
Master Thesis Informatics & Economics

Model Selection Under Sampling Uncertainty
Using Fuzzy Numbers

Author:
Bei Wen
ID: 309210

Supervisor:
Uzay Kaymak

Rob Potharst

October 1, 2009



Abstract

Model selection is one of the fundamental tasks of scientific inquiry. The

most widely used methods such as ROC analysis do not take sampling un-

certainty into account. To improve the robustness of model selection, we de-

velop a model selection method capable to incorporate sampling uncertainty.

We capture the sampling uncertainty by using the bootstrap technique, and

quantify the sampling uncertainty by introducing fuzzy numbers. We apply

our model selection system to a variety of real-world databases with respect

to binary classifications. Among the tested datasets, our method performs in

line with the traditional ROC analysis, whereas it provides the fuzzy presen-

tation of ROC curves based on which not only the predictive accuracy but

also the degree of sampling uncertainty can be addressed. In addition, we

develop a computer tool implementing our system, which eases the tedious

procedures in model selection.

Keywords: model selection, sampling uncertainty, binary classification,

bootstrap, ROC analysis, fuzzy numbers, the comparison of fuzzy numbers
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Chapter 1

Introduction

With the increasing modern computer power and the expansion of compu-

tational methods, researchers are more and more frequently confronted with

the problem of selecting a particular prediction algorithm efficiently among

many alternatives, while suffering uncertainties from sampling.

Model selection

Model selection, one of the fundamental tasks of scientific inquiry, is the

process of identifying the best approximating model among alternatives. To

determine the principle behind a series of observations is often linked directly

to a mathematical model predicting those observations.

Many predictive models have been proposed to predict the output from

the input, given training data consisting of input-output pairs. In addi-

tion to traditional linear models, scientists have developed a class of flexible

nonlinear models such as artificial neural networks, fuzzy inference systems,

classification and regression trees, and kernel methods in the field of machine

learning and data mining. A crucial question is how to evaluate the fitness

and robustness of these models and select the best model accordingly.
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Chapter 1. Introduction

Sampling uncertainty

Uncertainty from sampling can be generated via various sources. Some sam-

pling errors are due to the institutional or distributional heterogeneity. The

former refers to the uncertainty of measurement. The later occurs when the

samples are not randomly selected. The issue of measuring uncertainty from

sampling becomes increasingly important because worldwide data nowadays

can be relatively easily collected via internet and pooled for analysis with

little quality control.

Our study concentrates on “sampling uncertainty”, one of uncertainties

from sampling. As the fact, we cannot usually analyze the whole population,

because it would be extremely expensive. We need to take a sample, a portion

of the population that is enough to be computational analyzed. Additionally,

it is the most common situation in data analysis where researchers need to

make a decision based on the result of analyzing a smaller-sized data set

from original large data sets due to computational complexity and cost. We

assume that models essentially derived based on a smaller-sized data set

from a large population or a large database often have poor performance,

and the bias arisen from any single random data set contributes to so-called

“sampling uncertainty”.

Research scope

The work focuses on the model selection with respect to binary classification

problems, where multi-class dependent variables are dichotomized to one vs.

the remaining classes. The algorithm is implemented for solving real-world

problems in the domain of economics, medical and management science.

Research question

The research question is how to incorporate sampling uncertainty into model

selection.

Uncertainty characteristics are identified as fuzziness treated on the basis

of the fuzzy set theory. In quite a few applications of fuzzy set theory to deci-
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sion making, we are confronted with the problem to select the best one from

a collection of possible solutions. It has been addressed in connection with

introducing fuzziness into some special types of classical decision problem

for making a choice among the alternatives, and dealt with independently

of any specific application. In our study, such connection is introduced for

model selection problems.

Therefore, the objective of our study is to develop a tool to present and

analyze fuzziness with respect to predictive performance, so that it can effi-

ciently select the best model among alternatives under sampling uncertainly.

Methodology

To achieve the aim, we propose a fully automatic and computationally ef-

ficient method to select the best prediction model taking sampling uncer-

tainty into account by introducing (1) the bootstrap technique to capture

the sampling uncertainty and (2) the fuzzy numbers to quantify the sample

uncertainty.

In our model selection system, the receiver operating characteristic (ROC)

curve is used as the measure of predictive performance. Bootstrap is used for

capturing sampling uncertainty. We map the measurement variation of pre-

dictive performance into fuzzy intervals with determined membership func-

tion, including “the regular crisp interval function”, “the triangular mean

function”, “the triangular median function”, “the trapezoidal function with

mean and standard deviation”, and “the fitting function of envelope”. Some

widely used techniques proposed by Yager are used for ranking the fuzzy

intervals, including so-called “center of gravity” and “mean area” method.

Therefore, to determine which model is best is based on the resulting out-

come of comparing fuzzy intervals. According to “fuzzy resolution principle”,

we address how to connect the fuzzy intervals of true positive rates with the

overall performance, represented by the fuzzy number of the area under the

ROC curve (AUC).
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Overview

The following thesis is organized with Chapter 2 introducing the theoretical

background of the model selection and the relevant fuzzy set theory. Chap-

ter 3 outlines briefly the framework and algorithm of our model selection

approach firstly, and presents in details the method used to capture sam-

pling uncertainty, the method used for measuring model performance, the

method used for mapping the variation from sampling uncertainty into fuzzy

intervals, the method based on which we compare the fuzzy intervals, as well

as the method for associating with a global AUC fuzzy interval. In Chapter

4, we describe the experimental designs including which real-life databases to

be tested, which models we choose to predict outcomes, as well as which mea-

sures we adopt to improve the system. We illustrate the results accordingly

in Chapter 5. Finally, we come up with some conclusions and discussions in

Chapter 6.
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Chapter 2

The background of model

selection and the introduction

of fuzzy numbers

2.1 Model selection on classification systems

Classification systems have been built traditionally by experimenting with

many different classifiers, comparing their performance and choosing the best

accordingly. Experiments with different inductive algorithms, parameter set-

tings, and training regimes yield a large number of classifiers to be evaluated

and compared. Unfortunately, comparison is often difficult in real world en-

vironments because key parameters of the target environment are not known,

and the optimal cost & benefit tradeoffs and the target class priors seldom

are known precisely and often are subject to change [7][28][40][50][64].

Many algorithms have been proposed to predict the output from the in-

put, given training data consisting of input-output pairs. In addition to tra-

ditional linear models, scientists have developed a class of flexible nonlinear

models such as artificial neural networks, fuzzy inference systems, classifica-

tion and regression trees, and kernel methods in the field of machine learning

and data mining. The application of a technique depends on its practical

use and the purpose of the model. If the structure of the database is un-
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known, whatsoever, non-linear methods or even non-parametric methods can

be useful.

An important question is how to select the best model under the uncer-

tainties from sampling. Complex models may fit the data better than simple

models, but often require additional uncertain assumptions to be made im-

plicitly. A good model selection technique should incorporate uncertainties

and balance goodness of fit with simplicity [38].

2.2 Predictive performance evaluating tech-

niques

Evaluating the fitness of models is one of the key issues which has been in-

vestigated extensively in literature. David M W Powers discussed several

commonly used evaluation measures from Precision, Recall, and F-Factor,

to ROC, Informedness, Markedness and Correlation [48]. Pierre Baldi et al.

provided a unified overview of measures that are used to assess the accuracy of

prediction algorithms for classification [6]. These measures are mostly based

on confusion matrix, from raw percentages, quadratic error measures and

other distances, and correlation coefficients, to information theoretic mea-

sures such as relative entropy and mutual information [6]. They also briefly

discussed the advantages and disadvantages of each approach. Recently, in

the work of C. Ferri et al., they analyzed experimentally the behavior of 18

different performance measures in 30 data sets, and tried to identify clusters

and relationship between these measures [26]. Moreover, the enthusiasm for

information criterion has burgeoned in the past three decades [1][2].

Different measures have been defined in extant literature with the aim of

making better model selection in general or for a specific application area.

One of the most widely used measures is the receiver operating characteristic

(ROC) curve. There is a huge literature associated with ROC curves, and the

applications spread across medicine, statistics, and most recently, machine

learning and data mining [10][24][25][33][44][45][55].
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2.3 The receiver operating characteristic (ROC)

curve

The ROC curve was first used during World War II and was developed in

the 1950’s [23]. Since 1997, the idea of using ROC curves has been brought

in the area of machine learning by Foster Provost and Tom Fawcett from the

previous applications [49].

ROC curves have been employed in popularity as a useful measure of

predictive performance and visualization tool for analyzing trade-offs between

true positives and false positives in binary class scenarios. ROC curves are

a graphical plot of the true positive rate (sensitivity) vs. false positive rate

(1− specificity) for a binary classifier system as its discrimination threshold

is varied.

At each false positive rate, a two by two confusion table can be derived.

A confusion table cross-tabulates the observed classes and the classes that

a model predicts. With the observed classes and the predicted classes from

the data used to build the predictive classification, the table can be used to

understand how skillful the model has been in fitting the data. Therefore,

a confusion table is a critical diagnostic tool and contains important infor-

mation which can easily be extracted. As shown in Table 2.1, the four cells

in the confusion table represent the number of correctly predicted positives,

or true positives (TP), the number of correctly predicted negatives, or true

negatives (TN), the number of wrongly predicted positives, or false positives

(FP), and the number of wrongly predicted negatives, or false negatives (FN).

Then the true positive rate represented by the Y-axis is calculated as,

True Positive Rate (TPR) = Sensitivity =
TP

TP + FN
(2.1)

at each false positive rate represented by the X-axis,

False Positive Rate (FPR) = 1− Specificity =
FP

TN + FP
(2.2)
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Predicted Value
1 0

Observed Value 1 TP FN
0 FP TN

Table 2.1: Confusion Matrix

ROC curves begin from the bottom-left corner and rise to the top-right

corner. Moving along the ROC curve represents trading off false positives for

false negatives. Generally, random models will run up the diagonal, and the

more the ROC curve bulges toward the top-left corner, the better the model

separates one class from the other class. This property is clearly a virtue in

binary classification problems.

Computing the area under the ROC curve (AUC) results in a single num-

ber that can efficiently measure the overall predictive accuracy, based on

which one can select possibly the optimal model and discard suboptimal ones

independently from the cost context and the class distribution. Therefore,

the ROC curve is an efficient way to consider the overall accuracy represented

by a AUC score and is mostly useful in binary class scenarios.

However, a serious criticism about ROC curves is comparing classifiers

according to their ROC curves is not trivial because ROC curves tend to

intersect [7][33][50]. In that common situation, one classifier might be better

than another for some certain values of false positive rates, but might be

worse for other false positive rates [7]. The intersection problem will mislead

the resulting evaluation, especially when handling a set of ROC curves with

inconsistences from some random selective samples. Therefore, the ROC

curve alone does a poor job of aiding the choice of classifier, because AUC

as a global value fails to take account of when one classifier does not clearly

dominate others over the entire performance [33][50].

Furthermore, in the real life applications, evaluating the performance at

a specific false positive rate is often required rather than analyzing the ROC

curve in the whole range. The cutoff of false positive rate is often trait

dependent. For example, in clinical medicine applications, the decision of

giving a treatment depends on the seriousness of side-effects of the treatment,
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where the required test specificity is more stringent than that of screening

or prevention proposes. Whether or not to give an operation on a cancer

patient requires the diagnose of cancer to be 100% sure (specificity), whereas

the physical examination of population individuals who are predicted to have

high risk of certain cancer requires much less specificity. In our study, we

also specifically investigate test accuracy at each false positive rate.

2.4 The introduction of fuzzy set theory

Fuzzy logic system was first introduced by L.A.Zadeh in the mid-1960s for

representing approximated knowledge that cannot be respected by tradi-

tional crisp approaches [60][61][63]. In recent years, fuzzy logic systems have

been successfully applied in a variety of fields and their applications have

increased dramatically in popularity for various aspects. The four basic el-

ements of each fuzzy logic system are fuzzifier, rule base, inference engine,

and defuzzifier, as shown in Figure 2.1. The fuzzifier maps the inputs into

fuzzy systems, which are subsequently used as inputs to the inference engine,

whereas the defuzzifier maps the fuzzy sets produced by the inference engine

into crisp numbers. The fuzzy rule base is a collection of rules from knowledge

base encoding the general relation between the inputs and outputs, which is

combined in the inference engine, to produce fuzzy outputs.

Figure 2.1: The building block of fuzzy logic system

In quite a few applications of fuzzy set theory in the context of decision

making, we are confronted with the problem to select the best one from a

collection of possible solutions [5][14][29][31][65]. It has been addressed in
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connection with introducing fuzziness into some special types of classical

decision problem for making a choice among the alternatives, and dealt with

independently of any specific application. In our study, such connection is

introduced for model selection problems.

Uncertainty characteristics are identified as fuzziness treated on the basis

of the fuzzy set theory [43]. In contrast to classical set theory, the fuzzy

set theory permits a gradual assessment of the membership of elements in

relation to a set. This gradual membership is described by a membership

function, leading to the definition of fuzzy numbers.

A fuzzy number is a convex, normalized fuzzy set Ã ⊆ R represented

through a membership function µA(x).

Ã = (x, µA(x)) | x ∈ X (2.3)

where each element in the range of the defined fuzzy set has an associated

grade of membership function. The grade of membership function is a real

number between 0 and 1, and represents the degree to which the particular

element belongs to the fuzzy set. In this manner, it is possible for elements

to belong to the set at some degree, thereby allowing a non-crisp membership

[62][63].

2.5 The method for comparing fuzzy num-

bers

The key issue in operationalizing fuzzy set theory particularly in decision

analysis therefore is how to defuzzify or compare fuzzy numbers. Since the

beginning of the fuzzy set theory, the problem of ranking fuzzy subsets has

been studied [41]. As the problem of comparing fuzzy numbers plays a cru-

cial role in making decisions under a fuzzy environment, the techniques of

comparing fuzzy numbers have received considerable attention in the fuzzy

set theory literature [9][15][17][18][19][27][39][41][42][54][56].

The importance of the problem of comparing fuzzy subsets lies in the fact
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that these subsets can be obtained in a decision-making problem to represent

the performances of a set of alternatives. Therefore, a comparison between

these subsets is a comparison between the alternatives [9]. G. Bortolan and

R. Degani provided a review of a number of ranking methods which have been

investigated in the extent literature in [9]. Most of these methods attempt

to compare fuzzy sets through two ways. One approach simply consists of

the definition of a ranking function mapping each fuzzy set into the real

line, where a natural order exists. Another approach considers a different

formalization of the problem to obtain a fuzzy set of optimal alternatives.

Yager’s indices are some particular ranking methods [19][56][57][58] based

upon the former idea by associating a fuzzy number with a crisp value and

using this value to compare and rank the fuzzy numbers. It supposes that

there are n normal convex fuzzy subsets ũi, i ∈ 1, 2, ..., n. Simple methods

to order these subsets ũi depend on the definition of a ranking function F

mapping each fuzzy interval into the real line, where a natural order exists

[9][56][58].

F (ũi) < F (ũj)⇒ ũi < ũj (2.4)

F (ũi) = F (ũj)⇒ ũi ≈ ũj (2.5)

F (ũi) > F (ũj)⇒ ũi > ũj (2.6)

Yager’s index of the center of gravity

Yager’s index of the center of gravity, so-called centroid method, is the

most common and physically attractive of all the defuzzification methods

[13][16][59]. The defuzzified scalar value is nothing else than the center of

gravity of the represented fuzzy set. It does not assume any hypothesis

of normality or convexity of the fuzzy sets. Mathematically, ũi = {z, µũi},
z ∈ Si ⊂ I (Si → [0, 1] is called the domain or universe of discourse):
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F (ũi) =

∫ 1

0
g(z)µũi(z)dz∫ 1

0
µũi(z)dz

(2.7)

The weight g(z) is a measure of the importance of the value z. If we assume

linear weights, that is g(z)=z, then this function is equivalent to calculating

the center of gravity of the fuzzy set.

Yager’s index of the mean area

In another Yager ranking function [56][57][58], if Uα
i is the α-level set of ũi

and M(Uα
i ) is the mean value of the elements of Uα

i , then:

F (ũi) =

∫ αmax

0

M(Uα
i )dα, where: αmax = hgt (ũi) (2.8)

where hgt refers to the height of a fuzzy set which is the maximum value of

its membership function.
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Chapter 3

Methodology to incorporate

sampling uncertainty into

model selection

3.1 The architecture of the model selection

system

The aim of this study is to illustrate a new comprehensive model selection

system by which the predictive performance of difference binary classifiers is

evaluated to select the most trusted and robust predictive model under sam-

pling uncertainty, based on the combination of ROC analysis and fuzziness.

The main idea and architecture of this model selection system are illus-

trated in Figure 3.1. Given any database, the bootstrap method is used

to generate a small portion of the sample a number of times. The reason

to generate a small portion is to simulate the situation where we analyze a

sample from a population. In addition, when database is large, modeling can

be computational complex and costly. For the strapped samples, multiple

alternative modeling methods are performed to predict a binary outcome.

The algorithms used in our system are “Logistic Regression” (LR), “Fuzzy

Inference System” (FIS), and “Fuzzy C-means” (FCM) classification models.

ROC curves are derived for each model, and the TPRs under each FPR are
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estimated accordingly. Assuming the TPRs generated from different mod-

els belong to a particular member at some degree, the membership of each

data point can be calculated based on the distribution of the data points.

To address the question which method performs best, a strategy is therefore

based on comparing these fuzzy numbers. In addition to the micro perfor-

mance at each FPR, combining the fuzzy intervals of TPRs into a AUC fuzzy

interval will provide an overall predictive accuracy. The proposed model se-

lection system is fully automatic and computationally efficient using Matlab

2008 software, with the interactive environment which we enable to perform

computationally intensive tasks.
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Figure 3.1: The architecture of the model selection system
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3.2 The algorithm of the model selection sys-

tem

The algorithm for each step of the model selection system is presented as

below.

• The bootstrap algorithm is used to generate re-samples for modeling.

• “Logistic Regression” (LR), “Fuzzy Inference System” (FIS), and “Fuzzy

C-means” (FCM) classifiers are chosen to train the re-samples and make

predictions based on the training models.

• Five methods, so-called “the regular crisp interval function”, “the tri-

angular mean function”, “the triangular median function”, “the trape-

zoidal function with mean and standard deviation”, and “the fitting

function of envelope”, are introduced for mapping TPRs into fuzzy

intervals.

• We adopt Yager’s index of the center of gravity and the mean area as

the method of ranking fuzzy numbers.

• Additionally, a resolution principle based method is used to connect

TPR fuzzy intervals with a AUC fuzzy interval.

These algorithms are illustrated in details in the following sections.

18



Chapter 3. Methodology to incorporate sampling uncertainty into model
selection

3.3 The method for capturing sampling un-

certainty - Bootstrap

To take sampling uncertainty fully into account into model selection prob-

lems, we use the bootstrap approach.

The bootstrap technique was introduced by Efron and was fully described

in Efron and Tibshirani (1993) [22]. The idea allows re-samples to be gener-

ated from the single original sample, instead of collecting many samples from

the population. Given a data set of size n, a bootstrap sample is obtained

by sampling n instances uniformly from the data set with replacement. To

this end, the bootstrap technique firstly finds the sampling distribution, and

accordingly creates as many re-samples as you want by repeatedly sampling

with replacement from the original sample. Sampling with replacement refers

to that we randomly draw an observation from the original database, and

after that we put it back before drawing the next observation. As a result,

any individual sample can be drawn more than once, or not be drawn at

all. If the sampling does without replacement, we will get the same set of

numbers as the original database, though in a different order.

The bootstrap approach is a recently developed technique for statistical

inference with the increasing modern computer power and has been widely

used as a key tool of simulated inference to improve upon asymptotic approx-

imations. The bootstrap technique has been increasingly used to capture the

information about sampling uncertainty [11][12][36]. In our study, we use the

bootstrap distribution as a way to visualize how ROC curves perform differ-

ently and to estimate the variation in a statistic based on the given data set.

By performing the multiple models on each set of the strapped samples, we

attempt to capture the differences in predictive accuracy and sensitivity un-

der each false positive rates represented by ROC curves. Therefore, a simple

way to incorporate sampling uncertainty into inference is to apply the model

selection procedure independently to each of these re-samples [11].
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3.4 The method for mapping fuzzy intervals

with determined membership functions

From the bootstrapped samples, we obtain the set of ROC curves and TPRs

at each specified FPR based on different prediction models. Due to sam-

pling uncertainty, there is a variation among the ROC curves. We analyze

this variation by transferring the TPRs at each FPR into fuzzy intervals.

Therefore, we provide an approach to select the model given different FPR.

For example, we draw 100 sets of bootstrap samples. Then 100 ROC

curves are formed from “Logistic Regression”, “Fuzzy Inference System”,

and “Fuzzy C-means” models respectively as shown in Figure 3.2. A tailor-

made program enables us to present the corresponding TPR for each ROC

curve at each cutoff of FPR from 0.01, 0.02, ..., to 0.99, as shown in Figure 3.3

(For example, the TPR points at FPR = 0.1 - 0.9). The x-axis is the value

of TPR, whereas the y-axis is the number of TPR. Sometimes due to the

discrete nature of the data, there is no exact value of FPR at these cutoffs.

The solution is finding the FPR value which is the nearest value of 0.01, 0.02,

..., and 0.99, and obtaining the corresponding nearest TPR value at each FPR

cutoff by using the “interpolation” function in Matlab. Interpolation function

is the same operation as “table lookup”. For example, for the command line

“YI = INTERP1(X,Y,XI)”, the ”table” is [X,Y] and “INTERP1” “looks-

up” the elements of XI in X, and returns values YI interpolated within the

elements of Y.

Next, fuzzy intervals are introduced to map the variation of ROC curves,

represented by the variation of the TPRs at any given FPR. Fuzzy intervals

are represented through a membership function, where each element in the

range of the defined fuzzy set has an associated grade of membership function.

The grade of membership function is a real number between 0 and 1, and

represents the degree to which the particular element belongs to the fuzzy

set. In this manner, it is possible for elements to belong to the set at some

degree, thereby allowing a non-crisp membership [62][63].

Primarily, fuzzification is a subjective assessment. In this context, the

fuzzification approach for acquiring the shape of any particular membership
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Figure 3.2: The sample ROC curves derived from three classifiers

function is often dependent on the application, i.e. the available information

[35][43]. For most fuzzy logic control problems, it is assumed that the mem-

bership functions are linear, usually with a triangular or trapezoidal shape.

For the other alternatives, a statistical approach is used to automatic genera-

tion the shapes. The goal of uncertainty quantification is assign an appropri-

ate membership function to real-world information with respect to sampling

uncertainty. In this context, We employ five statistical approaches to for-

mulate the TPRs into fuzzy intervals, including “the regular crisp interval

function”, “the triangular mean function”, “the triangular median function”,

“the trapezoidal function with mean and standard deviation”, and “the fit-

ting function of envelope”. These membership functions are data driven,

basically determined by the distribution of TPRs. The information derived

from the distribution increases for forming the fuzzy intervals from the first

to the last function, illustrated as following with an example shown in Figure
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Figure 3.3: The corresponding TPR at each cutoff of false positive rate

3.4.

1. The regular crisp interval function ranged from minimum and

maximum: The membership function is defined as M(TPRmin ≤
TPRi ≤ TPRmax) = 1, andM(TPRi < TPRmin or TPRi > TPRmax) =

0. As we assume the membership function is linear, the fuzzy intervals

are plotted by connecting these four points with defined membership

value of (TPRmin, 0), (TPRmin, 1), (TPRmax, 1), and (TPRmax, 0).

Mi =


0 if TPRi < TPRmin

1 if TPRmin ≤ TPRi ≤ TPRmax

0 if TPRi > TPRmax

(3.1)

2. The triangular mean function: The membership function is de-

fined as M(TPRi = TPRmean) = 1, and M(TPRI < TPRmin or

TPRi > TPRmax) = 0. As we assume the membership function is lin-
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Figure 3.4: The distribution of TPR at FPR = 0.1 and the corresponding
fuzzy intervals based on different membership functions: (1) The regular
crisp interval function ranged from minimum and maximum (2) The trian-
gular mean function; (3) The triangular median function; (4) The trapezoidal
function with mean and standard deviation calculated; and (5) The fitting
function of envelope

ear with a triangular shape, the fuzzy intervals are plotted by connect-

ing these three points with defined membership value of (TPRmin, 0),

(TPRmean, 1), and (TPRmax, 0).

Mi =



0 if TPRi < TPRmin

TPRi−TPRmin
TPRmean−TPRmin if TPRmin ≤ TPRi < TPRmean

1 if TPRi = TPRmean

TPRi−TPRmax
TPRmean−TPRmax if TPRmean < TPRi ≤ TPRmax

0 if TPRi > TPRmax

(3.2)
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3. The triangular median function: The membership function is de-

fined as M(TPRi = TPRmedian) = 1, and M(TPRI < TPRmin or

TPRi > TPRmax) = 0. As we assume the membership function is lin-

ear with a triangular shape, the fuzzy intervals are plotted by connect-

ing these three points with defined membership value of (TPRmin, 0),

(TPRmedian, 1), and (TPRmax, 0).

Mi =



0 if TPRi < TPRmin

TPRi−TPRmin
TPRmedian−TPRmin

if TPRmin ≤ TPRi < TPRmedian

1 if TPRi = TPRmedian

TPRi−TPRmax
TPRmedian−TPRmax

if TPRmedian < TPRi ≤ TPRmax

0 if TPRi > TPRmax

(3.3)

4. The trapezoidal function with mean and standard deviation

calculated: The membership function is defined as M(TPRmean−std ≤
TPRi ≤ TPRmean+std) = 1, and M(TPRi < TPRmin or TPRi >

TPRmax) = 0. As we assume the membership function is linear with a

trapezoidal shape, the fuzzy intervals are plotted by connecting these

four points with defined membership value of (TPRmin, 0), (TPRmean−std, 1),

(TPRmean+std , 1) and (TPRmax, 0).

Mi =



0 if TPRi < TPRmin

TPRi−TPRmin
TPRmean−std−TPRmin

if TPRmin ≤ TPRi < TPRmean−std

1 if TPRmean−std ≤ TPRi ≤ TPRmean+std

TPRi−TPRmax
TPRmean+std−TPRmax

if TPRmean+std < TPRi ≤ TPRmax

0 if TPRi > TPRmax

(3.4)

where std is the standard deviation depending on the distribution of

TPRs.

5. The fitting function of envelope: The membership function is de-
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fined as M(TPRi = TPRmedian) = 1, and M(TPRI < TPRmin or

TPRi > TPRmax) = 0. TPRs are sorted ascending. The fuzzy inter-

vals are plotted based on the value of TPR as x-axis against the ranks

as y-axis.

Mi =



0 if TPRi < TPRmin

2i
N

if TPRmin ≤ TPRi ≤ TPRmax and i < N
2

1 if TPRi = TPRmedian i.e. i = N
2

2i
N
− 1 if TPRmin ≤ TPRi ≤ TPRmax and i > N

2

0 if TPRi > TPRmax

(3.5)

where i is the rank of TPR and N is the total number of TPR. For

an instance with 100 sets of ROC curves, we obtain 100 TPR points

at each FPR. The rank from the minimum to the median is 1 − 50

corresponding an ascending value from 0 to 1, whereas the ranks from

the median to the maximum is 51 − 100 corresponding a descending

value from 1 to 0.

3.5 The method for comparing fuzzy num-

bers

We adopt two Yager’s indices to compare fuzzy numbers in our system, be-

cause they are the most common used and physically attractive among de-

fuzzification methods.

Yager’s index of the center of gravity

In general, determining the center of gravity is a complicated procedure be-

cause the mass and weight may not be uniformly distributed throughout the

object. In our case, the mass is uniformly distributed, so that the center of

gravity is greatly simplified at the average location of the physical dimen-

sions. For example of a triangle of height h, the center of gravity is at h
3
,
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as shown in Figure 3.5(a). The center of gravity in terms of x-value for a

triangle is obtained by calculating the average x-value of the three vertices

given the same height.

For the envelope-shaped fuzzy subsets, we employ the α-weight mean of

maxima method [19] to obtain the valuation by calculating the average of

the elements at all α-cuts 1.

For the trapezoidal fuzzy intervals, we refer to the center of maxima

method [19], a simplified version of the α-weight mean of maxima method.

Instead of taking the elements at all α-cuts, we consider the smallest and the

largest only and we take the middle as valuation.

In the case of the convex fuzzy sets with the same height, these three

methods are equivalent [59][63], and useful in order to reduce the complexity

of the calculation. In other words, a natural choice to obtain a single real

number from the mean value of a fuzzy number could be to calculate the

arithmetic mean of its bounds.

Yager’s index of the mean area

Graphically F (ũi) can be represented by the area between the mean of up-

line and bottom-line for trapezoidal shaped fuzzy intervals, shown as the

shaded area in Figure 3.5(b). The dotted line represents the average value of

the elements with at least that grade of membership. This simplified method

is easy to calculate for these differently shaped fuzzy sets and therefore it is

also the most widely used in ranking fuzzy subsets techniques [30].

1Definition 1: The α-cut of a fuzzy set is the crisp set formed by those elements
whose membership function grade is equal to or greater than a specified threshold vlaue
α. Mathematically,

Aα =
{
x ∈ X | µA(x) ≥ α α > 0

cl(sup(A)) α = 0 (3.6)

Definition 2: The support of a fuzzy set A in X domain is the crisp subset of X whose
elements have non-zero membership in A. Mathematically,

sup(A) = x ∈ X | µA(x) > 0 (3.7)
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Figure 3.5: Yager index: (a) The center of gravity (b) The mean area

3.6 The method for forming AUC fuzzy num-

bers

The comparision of the TPR fuzzy sets at each FPR evaluates the predictive

performance at a micro level, whereas the AUC value is a global measure at

a macro level. Our aim in this section is to establish a connection between

the TPR fuzzy sets and a AUC fuzzy set.

In fuzzy logic, the resolution principle assumes that every fuzzy set A can

be uniquely represented as a collection of α-cut sets according to:

µA(x) = supα∈[0,1][α · µAα(x)] (3.8)

The fuzzy resolution principle implies that the fuzzy set theory is a gener-

alization of the classical set theory, and that its results can also be represented

in terms of the classical set theory. This implication makes an possible appli-

cation of the resolution principle. With this implication, a global AUC fuzzy

set is associated to the combination of the TPR fuzzy sets of each α-level at

each FPR, by repeatedly applying the resolution principle as inference rules

[20][37].

The procedure to represent the global AUC fuzzy set is realized in four

steps:
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1. Fuzzy sets can be described effectively using α-cut sets [5]. Firstly, we

obtain the α-cut sets of TPR fizzy sets from α=0 (support set) to α=1

(core set).

2. Each crisp TPR set with two values from FPR = 0.01 to FPR = 0.99

provides the border lines for forming ROC curves at a particular α

value. The best and worst ROC curve of each α value from 0 to 1

can be completed from the bottom-left corner to the top-right corner.

Accordingly we obtain eleven sets of the best and worst ROC curves.

3. The corresponding best and worst AUC values are calculated for all

eleven sets of ROC curves.

4. Therefore, the best and worst AUC value at each α value are associated

to a crisp alpha-cut set. Based on the resolution principle, a AUC fuzzy

interval is generated by the combination of these crisp α-cut sets.

The resulting shape of AUC fuzzy interval is in line with the TPR fuzzy

intervals from which the AUC fuzzy interval is derived. For example, the

triangle-shaped TPR intervals result in an exactly triangle-shaped AUC in-

terval. This is mainly due to the AUC calculating algorithm TRAPZ(X,Y)

we used, which computes the integral of Y with respect to X using the trape-

zoidal method. The finding is useful to simplify the procedure of generating

the AUC fuzzy interval 2 by taking TPR values at α-cut = 0 and 1 only into

consideration, instead of cutting them into 11 from α-cut = 0, 0.1, o.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, to 1, or even more precisely. This is because the

precision of α-cutoff makes no difference for the resulting shape. We provide

mathematical proofs as follows.

Theorem:

The AUC fuzzy interval derived from triangular TPR fuzzy intervals is ex-

actly triangle-shape.

2Only for the linear-shaped fuzzy intervals: (1) the regular crisp interval, (2) the trian-
gular mean interval, (3) the triangular median interval, and (4) the trapezoidal interval;
whereas (5) the fitting envelope interval is an exception.
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Proof:

We will use mathematical induction to prove that the distance of any two

successive points of the left line and the right line is constant. In other

words, the TPR points in terms of each two successive α-cuts is an arithmetic

sequence.

Antecedents:

As illustrated in Figure 3.6, we make some assumptions for mathematical

induction as presented in the following tables 3.1 & 3.2.

Figure 3.6: The example TPR fuzzy interval at FPR = 0.1
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Table 3.1: The assuming information from triangular TPR fuzzy intervals - the left line
FPR=0 FPR=0.1 FPR=0.2 FPR=0.3 FPR=0.4 FPR=0.5 FPR=0.6 FPR=0.7 FPR=0.8 FPR=0.9 FPR=1

α = 0 0 w1 w2 w3 w4 w5 w6 w7 w8 w9 1
α = 0.1 0 w1 + ∆m1 w2 + ∆m2 w3 + ∆m3 w4 + ∆m4 w5 + ∆m5 w6 + ∆m6 w7 + ∆m7 w8 + ∆m8 w9 + ∆m9 1

α = 0.2 0 w1 + 2∆m1 w2 + 2∆m2 w3 + 2∆m3 w4 + 2∆m4 w5 + 2∆m5 w6 + 2∆m6 w7 + 2∆m7 w8 + 2∆m8 w9 + 2∆m9 1
α = 0.3 0 w1 + 3∆m1 w2 + 3∆m2 w3 + 3∆m3 w4 + 3∆m4 w5 + 3∆m5 w6 + 3∆m6 w7 + 3∆m7 w8 + 3∆m8 w9 + 3∆m9 1
α = 0.4 0 w1 + 4∆m1 w2 + 4∆m2 w3 + 4∆m3 w4 + 4∆m4 w5 + 4∆m5 w6 + 4∆m6 w7 + 4∆m7 w8 + 4∆m8 w9 + 4∆m9 1

α = 0.5 0 w1 + 5∆m1 w2 + 5∆m2 w3 + 5∆m3 w4 + 5∆m4 w5 + 5∆m5 w6 + 5∆m6 w7 + 5∆m7 w8 + 5∆m8 w9 + 5∆m9 1
α = 0.6 0 w1 + 6∆m1 w2 + 6∆m2 w3 + 6∆m3 w4 + 6∆m4 w5 + 6∆m5 w6 + 6∆m6 w7 + 6∆m7 w8 + 6∆m8 w9 + 6∆m9 1
α = 0.7 0 w1 + 7∆m1 w2 + 7∆m2 w3 + 7∆m3 w4 + 7∆m4 w5 + 7∆m5 w6 + 7∆m6 w7 + 7∆m7 w8 + 7∆m8 w9 + 7∆m9 1

α = 0.8 0 w1 + 8∆m1 w2 + 8∆m2 w3 + 8∆m3 w4 + 8∆m4 w5 + 8∆m5 w6 + 8∆m6 w7 + 8∆m7 w8 + 8∆m8 w9 + 8∆m9 1
α = 0.9 0 w1 + 9∆m1 w2 + 9∆m2 w3 + 9∆m3 w4 + 9∆m4 w5 + 9∆m5 w6 + 9∆m6 w7 + 9∆m7 w8 + 9∆m8 w9 + 9∆m9 1

α = 1 0
w1 +
10∆m1

w2 +
10∆m2

w3 +
10∆m3

w4 +
10∆m4

w5 +
10∆m5

w6 +
10∆m6

w7 +
10∆m7

w8 +
10∆m8

w9 +
10∆m9

1

Table 3.2: The assuming information from triangular TPR fuzzy intervals - the right line
FPR=0 FPR=0.1 FPR=0.2 FPR=0.3 FPR=0.4 FPR=0.5 FPR=0.6 FPR=0.7 FPR=0.8 FPR=0.9 FPR=1

α = 0 0 b1 b2 b3 b4 b5 b6 b7 b8 b9 1
α = 0.1 0 b1 −∆n1 b2 −∆n2 b3 −∆n3 b4 −∆n4 b5 −∆n5 b6 −∆n6 b7 −∆n7 b8 −∆n8 b9 −∆n9 1

α = 0.2 0 b1 − 2∆n1 b2 − 2∆n2 b3 − 2∆n3 b4 − 2∆n4 b5 − 2∆n5 b6 − 2∆n6 b7 − 2∆n7 b8 − 2∆n8 b9 − 2∆n9 1
α = 0.3 0 b1 − 3∆n1 b2 − 3∆n2 b3 − 3∆n3 b4 − 3∆n4 b5 − 3∆n5 b6 − 3∆n6 b7 − 3∆n7 b8 − 3∆n8 b9 − 3∆n9 1
α = 0.4 0 b1 − 4∆n1 b2 − 4∆n2 b3 − 4∆n3 b4 − 4∆n4 b5 − 4∆n5 b6 − 4∆n6 b7 − 4∆n7 b8 − 4∆n8 b9 − 4∆n9 1

α = 0.5 0 b1 − 5∆n1 b2 − 5∆n2 b3 − 5∆n3 b4 − 5∆n4 b5 − 5∆n5 b6 − 5∆n6 b7 − 5∆n7 b8 − 5∆n8 b9 − 5∆n9 1
α = 0.6 0 b1 − 6∆n1 b2 − 6∆n2 b3 − 6∆n3 b4 − 6∆n4 b5 − 6∆n5 b6 − 6∆n6 b7 − 6∆n7 b8 − 6∆n8 b9 − 6∆n9 1
α = 0.7 0 b1 − 7∆n1 b2 − 7∆n2 b3 − 7∆n3 b4 − 7∆n4 b5 − 7∆n5 b6 − 7∆n6 b7 − 7∆n7 b8 − 7∆n8 b9 − 7∆n9 1

α = 0.8 0 b1 − 8∆n1 b2 − 8∆n2 b3 − 8∆n3 b4 − 8∆n4 b5 − 8∆n5 b6 − 8∆n6 b7 − 8∆n7 b8 − 8∆n8 b9 − 8∆n9 1
α = 0.9 0 b1 − 9∆n1 b2 − 9∆n2 b3 − 9∆n3 b4 − 9∆n4 b5 − 9∆n5 b6 − 9∆n6 b7 − 9∆n7 b8 − 9∆n8 b9 − 9∆n9 1
α = 1 0 b1 − 10∆n1 b2 − 10∆n2 b3 − 10∆n3 b4 − 10∆n4 b5 − 10∆n5 b6 − 10∆n6 b7 − 10∆n7 b8 − 10∆n8 b9 − 10∆n9 1
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Induction:

AUC calculation algorithm in our experiment = TRAPZ(X,Y) computes

the integral of Y with respect to X using the trapezoidal method.

Accordingly,

The worst AUC value (on the left line) at α = 0:

W0 = 0.1×w1

2
+ 0.1×(w1+w2)

2
+ 0.1×(w2+w3)

2
+ ...+ 0.1×(w8+w9)

2
+ 0.1×(w9+1)

2

W0 = 0.1w1 + 0.1w2 + 0.1w3 + 0.1w4 + 0.1w5 + 0.1w6 + 0.1w7 + 0.1w8 +

0.1w9 + 0.05

The worst AUC value (on the left line) at α = 0.1:

W1 = 0.1×(w1+1∆m1)
2

+ 0.1×(w1+1∆m1+w2+1∆m2)
2

+ 0.1×(w2+1∆m2+w3+1∆m3)
2

+ ...+
0.1×(w8+1∆m8+w9+1∆m9)

2
+ 0.1×(w9+1∆m9+1)

2

W1 = 0.1w1+0.1∆m1+0.1w2+0.1∆m2+0.1w3+0.1∆m3+0.1w4+0.1∆m4+

0.1w5 +0.1∆m5 +0.1w6 +0.1∆m6 +0.1w7 +0.1∆m7 +0.1w8 +0.1∆m8 +

0.1w9 + 0.1∆m9 + 0.05

...

The worst AUC value (on the left line) at α = 1:

W10 = 0.1×(w1+10∆m1)
2

+ 0.1×(w1+10∆m1+w2+10∆m2)
2

+ 0.1×(w2+10∆m2+w3+10∆m3)
2

+

...+ 0.1×(w8+10∆m8+w9+10∆m9)
2

+ 0.1×(w9+10∆m9+1)
2

W10 = 0.1w1 + 1∆m1 + 0.1w2 + 1∆m2 + 0.1w3 + 1∆m3 + 0.1w4 + 1∆m4 +

0.1w5 + 1∆m5 + 0.1w6 + 1∆m6 + 0.1w7 + 1∆m7 + 0.1w8 + 1∆m8 +

0.1w9 + 1∆m9 + 0.05

Therefore, W0−W1−W2−W3−W4−W5−W6−W7−W8−W9−W10 is

an arithmetic sequence, i.e. the distance of any two successive points

of the left line is 0.1∆m1 + 0.1∆m2 + 0.1∆m3 + 0.1∆m4 + 0.1∆m5 +

0.1∆m6 + 0.1∆m7 + 0.1∆m8 + 0.1∆m9, constantly.
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Similarly,

The best AUC value (on the right line) at α = 0:

B0 = 0.1×b1
2

+ 0.1×(b1+b2)
2

+ 0.1×(b2+b3)
2

+ ...+ 0.1×(b8+b9)
2

+ 0.1×(b9+1)
2

B0 = 0.1b1 +0.1b2 +0.1b3 +0.1b4 +0.1b5 +0.1b6 +0.1b7 +0.1b8 +0.1b9 +0.05

The best AUC value (on the right line) at α = 0.1:

B1 = 0.1×(b1−1∆b1)
2

+0.1×(b1−1∆n1+b2−1∆n2)
2

+0.1×(b2−1∆n2+b3−1∆n3)
2

+...+0.1×(b8−1∆n8+b9−1∆n9)
2

+
0.1×(b9−1∆n9+1)

2

B1 = 0.1b1 − 0.1∆n1 + 0.1b2 − 0.1∆n2 + 0.1b3 − 0.1∆n3 + 0.1b4 − 0.1∆n4 +

0.1b5 − 0.1∆n5 + 0.1b6 − 0.1∆n6 + 0.1b7 − 0.1∆n7 + 0.1b8 − 0.1∆n8 +

0.1b9 − 0.1∆n9 + 0.05

...

The best AUC value (on the right line) at α = 1:

B10 = 0.1×(b1−10∆n1)
2

+ 0.1×(b1−10∆n1+b2−10∆n2)
2

+ 0.1×(b2−10∆n2+b3−10∆n3)
2

+ ...+
0.1×(b8−10∆n8+b9−10∆n9)

2
+ 0.1×(b9−10∆n9+1)

2

B10 = 0.1b1− 1∆n1 + 0.1b2− 1∆n2 + 0.1b3− 1∆n3 + 0.1b4− 1∆n4 + 0.1b5−
1∆n5 +0.1b6−1∆n6 +0.1b7−1∆n7 +0.1b8−1∆n8 +0.1b9−1∆n9 +0.05

Therefore, B0 − B1 − B2 − B3 − B4 − B5 − B6 − B7 − B8 − B9 − B10 is

an arithmetic sequence, i.e. the distance of any two successive points

of the left line is −0.1∆n1 − 0.1∆n2 − 0.1∆n3 − 0.1∆n4 − 0.1∆n5 −
0.1∆n6 − 0.1∆n7 − 0.1∆n8 − 0.1∆n9, constantly.

In conclusion, The interval formed by these two arithmetic sequences is

triangular-shaped exactly.
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Experimental design

4.1 Real-life data sets

1. Dutch Charity Database:

Data relevance

Nowadays, a large amount of data is collected for marketing-related

proposes. The data usually are used to establish, maintain and strengthen

a direct relationship between companies and their customers in order to

target the customers individually for specific product or service offers.

The type of marketing for this end is so-called “direct marketing” [52].

Apart from a growing number of commercial companies such as bank

and insurance companies which are adopting direct marketing as their

business strategy, charity organization also employ direct marketing for

fund raising. [52]

Unlike commercial companies, charity organizations do not have reg-

ular customers. They must be able to trace people who are likely to

donate in order to optimize their fund raising. The people who donate

money in response to a particular mailing campaign have high donat-

ing potential in the future, regarded as high-promise supporters. As a

result, such high-promise supporters considered as the selected targets
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will be contacted by mail.

Data description

The data were collected by one of the largest charities in the Nether-

lands. The data set has been investigated by using such machine learn-

ing and data mining techniques as “frequent patterns” [46], “neural

networks” [47], “fuzzy models” [51][53].

The raw database available to use contains information regarding over

725,000 supporters, described in detail by Potharst, Kaymark & Pijls

[52]. The process of data reduction has been done by previous work

to find a set of variables that are most explanatory as antecedents to

a particular model (namely “feature selection”). The three so-called

recency, frequency and monetary value features [52][53] as explanatory

variables constructed from seven variables through feature selection

are used for characterizing the donation history of the supporters in a

binary system, i.e. yes = 1 whereas no = 0.

(a) Recency : Number of weeks since last response (TIMELR);

(b) Frequency : Number of months as a supporter (TIMECL);

(c) Monetary : Fraction of mailings responded (FRQRES).

The abstract database consists of 7137 individual information used to

trace people who are more likely to donate money in order to optimize

the fund raising results. The targeted supporters selected who have a

donation history value y = 1 are then contacted by mail with priority

in relation to other individuals within the database.

Data preparation

First at all, the information with missing values is filtered out. The non-

parametric bootstrap is implemented in the data set to generate 100

sets of re-samples for modeling purposes - both training and validating.
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By default, each set of re-samples is the same size as the original sam-

ple. In our experiment, re-samples are drawn with replacement from

original data set until the sample size is a small portion (10%) of the

original large data set. The reasons to restrict the size of data sets to a

small portion around 500 samples from the original large data set are

(1) to save computational time, (2) to balance a tradeoff between cost

& precision (The maximum margin of error of analyzing a sample size

n = 500 at 95% confidence interval = +/−4.38%), and (3) to visualize

a relevantly clear variation for analysis.

2. Haberman’s Survival Database:

Besides the Dutch charity database, we test our model selection sys-

tem with some other databases from “The UC Irvine Machine Learning

Repository” [4], such as “Haberman’s Survival Data Set” 1. The data

set contains 306 cases from a study that was conducted between 1958

and 1970 at the University of Chicago’s Billings Hospital on the sur-

vival of patients who had undergone surgery for breast cancer. There

are 3 numerical explanatory variables: the age of patient at time of

operation, the patient’s year of operation, and the number of positive

axillary nodes detected. A binary-class attribute of survival status will

be modeled and predicted: 1 = the patient survived 5 years or longer,

whereas 2 = the patient died within 5 year.

Similar with Dutch charity database, we implement nonparametric

bootstrap to obtain 100 sets of re-samples for use. Due to its small

sample size, the full re-samples from the original data set are modeled

for use.

3. Other Databases:

Other databases selected for our experiments from “The UC Irvine Ma-

chine Learning Repository” are ‘Blood Transfusion Service Center Data

1http://mlr.cs.umass.edu/ml/datasets/Haberman’s+Survival
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Set’ 2, “Iris Data Set” 3, “Hayes-Roth Data Set” 4, “Mammographic

Mass Data Set” 5, and “Teaching Assistant Evaluation Data Set” 6.

The brief information of these data sets is described in Table 4.1.

2http://mlr.cs.umass.edu/ml/datasets/Blood+Transfusion+Service+Center
3http://mlr.cs.umass.edu/ml/datasets/Iris
4http://mlr.cs.umass.edu/ml/datasets/Hayes-Roth
5http://mlr.cs.umass.edu/ml/datasets/Mammographic+Mass
6http://mlr.cs.umass.edu/ml/datasets/Teaching+Assistant+Evaluation
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Dataset Information Year
Sample
size

Explanatory
variables

Dependent variables

Blood
transfusion
service center

The donor database of Blood
Transfusion Service Center in
Taiwan (China)

2008 748 3
A binary variable whether
the individual donated
blood

Mammo-
graphic
mass

The database of breast cancer
screening information collected at
the Institute of Radiology of the
University Erlangen-Nuremberg

2003-2006 961 5
A binary variable of the
severity (benign or
malignant)

Teaching
assistant
evaluation

The database of evaluations of
teaching performance of teaching
assistant assignments at the
University of Wisconsin-Madison

1997 151 5

3 classes of Class
attribute; we predict
“low” against “medium”
and “high”

Hayes-Roth

The database of classification and
recognition confidence ratings in a
concept learning study that used
rule-described categories

1977 160 5
3 classes; we predict Class
1 against Class 2 and
Class 3

Iris
The widely used database about
the class of iris plant

1936 150 4

3 classes; we predict Iris
Setosa against Iris
Versicolour and Iris
Virginica

Table 4.1: The brief description of the data sets used for experiment
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4.2 Selected models

4.2.1 Logistic Regression (LR)

Traditionally, Logistic Regression (LR) is used extensively in a variety of

disciplines, such as medical and social sciences as well as marketing appli-

cations. In statistics, LR is a generalized linear model used for binary or

binomial regression, i.e. predicting the probability of occurrence of an event

by fitting data to a logistic curve. The form of LR follows a linear regres-

sion whereas the binary response variable follows a logit link. The goal of

modeling is to correctly predict the category of outcome. Binary LR is used

in our case because it fits when the dependent variable is dichotomous (i.e.

the dependent variable can take the value 1 with a probability of success ρ,

or the value 0 with probability of failure 1− ρ), and the independents are of

any type.

A mathematical form of the LR equation is:

logit[ρ(x)] = log[
ρ(x)

1− ρ(x)
] = α + β1x1 + β2x2 + ...+ βixi, (4.1)

where α = the constant of the equation, and β = the coefficient of the

predictor variables.

Sometimes when some predictors are highly correlated, the covariance

matrix does not have an inverse, and thus regression based methods may

fail. This is also true for logistic regression. Then we add a feature in the

model selection tool that can automatically exclude the predictors in very

high correlation (e.g. r > 0.9). This is achieved by examination of the

correlation matrix between predictors.

Besides LR, a number of different models will be evaluated through

the proposed theoretical framework as described below. These learning al-

gorithms have an advantage that they can be adapted to the nonlinearity in

the data to capture the complex relations. This is an important motivation

for applying them for performing classification and prediction. These models

give an interesting and differently illuminating way of investigating the data
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in terms of classification problems. They do add a flexible parametric tool

to the data analyst’s arsenal, and they should not be used to the exclusion

of each other methods, instead of depending on the predictive performance

based on different characterized databases.

4.2.2 Fuzzy Inference System (FIS)

Model description

A fuzzy knowledge base can represent a complex system as a simple set of

input-output rules. Since Japanese researcher Sugeno proposed the famous

Sugeno model (or Takagi-Sugeno-Kang model or TSK model or T-S model)

of fuzzy inference in the 1980s [37], it has been applied successfully in differ-

ent fields. The main feature of the Sugeno fuzzy model is to express the local

dynamics of each fuzzy implication rule by a linear (nonlinear) polynomial.

In this case, fuzzy rule consequents are assumed to be a linear combination

of the input variables, and the output is a convex combination of conse-

quents with the coefficients regarding to the input membership function in

the antecedents. This architecture of the model provides the feasibility of

stability analysis, as well as reduces the computational efforts of fuzzy logic.

This is the main reason why the Sugeno-type models are preferred and com-

monly used in applications of conventional crisp control and in simplified

fuzzy models [32][63].

The Sugeno model maps the antecedent (input) part with a crisp function

as the consequent (output) part, of the form: IF x is Ai AND y is Bi,

THEN zi = fi(x, y). As illustrated in Figure 4.1, the Sugeno FIS architecture

consists four layers: fuzzy layer, product layer, de-fuzzy layer and aggregation

layer. In fuzzy layer, the crisp inputs are converted to the fuzzy numbers

by the input membership functions. In product layer, the weighting factor

or firing strength of each rule is determined by evaluating the membership

expressions in the antecedent of the rule. This is accomplished by applying

the “and” operator to the membership values converted from crisp input

value to fuzzy membership value. In de-fuzzy layer, the output zi of each
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rule is weighted by the firing strength ωi of the rule.

ωizi = ω(aix+ biy + ci), i = 1...number of rules (4.2)

where ai, bi, and ci are the consequent parameters characterizing the shapes

of the linear output membership function. In aggregation layer, the final

output of the Sugeno system is the weighted sum of all rule outputs.

Figure 4.1: The Sugeno-type FIS

Model configuration

In the experimental settings, we use the “GENFIS1” Matlab command to

generate a standard Zero-Order Sugeno-type Fuzzy Inference System using

a grid partition on data. For a zero-order Sugeno-type model, the output

level z is a constant. We do not conduct parameter optimization, instead of

focusing on comparing the difference among these different types of models.

By default, “GENFIS1” uses two “gbellmf” type membership functions for

each input. Each rule generated by “GENFIS1” has one output member-

ship function, which allows us to enforce the zero order be means of setting

the constant output membership function type. Then we use the “ANFIS”

command perform the optimization of the consequents. By default, a hybrid
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method of combining least-squares with back-propagation gradient descent

algorithm is used for training FIS membership function parameters to model

a given set of input data. During the learning process of the FIS, the conse-

quent parameters are tuned until the desired response of the FIS is achieved.

4.2.3 Fuzzy C-means Clustering (FCM)

Model description

In hard (non-fuzzy) clustering algorithms, data is divided into crisp clusters,

that is each data point belongs to exactly one cluster. In fuzzy clustering

algorithms, the membership function follows a smoother line to indicate that

each data point may belong to several clusters with different values of the

membership grade from 0 to 1. Fuzzy C-means (FCM) clustering is such

an unsupervised data clustering algorithm assigning each data point into

a cluster to some degree according on specified membership grades. The

original technique introduced by J.C. Bezdek [8] as an improvement on earlier

clustering methods proposed by J.C. Dunn [21]. Now FCM has been applied

extensively in a variety of researches [3][34].

FCM provides a method that shows how to group data points that popu-

late some mono-dimensional space into a specific number of different clusters,

and is carried out through an iterative optimization (minimization) of the

basic c-means objective function:

Jm =
N∑
i=1

C∑
j=1

µmij || xi − cj ||2, 1 ≤ m ≤ ∞ (4.3)

where m is any real number grater than 1; µij is the degree of membership

of xi in the cluster j; xi is the ith of d-dimensional measured data; cj is the

d-dimension center of the cluster; and || xi− cj || is any norm expressing the

similarity between any measured data and the center.

Fuzzy partitioning is carried out through an iterative optimization of this

objective function, with the update of membership µij and cj by:
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µij =
1∑C

k=1(
||xi−cj ||
||xi−ck||

)
2

m−1

(4.4)

ci =

∑N
i=1 µ

m
ijxi∑N

i=1 µ
m
ij

(4.5)

The FCM clustering algorithm is composed of the following iterative

steps.

1. Initialize U = [µij] matrix, U (0)

2. At k-step, calcuate the centers vectors C(k) = [c − j] with U (k) using

Equation 4.5

3. Update U (k), U (k+1) using Equation 4.4

4. IF || U (k+1) − U (k) ||< ε then STOP; otherwise return to step 2.

The iteration will stop when maxij|| µ(k+1)
ij − µ(k)

ij || < ε, where ε is a

termination criterion between 0 and 1, k is the iteration steps. This procedure

converges to a local minimum or a saddle point of Jm.

Model configuration

In Matlab, function “GENFIS3” is used to generate a FIS using FCM clus-

tering to search for spherically distributed clusters, given the separate sets of

input and output data. GENFIS3 accomplishes the task by extracting a set

of rules that models the data behavior. The rule extraction method first uses

a Sugeno-type FIS as the defaulted FCM function to determine the number of

rules and membership functions for the antecedents and consequents. After

that, “EVALFIS” simulates the FCM System for the input data and returns

the predicted output data.
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Experimental results

5.1 Dutch charity database

5.1.1 Ranking TPR fuzzy intervals

1. The sets of ROC curves are derived from each of LR, FIS, and FCM

models as captured in Figure 5.1.

Figure 5.1: The ROC curves of LR, FIS, and FCM models
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2. The ROC curves are cut at each FPR from 0.01, 0.02, ... to 0.99.

Figure 5.2 shows some examples of the distribution of TPRs at each

FPR = 0.1 - 0.9.

Figure 5.2: The distribution of TPRs at each selected FPR = 0.1 - 0.9
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3. We map the TPRs at each FPR = 0.01 - 0.99 into a fuzzy interval

according to the five membership functions we described before. For

example, the Figure 5.3 - Figure 5.11 illustrate the resulting fuzzy in-

tervals derived from the five membership functions at each FPR = 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively.

Figure 5.3: The fuzzy intervals of TPRs at FPR = 0.1
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Figure 5.4: The fuzzy intervals of TPRs at FPR = 0.2

Figure 5.5: The fuzzy intervals of TPRs at FPR = 0.3
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Figure 5.6: The fuzzy intervals of TPRs at FPR = 0.4

Figure 5.7: The fuzzy intervals of TPRs at FPR = 0.5
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Figure 5.8: The fuzzy intervals of TPRs at FPR = 0.6

Figure 5.9: The fuzzy intervals of TPRs at FPR = 0.7
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Figure 5.10: The fuzzy intervals of TPRs at FPR = 0.8

Figure 5.11: The fuzzy intervals of TPRs at FPR = 0.9
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4. The index of fuzzy sets at each given FPR from 0.01 - 0.99 is calculated

based on Yager’s algorithms. Figure 5.12 and Figure 5.13 show some

abstract results of the two Yager’s indices at FPR = 0.1-0.9 respectively.

The results drawn from the Yager’s index of the center of gravity and

the mean area are basically consistent, because both methods are based

on obtaining a single real number from the average performance (gen-

eral mean value) of fuzzy numbers.

In this model selection system with LR, FIS, and FCM models, it shows

that FIS with the Sugeno-type fuzzy model performs best throughout

the entire performance, except for slightly instabilities at the end of

ROC curves.
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Figure 5.12: The abstract results of ranking fuzzy intervals for Dutch Charity
Database based on Yager’s index of the center of gravity

Figure 5.13: The abstract results of ranking fuzzy intervals for Dutch Charity
Database based on Yager’s index of the mean area
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5.1.2 Ranking AUC fuzzy intervals

1. As the selected examples (TPR fuzzy sets at FPR 0.1 - 0.9 only) shown

in Figure 5.14 - Figure 5.18, we analyze the five different shaped TPR

fuzzy sets at each FPR from 0.01, 0.02, ... to 0.99, respectively. The

α-cut sets from α = 0, 0.1, ... to 1 are obtained, i.e. the crisp sets with

the best element and the worst element of interval at each α-cut.

Figure 5.14: Sample crisp TPR fuzzy sets from FPR = 0.1 - 0.9
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Figure 5.15: Sample triangular mean TPR fuzzy sets from FPR = 0.1 - 0.9

Figure 5.16: Sample triangular median TPR fuzzy sets from FPR = 0.1 - 0.9
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Figure 5.17: Sample trapezoidal TPR fuzzy sets from FPR = 0.1 - 0.9

Figure 5.18: Sample enveloping TPR fuzzy sets from FPR = 0.1 - 0.9
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2. As Figure 5.19 - Figure 5.23 illustrated, we use the best and worst TPR

at each FPR from 0.01, 0.02, ...to 0.99 to form ROC curves for each

α-cut. Because ROC curves start from 0 and end at 1. Therefore, the

best and worst ROC curve for each α-cut are generated by connecting

the best TPR and the worst TPR points of at FPR = 0, 0.01, ..., 0.99,

and 1.

Figure 5.19: The best and worst ROC curves generated from the crisp TPR
fuzzy sets
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Figure 5.20: The best and worst ROC curves generated from the triangular
mean TPR fuzzy sets

Figure 5.21: The best and worst ROC curves generated from the triangular
median TPR fuzzy sets
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Figure 5.22: The best and worst ROC curves generated from the trapezoidal
TPR fuzzy sets

Figure 5.23: The best and worst ROC curves generated from the enveloping
TPR fuzzy sets
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3. As Figure 5.24 shown, at each α-cut, we calculate the best AUC value

based on the best ROC curve and the worst AUC value based on the

worst ROC curve. Accordingly, The AUC fuzzy interval is generated

by collecting the crisp α-cut set at each α value.

Figure 5.24: The AUC fuzzy set generated from 5 different-shaped TPR
fuzzy sets
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4. Ranking the AUC fuzzy intervals tells us the predictive performance

of these three model at a macro level. Intuition favors the FIS model

compared to the other two models, because it locates the right side

in Figure 5.24, represented with green lines. Preciously, associating a

crisp value with these intervals by using Yager’s algorithms confirms

that FIS model overall performs best with a highest value in Table 5.1.

Table 5.1 shows the resulting Yager’s index for each model with respect

to different determined fuzzy intervals, as well as the traditional way

to calculate AUC value by computing the average of the area under all

ROC curves. The fuzzy analysis results in a compatible model selection

with traditional AUC method.

The AUC fuzzy interval is considered as an global measure based on

the combination of TPR fuzzy intervals at each FPR. As long as one

classifier clearly dominates others over the entire performance, the re-

sulting AUC value is basically consistent with the micro performance

at each FPR.

Table 5.1: Defuzzified AUC value
Yager (1) Yager (2) Traditional

average

(1) crisp
LR 0.7796 0.7796 0.7894
FIS 0.7850 0.7850 0.7946
FCM 0.7784 0.7884 0.7883

(2) triangular mean
LR 0.7800 0.7807 0.7894
FIS 0.7856 0.7866 0.7946
FCM 0.7790 0.7802 0.7883

(3) triangular median
LR 0.7799 0.7806 0.7894
FIS 0.7853 0.7858 0.7946
FCM 0.7788 0.7894 0.7883

(4) trapezoid
LR 0.7802 0.7802 0.7894
FIS 0.7858 0.7858 0.7946
FCM 0.7793 0.7793 0.7883

(5) envelope
LR 0.7808 0.7806 0.7894
FIS 0.7866 0.7858 0.7946
FCM 0.7800 0.7794 0.7883
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5.2 Haberman’s survival database

Experiments with the databases described in Table 4.1 result in quite similar

outcomes with those of the Dutch charity database. Briefly, the resulting

TPR numbers drawn from the two Yager’s indices are basically consistent.

It also shows that the predictive performance at each FPR is in line with the

predictive performance at a macro level interpreted by a defuzzified AUC

value, because one of these three model is clearly dominate over the entire

performance. Additional, the fuzzy analysis is comparable with the tradi-

tional AUC approach. Hence we do not show the details of the resulting

model selection of these databases.

However, the experiment of Haberman’s survival database is the situation

where ROC curves of the three classifiers obviously intersect. In Figure 5.25,

the interaction of the ROC curves of FIS with other ROC curves occurs

around FPR = 0.5, which shows FIS performs worst before FPR = 0.5, but

outperforms after FRP = 0.5.

Figure 5.25: The ROC curves of LR, FIS, and FCM models
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This can be easier detected by charting TPR points at each FPR from

0.01, 0.02, ... to 0.99. As the examples of the distribution of TPRs at

each FPR = 0.1 - 0.9 shown in Figure 5.26, The TPR points of LR, FIS, and

FCM are overlapped at FRP = 0.5. The green TPR points of FIS distributed

slightly in the left side of those of LR (red) and FCM (blue) before FPR =

0.5, whereas these green point moves to the right side of red and blue points

after FPR = 0.5.

Figure 5.26: The distribution of TPRs at each selected FPR = 0.1 - 0.9

61



Chapter 5. Experimental results

The analysis of TPR and AUC fuzzy intervals are illustrated as follows.

Figure 5.27 - Figure 5.31 show the selected TPR fuzzy sets at FPR 0.1 - 0.9

in terms of five different determined membership functions, respectively.

Figure 5.27: Sample crisp TPR fuzzy sets from FPR = 0.1 - 0.9
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Figure 5.28: Sample triangular mean TPR fuzzy sets from FPR = 0.1 - 0.9

Figure 5.29: Sample triangular median TPR fuzzy sets from FPR = 0.1 - 0.9
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Figure 5.30: Sample trapezoidal TPR fuzzy sets from FPR = 0.1 - 0.9

Figure 5.31: Sample enveloping TPR fuzzy sets from FPR = 0.1 - 0.9
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Figure 5.32 shows the corresponding AUC fuzzy interval generated by col-

lecting the crisp α-cut set at each α value in terms of five different determined

membership function, respectively. Table 5.2 contains the corresponding de-

fuzzified AUC values.

Figure 5.32: The AUC fuzzy set generated from 5 different-shaped TPR
fuzzy sets

The macro performance presented by the AUC fuzzy intervals shows FCM

model is best, while there is not a big distinction between these three models.

The defuzzified AUC values are in line with the average AUC values calcu-

lated in a traditional way. However, the analysis TPR fuzzy intervals sheds
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Table 5.2: Defuzzified AUC value
Yager (1) Yager (2) Traditional

average

(1) crisp
LR 0.6995 0.6995 0.7092
FIS 0.6940 0.6940 0.7043
FCM 0.7009 0.7009 0.7114

(2) triangular mean
LR 0.7027 0.7091 0.7092
FIS 0.6974 0.7040 0.7043
FCM 0.7044 0.7113 0.7114

(3) triangular median
LR 0.7027 0.7090 0.7092
FIS 0.6984 0.7072 0.7043
FCM 0.7043 0.7110 0.7114

(4) trapezoid
LR 0.7043 0.7043 0.7092
FIS 0.6990 0.6990 0.7043
FCM 0.7061 0.7061 0.7114

(5) envelope
LR 0.7091 0.7090 0.7092
FIS 0.7040 0.7072 0.7043
FCM 0.7114 0.7110 0.7114

light on an inconsistent performance at micro level. In this sense, decision

maker should pay more attention when some special specificity is required.
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Conclusion and discussion

6.1 Main findings

In this study we have developed a small computer tool that can efficiently

select best models among alternatives under sampling uncertainty for bi-

nary predictions (source code available in Appendix). The implementation

of the bootstrap algorithm simulates the sampling uncertainty based on the

distribution of the original database and reduces the computational complex-

ity when dealing with extremely large data sets. The introduction of fuzzy

numbers enables to analyze the variation from sampling uncertainty and deal

with complicated scenarios when ROC curves intersect. The model selection

can be based on either overall performance or at any required false positive

cut-off threshold, which can be flexibly supplied by the user.

So far, we have included three classification models: “Logistic regression”,

“Fuzzy inference system with the Sugeno model”, and “Fuzzy C-means clus-

tering”, and used Yager’s index of the center of gravity and the mean area

for ranking fuzzy numbers. We have tested our method on several real-world

data sets. In general, the best model selected using our method is the one

with the maximum defuzzified number.

• Among the tested data sets, the scenario that the selection based on a

micro level disagrees with a global AUC based selection is rare. This

is most likely explained by the fact that one classifier clearly outper-
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forms compared with others, and these data sets have been well quality

controlled before analysis and lack of hidden heterogeneity.

• The resulting numbers from Yager’s index of the center of gravity and

the mean area are consistent, because both algorithms measure the

general mean of fuzzy numbers.

• The five different shaped AUC fuzzy subsets: “the regular crisp inter-

val function”, “the triangular mean function”, “the triangular median

function”, “the trapezoidal function with mean and standard devia-

tion”, and “the fitting function of envelope” represent the AUC value

with the different level of information accessible. The results derived

from the five different shaped AUC fuzzy subsets are compatible, as

well as in line with the transitional average AUC value. It implicates

that one can draw a relatively reliable selection even based on limited

information available.

In conclusion, the main contributions of the paper are:

1. A fuzzy presentation of ROC curves has been provided. The algo-

rithm addresses not only the predictive accuracy but also the degree

of sampling uncertainty, based on which the confidence intervals of

ROC curves can be efficiently and reliably estimated. The uncertainty-

fuzziness model selection system enables to describe imprecise informa-

tion. It is capable of representing dubious, incomplete, and fragmentary

information in the fuzziness description. Therefore the proposed system

benefits from the comparison of classifiers in imprecise environments or

environments without rich information available.

2. The fuzzification transformation of TPR intervals into a AUC interval

has been presented. It simplifies quantitative information to a lower

information content and thus eases the procedure of uncertainty quan-

tification. The compatible results with the traditional average AUC

values indicate that our method is reliable. The major benefit is that

the worst & best performance boundaries due to sampling uncertainty

can be captured and estimated efficiently.
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3. In addition to an overall accuracy evaluation, the implemented fuzzy al-

gorithm also allows specific accuracy analysis based on the FPR thresh-

olds required by users. This is particular important in many real ap-

plications such as clinical medicine or economics. For example, if a

certain operation on a cancer patient requires the diagnosis to be 99%

sure (specificity), the model selection should depend on the predictive

performance up to the FPR threshold of 0.01 (1− specificity), instead

of the full range integration of the ROC curves.

6.2 Future research

There remains a plenty of spaces where the developed tool can be extended.

For example, the method now focuses on binary prediction where multi-class

responses are dichotomized to one vs. the remaining classes. The approach

can be easily extended to allow the prediction of multi-class responses, as

well as quantitative outcomes. Also, more criteria of ranking fuzzy numbers

can be included in case of some special scenarios. So far we have imple-

mented three alternative prediction models. The system can be extended by

including more prediction models in the future.
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Database loading
Data preparation - removing highly correlated predictors
Bootstrap-sampling
TPR and FPR derived from bootstrap samples modeling
ROC curves ploting
TPRx100 with respect to each FPR
TPR distribution ploting:
TPR mapping into FI and ploting
TPR fuzzy numbers defuzzifing
TPR fuzzying intervals transferring into AUC fuzzy intervals (1)
TPR fuzzying intervals transferring into AUC fuzzy intervals (2)
TPR fuzzying intervals transferring into AUC fuzzy intervals (3)
TPR fuzzying intervals transferring into AUC fuzzy intervals (4)
TPR fuzzying intervals transferring into AUC fuzzy intervals (5)

Database loading

different with the different format of databases

clear
load tarseldata.mat

data1=[ytest,Xtest];
data2=[ytrain,Xtrain];
data=[data1;data2];
data(any(isnan(data),2),:) = [];

clear var_list ytest Xtest ytrain Xtrain data1 data2

Data preparation - removing highly correlated predictors

y=data(:,1);
if (min(y)==0),y=y+1;end
X=data(:,2:end);
n=size(X,2);
D = zeros(1,n);         % model deviance
for i=1:n               % over m predictors
    x=X(:,i);
    [B,d] = mnrfit(x,y);
    D(i)=d;
end

cor=corr(X);
th = 0.9;               % correlation threshold
ex = zeros(n,1);        % exclude index
for i=1:n
    for j=(i+1):n
        if (cor(i,j)>th)    % if i and j are highly correlated
            if(D(i)>=D(j))  % exclude the one with higher deviance
                ex(i)=ex(i)+1;
            else
                ex(j)=ex(j)+1;
            end
        end
    end
end

disp(ex);
X(:,ex>0)=[];       % remove variables indexed by ex
data=[y,X];         % new data

Bootstrap-sampling

[BOOTSTAT,BOOTSAM] = BOOTSTRP(NBOOT,BOOTFUN,D1,...) draws NBOOT bootstrap data
  samples, returns BOOTSAM, a matrix of indices into the rows of the extra arguments.



  To get the output samples BOOTSAM without applying a function, set
  BOOTFUN to empty ([]).

% initialize
nrep = 100;
per = .1;

% bootstrap
[a,b]=bootstrp(nrep,[],data);
n=floor(size(data,1)*per);
sample=zeros(n,size(data,2),nrep);

for i=(1:nrep)
        % a book (3-dimensional matrix) with 100 pages
        sample(:,:,i) = data(b(1:n,i),:);
        if(var(sample(:,1,i))==0)
            error('Variable Y has no variance')
        end
end

clear a b i n per nrep
save resamples

TPR and FPR derived from bootstrap samples modeling

clear
load resamples.mat

num=100;
auc1=zeros(num,1);
auc2=zeros(num,1);
auc3=zeros(num,1);
tfpr1=zeros(1001,2);
tfpr2=zeros(1001,2);
tfpr3=zeros(1001,2);
for i =1:num
    X= sample(:,2:end,i);
    Y= sample(:,1,i);
    % for multiclasses Y=1/2/3: Y(Y==3)=2;
    [auc1(i),t1]=mymtfpr(Y,X,1);
    [auc2(i),t2]=mymtfpr(Y,X,2);
    [auc3(i),t3]=mymtfpr(Y,X,3);
    if i==1
        tfpr1=t1;
        tfpr2=t2;
        tfpr3=t3;
    else
        tfpr1=cat(3,tfpr1,t1);
        tfpr2=cat(3,tfpr2,t2);
        tfpr3=cat(3,tfpr3,t3);
    end
end

AUC1=mean(auc1); % traditional calculate the average of auc
AUC2=mean(auc2); % traditional calculate the average of auc
AUC3=mean(auc3); % traditional calculate the average of auc

clear i a b c X Y num
save all

ROC curves ploting

clear
load all.mat

figure;
hold on;
num=100;
x=0:.01:1;
for i = 1:num
plot(tfpr1(:,1,i),tfpr1(:,2,i),'LineWidth',2, 'linestyle','-','color','r');
plot(tfpr2(:,1,i),tfpr2(:,2,i),'LineWidth',2, 'linestyle','-','color','g');
plot(tfpr3(:,1,i),tfpr3(:,2,i),'LineWidth',2, 'linestyle','-','color','b');
end
for j=1:length(x)



    % plot xgrids
    line(x(j)*[1 1],ylim,'color','k','LineStyle',':','LineWidth',.5);
end
title 'ROC curve';
xlabel('false positive rate');
ylabel('true positive rate');
xlim([0 1]);
ylim([0 1]);
h = legend('LR','FIS','FCM',3);
set(h,'Interpreter','none')
hold off;
fnam = 'ROC';
print ('-dtiff', '-r300', fnam);

TPRx100 with respect to each FPR

clear
load all.mat

% FPR = 0.1, 0.2, ..., to 0.9
th=.1:.1:.9;
dim=size(tfpr1);
num=dim(3);
tpr=zeros(num,3,length(th));

for i=1:length(th)
    fpr=th(i);
    ix=round((dim(1)-1)*fpr+1);
    tpr1=reshape(tfpr1(ix,2,:),num,1);
    tpr2=reshape(tfpr2(ix,2,:),num,1);
    tpr3=reshape(tfpr3(ix,2,:),num,1);
    tpr(:,:,i)=[tpr1,tpr2,tpr3];
end

save 'TPR.mat' tpr;

% FPR = 0.01, 0.02, ..., to 0.99
th=.01:.01:.99;
dim=size(tfpr1);
num=dim(3);
tpr99=zeros(num,3,length(th));

for i=1:length(th)
    fpr=th(i);
    ix=round((dim(1)-1)*fpr+1);
    tpr1=reshape(tfpr1(ix,2,:),num,1);
    tpr2=reshape(tfpr2(ix,2,:),num,1);
    tpr3=reshape(tfpr3(ix,2,:),num,1);
    tpr99(:,:,i)=[tpr1,tpr2,tpr3];
end

save 'TPR99.mat' tpr99;

TPR distribution ploting:

clear;
load TPR.mat

dim=size(tpr);
th=.1:.1:.9;
figure;
for i=1:dim(3)
    SUBPLOT(3,3,i)
    xlim([0 1]);
    xlabel('TPR');
    hold on
    scatter(tpr(:,1,i), 1:dim(1),'*r')
    scatter(tpr(:,2,i), 1:dim(1),'.g')
    scatter(tpr(:,3,i), 1:dim(1),'ob')
    title (['TPR at FPR = ',num2str(th(i))]);
    h = legend('LR','FIS','FCM',3);
    set(h,'Interpreter','none')
    hold off
end
fnam = 'AllTPR';
print ('-dtiff', '-r300', fnam);



TPR mapping into FI and ploting

clear;
load TPR.mat

dim=size(tpr);
n=dim(1);
th=.1:.1:.9;
nfig=6;
stpr=sort(tpr);

for i=1:dim(3)
    figure (i)
    for j=1:nfig
        SUBPLOT(2,3,j)
        xlim([0 1]);
        xlabel('TPR');
        if (j==1)
            hold on
            scatter(tpr(:,1,i), 1:n,'*r')
            scatter(tpr(:,2,i), 1:n,'.g')
            scatter(tpr(:,3,i), 1:n,'ob')
            title (['TPR at FPR = ',num2str(th(i))]);
            h = legend('LR','FIS','FCM',3);
            set(h,'Interpreter','none')
            hold off
        elseif (j==2)       % j==2: Trapezoidal membership function with min & max
            x=[0,0,0;min(tpr(:,:,i));min(tpr(:,:,i));max(tpr(:,:,i));max(tpr(:,:,i));1,1,1];
            y=[0;0;1;1;0;0];
            plotit(x,y,j-1);
        elseif (j==3)       % j==3: Triangelar membership function with mean
            x=[0,0,0;min(tpr(:,:,i));mean(tpr(:,:,i));max(tpr(:,:,i));1,1,1];
            y=[0;0;1;0;0];
            plotit(x,y,j-1);
        elseif (j==4)       % j==4: Triangelar membership function with median
            x=[0,0,0;min(tpr(:,:,i));median(tpr(:,:,i));max(tpr(:,:,i));1,1,1];
            y=[0;0;1;0;0];
            plotit(x,y,j-1);
        elseif (j==5)       % j==5: Trapezoidal membership function with mean & standard 
deviation
            x=[0,0,0;min(tpr(:,:,i));...
                mean(tpr(:,:,i)) - std(tpr(:,:,i));...
                mean(tpr(:,:,i)) + std(tpr(:,:,i));...
                max(tpr(:,:,i));1,1,1];
            y=[0;0;1;1;0;0];
            plotit(x,y,j-1);
        elseif (j==6)       % j==6: Fitting function to envelope
            x=stpr(:,:,i);
            y=[(1:50)*2,(50:-1:1)*2]/100;
            plotit(x,y,j-1);
        end
    end
    fnam = ['fig',num2str(i)];
    print ('-dtiff', '-r300', fnam);
end
close all;

TPR fuzzy numbers defuzzifing

clear;
load TPR99.mat;

tpr=tpr99;
R=zeros(size(tpr,2),size(tpr,3),5*2); % Results

% 1. Crisp membership function with min & max
% 1) Center of gravity - Yager's index:
R(:,:,1) = shiftdim(mean([min(tpr);max(tpr)]),1);
% 2) Mean area - Yager's index 2:
R(:,:,2) = shiftdim(mean([min(tpr);max(tpr)])*1,1);

% 2. Triangelar membership function with mean
% 1) Center of gravity - Yager's index:
R(:,:,3) = shiftdim(mean([mean(tpr);min(tpr);max(tpr)]),1);
% 2) Mean area - Yager's index 2:
R(:,:,4) = shiftdim(mean(tpr).*1,1);



% 3. Triangelar membership function with median
% 1) Center of gravity - Yager's index:
R(:,:,5) = shiftdim(mean([median(tpr);min(tpr);max(tpr)]),1);
% 2) Mean area - Yager's index 2:
R(:,:,6) = shiftdim(median(tpr).*1,1);

% 4. Trapezoidal membership function with mean & standard deviation
% 1) Center of gravity - Yager's index:
R(:,:,7) = shiftdim(mean([mean(tpr)+std(tpr);mean(tpr)-std(tpr);min(tpr);max(tpr)]),1);
% 2) Mean area - Yager's index 2:
R(:,:,8) = shiftdim((mean([mean(tpr)+std(tpr);mean(tpr)-std(tpr)])+ 
mean([min(tpr);max(tpr)])).*1/2,1);

% 5. Fitting function to envelope:
% 1) Center of gravity - Yager's index:
R(:,:,9) = shiftdim(mean(tpr),1);
% 2) Mean area - Yager's index:
R(:,:,10) = shiftdim(median(tpr),1);

save 'Result99.mat' R;

% chect the result
clear;
load Result99.mat;
R1=zeros(99,3,10);
for i=1:10
    R1(:,:,i)=R(:,:,i)';
end

TPR fuzzying intervals transferring into AUC fuzzy intervals (1)

1. Crisp membership function with min & max

close all;
clear;
load TPR99.mat
tpr=tpr99;
dim=size(tpr);
th=0:.01:1;
c1=zeros(length(th),dim(2),dim(3));
c2=zeros(length(th),dim(2),dim(3));

for i=1:dim(3)
x1=[min(tpr(:,:,i));min(tpr(:,:,i))];
y1=[0;1];
x2=[max(tpr(:,:,i));max(tpr(:,:,i))];
y2=[1;0];
c1(:,:,i) = interp1(y1,x1,th);
c2(:,:,i) = interp1(y2,x2,th);
end

d=size(c1);
w=[zeros(d(2),1,d(1)),shiftdim(c1,1),ones(d(2),1,d(1))];
b=[zeros(d(2),1,d(1)),shiftdim(c2,1),ones(d(2),1,d(1))];

% Plot ROC generated by different Alpha-cut in 3D from FPR 0, 0.1, - 0.99,
% 1

figure;
title ('ROC at different alpha-cut');
xlim([0 1]);
ylim([0 1]);
zlim([0 1]);
xlabel('FPR');
ylabel('Alpha');
zlabel('TPR');
grid on
hold on

x=0:.01:1;
s=1:10:101;
for i=s
    y=ones(1,length(x)).*x(i);
    plot3(x,y,w(1,:,i),'r','LineWidth',2);
    plot3(x,y,w(2,:,i),'g','LineWidth',2);
    plot3(x,y,w(3,:,i),'b','LineWidth',2);



    plot3(x,y,b(1,:,i),'r','LineWidth',2);
    plot3(x,y,b(2,:,i),'g','LineWidth',2);
    plot3(x,y,b(3,:,i),'b','LineWidth',2);
%     for j=1:length(x)
%         % plot xgrids
%         line(x(j)*[1 1],ylim,'color','k','LineStyle',':','LineWidth',.5);
%     end
    h = legend('LR','FIS','FCM',3);
    set(h,'Interpreter','none')
end
hold off
view([45 45]);
print '-dtiff' '-r300' 3DROC(1)

% Plot 9 TPR fuzzy intervals with alpha-cut from 0, 0.1, - 1
figure;

z=0:.1:1;
j=0;
s=11:10:91;
for i=s
    j=j+1;
    SUBPLOT(3,3,j)
    hold on
    x=[0,0,0;min(tpr(:,:,i));min(tpr(:,:,i));max(tpr(:,:,i));max(tpr(:,:,i));1,1,1];
    y=[0;0;1;1;0;0];
    plotit(x,y,i-1);
    title (['TPR Fuzzy Set at FPR = ',num2str(th(i))]);
    xlim([0 1]);
    ylim([0 1]);
    xlabel('TPR');
    ylabel('Alpha-cut');
    %     h = legend('LR','FIS','FCM',3);
    %     set(h,'Interpreter','none')
    for k=1:length(z)
    % plot ygrids
    line(xlim, z(k)*[1 1],'color','k','LineStyle',':','LineWidth',.2);
    end
    hold off
end
print '-dtiff' '-r300' allTPR(1)

% -------------------------------------------------------------------------
% Plot AUC fuzzy interval from alpha-cut 0, 0.1, - 1

x=0:.01:1;
wauc=zeros(d(2),d(1));
bauc=zeros(d(2),d(1));
for j=1:d(2);
    for i=1:d(1);
        wauc(j,i)=trapz(x,w(j,:,i));
        bauc(j,i)=trapz(x,b(j,:,i));
    end
end

figure;
y=0:0.01:1;
z=0:0.1:1;
xlim([0 1]);
ylim([0 1]);
title ('AUC Fuzzy Interval');
xlabel('AUC');
ylabel('Membership');
hold on
plot(wauc(1,:),y,'r','LineWidth',2);
plot(wauc(2,:),y,'g','LineWidth',2);
plot(wauc(3,:),y,'b','LineWidth',2);
h = legend('LR','FIS','FCM',3);
set(h,'Interpreter','none')
plot(bauc(1,:),y,'r','LineWidth',2);
plot(bauc(2,:),y,'g','LineWidth',2);
plot(bauc(3,:),y,'b','LineWidth',2);
for j=1:length(z)
    % plot ygrids
    line(xlim, z(j)*[1 1],'color','k','LineStyle',':','LineWidth',.5);
end
hold off
print '-dtiff' '-r300' AUCFI(1)

% Calculat AUC fuzzy numbers: Crisp membership function with min & max
a=min(wauc,[],2);



b=max(bauc,[],2);
% 1) Center of gravity - Yager's index 1:
Yi1 = mean([a,b],2);
% 2) Mean area - Yager's index 2:
Yi2 = mean([a,b],2)*1;

save AUCFI1

TPR fuzzying intervals transferring into AUC fuzzy intervals (2)

2. Triangelar membership function with mean

close all;
clear;
load TPR99.mat
tpr=tpr99;
dim=size(tpr);
th=0:.01:1;
c1=zeros(length(th),dim(2),dim(3));
c2=zeros(length(th),dim(2),dim(3));

for i=1:dim(3)
x1=[min(tpr(:,:,i));mean(tpr(:,:,i))];
y1=[0;1];
x2=[mean(tpr(:,:,i));max(tpr(:,:,i))];
y2=[1;0];
c1(:,:,i) = interp1(y1,x1,th);
c2(:,:,i) = interp1(y2,x2,th);
end

d=size(c1);
w=[zeros(d(2),1,d(1)),shiftdim(c1,1),ones(d(2),1,d(1))];
b=[zeros(d(2),1,d(1)),shiftdim(c2,1),ones(d(2),1,d(1))];

% Plot ROC generated by different Alpha-cut in 3D from FPR 0, 0.1, - 0.99,
% 1

figure;
title ('ROC at different alpha-cut');
xlim([0 1]);
ylim([0 1]);
zlim([0 1]);
xlabel('FPR');
ylabel('Alpha');
zlabel('TPR');
grid on
hold on

x=0:.01:1;
s=1:10:101;
for i=s
    y=ones(1,length(x)).*x(i);
    plot3(x,y,w(1,:,i),'r','LineWidth',2);
    plot3(x,y,w(2,:,i),'g','LineWidth',2);
    plot3(x,y,w(3,:,i),'b','LineWidth',2);
    plot3(x,y,b(1,:,i),'r','LineWidth',2);
    plot3(x,y,b(2,:,i),'g','LineWidth',2);
    plot3(x,y,b(3,:,i),'b','LineWidth',2);
%     for j=1:length(x)
%         % plot xgrids
%         line(x(j)*[1 1],ylim,'color','k','LineStyle',':','LineWidth',.5);
%     end
    h = legend('LR','FIS','FCM',3);
    set(h,'Interpreter','none')
end
hold off
view([45 45]);
print '-dtiff' '-r300' 3DROC(2)

% Plot 9 TPR fuzzy intervals with alpha-cut from 0, 0.1, - 1
figure;

z=0:.1:1;
j=0;
s=11:10:91;
for i=s
    j=j+1;



    SUBPLOT(3,3,j)
    hold on
    x=[0,0,0;min(tpr(:,:,i));mean(tpr(:,:,i));max(tpr(:,:,i));1,1,1];
    y=[0;0;1;0;0];
    plotit(x,y,i-1);
    title (['TPR Fuzzy Set at FPR = ',num2str(th(i))]);
    xlim([0 1]);
    ylim([0 1]);
    xlabel('TPR');
    ylabel('Alpha-cut');
    %     h = legend('LR','FIS','FCM',3);
    %     set(h,'Interpreter','none')
    for k=1:length(z)
    % plot ygrids
    line(xlim, z(k)*[1 1],'color','k','LineStyle',':','LineWidth',.2);
    end
    hold off
end
print '-dtiff' '-r300' allTPR(2)

% -------------------------------------------------------------------------
% Plot AUC fuzzy interval from alpha-cut 0, 0.1, - 1

x=0:.01:1;
wauc=zeros(d(2),d(1));
bauc=zeros(d(2),d(1));
for j=1:d(2);
    for i=1:d(1);
        wauc(j,i)=trapz(x,w(j,:,i));
        bauc(j,i)=trapz(x,b(j,:,i));
    end
end

figure;
y=0:0.01:1;
z=0:0.1:1;
xlim([0 1]);
ylim([0 1]);
title ('AUC Fuzzy Interval');
xlabel('AUC');
ylabel('Membership');
hold on
plot(wauc(1,:),y,'r','LineWidth',2);
plot(wauc(2,:),y,'g','LineWidth',2);
plot(wauc(3,:),y,'b','LineWidth',2);
h = legend('LR','FIS','FCM',3);
set(h,'Interpreter','none')
plot(bauc(1,:),y,'r','LineWidth',2);
plot(bauc(2,:),y,'g','LineWidth',2);
plot(bauc(3,:),y,'b','LineWidth',2);
for j=1:length(z)
    % plot ygrids
    line(xlim, z(j)*[1 1],'color','k','LineStyle',':','LineWidth',.5);
end
hold off
print '-dtiff' '-r300' AUCFI(2)

% Calculat AUC fuzzy numbers: Triangelar membership function with mean
a=min(wauc,[],2);
b=max(wauc,[],2);
c=max(bauc,[],2);
% 1) Center of gravity - Yager's index 1:
Yi1 = mean([a,b,c],2);
% 2) Mean area - Yager's index 2:
Yi2 = b.*1;

save AUCFI2

TPR fuzzying intervals transferring into AUC fuzzy intervals (3)

3. Triangelar membership function with median

close all;
clear;
load TPR99.mat
tpr=tpr99;
dim=size(tpr);



th=0:.01:1;
c1=zeros(length(th),dim(2),dim(3));
c2=zeros(length(th),dim(2),dim(3));

for i=1:dim(3)
x1=[min(tpr(:,:,i));median(tpr(:,:,i))];
y1=[0;1];
x2=[median(tpr(:,:,i));max(tpr(:,:,i))];
y2=[1;0];
c1(:,:,i) = interp1(y1,x1,th);
c2(:,:,i) = interp1(y2,x2,th);
end

d=size(c1);
w=[zeros(d(2),1,d(1)),shiftdim(c1,1),ones(d(2),1,d(1))];
b=[zeros(d(2),1,d(1)),shiftdim(c2,1),ones(d(2),1,d(1))];

% Plot ROC generated by different Alpha-cut in 3D from FPR 0, 0.1, - 0.99,
% 1

figure;
title ('ROC at different alpha-cut');
xlim([0 1]);
ylim([0 1]);
zlim([0 1]);
xlabel('FPR');
ylabel('Alpha');
zlabel('TPR');
grid on
hold on

x=0:.01:1;
s=1:10:101;
for i=s
    y=ones(1,length(x)).*x(i);
    plot3(x,y,w(1,:,i),'r','LineWidth',2);
    plot3(x,y,w(2,:,i),'g','LineWidth',2);
    plot3(x,y,w(3,:,i),'b','LineWidth',2);
    plot3(x,y,b(1,:,i),'r','LineWidth',2);
    plot3(x,y,b(2,:,i),'g','LineWidth',2);
    plot3(x,y,b(3,:,i),'b','LineWidth',2);
%     for j=1:length(x)
%         % plot xgrids
%         line(x(j)*[1 1],ylim,'color','k','LineStyle',':','LineWidth',.5);
%     end
    h = legend('LR','FIS','FCM',3);
    set(h,'Interpreter','none')
end
hold off
view([45 45]);
print '-dtiff' '-r300' 3DROC(3)

% Plot 9 TPR fuzzy intervals with alpha-cut from 0, 0.1, - 1
figure;

z=0:.1:1;
j=0;
s=11:10:91;
for i=s
    j=j+1;
    SUBPLOT(3,3,j)
    hold on
    x=[0,0,0;min(tpr(:,:,i));mean(tpr(:,:,i));max(tpr(:,:,i));1,1,1];
    y=[0;0;1;0;0];
    plotit(x,y,i-1);
    title (['TPR Fuzzy Set at FPR = ',num2str(th(i))]);
    xlim([0 1]);
    ylim([0 1]);
    xlabel('TPR');
    ylabel('Alpha-cut');
    %     h = legend('LR','FIS','FCM',3);
    %     set(h,'Interpreter','none')
    for k=1:length(z)
    % plot ygrids
    line(xlim, z(k)*[1 1],'color','k','LineStyle',':','LineWidth',.2);
    end
    hold off
end
print '-dtiff' '-r300' allTPR(3)

% -------------------------------------------------------------------------



% Plot AUC fuzzy interval from alpha-cut 0, 0.1, - 1

x=0:.01:1;
wauc=zeros(d(2),d(1));
bauc=zeros(d(2),d(1));
for j=1:d(2);
    for i=1:d(1);
        wauc(j,i)=trapz(x,w(j,:,i));
        bauc(j,i)=trapz(x,b(j,:,i));
    end
end

figure;
y=0:0.01:1;
z=0:0.1:1;
xlim([0 1]);
ylim([0 1]);
title ('AUC Fuzzy Interval');
xlabel('AUC');
ylabel('Membership');
hold on
plot(wauc(1,:),y,'r','LineWidth',2);
plot(wauc(2,:),y,'g','LineWidth',2);
plot(wauc(3,:),y,'b','LineWidth',2);
h = legend('LR','FIS','FCM',3);
set(h,'Interpreter','none')
plot(bauc(1,:),y,'r','LineWidth',2);
plot(bauc(2,:),y,'g','LineWidth',2);
plot(bauc(3,:),y,'b','LineWidth',2);
for j=1:length(z)
    % plot ygrids
    line(xlim, z(j)*[1 1],'color','k','LineStyle',':','LineWidth',.5);
end
hold off
print '-dtiff' '-r300' AUCFI(3)

% Calculat AUC fuzzy numbers: Triangelar membership function with median
a=min(wauc,[],2);
b=max(wauc,[],2);
c=max(bauc,[],2);
% 1) Center of gravity - Yager's index 1:
Yi1 = mean([a,b,c],2);
% 2) Mean area - Yager's index 2:
Yi2 = b.*1;

save AUCFI3

TPR fuzzying intervals transferring into AUC fuzzy intervals (4)

4. Trapezoidal membership function with mean & standard deviation

close all;
clear;
load TPR99.mat
tpr=tpr99;
dim=size(tpr);
th=0:.01:1;
c1=zeros(length(th),dim(2),dim(3));
c2=zeros(length(th),dim(2),dim(3));

for i=1:dim(3)
x1=[min(tpr(:,:,i));mean(tpr(:,:,i))-std(tpr(:,:,i))];
y1=[0;1];
x2=[mean(tpr(:,:,i))+std(tpr(:,:,i));max(tpr(:,:,i))];
y2=[1;0];
c1(:,:,i) = interp1(y1,x1,th);
c2(:,:,i) = interp1(y2,x2,th);
end

d=size(c1);
w=[zeros(d(2),1,d(1)),shiftdim(c1,1),ones(d(2),1,d(1))];
b=[zeros(d(2),1,d(1)),shiftdim(c2,1),ones(d(2),1,d(1))];

% Plot ROC generated by different Alpha-cut in 3D from FPR 0, 0.1, - 0.99,
% 1

figure;



title ('ROC at different alpha-cut');
xlim([0 1]);
ylim([0 1]);
zlim([0 1]);
xlabel('FPR');
ylabel('Alpha');
zlabel('TPR');
grid on
hold on

x=0:.01:1;
s=1:10:101;
for i=s
    y=ones(1,length(x)).*x(i);
    plot3(x,y,w(1,:,i),'r','LineWidth',2);
    plot3(x,y,w(2,:,i),'g','LineWidth',2);
    plot3(x,y,w(3,:,i),'b','LineWidth',2);
    plot3(x,y,b(1,:,i),'r','LineWidth',2);
    plot3(x,y,b(2,:,i),'g','LineWidth',2);
    plot3(x,y,b(3,:,i),'b','LineWidth',2);
%     for j=1:length(x)
%         % plot xgrids
%         line(x(j)*[1 1],ylim,'color','k','LineStyle',':','LineWidth',.5);
%     end
    h = legend('LR','FIS','FCM',3);
    set(h,'Interpreter','none')
end
hold off
view([45 45]);
print '-dtiff' '-r300' 3DROC(4)

% Plot 9 TPR fuzzy intervals with alpha-cut from 0, 0.1, - 1
figure;

z=0:.1:1;
j=0;
s=11:10:91;
for i=s
    j=j+1;
    SUBPLOT(3,3,j)
    hold on
    x=[0,0,0;min(tpr(:,:,i));mean(tpr(:,:,i))- std(tpr(:,:,i));
        mean(tpr(:,:,i))+ std(tpr(:,:,i));max(tpr(:,:,i));1,1,1];
    y=[0;0;1;1;0;0];
    plotit(x,y,i-1);
    title (['TPR Fuzzy Set at FPR = ',num2str(th(i))]);
    xlim([0 1]);
    ylim([0 1]);
    xlabel('TPR');
    ylabel('Alpha-cut');
    %     h = legend('LR','FIS','FCM',3);
    %     set(h,'Interpreter','none')
    for k=1:length(z)
    % plot ygrids
    line(xlim, z(k)*[1 1],'color','k','LineStyle',':','LineWidth',.2);
    end
    hold off
end
print '-dtiff' '-r300' allTPR(4)

% -------------------------------------------------------------------------
% Plot AUC fuzzy interval from alpha-cut 0, 0.1, - 1

x=0:.01:1;
wauc=zeros(d(2),d(1));
bauc=zeros(d(2),d(1));
for j=1:d(2);
    for i=1:d(1);
        wauc(j,i)=trapz(x,w(j,:,i));
        bauc(j,i)=trapz(x,b(j,:,i));
    end
end

figure;
y=0:0.01:1;
z=0:0.1:1;
xlim([0 1]);
ylim([0 1]);
title ('AUC Fuzzy Interval');
xlabel('AUC');
ylabel('Membership');



hold on
plot(wauc(1,:),y,'r','LineWidth',2);
plot(wauc(2,:),y,'g','LineWidth',2);
plot(wauc(3,:),y,'b','LineWidth',2);
h = legend('LR','FIS','FCM',3);
set(h,'Interpreter','none')
plot(bauc(1,:),y,'r','LineWidth',2);
plot(bauc(2,:),y,'g','LineWidth',2);
plot(bauc(3,:),y,'b','LineWidth',2);
for j=1:length(z)
    % plot ygrids
    line(xlim, z(j)*[1 1],'color','k','LineStyle',':','LineWidth',.5);
end
hold off
print '-dtiff' '-r300' AUCFI(4)

% Calculat AUC fuzzy numbers: Trapezoidal membership function with mean &
% standard deviation
a=min(wauc,[],2);
b=max(wauc,[],2);
c=min(bauc,[],2);
e=max(bauc,[],2);
% 1) Center of gravity - Yager's index 1:
Yi1 = mean([a,b,c,e],2);
% 2) Mean area - Yager's index 2:
Yi2 = (mean([a,c],2)+mean([b,e],2))*1/2;

save AUCFI4

TPR fuzzying intervals transferring into AUC fuzzy intervals (5)

5. Fitting function to envelope:

close all;
clear;
load TPR99.mat
tpr=tpr99;
dim=size(tpr);
th=0:.01:1;
c1=zeros(length(th),dim(2),dim(3));
c2=zeros(length(th),dim(2),dim(3));

stpr=sort(tpr);
hl=round(length(stpr)/2); % half length
for i=1:dim(3)
    x1=stpr(1:hl,:,i);
    y1=interp1([1;hl],[0;1],1:hl)';
    x2=stpr((hl+1):2*hl,:,i);
    y2=interp1([hl+1;2*hl],[1;0],(hl+1):2*hl)';
    c1(:,:,i) = interp1(y1,x1,th);
    c2(:,:,i) = interp1(y2,x2,th);
end

d=size(c1);
w=[zeros(d(2),1,d(1)),shiftdim(c1,1),ones(d(2),1,d(1))];
b=[zeros(d(2),1,d(1)),shiftdim(c2,1),ones(d(2),1,d(1))];

% Plot ROC generated by different Alpha-cut in 3D from FPR 0, 0.1, - 0.99,
% 1

figure;
title ('ROC at different alpha-cut');
xlim([0 1]);
ylim([0 1]);
zlim([0 1]);
xlabel('FPR');
ylabel('Alpha');
zlabel('TPR');
grid on
hold on

x=0:.01:1;
s=1:10:101;
for i=s
    y=ones(1,length(x)).*x(i);
    plot3(x,y,w(1,:,i),'r','LineWidth',2);
    plot3(x,y,w(2,:,i),'g','LineWidth',2);



    plot3(x,y,w(3,:,i),'b','LineWidth',2);
    plot3(x,y,b(1,:,i),'r','LineWidth',2);
    plot3(x,y,b(2,:,i),'g','LineWidth',2);
    plot3(x,y,b(3,:,i),'b','LineWidth',2);
%     for j=1:length(x)
%         % plot xgrids
%         line(x(j)*[1 1],ylim,'color','k','LineStyle',':','LineWidth',.5);
%     end
    h = legend('LR','FIS','FCM',3);
    set(h,'Interpreter','none')
end
hold off
view([45 45]);
print '-dtiff' '-r300' 3DROC(5)

% Plot 9 TPR fuzzy intervals with alpha-cut from 0, 0.1, - 1
figure;

z=0:.1:1;
j=0;
s=11:10:91;
for i=s
    j=j+1;
    SUBPLOT(3,3,j)
    hold on
    x=stpr(:,:,i);
    y=[(1:50)*2,(50:-1:1)*2]/100;
    plotit(x,y,i-1);
    title (['TPR Fuzzy Set at FPR = ',num2str(th(i))]);
    xlim([0 1]);
    ylim([0 1]);
    xlabel('TPR');
    ylabel('Alpha-cut');
    %     h = legend('LR','FIS','FCM',3);
    %     set(h,'Interpreter','none')
    for k=1:length(z)
    % plot ygrids
    line(xlim, z(k)*[1 1],'color','k','LineStyle',':','LineWidth',.2);
    end
    hold off
end
print '-dtiff' '-r300' allTPR(5)

% -------------------------------------------------------------------------
% Plot AUC fuzzy interval from alpha-cut 0, 0.1, - 1

x=0:.01:1;
wauc=zeros(d(2),d(1));
bauc=zeros(d(2),d(1));
for j=1:d(2);
    for i=1:d(1);
        wauc(j,i)=trapz(x,w(j,:,i));
        bauc(j,i)=trapz(x,b(j,:,i));
    end
end

figure;
y=0:0.01:1;
z=0:0.1:1;
xlim([0 1]);
ylim([0 1]);
title ('AUC Fuzzy Interval');
xlabel('AUC');
ylabel('Membership');
hold on
plot(wauc(1,:),y,'r','LineWidth',2);
plot(wauc(2,:),y,'g','LineWidth',2);
plot(wauc(3,:),y,'b','LineWidth',2);
h = legend('LR','FIS','FCM',3);
set(h,'Interpreter','none')
plot(bauc(1,:),y,'r','LineWidth',2);
plot(bauc(2,:),y,'g','LineWidth',2);
plot(bauc(3,:),y,'b','LineWidth',2);
for j=1:length(z)
    % plot ygrids
    line(xlim, z(j)*[1 1],'color','k','LineStyle',':','LineWidth',.5);
end
hold off
print '-dtiff' '-r300' AUCFI(5)

% Calculat AUC fuzzy numbers: Fitting function to envelope



a=max(wauc,[],2);
b=min(bauc,[],2);
% 1) Center of gravity - Yager's index 1:
Yi1 = mean([wauc,bauc],2);
% 2) Mean area - Yager's index 2:
Yi2 = mean([a,b],2)*1;

save AUCFI5
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A.2 The function of obtaining TPRs and FPRs

for different classifiers
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function [auc,TFPR] = mymtfpr(Y,X,Method)
% Function mymtfpr to be added to the MATLAB vocabulary returns:
% the AUC value, true positive rates and false positive rates.
%
% Y: a column vector of N subjects belonging to 0/1 binary classes.
% X: N by M of M predicotrs.
%
% Method is an optional integer, where
%   1: Multinomial logistic regression (default)
%   2: FIS - Single-output Sugeno-type FIS
%   3: FIS - Fuzzy C-means clustering
%
% (c) Bei Wen, May 2009, Erasmus University

% Check arguments
disp(nargchk(2, 3, nargin));        % Allow 2 to 3 inputs
disp(nargoutchk(0, 2, nargout));    % Allow 0 to 2 outputs
mthd=1;                             % Defualt
if nargin == 3
    mthd=Method;
end

% Remove missings
dt=[Y,X];
dt(any(isnan(dt),2),:)=[];
Y=dt(:,1);
X=dt(:,2:end);

% preprocess
if(min(Y)==0)
    Y=Y+1;
end
if(min(X)==0)
    X=X+1;
end

n = size(Y);
y = accumarray({(1:n)' Y},1);
Y = y(:,end);
if mthd==1                          % Method #1: LR
    B = mnrfit(X,y);
    PHAT = mnrval(B,X);
    PHAT = PHAT(:,2);
elseif mthd==2                      % Method #2: FIS
    fis0 = genfis1([X,Y],2,'gbellmf','constant');
    fis1 = anfis([X,Y],fis0,[10 0 0.01 0.9 1.1], [1 1 1 1],[X,Y] ,1);
    PHAT = evalfis(X,fis1);
    PHAT(PHAT>1) = 1;
    PHAT(PHAT<0) = 0;
elseif mthd==3                      % Method #3: FCM
    fis0 = genfis3(X,Y);
    PHAT = evalfis(X,fis0);
    PHAT(PHAT>1) = 1;
    PHAT(PHAT<0) = 0;
end

[tpr1,fpr1] = roc(y(:,2)',PHAT');
[B,I] = unique(fpr1);
fpr2 = 0:0.001:1;
tpr2 = interp1(fpr1(I),tpr1(I),fpr2);
TFPR = [fpr2',tpr2'];
TFPR(isnan(TFPR)) = 1;
auc = trapz(TFPR(:,1),TFPR(:,2));
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Appendix A. Matlab scripts

A.3 The function of plotting figures
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function plotit(x,y,n)
xlim([0 1]);
ylim([0 1]);
hold on;
line(x(:,1),y,'Color','r','LineWidth',2,'LineStyle','-');
line(x(:,2),y,'Color','g','LineWidth',2,'LineStyle','-');
line(x(:,3),y,'Color','b','LineWidth',2,'LineStyle','-');
hold off;
title (['Fuzzy Interval ', num2str(n)]);
xlabel('TPR');
ylabel('Membership');
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