Sklar’s Theorem 3.3.2 (Nelson (1999); following Demarta and McNeil (2004))

Let F be an n-dimensional distribution function with margins. Then there exists an n-copula

C such that for all x ∈ Rn:

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), (1)

for some copula C, which is uniquely determined on [0, 1] for distributions F with absolutely

continuous margins. As a consequence of representation (1) any copula can be used to join

any set of univariate cdfs F1, ..., Fd, to create a multivariate cdf F with marginals F1, ..., Fd.

For the purpose of this thesis we concentrate exclusively on random vectors X = (X1, ..., Xd)
′

whose marginal cdfs are continuous and strictly increasing. The copula function C of their

joint cdfs may be extracted from (2) as follows

C(u) = C(u1, ..., ud) = F (F−1
1 (u1), ..., F

−1
d (ud)), (2)

where the F−1
i ’s are the quantile functions of the margins. The copula C can be thought of as

the cdf of the component wise probability transformed random vector F−1
1 (u1), ..., F

−1
d (ud).

The copula remains invariant under a standardization of the marginal distributions (in fact

it remains invariant under any series of strictly increasing transformations of the components

of the random vector X. For later estimation purposes it is useful to know that we can obtain

the copula density from the representation in (2) by stating that the cdf is differentiable.

C(u) = C(u1, ..., ud) =
f(F−1

1 (u1), ..., F
−1
d (ud))

f1(F
−1
1 (u1)) · ... · fd(F−1

d (ud))
, (3)

where f is the joint density and fi, i = 1, . . . , d the marginal densities.

3.3.1 The Multivariate Normal distribution and its Copula

In the coming sections, we consider properties of the normal-, Student’s t- and Skewed t mul-

tivariate distributions, and corresponding copulas. The usefulness of the presented formulas

will be made clear in the sequel of this thesis. As we have seen from the multivariate distri-

bution function we can easily define the normal copula function also named as the Gaussian

copula.

Definition 3.3.1.1 Multivariate Normal distribution

The d-dimensional random vector X = (X1, ..., Xd)
′ is said to have a (non-singular) mul-

tivariate Normal distribution with mean vector µ and positive definite matrix Σ, denoted

X ∼ Nd(µ,Σ), if its density is given by

f(x) =
1

(2π)N/2|Σ|1/2
exp

(
−(x− µ)′Σ−1(x− µ)

2

)
. (4)

10
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Definition 3.3.1.2 Normal Copula

From the previous we can see that the copula of a Nd(µ,Σ) is identical to that of a Nd(0, P )

distribution where P is the correlation matrix implied by the dispersion matrix Σ. The

unique copula is thus given by

CNP (u) = ΦP,d(Φ
−1(u1), ...,Φ

−1(ud)). (5)

The density form of the copula is given by

cNP (u) =
1

(2π)N/2|P |1/2
exp

(
−x

′P−1x

2

)
, (6)

where x = Φ−1(u1), ...,Φ
−1(ud)

′ and u from (0, 1)d.

3.3.2 The Multivariate Student’s t distribution and its Copula

Definition 3.3.2.1 Multivariate Student’s t distribution

A d-dimensional random vector X = (X1, . . . , Xd)
′ is said to have a (non-singular) multi-

variate Student’s t distribution with mean vector µ, positive definite matrix Σ and with ν

degrees of freedom, denoted X ∼ td(µ,Σ, ν), if its density is given by

f(x) =
Γ(ν+d)

2

Γ(ν2 )(πν)
d/2|Σ|1/2

exp

(
1 +

(x− µ)′Σ(x− µ)

ν

)− ν+d
2

. (7)

The covariance of the Multivariate Student’s t distribution is given by

Cov(X) =
ν

ν − 2
Σ. (8)

From this we can see that the covariance matrix is only defined for ν > 2. The multivariate

Student’s t distribution belongs to the class of multivariate normal variance mixtures and

has the representation

Xd = µ+
√
WZ, (9)

where Z ∼ Nd(0,Σ) and W is independent of Z and satisfies ν/W ∼ χ2
ν ; equivalently W has

an inverse gamma distribution W ∼ IG(ν/2, ν/2). That states,

W =
1

W ′/ν
,

with W ′ χ2
ν . For more information about the larger class of elliptically symmetric distribu-

tions to which the normal variance mixtures belong, see Fang, Kotz and Ng (1990) or Kelker

(1970).

Definition 3.3.2.2 Student’s t Copula

The Student’s t copula differs from the normal copula from the difference in distribution.

11
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The copula of a td(µ,Σ, ν) is identical to that of a td(0, P, ν) distribution where P is the

correlation matrix implied by the dispersion matrix Σ. The density of the copula is thus

given by

ctν,P f(x) =
Γ(ν+d)

2

Γ(ν2 )(πν)
d/2 | P |1/2

exp

(
1 +

x′P−1x

ν

)− ν+d
2

, (10)

where x = (t−1
1 (u1), ..., t

−1
d (ud))

′ with t−1
d denotes the quantile function of a standard uni-

variate td distribution.

3.3.3 Multivariate Generalized Hyperbolic distributions and its Copula

Definition 3.3.3.1 Gamma distribution

The random variable X is said to have a gamma distribution, written as X ∼ Gamma(a, b),

if its probability density function is:

f(x) = βαx−α−1 exp (−β/x) /Γ(α) x > 0, α > 0, β > 0. (11)

If X ∼ Gamma(a, b), then 1/X ∼ InverseGamma(a, b). The mean and variance of the

Gamma distribution are given by:

E[X] =
β

α− 1
, if α > 1, (12)

V ar(X) =
β2

(α− 1)2(α− 2)
, if α > 2. (13)

Definition 3.3.3.2 Generalized Inverse Gaussian distribution (GIG)

The random variable X is said to have a generalized Inverse Gaussian (GIG) distribution, if

its probability density function is:

h(x;λ, χ, ψ) =
χλ(

√
χψ)λ

2Kλ

√
χψ

xλ−1 exp

(
−1

2
(χx−1 + ψx)

)
, x > 0, (14)

where Kλ is a modified Bessel function of the second kind 6 . The integral presentation of the

modified Bessel function of the second kind with index λ can be found in Barndorff-Nielsen

et al. (1981) and Abramowitz and Stegun (1965, chapter 9 and 10).

Kλ(x) =
1

2

∫ ∞

0
yλ−1 exp(−x

2
(y + y−1))dy, x > 0. (15)

6The Bessel function of the second kind is one of the solutions from the function Kλ(x) with index λ which

is derived from the modified Bessels’s differential equation. The modified Bessel functions of the second kind

are sometimes called the Basset functions, modified Bessel functions of the third kind (Spanier and Oldham

1987, p. 499), or Macdonald functions (Spanier and Oldham 1987, p. 499; Samko et al. 1993, p. 20). The

modified Bessel function of the second kind is implemented in Matlab as besselk(λ, x). For more information

and derivations of the modified bessel function of the second kind, see also the Wolfram Mathworld website

of Weisstein (2009) at http://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html
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In case of the GIG distribution the parameters of the Bessel function satisfy:

• χ > 0, ψ ≥ 0 if λ < 0,

• χ > 0, ψ 0 if λ = 0,

• χ ≥ 0, ψ > 0 if λ > 0.

In short, we write X ∼ N−(λ, χ, ψ) if X is GIG distributed. The following formulas for GIG

distributed variable X when χ > 0 and ψ > 0 may be needed later,

E[Xα] =

(
χ

ψ

)α/2
=
Kλ+α(

√
χψ)

Kλ

√
χψ

. (16)

Especially when α± 1 and 2, and

E[log(X)] =
∂E[Xα]

∂α

∣∣∣∣
α=0

, (17)

where equation (3.4.7) needs to be evaluated numerically. More details about the limiting

case of GIG can be found in Eberlein and Hammerstein (2003).

3.3.4 Skewed t distribution

When ψ = 0 and λ < 0, GIG becomes the so-called InverseGamma distribution and it

is denoted by X ∼ InverseGamma(−λ, ψ/2). This limiting case of GIG will lead to a

limiting case of generalized hyperbolic distributions called the Skewed t distribution, under

the conditions that λ = −ν/2, χ = ν and ψ = 0 so that we have a IG(ν/2, ν/2) distribution

as we will see soon. The following asymptotic formula is useful when calculating the limiting

density of GIG and GH,

Kλ(x) ∼ Γ(λ)2−λ−1xλ, as x ↓ 0. (18)

Further we have the useful fact that,

Kλ(x) = K−λ(x). (19)

Theorem 3.3.4.1 Generalized Hyperbolic distributions (GH)

If the mixing variableW ∼ N−(λ, χ, ψ), then the joint density of a d-dimensional generalized

hyperbolic distributions in the non-singular case (Σ has rank d) is given by,

f(x) = c
Kλ− d

2

(√
(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ′Σ−1γ)

)
exp

(
(x− µ)′Σ−1γ

)
(√

(χ+ (x− µ)′Σ−1(x− µ))(ψ + γ′Σ−1γ)
) d

2
−λ

, (20)

13
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where the normalizing constant is given by

c =
(
√
χψ)−λψλ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 | Σ |

1
2 Kλ(

√
χψ)

. (21)

A proof is given in Hu (2005).

3.3.5 Multivariate Skewed t distribution

The Skewed t distribution also belongs to the class of multivariate normal variance mixtures

just like the multivariate Student’s t distribution (8) except for an additional term for the

skewness. A random dx1 vector X has a Skewed t distribution7 if

X = µ+ γg(W ) +
√
WZ. (22)

For some function g : [0,∞) > [0,∞) and a d-dimensional parameter vector γ. Where

Z ∼ Nd(0,Σ) and W is independent of Z and satisfies ν/W ∼ X2
ν ; equivalently W has

an InverseGamma distribution W ∼ IG(ν/2, ν/2). When gamma = 0 we again get the

elliptical symmetric distribution. However when γ ̸= 0 it turns into a family of skewed, non

elliptical asymmetric distributions. If we extend the Generalized Hyperbolic distribution

(20) to the multivariate case and continue from section 3.4.1.4 by setting λ = −ν/2, χ = ν

and ψ = 0 in W ∼ N−(λ, χ, ψ) and replace ψλ/2

Kλ(
√
χψ)

by νν/4

Γ(ν/2)2ν/2−1 in equation (20) we end

up with the density function of the skewed multivariate Student’s t distribution given by

f(x) = c
K d+ν

2

(√
(ν + (x− µ)′Σ−1(x− µ))γ′Σ−1γ

)
exp

(
(x− µ)′Σ−1γ

)
(√

ν + (x− µ)′Σ−1(x− µ)γ′Σ−1γ
)− d+ν

2
(
1 + (x−µ)′Σ−1()x−µ

ν

) d+ν
2

, (23)

where the normalizing constant is given by

c =
(
√
χψ)−λψλ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 | Σ |

1
2 Kλ(

√
χψ)

. (24)

We denote this distribution by X ∼ td(µ,Σ, ν, γ). From the normal mixture structure of

the distribution in (22) we also find that the random vector X conditioned on W has the

following distribution

X|W ∼ Nd(µ+Wγ,WΣ). (25)

We can get the mean and covariance of the multivariate Skewed t distribution given by:

E[X] = E [E[X |W ]] = µ+ E[W ]γ = µ+
ν

ν − 2
γ, (26)

Cov(X) = E[Var(X |W )] + Var(E[X |W ]) =
ν

ν − 2
Σ +

2ν2

(ν − 2)2(ν − 4)
γγ′, (27)

7Different Skewed t distributions exist. We stick to this definition throughout this thesis.
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where the covariance is only defined when ν > 4. This is in contrast with the Student’s t

distribution where we had the restriction that ν > 2. This is due to the fact that we use the

mean variance mixture of equation (22).

Moreover, the InverseGamma(α, β) = InverseGamma(ν/2, ν/2) density of W is given by

f(w) = βαw−α−1 exp[−β/w]/Γ(α)

= (ν/2)ν/2w−ν/2−1 exp[−(ν/2)/w]/Γ(ν/2), (28)

for w > 0. For this distribution we have:

E[W ] =
β

α− 1
=

ν/2

ν/2− 1
=

ν

ν − 2
, (29)

Var(W ) =
β2

(α− 1)2(α− 2)
=

2ν2

(ν − 2)2(ν − 4)
, (30)

E[log(W )] = log(β)− ψ(α) = log(ν/2)− ψ(ν/2), (31)

where ψ(x) ≡ d log(Γ(x))/dx is the digamma function.

Since 1/W has the Gamma(α, β) = Gamma(ν/2, ν/2) distribution, we have

E[1/W ] =
α

β
= 1. (32)

Definition 3.3.5.1 Skewed t Copula

The Skewed t copula differs from the Student’s t copula from the difference in distribution.

The Skewed t copula denoted by CtP,ν,γ is identical to a td(0, P, ν, γ) distribution where P is

the correlation matrix implied by the dispersion matrix Σ. The univariate margins are given

by ti(0, 1, ν, γi) distributions for i = 1, ..., d. The unique copula is given by

f(x) = c
K d+ν

2

(√
(ν + x′P−1x)γ′P−1γ

)
exp

(
x′P−1γ

)
(√

ν + x′P−1xγ′P−1γ
)− d+ν

2
(
1 + x′P−1x

ν

) d+ν
2

, (33)

where the normalizing constant is given by

c =
2

2−(v+d)
2

Γ(ν2 )(πν)
d
2 |P |

1
2

. (34)

15



4 ESTIMATION AND SIMULATION

4 Estimation and Simulation

4.1 Introduction to the EM algorithm

To estimate the many parameters of Generalized Hyperbolic distributions in higher dimen-

sions properly, we need to use an efficient framework which is able to estimate the many

parameters within an acceptable time period. To be able to do so we can use the set up of

the expectation-maximization (EM) algorithm of Dempster et al. (1977).

The EM algorithm of Dempster is an iterative optimization method for finding maximum

likelihood (ML) estimates of the parameters of a model which are not directly observable.

These parameters which can not directly be observed are the so-called latent variables. The

EM algorithm consists out of two steps. The first E-step is to take the expectation of the

log-likelihood of the model w.r.t. the latent variables. In the second M-step the parameter

values are computed which maximize the expected log-likelihood which was found in the first

E-step. The parameters computed in the M-step are now used to determine the expectation

of the latent variables in the next E-step. This procedure is iteratively repeated until the

value of the log-likelihood of the (parameters of the) model has converged.

Note that to start the algorithm, initial values are chosen for the parameters. Depend-

ing on these chosen initial values (and obviously the chosen model and the data), the EM

algorithm may stop at a globally suboptimal local optimum.

Much research has been done in the use of EM algorithms for the estimation of generalized

hyperbolic distributions (introduced by Barndorff-Nielsen (1977) and the skewed Student’s t

distribution as a special case (see also Barndorff-Nielsen et al. (1981)). Since then it has been

a challenging task to be able to estimate the parameters of these Generalized Hyperbolic

distributions. Blæsild and Sørensen (1992) used their computer program ‘hyp’ to estimate

the parameters by ML up to the third dimension with a fixed λ. Prause (1999) proposed

some extra restrictions to special cases of the GH, i.e. the multivariate hyperbolic and nor-

mal inverse Gaussian, to be able to estimate the parameters in a higher multidimensional

framework. However the multivariate skewed hyperbolic distribution in higher dimensions

than three was computationally still not tractable. Protassov (2004) proposed a ML method

based on the EM algorithm of Dempster, Laird and Rubin (1977), to estimate the param-

eters for the multivariate GH distributions and the multivariate skewed GH distribution in

arbitrary higher dimension.

Hu (2005) combined the knowledge of Liu and Rubin (1995), Protassov (2004) and Mc-

Neil, Frey and Embrechts (2005) to build a generalized framework for all the different cases

of the multivariate GH distributions. He was the first one who was able to come up with
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a stable EM algorithm with a fast calibration speed which he applies in the field of finance

i.e. risk management, portfolio optimization and the pricing of portfolio credit risk. Further

application of the skewed GH distribution can be found in for example Aas and Haff (2006)

who demonstrates its superiority over some of its competitors in the field of financial risk

management.

Generalized hyperbolic distributions have also been used in a copula framework. Schmid

(2003a) used symmetric generalized hyperbolic distributions to create tail independent cop-

ulas. Demarta and McNeil (2005) and McNeil, Frey and Embrechts (2005) used the skewed

Student’s t distribution to build a bivariate Skewed t copula.

As we earlier noted in this paper, we now combine the frameworks of Demarta and Mc-

Neil(2005) and Hu(2005) to estimate higher dimensional Skewed t copulas. In the next

section we will first describe the general framework of the EM algorithm for estimating mul-

tivariate Skewed t distributions. Next in section 4.1.2 and 4.1.3, we will give a short-handed

notation of the recipe of the EM algorithm for both the multivariate Skewed t distribution

and Student’s t distribution respectively.

4.1.1 Estimation of Multivariate Skewed t distributions

For the estimation of the multivariate Skewed t distribution as a special case of the general-

ized hyperbolic distribution, we use the EM algorithm framework of Hu (2005). Assume that

we have i.i.d. data X1, ..., Xn, where Xi ∈ Rd and we want to fit these data by multivariate

generalized hyperbolic distributions. The parameters are denoted by ζ = (λ, χ, ψ,Σ, µ, γ).

The log-likelihood function that we want to maximize is

logL(ζ;x1, ..., xn) =
n∑
i=1

log fXi(xi; ζ). (35)

However we cannot maximize this function directly i.e. in higher dimensions it would require

an immense amount of computing time to reach convergence (if any). Therefore we use the

conditional normal distribution representation of the generalized hyperbolic random variable.

Now we can estimate most of the parameters (Σ, µ, γ) given that the other parameters

(λ, χ, ψ) are already known or assumed to be some value. More specific the setup of the EM

algorithm introduces latent mixing variables w1, ..., wn which are supposed to be observable

at the beginning and are optimized later on. The log-likelihood function which we need to

optimize with the included latent variables - the so called quasi or augmented log-likelihood

function - is given by

log L̃(ζ;x1, ..., xn, w1, ..., wn) =

n∑
i=1

log fXi,Wi(xi; ζ). (36)
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By the mean-variance mixture definition of generalized hyperbolic distributions, the log-

likelihood function can be rewritten as

log L̃(ζ;x1, ..., xn, w1, ..., wn) =
n∑
i=1

log fXi|Wi
(xi|wi;µ,Σ, γ) +

n∑
i=1

log hWi(wi;λ, χ, ψ) =

L1(µ,Σ, γ;x1, ..., xn|w1, ..., wn) + L2(λ, χ, ψ;w1, ..., wn), (37)

where X | W ∼ N(µ +Wγ,WΣ) and fX|W (x | w) is the density of a conditional normal

distribution, and h(W ) is the density function of a GIG distributed mixing random variable.

We can see from the above equation that the estimation of µ,Σ, γ and λ, χ, ψ can be sepa-

rated by maximizing L1, and L2 respectively. Following the same procedure in the proof of

Theorem 3.3.4.1 (GH) the density of conditional normal distribution can be rewritten as,

fXi|Wi
(x | w) = 1

(2π)
d
2 |Σ|

1
2w

d
2
i

exp
(
(x− µ)′Σ−1γ

)
exp

(
−p
2w

)
exp

(
−w

2
γ′Σ−1γ

)
, (38)

where

p = (x− µ)′Σ−1(x− µ).

From this we can get the log-likelihood function L1:

L1(µ,Σ, γ;x1, ..., xn|w1, ..., wn) =

−n
2
log |σ| − d

2

n∑
i=1

logwi +
n∑
i=1

(xi − µ)′σ−1γ

−1

2

n∑
i=1

1

wi
pi −

1

2
γ′Σ−1γ

n∑
i=1

wi. (39)

From equation (14), we can get the log-likelihood function L2:

L2(λ, χ, ψ;w1, ..., wn) =

(λ− 1)

n∑
i=1

logwi −
χ

2

n∑
i=1

w−1
i − nλ

2
logχ

+
2λ

2
logψ − n log(2Kλ(

√
χψ)). (40)

If we however like to maximize the log-likelihood of the following function we need to know

the mixing variables w1, ..., wn which are not observable. In this stage an iterative procedure

is needed, consisting of an estimation (E) step and a maximization (M) step. In this step,

the conditional expectation of the augmented log-likelihood function given current parameter

estimates and sample data is calculated. Suppose we are at step k, we need to calculate the

following conditional expectation and get a new objective function to be maximized,

Q(ζ; ζk) = E[log L̃(ζ;x1, ..., xn,W1, ...,Wn|x1, ..., xn; ζk)].
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In the M step, we maximize the above new objection function to get updated estimates

ζk+1. From equation (39) and (40), we can see that it is equivalent to updating all the

wi, w
−1
i and log(wi) in the augmented log-likelihood function by their conditional estimates

E[Wi|xi; ζk],E[W−1
i |xi; ζk], and E[log(Wi)|xi; ζk]. In this way, Q(ζ; ζk) is expressed by ob-

servations and known conditional expectations so that it can be maximized as we have just

done. To calculate those conditional expectations, we need the following conditional density

function,

fW |X(w|x; ζ) =
f(x|w; ζ)h(w; ζ)

f(x; ζ)
.

From which we can get in case of the multivariate Skewed t distribution

Wi|Xi ∼ N−(−d+ ν

2
, pi + ν, γ′Σ−1γ), (41)

by using equation (16) and (17) and where χ = π + ν, ψ = γ′Σ−1γ and λ = −(d + ν)/2.

This will give the following equation

E[wαi ] =

(
ρi + ν

γ′Σ−1γ

)α/2 K−(d+ν)/2+α(
√

(ρi + ν)γ′Σ−1γ)

K−(d+ν)/2(
√

(ρi + ν)γ′Σ−1γ)
, (42)

with again,

p = (x− µ)′Σ−1(x− µ).

From this we can derive the expressions for δ, η and ϵ, which we define as δi = E[W−1
i |xi; ζ],

ηi = E[Wi|xi; ζ], ϵi = E[log(Wi)|xi; ζ], so that

ηi ≡ E[wi] =

(
ρi + ν

γ′Σ−1γ

)1/2 K−(d+ν−2)/2(
√

(ρi + ν)γ′Σ−1γ)

K−(d+ν)/2(
√

(ρi + ν)γ′Σ−1γ)
, (43)

and

δi ≡ E[w−1
i ] =

(
ρi + ν

γ′Σ−1γ

)−1/2 K−(d+ν+2)/2(
√

(ρi + ν)γ′Σ−1γ)

K−(d+ν)/2(
√

(ρi + ν)γ′Σ−1γ)
. (44)

Differentiating (42) w.r.t. α yields:

∂E[wαi ]

∂α
=

1

2
log

(
ρi + ν

γ′Σ−1γ

) (
ρi + ν

γ′Σ−1γ

)α/2 K−(d+ν)/2+α(
√

(ρi + ν)γ′Σ−1γ)

K−(d+ν)/2(
√

(ρi + ν)γ′Σ−1γ)
+

(45)(
ρi + ν

γ′Σ−1γ

)α/2 ∂K−(d+ν)/2+α(
√

(ρi+ν)γ′Σ−1γ)

∂α

K−(d+ν)/2(
√

(ρi + ν)γ′Σ−1γ)
. (46)

By using equation (17) we can obtain

ξi ≡
∂E[wαi ]

∂α

∣∣∣∣
α=0

=
1

2
log

(
ρi + ν

γ′Σ−1γ

)
+

∂K−(d+ν)/2+α(
√

(ρi+ν)γ′Σ−1γ)

∂α

∣∣∣∣
α=0

K−(d+ν)/2(
√

(ρi + ν)γ′Σ−1γ)
. (47)
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In case of the multivariate Student’s t distribution these equations will be simplified since

γ = 0. Then the conditional distribution of the latent variable wi will have the form

Wi|Xi ∼ InverseGamma

(
d+ ν

2
,
pi + ν

2

)
.

From which we can derive the expressions for δ, η and ϵ in the same manner again. That is

δi =
ν + d

pi + ν
(48)

ηi =
pi + ν

ν + d− 2
(49)

ϵi = log

(
pi + ν

2

)
− ψ

(
d+ ν

2

)
. (50)

Estimations of Σ, µ, γ are obtained by maximizing L1. Suppose that the latent mixing

variables w1, ..., wn are made observable by the previous estimates we can optimize the

parameters by taking the partial derivative of L1 with respect to Σ, µ, γ

∂L1

∂γ
= 0,

∂L1

∂µ
= 0,

∂L1

∂Σ
= 0.

From the above equation array and (43),(44) and (17) we can get the following estimations

γ =
n−1

∑n
i=1w

−1
i (x̄− xi)

n−2(
∑n

i=1wi)(
∑n

i=1w
−1
i )− 1

=
n−1

∑n
i=1 δi(x̄− xi)

δ̄η̄ − 1
, (51)

µ =
n−1

∑n
i=1w

−1
i xi − γ

n−1(
∑n

i=1w
−1
i )

=
n−1

∑n
i=1 δixi − γ

δ̄
, (52)

Σ =
1

n

n∑
i=1

w−1
i (xi − µ)(xi − µ)′ − 1

n

n∑
i=1

wiγγ
′ =

1

n

n∑
i=1

δi(xi − µ)(xi − µ)′ − η̄γγ′, (53)

where

δ̄ =
1

n

n∑
i=1

δi, η̄ =
1

n

n∑
i=1

ηi, ϵ̄ =
1

n

n∑
i=1

ϵi, (54)

To obtain a more clear view on this, note that we can also rewrite the model used for

estimating the parameters µ, γ and Σ given the data by a linear regression model.

Following Hoogerheide (2009) conditionally on wi (i = 1, . . . , n), we rewrite

xi = µ+ γwi + ε̃i,

20
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with ε̃i ∼ N(0, wiΣ) as

xi/
√
wi = µ

1
√
wi

+ γ
√
wi + εi or

ỹ′i = z′iβ + ε′i, (55)

with εi ∼ N(0,Σ), a Seemingly Unrelated Regression (SUR) model for ỹi = xi/
√
wi with

the same explanatory variables zi = ( 1√
wi
,
√
wi)

′ in all equations. The Maximum Likelihood

Estimator (MLE) of the 2× d coefficients matrix β = (µ γ)′, where(
µ̂MLE|w

γ̂MLE|w

)
= β̂MLE|w = (X ′X)−1X ′y with X = z′iI and y = ỹ′i, is given by:8

β̂MLE|w =

(
1
n

∑n
i=1

1
wi

1

1 1
n

∑n
i=1wi

)−1 (
1
n

∑n
i=1 x

′
i/wi

1
n

∑n
i=1 x

′
i

)

=
1

( 1n
∑n

i=1
1
wi
)( 1n

∑n
i=1wi)− 1

(
1
n

∑n
i=1wi −1

−1 1
n

∑n
i=1

1
wi

) (
1
n

∑n
i=1 x

′
i/wi

1
n

∑n
i=1 x

′
i

)

=
1

( 1n
∑n

i=1
1
wi
)( 1n

∑n
i=1wi)− 1

 ( 1n
∑n

i=1wi) (
1
n

∑n
i=1 x

′
i/wi)− 1

n

∑n
i=1 x

′
i

−( 1n
∑n

i=1 x
′
i/wi) + ( 1n

∑n
i=1

1
wi
) 1n
∑n

i=1 x
′
i



=
1

( 1n
∑n

i=1
1
wi
)( 1n

∑n
i=1wi)− 1


1
n

∑n
i=1 x

′
i(−1 + w̄

wi
)

1
n

∑n
i=1

1
wi
(x̄− xi)

′

 , (56)

and

Σ̂MLE|w =
1

n

n∑
i=1

(ỹi − β̂′MLE|w zi) (ỹi − β̂′MLE|w zi)
′ (57)

=
1

n

n∑
i=1

1

wi
(xi − µ̂− γ̂wi) (xi − µ̂− γ̂wi)

′.

These obtained MLE estimates are in accordance to the equations (51) to (53) from Hu

(2005).

Estimation of λ, χ, ψ is obtained by maximizing L2 from equation (40). To maximize L2, we

8In the SUR model with the same explanatory variables in all equations, the MLE estimator of the

coefficients equals the OLS estimator. (See e.g. Heij et al. (2004).)
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take the partial derivative with respect to χ and ψ and solve the following equation array,

∂L2

∂χ
= 0,

∂L2

∂ψ
= 0.

Solving the above equation array leads us to solve θ =
√
χψ from the following equation

first,

n−2
n∑
i=1

wi

n∑
j=1

w−1
j K2

λ(θ)θ + 2λKλ+1(θ)Kλ(θ)− θKλ(θ) = 0. (58)

We find θ by zero-finder routine in Matlab, fzero. Once θ is solved, we can get parameters,

(χ, ψ)

χ =
n−1θ

∑n
i=1wiKλ(θ)

Kλ+1(θ)
(59)

ψ =
θ2

χ
. (60)

Especially, when λ = −0.5, we have the normal inverse Gaussian distribution, and we are

able to get θ since K−λ(x) = Kλ(x) for any λ

θ =
2λ

1− n−2

n∑
i=1

wi

n∑
j=1

w−1
j . (61)

When ψ = 0 this will give an unknown distribution, however we will get the Skewed t

distribution with ν degrees of freedom, by setting λ = −ν/2 and χ = ν. In what follows ν

can be solved from the equation

− ψ
(ν
2

)
+ log

(ν
2

)
+ 1− n−1

n∑
i=1

wi − n−1
n∑
i=1

log(wi), (62)

where ψ is the di-gamma function. When we use the replacements for w from equation (43

to 17) we get the following for the Skewed t distribution

− ψ
(ν
2

)
+ log

(ν
2

)
+ 1− ϵ̄− δ̄ = 0. (63)

Which we can solve for ν, the degrees of freedom parameter.

When the L1 and L2 are maximized by updating the parameters for k=1, the first step

of the EM algorithm is completed

In the next subsection, we will take a specific look at the ‘numerical recipes’ for fitting

a multivariate Skewed t distribution or a multivariate Student’s t distribution, the two GH

distributions that we focus on in this thesis.
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4.1.2 Recipe of EM algorithm for the multivariate Skewed t distribution:

The EM estimation algorithm of the multivariate Skewed t distribution involves the following

steps: Choose initial values for µj , σj , ν and γj for series (j = 1, 2, ..., J). Take as reasonable

starting values for µ, σ and γ respectively the sample mean, the sample covariance matrix,

ν = 309 and a near zero vector for γ.

Then iterate E-step and M-step until convergence, that is until the log-likelihood function

is maximized:

• E-step: Compute for j = 1, 2, . . . , J :

δij =
(
ρij+ν
γ′Σ−1γ

)−1/2 K−(d+ν+2)/2(
√

(ρij+ν)γ′Σ−1γ)

K−(d+ν)/2(
√

(ρij+ν)γ′Σ−1γ)
E−step

with ρij = (xi − µj)
′Σ−1
j (xi − µj).

ηij =
(
ρij+ν
γ′Σ−1γ

)1/2 K−(d+ν−2)/2(
√

(ρij+ν)γ′Σ−1γ)

K−(d+ν)/2(
√

(ρij+ν)γ′Σ−1γ)
E−step

ξij =
1
2 log

(
ρij+ν
γ′Σ−1γ

)
+

∂K−(d+ν)/2+α(
√

(ρij+ν)γ′Σ−1γ)

∂α

∣∣∣∣∣
α=0

K−(d+ν)/2(
√

(ρij+ν)γ′Σ−1γ)
E−step

• M-step: Compute for j = 1, 2, . . . , J :

γ̂j =
n−1

∑n
i=1 δij(x̄−xi)
δ̄j η̄j−1

M−step

µ̂j =
n−1

∑n
i=1 δijxi−γj
δ̄j

M−step

Σ̂j =
1
n

∑n
i=1 δij(xi − µj)(xi − µj)

′ − η̄jγjγ
′
j
M−step

Solve:

−ψ
(
ν
2

)
+ log

(
ν
2

)
+ 1− ϵ̄j − δ̄j = 0

M−step

using the Matlab fzero command where 1− ϵ̄j − δ̄j = 0 is constant w.r.t. ν, so that it

only has to be evaluated once in the process of solving the equation.

9We tried several starting values for ν and obtained robust results. Also the calculation time remains the

same.
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4.1.3 Recipe of EM algorithm for the multivariate t distribution:

The estimation of multivariate Student’s t distribution, i.e. when γ = 0, can also use above

procedures except that in step E-step the estimates of the parameters are obtained by for-

mulas (48 to 51). For maximizing Σ in the M-step one needs to subtract the γ parameters.

The EM estimation algorithm of the multivariate Skewed t distribution involves the following

steps: Choose initial values for µj , σj , and ν for series (j = 1, 2, ..., J). Take as reasonable

starting values for µ and σ respectively the sample mean and the sample covariance matrix,

ν = 3010.

Then iterate E-step and M-step until convergence, that is until the log-likelihood function is

maximized:

• E-step: Compute for j = 1, 2, . . . , J :

δj =
ν+d
ρij+ν

E−step

with ρij = (xi − µj)
′Σ−1
j (xi − µj).

ηj =
ρij+ν
ν+d−2

E−step

ϵj = log
(
ρij+ν

2

)
− ψ

(
d+ν
2

)
E−step

• M-step: Compute for j = 1, 2, . . . , J :

µ̂j =
n−1

∑n
i=1 δijxi
δ̄j

M−step

Σ̂j =
1
n

∑n
i=1 δij(xi − µj)(xi − µj)

′
M−step

Solve:

−ψ
(
ν
2

)
+ log

(
ν
2

)
+ 1− ϵ̄j − δ̄j = 0

M−step

using the Matlab fzero command where 1− ϵ̄j − δ̄j = 0 is constant w.r.t. ν, so that it

only has to be evaluated once in the process of solving the equation.

The estimation of the multivariate normal distribution involves no latent data. In this case,

the sample mean and covariance matrix are simply the ML estimates.

10We tried several starting values for ν and obtained robust results. Also the calculation time remains the

same.
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4.1.4 Simulation from multivariate distributions

To compare the outcomes of the different risk measures we simulate 10.000 returns from the

different multivariate distributions. To simulate from the multivariate Student’s t distribu-

tion we use the formula11 Xd = µ+
√
WZ from (9), where the second term is given by

Z1,...,Zd√
x2(ν)/ν

with Z ∼ Nd(0, σ).

For the multivariate Skewed t distribution we use the multivariate normal variance mixture

representation of (22). Note that when γ = 0 this will reduce to the student t distributions.

4.2 Specifying the marginal distributions

An important feature of a copula is that the marginal distributions do not need to be in any

way similar to each other, nor is the choice of copula restricted by the choice of the marginal

distribution. This flexibility makes copulas a potentially useful tool for building econometric

models.

To be able to model the dependence structure in a copula as good as possible, one needs to

model the different marginals as accurately as possible. The univariate marginals of the cop-

ula can be derived in three different ways. The first method is to fit parametric distributions

for each margin. Parametric methods for univariate copulas are considered by for example

Joe (1997). Most used parametric models are the normal and Student’s t distribution for

modeling more extreme movements. But although the latter distribution does account for

more extreme movements it is also a symmetric distribution like the normal, which does not

take negative skewness (and possibly also excess kurtosis) well into account. To overcome

these pitfalls Hu (2005) used different kinds of hyperbolic distributions. He found that the

Skewed t distribution fits best in terms of log-likelihood since this distribution accounts best

for the negative extreme events. On the other hand the drawback of this method is that

the incorporated high kurtosis can also account for such extreme values that might not be

realistic.

The second way to derive the copula marginals, is by using a non-parametrical distribu-

tion i.e. an empirical distribution function. The great advantage of this model is its perfect

fit over the sample. The main disadvantage is the fact that the distribution is bounded by the

interval of the most extreme returns movements in the past. When it comes to simulating,

no larger extreme movements can appear in the simulation set than have been occurred in

the past. Given an vector of Xi,1, ..., Xn,d i.i.d. data with for the dth data vector containing

11To simulate from the multivariate normal and Student’s t distribution we use respectively the mvnrnd and

mvtrnd command function in Matlab. Since the mvtrnd command function does not allow for a covariance

matrix (only a correlation matrix), need to scale the returns with the Cholesky factorization decomposition

of the covariance matrix.
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n data points. The jth marginal empirical cdf Fj is given by

F̂j(x) =
1

n+ 1

n∑
i=1

1(Xi,j≤x). (64)

The pseudo-sample from the copula is then constructed by forming vectors U1, ..., Un where

Ûi = (Ui,1, ..., Ui,d)
′ = (F̂1(Xi,j), ..., F̂d(Xi,d))

′. (65)

Note that even if the original data vectors are i.i.d., the pseudo-sample data are depen-

dent, because the marginal Fj estimates are constructed from all of the original data vectors

through the univariate samples Xi,1, ..., Xn,d. Note also that division by n+ 1 in (64) keeps

transformed points away from the boundary of the unit cube.

Many other distributions are proposed to model the extreme behavior of returns. In this

way mixtures of parametrically and non-parametrically methods are combined to account

for all characteristics of returns data in a distribution. This third method approximates the

body of the distribution using a normal, student’s t or empirical distribution. Both the tails

are next modeled using generalized Pareto distribution and used in extreme value theory

like Davison and Smith (1990) and Bouye (2005) did. Hotta et al. (2006) considered the

use of extreme value theory to model only the left tail of the distribution. Moreover, they

modeled the marginal distributions by the generalized Pareto distribution in the left tail

and by empirical distribution otherwise. Sun et al. (2008) used so-called Levy processes and

motions to model the tail of the distribution.

Yet another possibility is to use a mixture of parametric distributions to be able to ob-

tain the best fit. Firstly, because by using a mixture of parametric distributions, a good

approach of the fit of an empirical distribution is guaranteed. Secondly, because we expect

more extreme market movements to happen in the future, we need to specify heavier tails

than is possible by the empirical distribution. Moreover, by applying this method, misspec-

ification of the model and their parameters are also less likely to happen, because the model

is less restricted than normal parametric models. Hamilton (1994) introduced therefore the

use of a mixture of normal distributions to model. To account for even more heavy tails

Hoogerheide (2009) used a mixture of Student’s t distributions. We will follow these latter

methods of both Hamilton and Hoogerheide. Besides these parametric mixture models the

Skewed t distribution is also used to fit the marginals. Moreover, an EM algorithm is used

to find the mixture model that best fits the marginals.

4.2.1 Mixture of Normal distributions (Hamilton (1994))

Suppose the distriution for a d-dimensional vector xi is a mixture of normal distributions.

Then

xi ∼ N(µj ,Σj),
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if observation i belongs to regime j (j = 1, 2, . . . , J) with J the number of regimes. Define

zi as the latent J-dimensional vector indicating from which regime the observation xi stems:

if observation i stems from regime j, then zij = 1, zik = 0 for k ̸= j. Now the model is

rewritten as:

xi ∼ N(µj ,Σj) if zi = ej (j = 1, 2, . . . , J),

with ej the j-th column of the J × J identity matrix. Here: Pr[zi = ej ] = πj with πj ≥ 0

(j = 1, 2, . . . , J),
∑J

k=1 πk = 1.

The Likelihood (for observed data x) is given by12:

p(x|θ) =
n∏
i=1

p(xi|θ) =
n∏
i=1

 J∑
j=1

Pr[zi = ej |θ] p(xi|zi = ej , θ)

 =
n∏
i=1

 J∑
j=1

πj pdfN(µj ,Σj)(xi)

 ,
with x = {xi|i = 1, 2, . . . , n}, θ containing parameters µj ,Σj , πj (j = 1, 2, . . . , J). The

complete data likelihood (for observed and latent data) is:

p(x, z|θ) =
n∏
i=1

p(xi, zi|θ) =
n∏
i=1

J∏
j=1

[p(xi|zi = ej , θ) Pr[zi = ej |θ]]zij =
n∏
i=1

J∏
j=1

[
pdfN(µj ,Σj)(xi) πj

]zij
,

with z = {zi|i = 1, 2, . . . , n}. Hence the complete data log-likelihood is:

log p(x, z|θ) =
n∑
i=1

J∑
j=1

{
zij log

[
pdfN(µj ,Σj)(xi)

]
+ zij log(πj)

}
. (66)

The function

k(zi|xi, θ) =
J∏
j=1

[
pdfN(µj ,Σj)(xi) πj

]zij
,

is a kernel13 of a probability function of a multinomial distribution for zi = (z1, z2, . . . , zJ)

given xi and θ, with probabilities

π̃j =
pdfN(µj ,Σj)(xi) πj∑J
k=1 pdfN(µk,Σk)

(xi) πk
,

since this has density

J∏
j=1

[
pdfN(µj ,Σj)(xi) πj∑J
k=1 pdfN(µk,Σk)

(xi) πk

]zij
=

J∏
j=1

{[
pdfN(µj ,Σj)(xi) πj

]zij 1∑J
k=1 pdfN(µk,Σk)

(xi) πk

zij
}

=

J∏
j=1

{[
pdfN(µj ,Σj)(xi) πj

]zij} ( 1∑J
k=1 pdfN(µk,Σk)

(xi) πk

)∑J
j=1 zij

= k(zi|xi, θ)
1∑J

k=1 pdfN(µk,Σk)
(xi) πk

,

12Pr denotes the discrete probability. p denotes the density
13A kernel is a function proportional to a density or probability function
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with
∑J

j=1 zij = 1, where the last factor does not depend on zi.

The EM algorithm for the mixture of normal distributions proceeds as follows:

E-step for zi given xi and θ: Define z̃ij ≡ E[zij |xij , θ] with

E[zij |xij , θ] =
pdfN(µj ,Σj)(xi) πj∑J
k=1 pdfN(µk,Σk)

(xi) πk
.

M-step: Maximize expectation of (66):

n∑
i=1

J∑
j=1

z̃ij log
[
pdfN(µj ,Σj)(xi)

]
+

n∑
i=1

J∑
j=1

z̃ij log(πj).

M-step for πj (j = 1, . . . , J): Maximize

logL2 ≡
n∑
i=1

J∑
j=1

z̃ij log(πj),

w.r.t. πj (subject to
∑J

j=1 πj = 1 and πj ≥ 0 (j = 1, . . . , J)). This yields:

π̂j =
1

n

n∑
j=1

z̃ij .

M-step for µj ,Σj (j = 1, . . . , J): Maximize

logL1 =
n∑
i=1

J∑
j=1

z̃ij log
[
pdfN(µj ,Σj)(xi)

]
,

w.r.t. µj ,Σj (j = 1, . . . , J). This yields

µ̂j =

∑n
i=1 z̃ij xi∑n
i=1 z̃ij

=

n∑
i=1

z∗ij xi,

with z∗ij ≡
z̃ij∑n
i=1 z̃ij

; and

Σ̂j =
n∑
i=1

z∗ij (xi − µ̂j)(xi − µ̂j)
′.

The estimates µ̂j and Σ̂j are the sample mean and covariance matrix in case zi were known,

with z̃i = E[zi|xi, θ] substituted for zi.

4.2.2 Mixture of Student’s t distributions of Hoogerheide (2009)

Suppose the distribution for a d-dimensional vector xi is a mixture of Student’s t distribu-

tions. Then

xi ∼ t(µj ,Σj , ν),

if observation i belongs to regime j (j = 1, 2, . . . , J) with J the number of regimes... [For

estimation of this model see Hoogerheide (2009).]
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4.3 Estimation of the dependence of the Copula

When we have obtained the optimal marginal distribution functions for each series sepa-

rately from the section 4.2, we transform marginal data into data with univariate marginal

distributions by using the cumulative distribution function. Once this is done we are able

to estimate the copula. We follow Demarta and McNeil (2004) and Embrechts (2001) to

estimate the dependence structure.

4.3.1 Normal and t Copula

The estimation of a normal copula is particularly easy. The mean and covariance matrix of

the set of vectors
(
Φ−1(u1), ...,Φ

−1(ud)
)
are ML estimates. In case of estimating a t copula

we can use the density taken from definition 3.3.2. The density of the t copula is given by

ctP,ν(u) =
fP,ν

(
t−1
ν (u1), ..., t

−1
ν (ud)

)∏d
i=1 fνt

−1
ν (ui)

, u ∈ (0, 1)d, (67)

where fP,ν is the joint density of a td(0, P, ν) distributed random vector and fν is the density

of the univariate standard t distribution with ν degrees of freedom.

Since we know the density function we now can use Maximum Likelihood to estimate the

parameters P and ν. The log-likelihood function can now be written as

logL(P, ν;U1, ..., Ud) =

n∑
i=1

log ctP,ν(Ui), (68)

with respect to P and ν, where ctP,ν denotes the density of the t copula in (67).

In case of the t copula in lower dimensions (that is lower than 3), we can use the BFGS

Quasi-Newton method14to optimize the parameters ‘directly’ to obtain the maximum of the

log-likelihood of the copula. Another possibility is to use the simplex method of Nelder and

Mead (1965) for unconstrained nonlinear optimization.15 Although the simplex method is

14We use the fminunc Matlab command, with medium scale optimization method, which uses the BFGS

Quasi-Newton method with a mixed quadratic and cubic line search procedure. This quasi-Newton method

uses the BFGS formula (see Fletcher (1970) or Shanno (1970) for more details) for updating the approximation

of the Hessian matrix. Fminunc finds the minimum of an unconstrained multivariate function min f(x) where

x is a vector and f(x) is a function that returns a scalar. In order to maximize our problem we set f(x) to

-f(x) to get the desired result. A drawback of fminunc is that the command might only give a local solution.

See also the Matlab help for more information. To overcome the optimizing issues of Demarta and McNeil

(2004) in maximizing the correlation matrix P in higher dimensions, we transformed the symmetric correlation

matrix P into a vector by taking the values of the upper triangular matrix of the Cholesky decomposition of

P. Combining this with the degrees of freedom we get a vector of start values for a fast iteration process of

the optimization function.
15The fminsearch Matlab command uses the simplex search method of Lagarias et al. (1998). This is a

direct search method that does not use numerical or analytic gradients as in fminunc. If n is the length of x, a

simplex in n-dimensional space is characterized by the n+1 distinct vectors that are its vertices. In two-space,

a simplex is a triangle; in three-space, it is a pyramid. At each step of the search, a new point in or near the
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generally less efficient than the BFGS Quasi-Newton method for problems of order larger

than two, it can be more robust when the problem is highly discontinuous or multimodal.

This is in contrast to BFGS Quasi-Newton method which demands that the function to

be minimized should be continuous. A drawback of both methods is that they might only

give local solutions. Especially in higher dimensions both methods become very inefficient

in estimating the large numbers of parameters. This is why we have to set up an other

framework to optimize the log-likelihood of the t copula.

current simplex is generated. The function value at the new point is compared with the function’s values at

the vertices of the simplex and, usually, one of the vertices is replaced by the new point, giving a new simplex.

This step is repeated until the diameter of the simplex is less than the specified tolerance. fminsearch only

minimizes over the real numbers, that is, x must only consist of real numbers and f(x) must only return real

numbers. When x has complex variables, they must be split into real and imaginary parts. (See also the

Matlab help or Lagarias et al. (1998) for more information about the properties behind the method.
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4.3.2 EM-within-Simplex for the Student’s t copula

We use a combination of the simplex search method and the EM algorithm to optimize the

log-likelihood of the t copula. This is needed because the EM algorithm requires ‘fixed data’

as an input (and not transformed data depending on copula parameters) in order to fit a

multivariate distribution. In case of the Student’s t copula, we fit a multivariate distribution

to the transformed data (transformed to have t(0, 1, ν) marginals), instead of the original

data. The transformed data depend on ν, so that we can only apply our EM algorithm for

optimization of µ and Σ given ν. We optimize the simplex method in order to optimize ν.

Within the simplex method a second optimization function is placed which uses the EM-

algorithm to maximize the log-likelihood by optimizing the parameters µ and Σ given ν. The

algorithm now exists in choosing initial values for ν, Σj , (j = 1, 2, . . . , J). E.g. µj = sample

mean, Σj = sample covariance matrix times factor (smaller/larger than sample covariance

matrix), ν = 6.

Then apply the EM-within-simplex until convergence, that is until the log-likelihood function

is maximized and ν is optimized:

• simplex algorithm: maximize concentrated log-likelihood of ν. Each evaluation of

the concentrated log-likelihood16 of ν requires optimization of µ and Σ given ν with

an EM-within-simplex step:

• EM-within-Simplex step: maximize log-likelihood given ν by iteration of the fol-

lowing steps:

– E-step: Compute for each variable j = 1, 2, . . . , J :

δj =
ν+d
ρij+ν

E−step

with ρij = (xi − µj)
′Σ−1
j (xi − µj).

17

ηj =
ρij+ν
ν+d−2

E−step

ϵj = log
(
ρij+ν

2

)
− ψ

(
d+ν
2

)
E−step

– M-step: Compute for each j = 1, 2, . . . , J :

µ̂j =
n−1

∑n
i=1 δijxi
δ̄j

M−step

Σ̂j =
1
n

∑n
i=1 δij(xi − µj)(xi − µj)

′
M−step

After the optimal value for ν is found, we can use the EM-algorithm in a final run to maximize

the log-likelihood further by optimizing the Σ and µ given the optimized ν.

16The concentrated log-likelihood of a subset of hte parameters is the log-likelihood where all other param-

eters have been optimized conditionally upon the values of the subset.
17xi are data ‘within the copula’, transformed to the marginal t(0, 1, ν) distribution.
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4.3.3 Skewed t Copula

Next we continue with estimating the Skewed t copula. If we construct the density of the

Skewed t copula from section 3.4.3 we get the following:

ctP,ν,γ(u) =
fP,ν,γ

(
t−1
ν,γ1(u1), ..., t

−1
ν,γd

(ud)
)∏d

i=1 fit
−1
ν,γi(ui)

, u ∈ (0, 1)d (69)

Where fP,ν,γ is the joint density of a td(0, P, ν, γd) distributed random vector and fi is the

density of the univariate standard Skewed t distribution ti(0, 1, ν, γi).

Now two problems arise; first, we can not compute the inverse of a Skewed t cumulative

distribution function using an efficient built-in standard function, since it does not exist.18

Second, using a grid is also problematic because then you have to choose the cut off points

arbitrarily to define near zero and near one inverse cdf values. The interval and the width

of the subintervals (i.e. the number of grid points) of the Skewed t cumulative distribution

function is then arbitrarily chosen which we want to avoid. This is why we approximate the

inverse cdf by simulating 100000 td(0, 1, ν, γ) variables.

Another problem arises when we try to maximize the log-likelihood function of (69) because

of the addition of the γ parameters, the total number of parameters in higher dimension is

too large to be optimized at once. To overcome these problems we apply again a combina-

tion of the simplex search method and the EM algorithm of the Skewed t distribution from

section 4.1.2 to estimate the parameters of the Skewed t copula. Before we can estimate the

dependence structure we first need to estimate the uniform marginals which exists in the

following steps:

• First, we use the methods described in section 4.2 to obtain the best marginal distri-

butions with parameters estimated parameters µ,Σ, ν and γ

• Second, we simulate 100.000 draws from an td(0, 1, ν, γ) distribution using equation

(22) with the estimated parameters from step 1 for each marginal i = 1, ..., d

• Next, we match margins from step 2 with the corresponding quantile functions using

equation (64)

Now the dependence structure of the copula can be estimated.

18No function skewtinv (like the tinv function) exists in Matlab.
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4.3.4 EM-within-Simplex algorithm for the Skewed t copula

We use a combination of the simplex search method and the EM algorithm to optimize

the log-likelihood of the Skewed t copula. The simplex search method maximizes the log-

likelihood by optimizing the parameter ν and γ. Within the simplex method a second

optimization function is placed which uses the EM-algorithm to maximize the log-likelihood

by optimizing the parameters µ and Σ. The algorithm now exists in choosing initial values

for ν, Σj , (j = 1, 2, . . . , J). E.g. µj = sample mean, Σj = sample covariance matrix times

factor (smaller/larger than sample covariance matrix), ν = 6 and γ = 15.

Now apply the EM-within-simplex algorithm until convergence, that is until the log-likelihood

function is maximized and ν and γ is optimized:

• simplex algorithm: concentrated loglikelihood of ν and γ. Each evaluation of the

concentrated log-likelihood of ν and γ requires optimization of µ and Σ given ν and γ

within an EM-within-Simplex step:

• EM-within-Simplex step: maximize log-likelihood given ν and γ by iterating the

following steps:

– E-step: Compute for each variable j = 1, 2, . . . , J :

δij =
(
ρij+ν
γ′Σ−1γ

)−1/2 K−(d+ν+2)/2(
√

(ρij+ν)γ′Σ−1γ)

K−(d+ν)/2(
√

(ρij+ν)γ′Σ−1γ)
E−step

with ρij = (xi − µj)
′Σ−1
j (xi − µj).

19

ηij =
(
ρij+ν
γ′Σ−1γ

)1/2 K−(d+ν−2)/2(
√

(ρij+ν)γ′Σ−1γ)

K−(d+ν)/2(
√

(ρij+ν)γ′Σ−1γ)
E−step

ξij =
1
2 log

(
ρij+ν
γ′Σ−1γ

)
+

∂K−(d+ν)/2+α(
√

(ρij+ν)γ′Σ−1γ)

∂α

∣∣∣∣∣
α=0

K−(d+ν)/2(
√

(ρij+ν)γ′Σ−1γ)
E−step

– M-step: Compute for j = 1, 2, . . . , J :

µ̂j =
n−1

∑n
i=1 δijxi−γj
δ̄j

M−step

Σ̂j =
1
n

∑n
i=1 δij(xi − µj)(xi − µj)

′ − η̄jγjγ
′
j
M−step

After the optimal value for ν and γ is found, we can use the EM-algorithm in final run to

maximize the log-likelihood further by optimizing the Σ and µ given the optimized ν and γ.

19With xi tj(0, 1, ν, γj).
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4.3.5 Simulation from the copulas

To simulate from a normal-, Student’s t- or Skewed t copula, we generate a normal-, Student’s

t- or multivariate Skewed t distributed random vector X ∼ Nd (using the normal variance

mixture construction of (9) or (22) in case of the Student’s t- or multivariate Skewed t

distribution) and then return a vector U = (F (X1), ..., F (Xd))’, where F denotes a standard

univariate distribution. Schematically we have the following order:

• Simulate from the particular multivariate distribution

• Transform to simulation to u[0, 1] variables

• Transform the u[0, 1] variables to multiple univariate marginals again.

4.3.6 Evaluation of the copula performance

To measure and compare the performance of the different copula models, we will calculate

the log-likelihood of each model. We also use Akaike’s Information Criterion (AIC) and the

Bayesian Information Criterion (BIC). The AIC and BIC criteria are given as follows:

AIC = −2 log(L) + 2 ·# parameters, (70)

BIC = −2 log(L) + log(# observations) ·# parameters. (71)

The choice of the mixture model and the number of parameters to fit the marginals will be

based on the AIC criterion.20 To compare the impact of the crisis, we have evaluated two

periods; the first period will run from Jan 1990 to May 2009 and the second period will end

before the crisis began, that is from Jan 1990 until December 2007. We will first take a

look at the fit of the marginals. Thereafter we will compare the performance of the different

(copula) models. Finally we will say something about the simulation results.

20Since the number of parameters is restricted by the number of chosen components the number of param-

eters will grow very fast by adding more components to the mixture models, the BIC criteria is therefore not

our desired criteria.
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5 Model Results

In this section we will discuss the performance of the copulas and their marginals in terms

of goodness of fit. In section 5.1 we will discuss the marginal fit of the copulas. In section

5.2 we will discuss the copula fit and the performance of the multivariate models. In section

5.3 we will discuss the scatterplots of the different models. We will conclude in section 5.4.

We have compared the performance of nine different models for the six series over two

different data periods. The first set of three models consists of the multivariate normal- the

Student’s t- and the Skewed t models. The second set of models consists of the normal- Stu-

dent’s t- and Skewed t copula model with marginals of a mixture with normally distributed

components. The third set of models exist of the normal- Student’s t- and Skewed t copula

model with marginals of a mixture with Student’s t distributed components.

5.1 Marginal fit

The performance in terms of log-likelihood, AIC and BIC of each marginal distribution is

shown in table 6 and 7 in the appendix 21. The fit of the different marginals over the period

until May 2009 is shown in figure 13 and 14. The parameter estimates of the different

marginals over the period until May 2009 are shown in table 8 and 9. By taking a look at

the time period until December 2007 we can see that based on the performance of the AIC

we should choose 4 out of 6 marginals from the combination of multiple normal distributions.

On the other hand by looking at the log-likelihood it is noticeable that only the marginal

distribution containing only 1 component of the normal distribution performs worse than all

other combinations of mixtures of that specific marginal. Moreover, except from taking one

normal distribution as marginal, the performance of all other marginals differ only slightly

from each other based on the AIC criterion. For the data until May 2009 it becomes clear

that choosing a mixture of multiple marginals is - except for High Yield - always preferable

over choosing only one distribution to fit each marginal (based in the AIC criterion). Still

the table shows that the addition of the mixture of Student’s t components offers the best

performance in 4 out of 6 marginals over this data period. Only EMD remains committed to

the Skewed t distribution in comparison with the other data period. Moreover, only EMD,

Real Estate and High Yield change in numbers of components for the normal mixture case,

that is 7 to 5 components, 3 to 2 components and 6 to 3 components respectively. Other

mixture models do not change over the different periods.

21The results in table 6 and 7 show sometimes a decreasing log-likelihood by an increasing number of

components, which should be impossible because the models are nested models. This however might be

due to the fact that either a local solution is found or because the optimization procedure has converged

preliminary. Either way the returned solution turns out to be an illusional convergence.
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5.2 Copula fit

To obtain a good overview of the dependence in each copula, a graphical representation of

the densities of the normal-, Student’s t and Skewed t copula is given in figure 3 to 7 in the

appendix. The figures all show the dependence of a two-dimensional (bivariate) copula for

different parameter values.

Several phenomena are reflected by the figures. For large degrees of freedom ν (ν = 50), we

obviously observe that results for the Student’s t copula are similar to results for the normal

copula, since the Student’s t distribution tends to the normal distribution for growing ν.

This also holds for the Skewed t distribution, since for growing ν the variable W tends to

the constant 1.

For correlation parameter ρ = 0, we observe independent uniform variables in case of the

normal copula, whereas the Student’s t and Skewed t copulas (with low ν) exhibit tail de-

pendence. The reason is that large draws of W cause extreme values for both variables.

The parameter ρ can be roughly interpreted as the level of dependence or co-movement in

general: for higher ρ the points in the scatter plots come closer to the diagonal line of the

case of perfect correlation. Note that also the normal copula can produce data sets with

extreme losses occurring together, but only at the cost of a high dependence in all periods.

Only for moderate or low ν (that is, for truly non-normal copulas) we can observe tail

dependence that differs from dependence in general. For the Student’s t copula, the picture

always shows that the situation is symmetric for large profits and losses. The Skewed t

copula allows for asymmetric shapes. For γ = 0, the Skewed t copula obviously reduces to

the Student’s t copula. For γ ̸= 0, asymmetric shapes are observed (i.e. as long as ν is small,

since otherwise the Skewed t distribution reduces to a normal distribution for any γ).

If only one element of the 2-dimensional vector γ is non-zero, in our example the second

element is -1, then this, roughly stated, allows the second variable to break free from the

general dependence structure: extremely low values (losses) are also observed when the first

variable has high values (profits), even if the correlation parameter ρ = 0.9.

If both elements of γ have the same sign, in our example both negative, then this, roughly

stated, allows the variables to have a negative tail dependence that exceeds the level of gen-

eral dependence; there is negative tail dependence even if the correlation parameter ρ = 0.

The larger (in absolute sense) the γ gets, the stronger the negative tail dependence gets (in

addition to the dependence in a Student’s t copula with the same ρ and ν).

To measure the fit of the different copula models we take a look at their log-likelihoods.
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Table 2: Log-likelihood of different models for data Jan90-Dec07

Model LogL AIC BIC

multivariate normal 1,62E+08 3,76E+01 6,37E+01

multivariate t 1,67E+08 3,96E+01 6,66E+01

multivariate skewed t 1,67E+08 5,16E+01 8,44E+01

normal cop with mixnormal marg 3,33E+06 -6,37E+06 -5,65E+06

t cop with mixnormal marg 3,90E+06 -7,47E+06 -6,70E+06

st cop with mixnormal marg 3,94E+06 -7,44E+06 -6,38E+06

normal cop with optmix marg 3,34E+06 -6,38E+06 -5,66E+06

t cop with optmix marg 3,90E+06 -7,49E+06 -6,71E+06

st cop with optmix marg 4,02E+06 -7,60E+06 -6,54E+06

We have also used the AIC and BIC criteria to adjust the models for their number of pa-

rameters. In table 3 and 2 the performance in terms of log-likelihood and both criteria AIC

and BIC are shown. Note that the log-likelihoods for the different copulas shown in these

tables are only based on the joint copula structure (that is, the log-likelihoods of the different

marginals are not added). Based on the total log-likelihood (by addition of the log-likelihood

of the marginals) the skewed t copula always outperforms the other (copula) models. The

AIC criteria shows the same result over the period until May 2009. Based on the BIC criteria

the t copulas always should be chosen. The multivariate Skewed t distribution is the best

model among the multivariate models over all criteria.

To be able to measure the tail dependence among the different variables within the Skewed

t copulas, we look at the γ’s. The γ of each marginal is shown in table 10 and 11 in the

appendix. From the tables it becomes clear that Treasury is not dependent with the other

marginals in the tail of the distribution. Especially the Skewed t model with marginals of

a mixture of normals shows a large dependence between Real Estate and High Yield. From

table 14 it becomes clear that all of the models have some difficulties to model the right

means. The copula models with the normal mixture marginals show least deviations from

the mean. The Skewed t copula models which performed best on the log-likelihood show

here some poor fittings, especially for EMD for the period until May 2009. When we take

a look at the σ’s of the different models it becomes clear that the different models incor-

porate the standard deviation from the mean pretty well. That is except for the copulas

with the optimal mixtures of marginals, which show a too large standard deviation for some

marginals. This also becomes immediately clear from the fit in term of skewness and kurtosis

shown in table 16 and 17 in the appendix. Remarkable is the fact that these same copula

models have great difficulties in fitting the skewness and kurtosis of Real Estate over the

whole data period. They show a much better fit over the period until December 2007. Also

the multivariate models show the worst performance this time.
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Table 3: Log-likelihood of different models for data Jan90-May09

Model LogL AIC BIC

multivariate normal 1,66E+08 3,76E+01 6,46E+01

multivariate t 1,76E+08 3,95E+01 6,75E+01

multivariate skewed t 1,76E+08 5,15E+01 8,55E+01

normal cop with mixnormal marg 4,57E+06 -8,84E+06 -8,10E+06

t cop with mixnormal marg 5,69E+06 -1,11E+07 -1,03E+07

st cop with mixnormal marg 5,82E+06 -1,12E+07 -1,01E+07

normal cop with optmix marg 4,60E+06 -8,89E+06 -8,16E+06

t cop with optmix marg 5,72E+06 -1,11E+07 -1,03E+07

st cop with optmix marg 5,88E+06 -1,13E+07 -1,02E+07

5.3 Scatterplots

An other way to look at the performance and fit of the different models is to look at the scat-

terplots of different combinations of marginals. Since it is impossible to show all dependence

between the marginals at the same time, we plotted the simulated log returns for Equities vs.

Commodities, EMD vs. Treasury and Real Estate vs. High Yield. The outcomes are shown

in figure 15 to 23 in the appendix. By comparing the different multivariate models we can

see the grow in the number of outliers as we move from multivariate normal to Student’s t

and from Student’s t to Skewed t. Also the heaviness on the (onesided) tails becomes clearer

from the scatterplots of the multivariate Skewed t distributions. From the copula models

with mixtures of normals the difference in fit becomes somewhat more clear than from the

multivariate models. The normal copula with normal marginals performs worst in terms of

tail dependence (which is by definition the case). Especially the dependence between Real

Estate and High Yield is not covered at all. The t copula and the Skewed t copula show

much better performance in this manner. By moving from marginals with mixtures of nor-

mals to marginals with mixtures of Student’s t components or single Skewed t distributions

we can see much difference. That is the presence of outliers becomes clear in the case of the

scatterplot between Real Estate vs. High Yield. On the other hand the tail dependence is

better shown in case of the t copula and Skewed t copula.

5.4 Conclusions on copulas

Based on all foregoing results it is hard to obtain an unambiguous and straightforward model

choice. Actually we can draw some different conclusions from the different outcomes. By

looking purely at the copula models we have to make a choice which marginals to use and

which copula dependence one wants to use. The optimal choice of marginals based on the

AIC criteria is to use a mixtures marginal model of t components or to use a single Skewed
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t distribution. On the other hand by comparing the outcomes of the scatterplots it is prob-

ably not desirable to choose these marginals since the outliers are of great magnitude. This

is however not due to the way these models are estimated because these mixtures with t

components do perform well on log-likelihood and AIC. It is rather the consequence of using

the normal variance mixtures at the simulation part. The impact of the additional χ2 dis-

tributed random variables is disastrous since these models show bad performance in terms of

the main characteristics that is mean, std, skewness and kurtosis. Moreover, based on these

outcomes one should prefer the marginals of mixtures of normals.

To determine the dependence structure of the copula, we have looked at the performance

in terms of log-likelihood, AIC and BIC. Based on the log-likelihood and AIC the Skewed t

copula, with marginals of a mixture of Student’s t components or single Skewed t distribu-

tion, is overall best. The second best performing is the Skewed t copula with normal mixture

marginals, but due to the conclusions drawn from the marginal fit and scatters we prefer the

latter.
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6 Risk measures

Now that we know the goodness of fit of each discussed model, we will apply these different

models in the field of risk management. To be able to compare the performance of these

different models in terms of risk, we will first have to come up with a workable definition

of risk. Thereafter we will be able to define a proper risk measure. Next we will describe

some widely used risk measures. In the following sections we will evaluate the performance

of our models with the use of these risk measures. In the last section we will conclude on

risk measures.

Risk is defined as the quantifiable likelihood of loss or less-than-expected returns. Since

unexpected losses occur quit often on financial markets, risk managers needs to be aware

of the risks they run on their portfolios or on their entire asset exposure. To be able to

define a good risk measure Artzner et al. (1997, 1999) introduced a list of properties a good

risk measure should have. When all these requirements are met the risk measure is called

coherent.

Definition 6.1: A risk measure ρ : G→ R is called coherent if it is:

1. translation invariant: ρ(X + ra) = ρ(X)− a, ∀ X,Y, a ∈ R

2. sub-additive: ρ(X + Y ) ≤ ρ(X) + ρ(Y ), ∀ X,Y,X + Y ∈ R

3. positive homogeneous: ρ(tX) = t(ρ(X), ∀ ρ ≥ 0 and for all X and t ∈ R

4. monotonous: ρ(X) ≥ ρ(Y ), if X ≤ Y ∀ X,Y ∈ R

where G is a set of real-valued R random variables describing possible solutions. X and Y

are random variables and a is the total rate of return on a risk free investment.

Property 1 states that adding or subtracting cash to a position X and investing it in a

reference instrument against the risk free rate reduces the risk by that same amount. Prop-

erty 2 reflects the idea of a diversified portfolio which will reduce the risk compared to

separate investments. Or to put it in the words of Artzner (1997): “A merger does not

create extra risk”. Property 3 states that the risk of a position depends linearly on the size

of the position (when we do not account for liquidity issues). The last property states that

all positions that lead to higher losses in every state of the world require more risk capital.

One of the most well known risk measures is Value at Risk (VaR) introduced by J. P.

Morgan in 1994. VaR is an estimate of the maximum loss that the portfolio could incur

within a given time period and at a given confidence level. In other words, if the 99% daily

VaR is ’X’, then there is a 99% chance that the portfolio will not lose more than amount X
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in the following day. VaR at 95% and 99% confidence levels are the most commonly used

tail-risk measures. The definition of VaR is as follows:

V aRα(L) = qα(FL) = F−1
L (α), (72)

where qα(FL) is the quantile of the cdf of L and F−1
L the inverse of FL.

Because of its simplicity and its great suitability the Basel committee on Banking Supervi-

sion suggested in 1995 to use a 10 day Value at Risk at a 99% level which banks need to

reserve for the possible occurrence of unexpected great losses of their asset exposure. Despite

the major use of VaR, it is also widely known that it suffers from two inadequacies. First,

it provides no information about losses at points beyond the confidence threshold. That

is, if a loss beyond the VaR does occur, no information is available of how large that loss

might be, which is of great concern for portfolio managers. Second, VaR does not completely

capture the benefits of diversification in non-normal scenarios which is empirically confirmed

by i.e. Hyung and De Vries (2005). This issue is put forward in the subadditivity property of

a coherent risk measure defined by Artzner et al. (1999) as we have seen earlier. As Artzner

et al. (1999) shows, VaR is not additive in some circumstances.

The most commonly used risk measure that resolves both the above problems with VaR

is called Conditional VaR (CVaR) better known as Expected Shortfall (ES). Moreover on

the coherence of ES see for example Artzner et al. (1999)or Acerbi and Tasche (2002), among

others. The expected shortfall is the expected loss given that the VaR is exceeded. It is de-

fined as follows:

CV aRα(L) = E[L|L > F−1
L (α)], (73)

where qα(FL) is the quantile of the cdf of L and F−1
L (α) the inverse of FL. In other words

for a 99% weekly VaR, the corresponding “99% weekly ES” would be the average loss in 1%

of the weeks where losses greater than VaR have occurred.

Yet another coherent risk measure in which PGGM is particularly interested, is the (Ex-

pected) Maximum Drawdown (MDD). This risk measure is not as widely known as VaR or

ES, but is sometimes preferred over VaR en ES, see for example León and Laserna (2008).

The Maximum Drawdown is a totally different risk measure since it focuses mainly on the

performance of the relating series over time. MDD is defined as the maximum sustained per-

centage decline (peak to through) which has occurred in an asset or - portfolio investment

within a certain period of time. The formal definition is as follows:

MDD[0,T ] = min

(
VT − Vmax
Vmax

,MDD[0,T−1]

)
, (74)

where V is the index value and where Vmax = max{V[0,T−1]}. As can be seen from the figure

below the Maximum Drawdown for the S&P 500 index from October 2007 until March 2009
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was: -56.2%.

Furthermore, for an application of MDD see for example Rotundo and Navarrab (2007), who

study the MDD during speculative bubbles. For a discussion about the coherence properties

of MDD see Chekhlov et al. (2003) or Leal and Mendes (2005).

Figure 2: Maximum Drawdown of S&P500 index

6.1 Evaluation of the risk measures

In the next section we will evaluate the different risk measures over the nine different models

describes in the section 3. We have tested these nine different models over two time periods.

The first period contains weekly data from Jan 1990 until May 2009. The second time

period contains weekly data from Jan 1990 until December 2007 to measure the impact of

the financial crisis which started during 2008. We have calculated the historical VaR, ES

and MDD over al the series and compared these with the ‘historical’ VaR, ES and MDD

over the simulated series of all different models. It should be noted that we expect to gain

some larger Maximum Drawdowns than the real data shows since we have simulated 10.000

log returns which returns in ten times more data points than the real data has. Since there

are more simulated data points there is also a major chance in simulating a longer series of

negative returns. Furthermore, to be able to compare the models in terms of portfolio risk,

we consider a equal weighted portfolio of the different assets.
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6.2 Risk measure Results

In the appendix in table 18 to 27 an overview is given of the different risk measures of the

assets and the performance of the different models. By looking over the period until De-

cember 2007 at the 5% VaR in table 18, we do not see very much difference between the

various models. All models seem to slightly underestimate the risk at the same degree. At

the 1% VaR in table 19 the difference between the multivariate models becomes somewhat

more clear although even the multivariate skewed t distribution still undervalues the risk.

The same can be said for the copula models. Only Treasury (and EMD in lesser extent)

are well being estimated by the different models. In case of 5% CVaR (table 20) the mul-

tivariate normal- and t distribution show most strain in estimating the risk. The copula

models with the optimal mixtures components for the marginals show some overestimating

results for EMD. But over the whole the copula models show similar results. When it comes

to 1% CVaR (table 21) all models show large problems in estimating the risk of -14,7% of

Real Estate. The multivariate Skewed t distribution has the best approximation with -8,3%.

The copula models with the optimal marginals overvalue the risk for EMD in a major way.

The multivariate normal distribution shows most trouble in estimating the risk. Also the

multivariate Student’s t distribution has difficulties. When we look at the performance of

the different models for the Maximum Drawdown risk measure we find large deviations from

the real data for some models. For Equities and Treasury the multivariate Student’s t dis-

tribution shows the best results this time. No model is able to recall the small Drawdown of

Treasury. Except for the copula models with optimal marginals, the Maximum Drawdown

is best estimated for EMD. Moreover,especially at this asset the copula model with optimal

marginals shows the worst performance. No model is able to reproduce the Max Drawdown

of High Yield.

Next we consider the whole time period until May 2009. Table 23 shows the performance of

the different models in terms of 5% Var. From this table we can see that for the 5% VaR most

models do not have difficulties in reproducing the risk. This time the multivariate normal

distribution even overvalues the risk of most assets somewhat. The models show a better

reproduction of the risk of the total sample compared to the model estimated with data until

December 2007. At 1% VaR (table 24) the multivariate models stay somewhat behind on

the copula models. This is especially the case for Real Estate. At 5% CVaR (table 25) most

models perform alright except for the multivariate normal distributions which undervalue

the risk a little bit. For EMD and Real Estate the copula model with optimal marginals

overvalue the risk a bit. Looking at 1% CVaR in table 26, the copula models with the normal

mixture marginals show the best results in replicating the risk performance over the differ-

ent assets. For EMD and Real Estate the multivariate models - and especially the normal

and Student’s t distribution - undervalue the risk, where the copula models with optimal

marginals overvalue the risk somewhat. Looking at the performance of the different models

43



6 RISK MEASURES

for the Maximum Drawdown again it can be said that these models show better results than

the same models over the period until December 2007. This time the risk for High Yield is

better approximated by some copula models. On the other hand looking at EMD we can

see again that this risk is mayorly overvalued by the copula models with optimal marginals.

In table 4 and 5 results are shown from the equal weighted portfolio. Looking at the results

for the models based on the period until December 2007 it becomes clear that most models

have some difficulties in reproducing the portfolio mean and standard deviation, that is ex-

cept for the multivariate normal distribution and the normal copula model with a mixture of

normal marginals. In terms of standard deviation also the Student’s t and Skewed t copula

model are doing well. However when we take a look at the performance on the different

risk measures, we can see some contrary results. Except for the 5% VaR, the multivariate

normal distribution is not capable of reproducing the more extreme risk types. The multi-

variate Student’s t distribution performs really well this time. The multivariate Skewed t

distribution overvalues the different risks somewhat. All different copula models reproduce

the different risks very well. Only the Student’s t- and the Skewed t copula models with

mixtures of Student’s t distributions or single Skewed t distributions overvalue the MDD

quit a bit. This is however due to some extreme outliers in the simulated samples. Overall

it can be said that the copula models with normal mixtures of marginals perform clearly the

best.

Looking at the results on the period until May 2009 in table 5, the different models show

more deviation from each other. This time only the Student’s t copula with normal mixtures

of marginals is able to reproduce the portfolio mean. The other models deviate somewhat

more. When we look at the 5% VaR we can see that most models (with inclusion of the

multivariate normal distribution) overestimate the risk a bit. Only the multivariate Stu-

dent’s t distribution reproduces the same risk as the empirical sample portfolio. When we

look further to the other risk measures, the underperformance of the multivariate normal-

and Student’s t distribution becomes clear. Moreover,based on all remaining risk measures

both models are not capable of reproducing the different risks. The multivariate Skewed t

distribution and the different copula models are well able to reproduce the 1% VaR. Also the

5%CVaR does not cause much difficulties for these models. At 1%CVaR the normal- and

Student’s t copula with mixtures of normals shows some difficulties. Finally by looking at

the MDD risk measure, we see the most deviated results. No model is really able to capture

this risk. Almost all models underestimate the risk. Except the copula models with mixtures

of Student’s t distributions or single Skewed t distributions which overvalue the MDD again

with big numbers.
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Table 4: Results for equal weighted portfolio of different models for data Jan90-Dec07
Model Mean Std 5% VaR 1% VaR 5% CVaR 1% CVaR MDD

Empirical data 0,00137 0,0088 1,3% 2,2% 1,9% 3,1% 17,0%

multivariate normal 0,00139 0,0088 1,3% 1,9% 1,7% 2,2% 15,3%

multivariate t 0,00200 0,0093 1,2% 2,2% 1,9% 2,9% 16,6%

multivariate skewed t 0,00141 0,0097 1,4% 2,7% 2,3% 4,1% 25,2%

normal cop with mixnormal marg 0,00136 0,0090 1,3% 2,3% 2,0% 3,0% 15,7%

t cop with mixnormal marg 0,00140 0,0091 1,3% 2,4% 2,0% 3,1% 17,1%

st cop with mixnormal marg 0,00143 0,0091 1,3% 2,6% 2,1% 3,6% 16,4%

normal cop with optmix marg 0,00126 0,0096 1,4% 2,4% 2,1% 3,8% 18,9%

t cop with optmix marg 0,00121 0,0110 1,4% 2,5% 2,3% 4,7% 30,4%

st cop with optmix marg 0,00119 0,0160 1,4% 2,6% 2,5% 5,5% 71,6%

Table 5: Results for equal weighted portfolio of different models for data Jan90-May09
Model Mean Std 5% VaR 1% VaR 5% CVaR 1% CVaR MDD

Empirical data 0,00137 0,0121 1,4% 3,7% 2,9% 6,3% 43,0%

multivariate normal 0,00133 0,0120 1,9% 2,7% 2,4% 3,0% 26,8%

multivariate t 0,00212 0,0108 1,4% 2,6% 2,2% 3,9% 23,7%

multivariate skewed t 0,00146 0,0116 1,6% 3,3% 2,8% 5,5% 25,3%

normal cop with mixnormal marg 0,00135 0,0114 1,7% 3,4% 2,7% 4,6% 26,4%

t cop with mixnormal marg 0,00137 0,0116 1,6% 3,5% 2,8% 5,2% 22,6%

st cop with mixnormal marg 0,00132 0,0119 1,7% 4,0% 3,1% 6,1% 25,7%

normal cop with optmix marg 0,00119 0,0175 1,6% 3,5% 3,2% 7,1% 72,6%

t cop with optmix marg 0,00109 0,0290 1,6% 3,1% 3,5% 9,1% 93,7%

st cop with optmix marg 0,00122 0,0191 1,6% 3,6% 3,4% 8,5% 84,7%
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6.3 Conclusions on risk measures

Based on the data set until December 2007 the diverse models show not much difference. In

case of 5% VaR, 1% VaR and 5% CVaR the various models all show underperformance. The

differences among the diverse models are minimal. Based on 1% CVaR and Max Drawdown

there is not one model really outperforming the others. Overall can be said that the mul-

tivariate normal- and Student’s t model perform worst of all models. Over the data until

May 2009 the diverse models all perform better. However also this time the multivariate

normal- and Student’s t model perform the worst in the sense that they undervalue the risks

most of the time. In case of the normal distribution this is to be expected because of the

thin tails by definition. On the other hand the copula models with marginals of a mixture

of the Student’s t or Skewed t distributions sometimes overvalue the risk in case of the 1%

CVaR and the Maximum Drawdown. In total it can be said that the copula models with the

mixtures of normals perform best. Especially the Skewed t copula performs well, although

the differences with the Student’s t copula are small. From all the results it should be noted

that there is not one model that always outperforms the other. Moreover,even the best

model still shows sometimes major under- and overestimations.

By looking at the performance of the different equal weighted portfolios, the addition of

a copula becomes really clear. All copula models show a great improvement in estimating

the risk compared to the multivariate distributions. Moreover,among different multivariate

distributions only the multivariate Skewed t distribution reproduces the risks. From the re-

sults it also becomes immediately clear that no model is really able to reproduce the MDD.

Moreover,most models underestimate this risk. On the other hand the copula models with

mixtures of Student’s t distributions or single Skewed t distributions overvalue the MDD

drastically. Overall can be said that the Skewed t copula with marginals of a mixture of

normal distributions is best able to reproduce most different risk measures. On the other

hand is should be noted that an equal weighted portfolio is generally not the most lucrative

or efficient portfolio to hold on. This subject will now be discussed in the next section.
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7 Portfolio optimization

Before we come to an overall conclusion we will also apply our different models in the field of

portfolio optimization. We will describe different methods to minimize the risk of a portfolio

at a required portfolio return by optimizing the weights of the assets within the portfolio.

In section 7.2 we will discuss the optimized portfolios for each model. In section 7.3 we will

conclude on portfolio optimization.

The investors’ belief that higher expected returns come at the cost of greater risk has led to

the introduction of the efficient frontier line by Markowitz (1952). He defined the efficient

frontier as the maximum return given a level of risk or alternatively the minimized level

of risk that must be taken at a required return. Markowitz suggested to use the standard

deviation or variance as measure of risk. Variance however is an inappropriate measure of

risk in case the returns are not normally distributed i.e. when returns are highly skewed

and fat tailed. As we have seen earlier an appropriate risk measure i.e. a coherent risk

measure is Expected Shortfall or Maximum Drawdown (see León and Laserna (2008) for

more information about the MDD case) which will give a good indication of the risk. On

the other hand Embrechts, Mc Neil and Straumann (2001) show that if the underlying dis-

tribution to model returns is elliptical (that is spherically symmetric), then the Markowitz

minimum variance portfolio, for a given return, will be the same as the optimized portfolio.

Moreover,the optimized portfolio will be obtained by minimizing any other risk measure

which satisfies the positive homogeneous and translation invariant restrictions from Artzner

et al. (1999). Embrechts et al. (2001) formulated the following proposition to summarize this:

Proposition 7.1: Efficient Frontier for Elliptical distributions

Suppose X is elliptically distributed and all univariate marginals have finite variance. For

any r ∈ R, let

Q =

(
Z =

d∑
i=1

wiXi|wi ∈ R,
d∑
i=1

wi = 1, E[Z] = r

)
, (75)

be the set of all fully invested portfolios with weights wi and expected return r. Then for

any positively homogeneous, translation invariant risk measure ρ,

argminZ Qρ(Z) = argminZ Qσ
2
Z . (76)

In other words only a difference in the underlying distribution will lead to a different portfolio

allocation at a given return. Hu and Kercheval (2007) propose to use the t distribution or

the slightly better Skewed t distribution to obtain a better fit of the data. In this thesis we

include portfolio return simulations from different multivariate distributions from foregoing

sections. That is normal-, Student’s t-, Skewed t- distributions. Furthermore, we use the

simulations from different copula functions (i.e. the normal-, t- and Skewed t copula with

marginals of a mixture of distributions).
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In the following we construct the efficient frontier for different relevant risk measures in-

cluding VaR, ES(CVaR) and MDD for different confidence levels. Portfolio optimization

using the Drawdown is also considered in Chekhlov et al. (2005) and Magdon-Ismail and

Atiya (2004). Since VaR is nonsmooth, nonconvex (and often not continuously twice differ-

entiable) and therefore cannot be optimized using computationally efficient methods such

as linear programming, many studies have been done to find an appropriate optimization

algorithm. Many papers extract an empirical VaR from other efficient frontiers. For ex-

ample Uryasev and Rockafellar (1999) developed a novel linear programming formulation

to minimize Expected Shortfall. Mausser and Rosen (1999) and Clement (2003) construct

the efficient frontiers for two risk measures (ES and Expected Regret (ER)) which are both

tractable by solving linear programming problems, from which they extract the empirical

VaR.

Another possibility to optimize a complex function like VaR is by using nonlinear opti-

mization tools. In section 4.3 we already used the BFGS Quasi-Newton method and the

simplex method of Nelder and Mead (1965). Both methods are for unconstrained nonlinear

optimization. To be able to easily incorporate restrictions for the function to optimize we

also can use the sequential quadratic programming (SQP) method22 for constrained opti-

mization. The efficient frontier is now obtained by the optimizing the following objective

function with the corresponding constraints:

Minwf(w) (77)

−w′µ ≤ −r,
d∑
i=1

wi = 1,

0 ≤ wi ≤ 1

where µ = (µ1, ..., µd)
′ is the return for asset i and r is the minimum required portfolio

return. w = (w1, ..., wd) is the weight of the total invested capital in asset i = 1, ..., d, where

we assume the initial invested capital is 1. Furthermore, we do not allow for short selling

which is incorporated in the last constrained. The objective function to be optimized, f(w),

is the portfolio variance, VaR, ES (CVaR) or MDD. Due to liquidity constraints and policy

22We use the fmincon Matlab command, which uses the sequential quadratic programming (SQP) method.

In this method, the function solves a quadratic programming (QP) subproblem at each iteration. An estimate

of the Hessian of the Lagrangian is updated at each iteration using the BFGS formula. This is then used

to generate a QP subproblem whose solution is used to form a search direction for a line search procedure.

Shortcomings of the fmincon function is that the function to be minimized and the constraints must both

be continuous. Just like fminsearch and fminunc also fmincon might only give local solutions. When the

problem is infeasible, fmincon attempts to minimize the maximum constraint value. The objective function

and constraint function must be real-valued; that is, they cannot return complex values. An overview of SQP

is found in Fletcher(1980), Gill et al. (1981), Powell (1983) and Schittkowski (1983). See also the Matlab help

or http://www.mathworks.com for more information.
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it is often also not possible or desirable to invest more than a certain amount a in an asset.

To incorporate this constraint we can easily change the last equation in (77) to 0 ≤ wi ≤ a,

where a = (a1, ..., ad)
′ is a vector of upper weights.

When we choose to use unconstrained nonlinear optimization methods we need to incorporate

the constraints into the objective function. The efficient frontier is obtained by the optimizing

the following objective function with the incorporated constraints:

Minw̃F (w̃) (78)

F (w̃) = f(w) + 1(r−w′µ<0) · c · exp(r −w′µ) +
d∑
i=1

1(w−a<0) · d · exp(ai − wi)

with

wi =
exp(w̃i)∑d−1

i=1 exp(w̃i) + 1
for weight of asset i = 1, ..., d− 1

wd =
1∑d−1

i=1 exp(w̃i) + 1

where f(w) is the same function as we have seen earlier, c and d are constants which are large

enough to never end up with a solution that does not meet the requirements. w = (w1, ..., wd)

are the weights as before. Furthermore, we have the temporary weights w̃ = (w̃1, ..., w̃d)

which are the weights that will be optimized by iteration.23 The indicator function incorpo-

rates the restrictions in the form of a penalty function. By adding the exponent, the penalty

increases as the solution draws away from the optimal solution. The first part of the penalty

is defined by the indicator function 1(r−w′µ<0) which starts to work when the solution re-

turned by the optimizer is less than the required return. If we want to restrict the function

of investing more than a certain amount a in an asset, we have to add the second indicator

function 1(w−a<0) into the objective function. To impose the no-short selling constraint we

added the exponent in the last two equations in (78) to prevent the weights of becoming

negative.

7.1 Evaluation of the portfolio optimization

This section we will evaluate the models of foregoing sections in portfolio optimization.

Moreover,we will use the objective function (77) to minimize the risk at a required return.

The risk is defined as one of the foregoing risk measures from section 5, that is the standard

deviation, 5% VaR, 1% VaR, 5% ES, 1% ES and MDD. We will evaluate each model to the

degree that they are able to reproduce the optimal portfolio of the sample data. All models

are estimated over the total sample period until May 2009.

23Note that the real weights w = (w1, ..., wd) are obtained from the temporary weights w̃ = (w̃1, ..., w̃d).
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7.2 Optimization Results

In the appendix in table 18 to 27 an overview is given of the optimization results. We have

used the sequential quadratic programming (SQP) method to optimize the given portfolios.

This is because this method gave the most desirable results. This is due to the fact that

the constraints are explicitly incorporated into the objective function. On the other hand

the unconstrained nonlinear optimization methods need the use of penalty functions which

are very sensitive in their use. When the penalty is too high, the ability of gaining a higher

return is overruled by the high amount of risk it will give in return. Or the opposite problem

will occur, that is if the penalty is too loose the optimizer will always choose the portfolio

which will result in the highest amount of return. Finding an appropriate penalty function

which overcomes these issues takes much time. Besides when the unconstrained objective

function is well specified, both optimization methods will converge to the same optimal so-

lution.

In figure 24 an overview is given of the optimal portfolio weights obtained by the opti-

mizations over different risk measures. The underlying sample data consist of weekly log

returns from April 1990 until May 2009. We can see that the optimization results over all

different risk measures return about the same optimal portfolio. Obvious is the outcome

that Treasury and High Yield form the most safe portfolio, that is the least risk in terms of

the different risk measures. Another remarkable point is the fact that over the total port-

folio weight only a very small portion is allocated to Equities. Moreover, Real Estate and

Emerging Market Debt are very popular when high returns are acquired albeit at the cost

of a higher level of risk.

The figures 25 until 30 show the optimal portfolio weights over the different models from

section 5 at each different type of risk measure. When we compare the results of the different

optimizations shown from the different figures, it becomes clear that the similarity between

the different optimizations per model is large. By consulting the different tables from the

appendix we can clarify the outcomes of each optimization.

Looking at the performance of the multivariate normal distribution in figure 25, we can

see that the optimal portfolio weights are very similar to the sample data. The only major

difference comes from the choice in allocation to Commodities. This result is in accordance

with table 14 where the choice in allocation to commodities is clarified by the high mean

return, although be it at a high cost in terms of deviation (seen from table 15). The mul-

tivariate Student’s t distribution shows about the same result as the multivariate normal

distribution. The major difference can again be explained by the mean return results dis-

played in table 14. The smaller allocation to Treasury is explained by the low mean return

of this asset. The still relatively major proportion to Treasury is clarified by the very low
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level of risk at the required return. When a high return is required the optimizer chooses a

portfolio of Real Estate, EMD, Commodities and Equities. This is in accordance with the

multivariate normal distribution, but differs from the sample portfolio in the fact that the

sample portfolio does not incorporate any allocation to Commodities and Equities at higher

required returns.

The multivariate Skewed t distribution stands out in the extreme high allocation to Eq-

uities at a high required return. This is due to the simulated high mean return of this asset

(shown in table 14). Remarkable is also the fact that no optimal portfolio consists of an

allocation to Real Estate. From table 15 it becomes clear that this is due to the high risk of

this asset.

By looking at the performance of the normal copula model with the marginals of a mix-

ture of normal distributions, we can find a relatively similar result to the optimal chosen

portfolio of the sample data. The only main differences come from the major allocation to

Real Estate at a higher required return, which comes at the cost of a bigger allocation to

High Yield and EMD.

The Student’s t copula with marginals of a mixture of normals looks very similar to the

optimal allocation results of the normal distribution. That is except for the fact that the

t copula has a bigger allocation to EMD at the cost of Real Estate. This is also the main

difference between this model and the optimal portfolio of the sample data. Another differ-

ence is that this model chooses a major allocation to commodities in comparison with the

original model.

When we take a look at the optimal portfolio choice for the skewed t copula model with

marginals of mixtures of normals, we see some clear differences with the original model.

The small allocation to High Yield is outstanding, but explained by the relative small mean

return at relative high risk. The big allocation to EMD and Commodities is explained by

the fact that these two assets provide the highest mean return in this portfolio.

At last we compare the performances of the copula models with marginals of either a mix-

ture of t components or a Skewed t distribution. Looking at the results we can see a clear

contrast with the other models and the sample portfolio. All three models allocate a huge

part of their portfolio to Treasuries. The remaining part of the portfolio is almost totally

allocated to High Yield. The t copula has small part invested in Equities and Commodi-

ties, which is in accordance to the sample model. The normal copula has somewhat more

invested in these two assets but shows very similar results. The allocation of the Skewed t

copula deviates a little bit more from the sample-, normal- and t copula model in the fact

that the allocation towards Equities and Commodities grows substantially up to 60% of the
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portfolio at the highest required mean return. These results are explained by the relatively

high deviation in mean return from the sample data, especially for EMD and Real Estate.

These two assets also display an enormous standard deviation due to some big outliers in

the simulated samples, which can be seen clearly from the scatterplots in the figures 21 to

23 in the appendix.

The efficient frontiers based on the minimizations of different risk measures over the dif-

ferent portfolio models are shown in the appendix. Figure 31 to 36 show the performance of

all models at each risk criteria. Furthermore, the figures 37 until 54 show the same results,

however this time in sets of three models in comparison with the performance of the sample

model. As we look at the different optimizations in general, we can state that all models

show almost each time the same relative performance towards each other. This was also ver-

ified with the optimal portfolio weights which we saw earlier. In general it can be said that

the copula models with the marginals of a mixtures of normal distributions, perform best of

all. Remarkable is the fact that the multivariate normal distribution performs very well over

the different portfolio optimizations. The performance of the Skewed t distribution are also

outstanding albeit in a negative way. This is due to the high mean return of Equities which

we have already seen before. The minimization of the Maximum Drawdown seems to be the

hardest portfolio optimizations of all, since the efficient frontier does not look really like a

smoothed curve. This is probably due to the highly discontinuous function which needs to

be optimized.

The same overall results become even more clear by zooming into the performances of each

set of models. When we compare the different results of the multivariate models it becomes

clear that the multivariate normal distributions always outperform the other models. This is

remarkable since the log-likelihood of this model was clearly less than that of the multivari-

ate Student’s t- and Skewed t distribution. However when we compare the other statistics it

makes more sense. For example from the calculated mean returns from table 14, we can see

that especially the multivariate t distribution overestimates the mean return for each asset.

When we compare the copula models with mixtures of normals we see very similar opti-

mization results. Only at a high required return there is somewhat more dispersion among

the different models. When we compare the performances of the copula models with their

optimal marginal distributions, it becomes clear that the different models have somewhat

more difficulties in copying the sample portfolio. Moreover, it is noticeable that all these

optimal copula models always underestimate the risk.

7.3 Conclusions on Optimization

From the portfolio optimization results we can draw some preliminary conclusions that may

be unexpected to some readers. First of all we have empirically verified that the underlying
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7 PORTFOLIO OPTIMIZATION

distribution is the most important cause of the differences in outcomes and not the choice of

the risk measure. This is also verified by Hu and Kercheval (2007) among others. Moreover

our empirical evidence suggests that we even may possibly extend the result of proposition

7.1 - which states that the choice of risk measure is not determining the optimal portfolio

outcome, but choice in elliptical distribution is - to the case of any distribution than only

elliptical distributions. The bad performance of some models becomes really clear from the

results of the optimized portfolios. Overall it can be said that the multivariate normal dis-

tribution and the normal-,Student’s t- and Skewed t copula with the marginals of a mixtures

of normal distributions, perform best. Although it must be said that no model is able to

precisely copy the results of the sample model. Moreover most models underestimate the

risk and are not able to reach the empirical efficient frontier. Still maybe the most surprising

fact comes from the outstanding performance of the multivariate normal model which clearly

has far less difficulties in approximating the empirical efficient frontier (with mean adjusted

to the preferences of PGGM) than the most advanced models. This is however mostly due

to the fact that most (advanced) models are not well able to reproduce the real mean of each

asset.
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8 Overall Conclusion

The use of copula models in the field of risk management and portfolio optimization does not

really lead to one straightforward overall conclusion. First of all we have tested the estimated

models on their fit in terms of log-likelihood, AIC and BIC. Based on the log-likelihood and

the AIC criteria the Skewed t copula with marginals of a mixture of Student’s t components

and a single Skewed t distribution performed best. Based on the BIC criteria we ended up

with a Student’s t copula. The multivariate Skewed t distribution showed best fit on all

three criteria among the multivariate non-copula models. By looking further at the overall

fit in terms of major statistics (i.e. mean, sigma, skewness and kurtosis) the copula models

with normal mixture marginals performed best.

By comparing the scatter plots we preferred the Skewed t copula with marginals of a mix-

ture of normal components which was the second best model based on the log-likelihood and

the AIC criteria. This model is preferred over the copula models with optimal (mixtures of

Student’s t or Skewed t) marginals, since the performance of these latter models are enor-

mously influenced by outliers. By looking at the multivariate models we did not see any

large deviations from the data sample model in their plot.

Next we have applied the different models in risk management by testing in which way

they were able to estimate the risk accurately in terms of different risk measures. By looking

at the period until December 2007 it is a pity to see that all models had real trouble in repro-

ducing the risk measures, 1% VaR, 1% ES and MDD, which concentrate on the tail events.

Over the period until May 2009 all models showed a real improvement but it was interesting

to see how the optimal copula models, in terms of fit, had overestimated some risks this time.

Especially the 1% VaR and 1% ES were easily overestimated by these models. On the other

hand the multivariate non-copula models also showed difficulties in reproducing the different

risks. Only the multivariate Skewed t distribution was slightly better. Overall could be

concluded that the copula models with mixtures of normal distributions as marginals were

best in reproducing the different risks. It should be noted that it seems as if the choice of the

marginals of the copulas causes the most impact on the risk performance. Moreover based

on the risk results the choice which copula to use, seems of somewhat of less relevance.

At last we applied the different models in the field of portfolio management with the mod-

els estimated over the period until May 2009. We compared the models on their ability to

reproduce the optimal portfolio for the historical sample of data. Also this time the copula

model with the mixture of marginals showed the best results. On the other hand it was a re-

markable fact that the multivariate normal model performed really well, where we expected

that it would undervalue the risk. Continuing on this result it would seem as if no one really

could blame a portfolio manager for using this standard model. It must be said that the
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underperformance of the multivariate t and Skewed t models and their copula variant is not

due to the way they are estimated. It is rather because of the normal mixtures variance

structure in the simulation part which allows for big outliers to occur via the additional ran-

dom variables drawn from the χ2 distribution. The ‘stylized fact’ of asymmetric dependence

is not found for real portfolio relevance for PGGM, at least not for the considered data on

weekly frequency.

In conclusion it can be said that the mixture of Student’s t components does not really

prove to be a good way of estimating marginal distributions, since it tends to overestimate

the tails of the distribution. On the other hand the marginals with mixtures of normals do

give improvement of the copula models.

When it comes to dependence, the estimation results show that the higher dimensional

Skewed t copula provides for a potential model improvement on higher dimensional prob-

lems. Moreover, based both on fit and the applications in the field of risk management and

portfolio optimization, it really provides for a solution to improve the ability to estimate and

reproduce the degree in which certain assets show tail dependence. And although the choice

of the marginals has a big influence on the model outcomes, the dependence between the

different assets is better captured and demonstrated by the use of a Skewed t copula model.

For instance the knowledge that Treasury is not negative dependent with the other assets, is

a desirable result in the use of the Skewed t copula, especially in these times of crisis where

no investment gives a guaranteed insurance.
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9 Further Research

Although this thesis has shown some promising results, still a lot needs to be done in future

research. The substantial improvement of choosing a Skewed t distribution or the Skewed t

copula over the normal- or Student’s t variant leaves room for debate, since no real substan-

tial gain is obtained yet. Whether this is due to the possibly inappropriate way the models

are built, or the choice of the sample data, is the question. The estimation and simulation

process still leave some room for improvement, but it should also be noted that the performed

analysis is based on weekly data. For monthly data, tail dependence of contemporaneous

returns may be stronger, possibly leading to a different conclusion.

Moreover when we take a close look at the scatter plots of the different used index series in

figure 1,10 and 11 it is not ensured that there really exists any structural tail dependence

over time. Moreover, most of the possible evidence in the scatter of Equities vs. Commodi-

ties stems from only one tail observation. From the scatter between EMD and Real Estate

in figure 10 we could come to a similar conclusion. From the scatter in figure 11 Treasury

vs. High Yield no tail dependence should be expected.

The assumed model incorporates no serial correlation or lagged cross-effects. However, the

current financial crisis did not start simultaneously at all different markets. It started with

a credit crunch, which caused a domino effect onto other markets. Consequently certain

tail events appeared in the sample with some delay, where our model assumes that these

occur simultaneously. This caused certain tail dependence in subsequent periods, sometimes

referred to as contagion, not to appear in the estimation results of our advanced models.

Therefore, inclusion of these properties is also a desirable addition to possible further re-

search.

When we take another look at the different figures it also must be noticed that it seems

as if the (tail) dependence structure varies over time. To model the time varying dependence

one might consider to use Markov regime-switching models. Moreover Patton (2006) uses

conditional copulas in which he allows the parameters of a certain copula to vary over time.

Another possibility is to fix the parameters of the copula and switch between different copu-

las over time (see for example Rodriquez (2007), Okimoto (2008), among others). Markwat

et al. (2009) combine both methods to allow the copula to vary in ‘strength’ and ‘structure’

over time. Although these results look very promising, they are only studied for the bivari-

ate case. Combining our higher dimensional (a)symmetric copulas in a time varying manner

may provide for an interesting extension.

Another topic for further research can be found in the study of assets of which only few

observations are available. The index return series we used in this thesis as proxy for the
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different assets all have a very rich history concerning the available data. Other assets, like

Private Equity, might give somewhat more trouble in estimating dependencies. For this pur-

pose one might consider also the use of Bayesian methods (see Gelman et al. (1995) or Sivia

et al. (1996), among others) in a copula context for measuring dependence among assets of

which only a few observations are available.

Where all foregoing methods focus on the return series themselves, much study has to be done

on what are the real return and risk drivers. For example during the last crisis a lack of liq-

uidity became a serious issue for many companies. This causes new dependence relationships

to arise. Where many analysts could not imagine that liquidity would become a problem in

times of crisis, it did. Moreover, also appropriate measures of risk liquidity issues should be

considered. In this sense every crisis may have its one risk driver that causes the dependence.

Other further research might involve the choice of an appropriate optimization procedure.

All the different methods we used i.e. the simplex search method of Nelder and Mead (1965),

the BFGS Quasi-Newton method (see Fletcher (1970), among others) or the (SQP) method

(see Fletcher(1980), among others), did not always provide for the best feasible solution.

Moreover all these methods might return local solutions and thus can not guarantee that

the globally optimal solution will always be found. Another possibility is to simply use more

simulations from each model during optimization. Moreover because of calculation time we

only simulated 10.000 returns series for each asset. However for example Hu (2005) and Hu

and Kercheval (2007) use 1.000.000 simulations in their portfolio optimizations.

Another shortcoming of using only 10.000 simulations comes in the use of the mixtures

models with normal- or Student’s t components. Because if there are multiple components

to fit but there is only a small chance of ending up in a particular distribution, then there

are only few draws taken from that particular distribution. Looking at figure 13 for the com-

modities case, this becomes more clear. To fit the commodities series properly five Student’s

t distributions are used. However the fifth distribution is hardly seen because it contains

very few observations. Moreover especially in the case of using Student’s t distributions

with a small degrees of freedom parameter, we could obtain very different results. Therefore

more research has to be done in order to obtain optimal mixtures of both symmetric and

asymmetric components within the same distribution to fit all desired properties. Using the

mixtures models with Student’s t components or a Skewed t distribution, we have tried to

restrict the parameter of ν on becoming less than 4 to prevent very extreme returns to occur

(not reported). However by restricting the ν parameter to to be larger than 4 the likelihood

of the model descends much, so that a mixture of normals is then preferred over a mixture

of t in every considered sense..

Finally it must be noted that although most advanced models show a better fit, they were
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also often not cable in reproducing the mean of the sample properly. Further research must

be done to combine both flexibility and accurateness in constructing the optimal (marginal)

distribution.
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A Plotting a confidence ellipse: derivation of a normal dis-

tributed ellipse

If two random variables x and y are independent, normally distributed random variables

with mean 0 and variance 1, then the random variables x and y are χ2
2 distributed. From

this we can compute an ellipse of the normal distribution in a scatter plot using the following

formulae:

x̂′Σ−1x̂ = χ2
2,α = d (79)

where x̂ =

(
x

y

)
and Σ−1 =

(
a c

c b

)

From this we can see that

ax2 + 2cxy + by2 = d (80)

Knowing that the angle γ◦: tan γ = y
x so that

y = x tan γ (81)

Now we can use formulae (81) in (80) from which we can get

ax2 + 2 tan γcx2 + b tan2 γx2 = d (82)

From which we can get the following for x:

x2 =
d

a+ 2 tan γc+ b tan2 γ
(83)

so,

x = ±

√
d

a+ 2 tan γc+ b tan2 γ
(84)
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B Normal-, Student’s t- and Skewed t copula: a graphical

illustration of different properties
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Figure 3: Density of a two-dimensional normal(first 3)- and Student’s t copula for different

values of the correlation ρ = 0; 0.5; 0.9 and skewness parameter ν = 3; 8; 50.
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Figure 4: Density of a two-dimensional of bivariate Skewed t copula. With different values for

the correlation ρ = 0; 0.5; 0.9 and skewness parameter ν = 3; 8; 50. The parameter γ = [0 0]

determines the tail dependence. When the skewness is high (i.e. when ν is low) this will lead

to skewed tail dependence if both γ parameters have the same sign and are nonzero. In this

case no skewed tail dependence should be expected.

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0  df=50

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0.5  df=50

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0.9  df=50

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0  df=8

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0.5  df=8

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0.9  df=8

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0  df=3

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0.5  df=3

0 0.5 1
0

0.2

0.4

0.6

0.8

1
rho=0.9  df=3

67



Figure 5: Density of a two-dimensional of bivariate Skewed t copula. With different values for

the correlation ρ = 0; 0.5; 0.9 and skewness parameter ν = 3; 8; 50. The parameter γ = [0−1]

determines the tail dependence. When the skewness is high (i.e. when ν is low) this will lead

to tail skewed dependence if both γ parameters have the same sign and are nonzero. In this

case no skewed tail dependence should be expected.
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Figure 6: Density of a two-dimensional of bivariate Skewed t copula. With different values

for the correlation ρ = 0; 0.5; 0.9 and skewness parameter ν = 3; 8; 50. The parameter

γ = [−1− 1] determines the tail dependence. When the skewness is high (i.e. when ν is low)

this will lead to tail skewed dependence if both γ parameters have the same sign and are

nonzero. In this case little skewed tail dependence should be expected.
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Figure 7: Density of a two-dimensional of bivariate Skewed t copula. With different values

for the correlation ρ = 0; 0.5; 0.9 and skewness parameter ν = 3; 8; 50. The parameter

γ = [−2− 2] determines the tail dependence. When the skewness is high (i.e. when ν is low)

this will lead to skewed tail dependence if both γ parameters have the same sign and are

nonzero. In this case strong skewed tail dependence should be expected.
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Table 8: Statistics of optimal marginal distributions per mixture component for data Apr90-

May09. The 1 component case indicates the Skewed t distribution. Multiple components

indicate a mixture of Student’s t distributions
µcomponent 1 µcomponent 2 µcomponent 3 µcomponent 4 µcomponent 5

Equities 0,000745 0,011169 - - -

Commodities -0,044399 0,005940 0,005404 -0,014182 -0,001643

EMD 0,002807 - - - -

Real Estate 0,003884 - - - -

Treasury -0,015018 0,001498 - - -

High Yield 0,000466 0,002548 - - -

σcomponent 1 σcomponent 2 σcomponent 3 σcomponent 4 σcomponent 5

Equities 0,000310 0,000025 - - -

Commodities 0,001940 0,000647 0,000000 0,000009 0,000008

EMD 0,000071 - - - -

Real Estate 0,000184 - - - -

Treasury 0,000005 0,000024 - - -

High Yield 0,000046 0,000007 - - -

νcomponent 1 νcomponent 2 νcomponent 3 νcomponent 4 νcomponent 5 γ

Equities 4,061427 4,689689 - - - -

Commodities 5,852187 17,829934 9,180532 4,194016 8,352101 -

EMD 2,235211 - - - - -0,000280

Real Estate 2,307443 - - - - -0,000491

Treasury 1,920566 11,406669 - - - -

High Yield 2,431360 7,405288 - - - -
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Table 9: Statistics of marginal distributions from mixture of normal distribution per mixture

component for data Apr90-May09

µcomponent 1 µcomponent 2 µcomponent 3 µcomponent 4 µcomponent 5

Equities -0,0151 0,0024 -0,0149 0,0069 -

Commodities -0,0323 0,0054 -0,0020 - -

EMD -0,1405 -0,0029 0,0022 0,0059 -0,0002

Real Estate -0,0225 -0,0001 0,0038 - -

Treasury -0,0013 0,0018 - - -

High Yield -0,0732 0,0001 0,0012 0,0010 0,0039

σcomponent 1 σcomponent 2 σcomponent 3 σcomponent 4 σcomponent 5

Equities 0,004329 0,000622 0,000042 0,000078 -

Commodities 0,003592 0,000750 0,000105 - -

EMD 0,000255 0,001092 0,000185 0,000032 0,000012

Real Estate 0,010460 0,000932 0,000156 - -

Treasury 0,000078 0,000020 - - -

High Yield 0,000944 0,000361 0,000041 0,000004 0,000003

Table 10: ν and γ of different models for data Apr90-Dec07

Model ν γEq. γCom. γEMD γRE γTreas. γHY

t cop with mixnormal marg 10.16

t cop with optmix marg 9.75

st cop with mixnormal marg 6.85 0.0054 -0.0146 -0.0183 -0.1535 0.0761 -0.4059

st cop with optmix marg 7.91 -0.0221 -0.0247 -0.0330 -0.1723 0.0961 -0.3686

Table 11: ν and γ of different models for data Apr90-May09

Model ν γEq. γCom. γEMD γRE γTreas. γHY

t cop with mixnormal marg 6.70

t cop with optmix marg 6.67

st cop with mixnormal marg 5.94 -0.1757 -0.0897 -0.1276 -0.3395 0.0782 -0.3245

st cop with optmix marg 6.47 -0.1149 -0.0946 -0.0336 -0.2398 0.1366 -0.2736
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Table 14: µ of different models

Model µEq. µCom. µEMD µRE µTreas. µHY

Data Apr90-Dec07 0.0015 0.0013 0.0015 0.0016 0.0011 0.0013

multivariate normal 0.0019 0.0007 0.0016 0.0018 0.0010 0.0013

multivariate t 0.0019 0.0021 0.0024 0.0026 0.0011 0.0019

multivariate skewed t 0.0017 0.0012 0.0015 0.0018 0.0010 0.0013

normal cop with mixnormal marg 0.0013 0.0013 0.0015 0.0017 0.0011 0.0013

t cop with mixnormal marg 0.0013 0.0013 0.0016 0.0017 0.0011 0.0013

st cop with mixnormal marg 0.0015 0.0017 0.0016 0.0016 0.0011 0.0012

normal cop with optmix marg 0.0013 0.0013 0.0010 0.0017 0.0011 0.0013

t cop with optmix marg 0.0012 0.0013 0.0007 0.0016 0.0011 0.0013

st cop with optmix marg 0.0014 0.0014 0.0004 0.0016 0.0010 0.0012

Model µEq. µCom. µEMD µRE µTreas. µHY

Data Apr90-May09 0.0015 0.0013 0.0015 0.0016 0.0011 0.0013

multivariate normal 0.0014 0.0015 0.0013 0.0016 0.0009 0.0013

multivariate t 0.0024 0.0026 0.0023 0.0025 0.0011 0.0019

multivariate skewed t 0.0019 0.0014 0.0015 0.0016 0.0011 0.0013

normal cop with mixnormal marg 0.0013 0.0012 0.0015 0.0017 0.0011 0.0013

t cop with mixnormal marg 0.0013 0.0015 0.0015 0.0015 0.0011 0.0013

st cop with mixnormal marg 0.0012 0.0016 0.0016 0.0013 0.0011 0.0011

normal cop with optmix marg 0.0015 0.0013 0.0010 0.0007 0.0011 0.0015

t cop with optmix marg 0.0016 0.0014 -0.0005 0.0013 0.0011 0.0015

st cop with optmix marg 0.0017 0.0017 0.0006 0.0006 0.0011 0.0016
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Table 15: σ of different models
Model σEq. σCom. σEMD σRE σTreas. σHY

Data Apr90-Dec07 0,0206 0,0269 0,0164 0,0193 0,0058 0,0067

multivariate normal 0,0204 0,0270 0,0165 0,0190 0,0058 0,0068

multivariate t 0,0212 0,0289 0,0153 0,0200 0,0063 0,0059

multivariate skewed t 0,0214 0,0302 0,0155 0,0206 0,0063 0,0065

normal cop with mixnormal marg 0,0209 0,0276 0,0169 0,0191 0,0058 0,0068

t cop with mixnormal marg 0,0209 0,0279 0,0165 0,0191 0,0058 0,0069

st cop with mixnormal marg 0,0213 0,0271 0,0166 0,0191 0,0059 0,0069

normal cop with optmix marg 0,0209 0,0276 0,0248 0,0191 0,0058 0,0068

t cop with optmix marg 0,0212 0,0276 0,0360 0,0192 0,0058 0,0068

st cop with optmix marg 0,0210 0,0277 0,0786 0,0189 0,0059 0,0070

Model σEq. σCom. σEMD σRE σTreas. σHY

Data Apr90-May09 0,0238 0,0303 0,0174 0,0287 0,0060 0,0094

multivariate normal 0,0237 0,0299 0,0175 0,0288 0,0060 0,0094

multivariate t 0,0240 0,0361 0,0165 0,0249 0,0072 0,0073

multivariate skewed t 0,0245 0,0352 0,0167 0,0261 0,0072 0,0079

normal cop with mixnormal marg 0,0241 0,0312 0,0180 0,0288 0,0060 0,0096

t cop with mixnormal marg 0,0244 0,0310 0,0181 0,0299 0,0061 0,0090

st cop with mixnormal marg 0,0246 0,0304 0,0174 0,0290 0,0061 0,0104

normal cop with optmix marg 0,0238 0,0314 0,0259 0,0807 0,0060 0,0114

t cop with optmix marg 0,0241 0,0308 0,1575 0,0404 0,0059 0,0100

st cop with optmix marg 0,0253 0,0304 0,0610 0,0510 0,0061 0,0116

79



Table 16: Skewness of different models
Model Eq. Com. EMD RE Treas. HY

Data Apr90-Dec07 -0,46 -0,49 -1,65 -0,54 -0,61 -1,49

multivariate normal 0,00 0,06 0,00 0,01 0,04 0,00

multivariate t 0,38 0,03 0,03 0,21 -0,12 -0,22

multivariate skewed t -0,43 -0,64 -0,97 -0,74 -0,66 -3,49

normal cop with mixnormal marg -0,39 -0,56 -1,87 -0,33 -0,69 -1,38

t cop with mixnormal marg -0,33 -0,57 -1,48 -0,32 -0,59 -1,12

st cop with mixnormal marg -0,50 -0,46 -1,79 -0,43 -0,55 -1,11

normal cop with optmix marg -0,39 -0,56 -10,12 -0,33 -0,95 -1,38

t cop with optmix marg -0,54 -0,55 -30,51 -0,29 -0,77 -1,44

st cop with optmix marg -0,42 -0,65 -83,83 -0,42 -0,93 -1,34

Model Eq. Com. EMD RE Treas. HY

Data Apr90-May09 -0,82 -0,87 -1,92 -0,70 -0,51 -3,04

multivariate normal -0,05 -0,04 0,00 -0,03 -0,01 -0,02

multivariate t 0,26 0,01 -0,81 0,06 -0,41 -0,62

multivariate skewed t -0,32 -1,08 -1,41 -1,88 -0,14 -2,41

normal cop with mixnormal marg -0,62 -0,89 -2,15 -1,22 -0,59 -3,62

t cop with mixnormal marg -0,65 -0,73 -2,19 -1,50 -0,62 -2,23

st cop with mixnormal marg -0,91 -0,85 -1,92 -1,93 -0,45 -3,87

normal cop with optmix marg -0,11 -0,96 -9,75 -75,14 -0,63 -7,49

t cop with optmix marg -0,14 -0,70 -90,31 -18,78 -0,49 0,97

st cop with optmix marg 0,52 -0,83 -77,94 -31,85 -0,47 10,12
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Table 17: Kurtosis of different models
Model Eq. Com. EMD RE Treas. HY

Data Apr90-Dec07 6,1 5,2 17,2 6,1 4,9 13,8

multivariate normal 3,0 3,0 3,1 3,1 3,0 2,9

multivariate t 14,4 6,7 9,3 8,3 11,2 22,5

multivariate skewed t 7,9 10,0 15,7 9,5 14,8 71,8

normal cop with mixnormal marg 6,2 5,6 19,5 6,2 5,0 14,8

t cop with mixnormal marg 6,0 5,7 16,0 5,9 4,9 13,1

st cop with mixnormal marg 6,5 5,3 19,7 5,9 4,8 12,8

normal cop with optmix marg 6,2 5,6 243,2 6,2 7,4 14,8

t cop with optmix marg 6,9 5,5 1335,3 5,9 5,8 14,7

st cop with optmix marg 5,7 5,7 7801,3 6,0 7,8 13,2

Model Eq. Com. EMD RE Treas. HY

Data Apr90-May09 10,7 7,5 19,8 19,0 4,7 37,7

multivariate normal 2,9 2,9 3,0 3,0 3,0 3,0

multivariate t 11,9 28,4 20,5 15,1 26,1 14,8

multivariate skewed t 13,8 22,3 16,5 24,0 9,6 30,3

normal cop with mixnormal marg 9,6 7,5 21,0 24,4 4,8 48,3

t cop with mixnormal marg 10,8 7,0 20,5 24,0 5,2 28,7

st cop with mixnormal marg 10,1 7,0 20,2 25,3 4,6 45,2

normal cop with optmix marg 8,9 10,7 226,2 6754,4 5,3 272,8

t cop with optmix marg 9,2 6,2 8590,3 773,1 4,6 90,8

st cop with optmix marg 46,5 7,9 7104,6 1562,1 4,9 418,3
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Table 18: 5% VaR for different models per marginal for data Apr90-Dec07

Model Equity Com. EMD RE Treas. HY

Empirical data -3,5% -4,6% -2,3% -3,7% -0,9% -1,1%

mult var normal -3,1% -4,3% -2,6% -2,9% -0,9% -1,0%

mult var t -3,1% -4,3% -2,1% -2,8% -0,8% -0,7%

mult var st -3,2% -4,6% -2,3% -3,0% -0,9% -0,9%

normal cop with normal mix marg -3,0% -4,2% -2,3% -2,9% -0,9% -0,9%

t cop with normal mix marg -3,1% -4,2% -2,4% -3,0% -0,9% -0,9%

st cop with normal mix marg -3,2% -4,2% -2,3% -3,0% -0,9% -0,9%

normal cop with optimal mix marg -3,0% -4,2% -2,2% -2,9% -0,9% -0,9%

t cop with optimal mix marg -3,0% -4,3% -2,3% -3,0% -0,9% -0,9%

st cop with optimal mix marg -3,1% -4,3% -2,2% -3,0% -0,9% -1,0%

Table 19: 1% VaR for different models per marginal for data Apr90-Dec07

Model Equity Com. EMD RE Treas. HY

Empirical data -7,0% -9,5% -5,9% -10,0% -1,6% -2,9%

mult var normal -4,6% -6,1% -3,7% -4,2% -1,3% -1,5%

mult var t -5,2% -7,4% -3,8% -5,1% -1,5% -1,3%

mult var st -5,9% -8,5% -4,0% -5,8% -1,6% -1,8%

normal cop with normal mix marg -5,4% -8,1% -5,6% -5,7% -1,7% -2,3%

t cop with normal mix marg -5,3% -8,5% -5,7% -5,7% -1,6% -2,4%

st cop with normal mix marg -5,4% -7,5% -5,2% -5,8% -1,6% -2,4%

normal cop with optimal mix marg -5,4% -8,1% -6,0% -5,7% -1,7% -2,3%

t cop with optimal mix marg -5,4% -8,0% -6,1% -5,7% -1,7% -2,1%

st cop with optimal mix marg -5,5% -8,3% -5,4% -5,6% -1,6% -2,4%

Table 20: 5% CVaR for different models per marginal for data Apr90-Dec07

Model Equity Com. EMD RE Treas. HY

Empirical data -5,7% -7,6% -4,6% -7,4% -1,4% -2,4%

mult var normal -4,0% -5,4% -3,3% -3,7% -1,1% -1,3%

mult var t -4,5% -6,3% -3,2% -4,2% -1,3% -1,1%

mult var st -4,8% -7,1% -3,6% -4,8% -1,4% -1,5%

normal cop with normal mix marg -4,7% -6,6% -4,5% -4,6% -1,4% -1,7%

t cop with normal mix marg -4,6% -6,7% -4,3% -4,6% -1,3% -1,7%

st cop with normal mix marg -4,8% -6,2% -4,3% -4,7% -1,4% -1,8%

normal cop with optimal mix marg -4,7% -6,6% -5,6% -4,6% -1,4% -1,7%

t cop with optimal mix marg -4,8% -6,6% -6,1% -4,7% -1,4% -1,7%

st cop with optimal mix marg -4,7% -6,7% -6,7% -4,6% -1,4% -1,8%
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Table 21: 1% CVaR for different models per marginal for data Apr90-Dec07

Model Equity Com. EMD RE Treas. HY

Empirical data -9,9% -12,7% -8,9% -14,7% -2,0% -5,2%

mult var normal -5,3% -7,0% -4,3% -5,0% -1,4% -1,7%

mult var t -6,8% -9,9% -5,3% -6,6% -2,1% -1,8%

mult var st -8,1% -12,1% -5,8% -8,3% -2,3% -2,9%

normal cop with normal mix marg -7,7% -10,8% -8,3% -7,0% -2,1% -3,3%

t cop with normal mix marg -7,4% -11,1% -7,8% -6,9% -2,0% -3,3%

st cop with normal mix marg -8,0% -9,9% -8,0% -7,1% -2,0% -3,3%

normal cop with optimal mix marg -7,7% -10,8% -14,3% -7,0% -2,2% -3,3%

t cop with optimal mix marg -8,2% -10,7% -16,7% -6,9% -2,2% -3,3%

st cop with optimal mix marg -7,5% -11,0% -20,5% -6,9% -2,3% -3,4%

Table 22: Max Drawdown for different models per marginal for data Apr90-Dec07

Model Equity Com. EMD RE Treas. HY

Empirical data 54,6% 70,2% 36,6% 74,3% 6,9% 35,9%

mult var normal 44,3% 71,1% 32,1% 44,2% 17,1% 10,9%

mult var t 54,2% 63,1% 32,6% 43,8% 10,1% 10,5%

mult var st 47,4% 86,4% 33,1% 40,2% 11,0% 16,5%

normal cop with normal mix marg 70,6% 77,9% 43,9% 61,8% 10,3% 11,8%

t cop with normal mix marg 67,0% 77,3% 39,0% 55,8% 9,7% 13,7%

st cop with normal mix marg 52,7% 61,5% 36,2% 37,4% 13,6% 18,2%

normal cop with optimal mix marg 70,6% 77,9% 66,6% 61,8% 10,5% 11,8%

t cop with optimal mix marg 72,1% 71,9% 97,5% 56,0% 12,5% 14,0%

st cop with optimal mix marg 55,6% 67,1% 100,0% 34,4% 12,5% 16,7%

Table 23: 5% VaR for different models per marginal for data Apr90-May09

Model Equity Com. EMD RE Treas. HY

Empirical data -3,5% -4,6% -2,3% -3,7% -0,9% -1,1%

mult var normal -3,9% -4,8% -2,8% -4,6% -0,9% -1,4%

mult var t -3,3% -4,6% -2,2% -3,4% -0,9% -0,9%

mult var st -3,5% -5,2% -2,4% -3,8% -1,0% -1,0%

normal cop with normal mix marg -3,4% -4,7% -2,4% -3,6% -0,9% -1,1%

t cop with normal mix marg -3,5% -4,6% -2,4% -3,6% -1,0% -1,1%

st cop with normal mix marg -3,6% -4,6% -2,3% -3,8% -0,9% -1,1%

normal cop with opt mix marg -3,5% -4,8% -2,3% -3,5% -0,9% -1,1%

t cop with optmix marg -3,6% -4,8% -2,4% -3,5% -0,9% -1,1%

st cop with optmix marg -3,6% -4,8% -2,3% -3,6% -0,9% -1,1%
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Table 24: 1% VaR for different models per marginal for data Apr90-May09

Model Equity Com. EMD RE Treas. HY

Empirical data -7,0% -9,5% -5,9% -10,0% -1,6% -2,9%

mult var normal -5,3% -6,8% -3,9% -6,7% -1,4% -2,1%

mult var t -6,4% -9,2% -4,3% -6,4% -1,8% -1,9%

mult var st -6,6% -9,9% -4,9% -7,4% -2,0% -2,4%

normal cop with normal mix marg -7,0% -10,5% -6,0% -9,4% -1,7% -3,1%

t cop with normal mix marg -6,6% -10,0% -6,1% -10,1% -1,8% -3,0%

st cop with normal mix marg -7,5% -10,2% -5,8% -9,8% -1,7% -3,3%

normal cop with opt mix marg -6,5% -10,0% -6,4% -9,1% -1,7% -2,7%

t cop with optmix marg -6,4% -9,6% -5,7% -8,6% -1,6% -2,8%

st cop with optmix marg -6,6% -9,1% -5,6% -8,8% -1,6% -2,9%

Table 25: 5% CVaR for different models per marginal for data Apr90-May09

Model Equity Com. EMD RE Treas. HY

Empirical data -5,7% -7,6% -4,6% -7,4% -1,4% -2,4%

mult var normal -4,7% -6,0% -3,5% -5,8% -1,2% -1,8%

mult var t -5,2% -7,9% -3,6% -5,4% -1,5% -1,5%

mult var st -5,6% -8,4% -4,1% -6,5% -1,6% -2,0%

normal cop with normal mix marg -5,7% -8,0% -4,8% -7,3% -1,4% -2,4%

t cop with normal mix marg -5,7% -7,7% -4,8% -7,8% -1,4% -2,3%

st cop with normal mix marg -6,1% -7,6% -4,5% -7,7% -1,4% -2,7%

normal cop with opt mix marg -5,4% -7,9% -5,8% -9,3% -1,4% -2,3%

t cop with optmix marg -5,4% -7,7% -8,8% -8,2% -1,4% -2,2%

st cop with optmix marg -5,7% -7,5% -6,5% -9,1% -1,4% -2,2%

Table 26: 1% CVar for different models per marginal for data Apr90-May09

Model Equity Com. EMD RE Treas. HY

Empirical data -9,9% -12,7% -8,9% -14,7% -2,0% -5,2%

mult var normal -6,1% -7,8% -4,6% -7,7% -1,5% -2,4%

mult var t -8,9% -14,9% -6,5% -9,4% -2,7% -2,8%

mult var st -9,7% -14,8% -7,8% -12,1% -2,8% -3,8%

normal cop with normal mix marg -10,4% -13,4% -9,8% -15,3% -2,1% -5,4%

t cop with normal mix marg -10,4% -12,9% -10,0% -16,5% -2,1% -4,8%

st cop with normal mix marg -11,0% -13,0% -9,2% -16,4% -2,0% -6,4%

normal cop with opt mix marg -9,0% -13,4% -15,2% -25,8% -2,0% -5,3%

t cop with optmix marg -8,9% -12,3% -30,3% -20,5% -1,9% -4,8%

st cop with optmix marg -9,8% -12,3% -19,1% -24,0% -2,0% -4,6%
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Table 27: Max Drawdown for different models per marginal for data Apr90-May09

Model Equity Com. EMD RE Treas. HY

Empirical data 54,6% 70,2% 36,6% 74,3% 6,9% 35,9%

mult var normal 55,0% 73,5% 45,0% 70,0% 10,2% 13,5%

mult var t 51,8% 74,9% 29,4% 45,9% 19,1% 10,5%

mult var st 59,0% 86,6% 35,3% 66,8% 20,3% 23,7%

normal cop with normal mix marg 77,7% 84,1% 46,8% 79,8% 11,2% 22,9%

t cop with normal mix marg 77,6% 83,9% 39,3% 82,2% 13,4% 18,2%

st cop with normal mix marg 57,7% 69,7% 44,2% 70,0% 14,5% 31,7%

normal cop with opt mix marg 73,5% 84,6% 68,2% 100,0% 10,9% 39,0%

t cop with optmix marg 69,3% 73,6% 100,0% 93,8% 12,0% 27,1%

st cop with optmix marg 53,9% 68,4% 99,7% 99,2% 13,6% 36,7%
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D Figures

Figure 8: Index prices of assets
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Figure 9: Weekly logreturns series
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Figure 10: Scatterplot of EMD vs Real Estate

Figure 11: Scatterplot of Treasury vs High Yield

88



Figure 12: Histogram of the data series
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Figure 13: Histogram of fitted marginals with optimal mixture of Student’s t or Skewed t

components. The histograms of Equities, Commodities, Treasury and High Yield all show

the combined mixture models of Student’s t components (the total distribution is an accu-

mulation of these different components). EMD and Real Estate are both fitted using a single

Skewed t distribution
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Figure 14: Histogram of fitted marginals with optimal mixture of normal components. The

histograms show the combined mixture models of normal distributions (the total distribution

is an accumulation of these different components).
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Figure 15: Scatter diagram of empirical data vs multivariate normal distribution. The

empirical sample contains 1.000 observations while the simulated samples contain 10.000

observations.
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Figure 16: Scatter diagram of empirical data vs multivariate Student’s t distribution. The

empirical sample contains 1.000 observations while the simulated samples contain 10.000

observations.
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Figure 17: Scatter diagram of empirical data vs multivariate Skewed t distribution. The

empirical sample contains 1.000 observations while the simulated samples contain 10.000

observations.
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Figure 18: Scatter diagram of empirical data vs normal copula with mixture of normal

components. The empirical sample contains 1.000 observations while the simulated samples

contain 10.000 observations.
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Figure 19: Scatter diagram of empirical data vs Student’s t copula with mixture of normal

components. The empirical sample contains 1.000 observations while the simulated samples

contain 10.000 observations.
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Figure 20: Scatter diagram of empirical data vs Skewed t copula with mixture of normal

components. The empirical sample contains 1.000 observations while the simulated samples

contain 10.000 observations.
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Figure 21: Scatter diagram of empirical data vs normal copula with mixture of Student’s t or

Skewed t components. The empirical sample contains 1.000 observations while the simulated

samples contain 10.000 observations.
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Figure 22: Scatter diagram of empirical data vs Skewed t copula with mixture of Student’s

t or Skewed t components. The empirical sample contains 1.000 observations while the

simulated samples contain 10.000 observations.

−0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

0.3
Eq. vs Com.

−0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

0.3

Cop
t
 marg

mix t / skewed t

−4 −3 −2 −1 0 1

−0.04

−0.02

0

0.02

0.04
EMD vs Treas.

−4 −3 −2 −1 0 1

−0.04

−0.02

0

0.02

0.04

Cop
t
 marg

mix t / skewed t

−3 −2 −1 0 1
−0.2

−0.1

0

0.1

0.2

0.3
RE vs HY

−3 −2 −1 0 1
−0.2

−0.1

0

0.1

0.2

0.3

Cop
t
 marg

mix t / skewed t

99



Figure 23: Scatter diagram of empirical data vs Skewed t copula with mixture of Student’s

t or Skewed t components. The empirical sample contains 1.000 observations while the

simulated samples contain 10.000 observations.
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E Optimization figures

Figure 24: Optimal portfolio weights of the assets over the different risk measures measures
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Figure 25: Optimal portfolio weights per model at minimized standard deviation
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Figure 26: Optimal portfolio weights per model at minimized 5%VaR
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Figure 27: Optimal portfolio weights per model at minimized 1%VaR
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Figure 28: Optimal portfolio weights per model at minimized 5%CVaR
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Figure 29: Optimal portfolio weights per model at minimized 1%CVaR
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Figure 30: Optimal portfolio weights per model at minimized MDD
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Figure 31: Mean / Std optimization
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Figure 32: Mean / 5%VaR optimization
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Figure 33: Mean / 1%VaR optimization
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Figure 34: Mean / 5%ES optimization
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Figure 35: Mean / 1%ES optimization
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Figure 36: Mean / MDD optimization
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Figure 37: Mean / Std optimization
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Figure 38: Mean / Std optimization
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Figure 39: Mean / Std optimization
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Figure 40: Mean / 5% VaR optimization
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Figure 41: Mean / 5% VaR optimization
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Figure 42: Mean / 5% VaR optimization
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Figure 43: Mean / 1% VaR optimization
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Figure 44: Mean / 1% VaR optimization
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Figure 45: Mean / 1% VaR optimization
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Figure 46: Mean / 5% ES optimization
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Figure 47: Mean / 5% ES optimization
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Figure 48: Mean / 5% ES optimization
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Figure 49: Mean / 1% ES optimization
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Figure 50: Mean / 1% ES optimization
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Figure 51: Mean / 1% ES optimization

0.02 0.04 0.06 0.08 0.1
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

Expected Shortfall 1%

m
ea

n 
po

rt
fo

lio
 w

ee
k 

re
tu

rn

 

 

emp
normal cop

mixopt

t cop
mixopt

skewed t cop
mixopt

Figure 52: Mean / MDD optimization
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Figure 53: Mean / MDD optimization
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Figure 54: Mean / MDD optimization
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