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Executive summary 
Given the commitment to renewable energy in The Netherlands, offshore wind energy is a viable 

source of energy supply. The further on the sea the offshore wind farm, the more energy generated, 
however, the larger cost of Operation and Maintenance. This cost might take up to approximately 30% 
of the capital expenses of offshore wind(Rodrigues et al., 2015). In addition, the further away from the 
shore, the more dangerous the maintenance service is due to more volatile oceanic weather 
conditions. In addition, a jack-up vessel is necessary to conduct maintenance and replacement of large 
turbine components such as the gear box. However, this vessel is quite expensive and requires a 
thorough and long process to implement the maintenance services. Therefore, we are interested in 
the following research problem:   

“How offshore wind farm operators can apply the weather window of wave height and wind 
speed forecasting in planning the jack-up vessel in an efficient way while ensuring some safety 

standards?” 

In the first part of this research, we focus on data collection, cleaning, and analysis to discover 
the nature of the weather and wave time series. These data were first collected at an hourly level. We 
then applied random forest imputation to the wind speed time series to regenerate the wind speed 
pattern after more than 2 months of missing values. The random forest model using 50 trees and 7 
variables to impute the data provided the lowest imputation error in general, however, it also took the 
longest computation time. After that, the wind speed time series were aggregated into average daily 
mean wind speed to conduct a long-term wind speed prediction of one year. The hourly mean wind 
speed, wind power, and significant wave height were used for short-term wind speed prediction of up 
to one day. After that, these data were decomposed by the STL decomposition method to discover the 
multi-seasonality feature and trend during the period under the study. There was a decreasing trend 
in both the wind speed and wind power output which required a more efficient jack-up vessel 
chartering plan and execution to optimize the O&M service of the offshore wind farm for more profit 
gain. These data were also non-stationary and not normally distributed; therefore, a Box-Cox 
transformation was applied to make their distribution more symmetric. In addition, there was a strong 
yearly – seasonal V-shape pattern in both wind speed and wind power and we can divide the wind 
climate into two seasons. The winter wind season is from October to March, and the summer wind 
season is from April to September. There is not an obvious pattern in the significant wave height time 
series, however, we can also divide the wave season the same way as the wind season. 

In the second part of this research, we implemented a long-term prediction model for the wind 
speed using the daily wind speed time series with Fourier Autoregressive Moving Average (F-ARMA) 
method. We then conducted the short-term wind speed, wind power, and significant wave height 
prediction at the hourly level by using the Non-linear Autoregressive Neural Network model without 
exogenous outputs (NAR). The F-ARMA model outperformed a seasonal naïve model in prediction 
accuracy, therefore, we used its forecast to select the weather window for O&M activities. Based on 
our long-term wind speed prediction for 2020, we took advantage of the decreasing trend of the wind 
speed at the beginning of the summer and compared the weather condition with the safety standards 
of the jack-up vessel to select the local minimum in March, April, and May 2020. Specifically, we 
forecasted that in 2020, the local minimum of the average daily mean wind speed in March was the 
30th of March and the local minimum of average daily mean wind speed was the 28th of April. After 
that, we recommend building a medium-term prediction to verify these local minima of each weather 
window before implementing short-term predictions.   

Due to the time scope, we implemented short-term wind speed, wind power, and significant 
wave height prediction one day before and after these two selected days to verify the long-term 
prediction results and established the trade-off between the revenue gained by the higher wind speed 
and the demurrage rate of the jack-up vessel. The performance of the NAR model for wind speed was 
much better on the 29th and 30th of March 2020 with the MAPE of less than 15%, however, we could 
not conduct maintenance service on these days due to unsafe wind speed and wave height conditions. 
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Regards the forecasted weather window in April 2020, the wind speed and wave height were predicted 
to be more favorable to implement maintenance although the prediction error was a bit larger than 
the forecasted weather window in March 2020. The wind power prediction was unfortunately not 
accurate due to the wind energy data collection could not capture the correct nominal wind energy 
produced by the Gemini wind farm.  

In the third part of the research, we calculate the trade-off between the revenue gained by the 
wind power when we delay the maintenance service and the demurrage rate of the jack-up vessel. We 
found that it is not cost-effective to offset the demurrage rate of the jack-up vessel. However, we can 
apply long-term and short-term predictions of the weather data every year to establish the schedule 
of chartering the same jack-up vessel between different wind farms. Thus, enabling the vessel sharing 
approach of the jack-up vessel to optimize the vessel use, and reduce the chartering cost, 
documentation time, and contract negotiation. In this way, we could reduce the lead time of jack-up 
vessel deployment and the downtime cost of the broken turbine. We also suggest investigating the 
weather window from October 31st to November 1st since the delay at that time may be more 
profitable
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1. INTRODUCTION 
1.1. Research problem and motivation 

The Netherlands government is targeting 70% of total energy coming from renewable sources 
in 2030 (Government of The Netherlands, 2020). More than half of which will be generated from 
offshore windfarm thanks to the favorable conditions of The North Sea’s shallow water, seasonal wind 
climate, and the proximity of the wind farm to the nearest port (Government of The Netherlands, 
2020). Specifically, in 2019, offshore wind turbines generated around 1 gigawatt (GW) of power in total 
(Government of The Netherlands, 2020), and nearly 1.5 GW of new offshore wind was installed in 
2020, making the Netherlands the second-largest market followed by Belgium (706 MW) ((GWEC), 
2021). In addition, continuous effort is being invested to raise the capacity of offshore wind electricity 
consumption to 40% (Accenture, 2021) of total electricity consumption in the country by the end of 
2030. The larger the wind farm is, the more operation expenditure is spent since operation and 
maintenance (O&M) costs account for roughly 25% to 30% (Röckmann, Lagerveld, and Stavenuiter., 
2017) of the total expenditure. Therefore, the optimization of operation and maintenance services for 
the offshore wind farm would make the wind electricity more affordable to the citizen and support the 
Netherlands to realize its commitment.  

Operation and Maintenance of the wind farm consist of three main activities which are the 
transportation of maintenance personnel, shipment of larger equipment and components, and lifting 
activities. One of the main challenges in designing a cost-effective offshore maintenance service is to 
predict the weather window including the wind speed and wave height prediction so that the wind 
farm operator can plan the O&M activities. This will not only result in the minimum downtime cost but 
also ensure the safest and fastest accessibility of the maintenance crew, shipments of large 
replacement components, and lifting activities to the wind farm (Sperstad et al., 2017). Therefore, this 
thesis aims to solve the following research problem:  

“How offshore wind farm operators can apply the weather window of wave height and wind 
speed forecasting in planning the jack-up vessel in an efficient way while ensuring some safety 

standards?” 

Regards of economic benefit, this thesis determines the downtime cost of the interruption in 
the energy output based on the wind speed prediction and the trade-off between flexible chartering 
and pre-fixed chartering of the jack-up vessel (Faulstich, Hahn and Tavner, 2011). In terms of safety 
standards, wind speed and wave height forecasts are used to evaluate the accessibility of the 
maintenance crew to the wind farm and the weather restriction for lifting activities, maintenance, and 
repair activities. Thus, this thesis first constructs a long-term wind speed prediction model to identify 
wind speed seasonality and select the period for O&M activities. After that, short–term wind speed 
and wave height forecasting predictions are executed to determine and forecast the specific economic 
benefit of O&M activities in the selected period, loss or gain of the expected downtime due to the 
delay in maintenance, and the trade-off of chartering the jack-up vessel. Then, the wind farm operator 
can schedule the vessel and prepare the contract for collaborations between different wind farms. 

In order to apply the thesis’s model to the real-life case study, we analyzed the case of Gemini 
Wind Park which is located 85 km away from the shore of The Dutch North Sea at the depth of 30 
meters under the seawater level. There are 150 Siemens SWT- 4.0 - 130 wind turbines installed in the 
wind park with a total nominal capacity of 600 Megawatt per year. This wind park was fully operational 
in 2017 with the operation and maintenance service implemented by Siemens Gamesa until 20361.  

1.2. How does the thesis contribute to current literature? 
This thesis aims to optimize the schedule for O&M activities of the offshore wind farm based on 

the predicted weather window with wind speed and wave height prediction along with the cost data. 
Yalcin Dalgic mapped out different methodologies in optimizing Operation and Maintenance activities 
by diving them based on the input data, simulations, and expected outputs for the research as in Figure 

 
1 https://www.geminiwindpark.nl/now-at-gemini-wind-park.html#n6 
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1 (Yalcin Dalgic, 2015). Based on this figure, the thesis contributes to recent literature in the following 
ways. 

 First of all, it contributes to the (Schouten, 2019) research of wind farm O&M activities and 
failure analysis by predicting the difference in energy production and downtime outputs for the certain 
delay. Secondly, it provides Synthetic Climate Data Prediction of both the wind speed and the wave 
height for the accessibility and operative analysis. Thirdly, the thesis contributes to the planning of 
jack-up vessels for the wind farm in the long term. In addition, by applying short-term wind speed and 
wave height prediction, we can assess the accessibility of the wind farm for jacking, lifting, and 
maintenance activities of the jack-up vessel. Last but not least, the thesis applies the most updated 
data on the downtime cost of the Dutch wind energy market in estimation and modeling for the case 
of Gemini Wind Farm. 

Figure 1: Developed O&M Methodologies of the offshore wind farm (Source: Dalgic, Lazakis, 
Dinwoodie, et al., 2015). 

1.3.  The purpose of the thesis and the research questions 

The thesis aims to create a weather window of long-term wind speed forecast, short-term wind 
speed, and wave height prediction which empowers the decision-making process to solve the research 
problem in maintenance planning and vessel schedule for the safety of the maintenance crew with the 
least downtime cost.  

Regarding the prediction methods, machine learning algorithms, nowadays, pose promising 
prediction results with higher accuracy compared to traditional statistical models. Therefore, this 
thesis also aims to apply not only the traditional auto-regressive model but also other machine learning 
algorithms including shallow and deep learning methods to recommend the most suitable model which 
best addresses the objectives and the research questions. 

Thus, the thesis targets to address the following main research questions (RQ): 

- RQ1: How can the offshore wind farm operator forecast the wind speed over a short-term and 
long-term period?  
- RQ2: How can the offshore wind farm operator forecast the wave height over a short-term 
period? 
- RQ3: How should the wind farm operator charter the jack-up vessel, in which season of the 
year, on which day, and for how long given certain maintenance needs? (Figure 2) 
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Figure 2: Illustration of Research Question 3 

 
- RQ4: How can the wind farm operator determine the trade-off between the revenue gained 
by 1 day/1 week/1 month delay in maintenance for more energy generation thanks to better 
weather? (Figure 3) 

 

Figure 3: Illustration of Research Question 4 

- RQ5: How can the wind farm operator organize the jack-up vessel to conduct maintenance on 
the wind farm by establishing the trade-off between revenue of the wind farm gained in the 
delay and the demurrage rate of the jack-up vessel? (Figure 4) 
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Figure 4: Illustration of Research Question 5 

1.4. Thesis outline 

We present the general overview of research about offshore windfarm O&M optimization and 
related methodology in wind speed and wave height prediction in Chapter 2. In Chapter 3, we collected 
the data, cleaned, and analyzed the weather data time series.  In Chapter 4, we implemented the long-
term wind speed prediction to answer RQ1 and sketched out the weather window for 1-year planning 
and scheduling of the jack-up vessel to answer RQ3. After that, we selected the weather window with 
the day with the lowest wind speed to conduct short-term wind speed, wind power, and wave height 
prediction to answer RQ1 and RQ2. After that, we conducted an economic analysis to evaluate the 
trade-off between the downtime cost and demurrage rate, and how the wind farm operator could use 
these models as a tool to assist their planning and scheduling of jack-up vessels.  

  

Figure 5: Layout of the thesis 

Jack-up 
vessel 
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2. LITERATURE REVIEW AND METHODOLOGY 

In this chapter, section 2.1 consists of the various literature sources about current state-of-the-
art offshore wind farm O&M strategies involving short-term and long-term wind speed, wave height 
prediction, and forecasting methods and section 2.2 presents selected methodologies for the wind 
speed and wave height forecasting techniques. To do so, we search for papers with key terminologies 
like “off-shore wind farm maintenance,” “off-shore wind farm accessibility,” “long-term wind speed 
prediction,” “short-term wind speed prediction,” and “short-term wave height prediction,” “jack-up 
vessel planning”. 

2.1. Literature review 
2.1.1. Offshore wind farm operation and maintenance literature review. 
2.1.1.1.  Some regulations, guidelines, and safety standards concerned in the thesis  

Regulations are defined as administrative legislation at the national or state level which governs 
the rights and responsibilities (Sirnivas et al., 2012). Standards are documents established from best 
practice, research, and know-how and are applied by the agreement of the stakeholders. A standard 
illustrates how a product is to be designed, constructed, examined and operated (Sirnivas et al., 2012). 
In addition, guidelines are suggested practice documents that are not subjected to a formal protocol 
or vote of constituencies. They are developed by classification societies and only depend on the 
internal quality process and peer review of the originating society. Guidelines consist of proposed, 
nonmandatory administration that assists standard or act as references when no applicable standard 
is in place. They are strongly recommended in some cases (Sirnivas et al., 2012).  

In this thesis, we concentrate on the regulations and safety standards of the weather conditions 
(wind speed and wave height) which ensure the normal and safe operation of the wind turbine, jack-
up vessel, and the maintenance crew. Therefore, we based on the safety standards of the turbine and 
jack-up vessel’s technical design and the Guidelines for the Safe Management and Operation of 
Offshore Support Vessels to make the decision on vessel planning and scheduling in this thesis  (UK 
offshore Operators Association/ Chamber of Shipping, 2002)  

2.1.1.2. Optimal operation & maintenance policies for offshore wind farm 

Schouten (2019) implemented long-term prediction for maintenance planning however, they 
did not measure in detail the option to delay the maintenance for better weather days. If the 
postponement of the maintenance help to generate more energy and offset the cost of this delay, the 
O&M operator can opt for this option. In order to do so, a short-term prediction model of wind speed 
is also necessary. Byon, Ntaimo, and Ding (2010) introduced stochastic weather limits for preventive 
maintenance. Besnard et al., (2009) applied wind speed forecasting and wave height correlation in 
determining the optimal schedule to conduct preventive and corrective maintenance. However, they 
did not use wave height prediction to assess the accessibility of the wind farm. 

2.1.1.3. Jack-up vessel planning and optimization 

 Regards jack-up vessel planning, researchers build models of wind speed and wave height 
weather window to assess the downtime cost and accessibility separately or combine them without 
considering the restriction of the jack-up vessel. Broek et al (2019) created a simulation model with 
stochastic processes of the weather pattern and component failures to evaluate the resource sharing 
strategy for offshore wind farm maintenance. However, in their model, wind speed is only estimated 
to calculate the downtime cost of the wind turbine and not for scheduling the jack-up vessel. In 
addition, wave height prediction is not used to support vessel planning. Zhang et al (2019) programmed 
stochastically a dynamic opportunistic maintenance model related to the wind speed. These authors 
did not consider the weather restriction of lifting activity for the jack-up vessel. 

Dalgic et al., (2015) optimized the jack-up vessel chartering strategy for offshore wind farm O&M 
activities. They also included wave height and wind speed prediction into their simulation to calculate 
wind power, weather windows, and repair time, however, they did not describe explicitly their 
prediction model and the trade-off between the flexibility of the vessel chartering period and the 
demurrage rate within a short-term period of 1 year (52 weeks). 
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2.1.1.4. Accessibility of offshore wind farm 

The accessibility to the offshore wind farm, in reality, depends on a combination of factors such 
as the characteristics of the vessel such as the motion compensating capabilities of the access system, 
the size and hull design of the vessel on which it is mounted, the location of the vessel, and 
environmental conditions (Hu and Yung (2020). In the offshore industry, waiting time due to weather 
constraints approximately accounts for 89.4% of the downtime cost. Unfortunately, there is not yet a 
standard method to define the accessibility that allows comparison between different access systems; 
thus, this thesis uses figures based on data provided by the manufacturers or designers. In addition, 
this thesis also assumes the stylized condition in which all accessibility conditions of the offshore wind 
farm are satisfied except for the restriction of wind speed and the significant wave height per type of 
vessel.  

Regarding the wave height, it affects the lifting of the turbine’s main component, transporting 
of the maintenance crew, and other vessels–related costs accounting for approximately 45% of the 
total O&M cost (Sperstad et al., 2017). As a consequence, a weather window which combines these 
two predictions could strongly support the optimal planning of the maintenance service and 
scheduling of the vessels. 

After reviewing scientific articles about offshore wind farms' O&M optimization strategy, 
research about the combination of wind speed and wave height forecast to optimize O&M activities 
of offshore wind farms is being conducted with a variety of approaches and methods but mostly either 
to find the optimal vessel fleet composition which is based on the cost of the vessel type or evaluate 
the accessibility of the wind farm under certain weather conditions or minimizing downtime cost due 
to the interruption of wind power generation. Lazakis and Khan (2021) took into account climate and 
weather restrictions in their optimization framework for scheduling and routing the vessels but the 
wind speed is used for safety conditions but not for calculating the downtime cost. Therefore, the 
combination of short-term wind speed prediction and wave height prediction results in a more holistic 
cost model based on the power output with realistic weather restrictions for the safety of the 
maintenance crew and vessel type. 

The goal of this thesis is to contribute to the recent literature on this field in the following ways. 
Firstly, it contributes to the (Schouten, 2019) research of wind farm O&M optimization strategy with 
short-term wind speed prediction and related downtime cost. Secondly, it provides more holistic 
scheduling with both wind speed and wave height for the lifting activities and mobilizing of the jack-
up vessel. Thirdly, the thesis contributes to the planning of a jack-up vessel for the offshore wind farm 
by evaluating its accessibility. Last but not least, the thesis applies the most updated data on the 
downtime cost of the Dutch wind energy market in estimation and modeling.  

2.1.2. Weather forecasting methodologies 

In this section, for our problem, we wish to forecast the wind speed both in the long and short-
term and the wave height prediction in the short term. Based on Lawan et al., (2014), short-term and 
long-term wind speed prediction is defined by the forecasting horizon. The short-term forecasting 
horizon is from 30 minutes to 6 hours ahead. The medium-term forecasting horizon is from 6 hours to 
1 day ahead, and the long-term forecasting horizon is 1 day to 1 week ahead. However, with current 
developments in wind speed and wind power forecasting techniques, the forecasting horizon is 
enlarged per each type of forecasting. In this thesis, we defined long-term forecasting as the 
forecasting of average daily mean wind speed and average wind power one year ahead, and the short-
term prediction horizon was defined as around one hour to 24 hours ahead.  

Based on Foley et al., (2012),  regarding the difference between long-term and short-term 
prediction, long-term wind forecasting is implemented for the major strategic decision-making process 
by describing the seasonality, trends, and repeated pattern in wind speed variation. In the light of 
these trends and patterns, the wind farm operator can outline the overall O&M plan and operation. 
Therefore, for long–term wind speed prediction, we are more interested in the distribution of the 
average daily mean wind speed and average daily wind power. However, the further the future, the 
more vague and less accurate the long-term prediction is, therefore, the drawback of long-term 
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prediction is vague with wider fluctuation thus requiring short-term prediction for more detailed and 
tactical execution. Short-term forecasting applies more current and past data to predict the near future 
with more certainty and less volatility. As the result of more detailed predictions, the wind farm 
operator can prepare for more scenarios while implementing the planning and scheduling of O&M 
activities. 

In terms of forecasting methods, there are two approaches: prediction methods and optimizing 
methods.  

In terms of prediction methods, they are physical models, statistical models, spatial correlation 
models, artificial intelligence, and deep learning models. Physical models apply numerical physical 
parameters like temperatures and atmospheric pressure as predictors and are normally used for long-
term prediction, however, they require a large amount of time and data with computation intensity 
(Wang et al., 2015; Wang and Li, 2016; Allen et al., 2017; Galanis, Papageorgiou and Liakatas, 2017; 
González-Aparicio et al., 2017). Spatial correlation models struggled to implement perfect wind speed 
prediction due to the enormous amount of information (Tascikaraoglu et al., 2016). Therefore, these 
two types of methods are not used in the thesis due to the limitation of time, data, and computation 
resources.  

Statistical models try to characterize the inherent uncertainty of the weather data in which the 
Gaussian random process is a solid foundation. The Gaussian random process provides marginal 
modeling in terms of mean and covariance functions, thorough research on time series data, and 
scalable for large data (Heaton et al., 2019). However, this type of method suffers from the non-linear 
trend, seasonality, and high noise inherently in weather data like wind speed and wave height. The 
artificial intelligence and deep learning methods successfully capture the non-linear relationship of the 
weather data for accurate short-term prediction. These two types of forecasting methods are more 
relevant to our program so the thesis will apply these types of predictions to predict the wind speed 
and wave height for O&M planning of the wind farm.  

The second approach is parameter optimization methods which include many technologies to 
optimize the hyperparameter for a single prediction model or the weight parameters of the multiple 
prediction models. These methods can increase the accuracy, stability, and computation speed of the 
prediction models; however, this is not the focus of our thesis, and they are often more complex, which 
require extensive programming expertise and time. Therefore, in this thesis, optimization methods are 
not considered.  

2.1.2.1. Long-term wind speed prediction. 

For long-term wind speed prediction, the thesis aims to find the method which can capture the 
multi-seasonality of the average daily mean wind speed time series to find the favorable weather 
windows to schedule vessels. This time series is not normally distributed and not stationary.   

Jamaludin et al., 2016 compared between conventional Auto-Regressive Moving Average 
(ARMA) model with the Fourier-ARMA model in modeling and forecasting the wind speed data in 
Malaysia. It was found that the Fourier – ARMA model was the best-fitted model to forecast one year 
in time. This method is called Dynamic Harmonic Regression which uses Fourier terms to capture the 
seasonality of the data (Rob J Hyndman, 2021). Since the thesis focuses on the average daily mean 
wind speed prediction of Gemini wind farm only and the annual seasonal pattern of this time series is 
stable over time, we can assume that the seasonal pattern does not change over time to use the 
Fourier – Autoregressive Integrated Moving Average (ARIMA) model to forecast the daily wind speed 
with the multi-seasonality and the large frequency of the data is 365.25 as in Young, Pedregal and Tych, 
1999 and Ludlow and Enders, 2000. In addition, this forecasting method can be implemented by the R 
package fpp3 with function forecast() and command xreg = fourier() (Rob Hyndman, 2021).  

On the other hand, to benchmark the prediction accuracy, computational time, and the ability 
to characterize the multi-seasonality of the wind speed, we will use the seasonal Naïve model as a 
simple benchmark (Rob J Hyndman, 2021). In this method, each forecast is the last observation of the 
same season in the past. 
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2.1.2.2. Short-term wave height prediction. 

Short-term wave height prediction is implemented in this thesis to ensure the planning of O&M 
activities meets the safety standard and sea-keeping specifications of the vessels. The short-term 
prediction horizon was defined as around one hour to 48 hours ahead in this thesis.  

Currently, many machine learning methods are being developed to predict significant wave 
height and most of them involve a kind of neural network model. Huang and Dong (2021) improved 
the complete ensemble empirical mode decomposition algorithm and applied recurrence 
quantification analysis to separate the original time series into deterministic and stochastic 
components. Then they predicted each decomposed by the long short-term memory network. Finally, 
they integrated the deterministic and stochastic predictions to arrive at the final significant wave 
height prediction. This hybrid model was better than the two separated models. It can describe both 
non-stationarity and anisotropy with advantageous computational properties, and easily interpretable 
parameters. Miky et al., (2021) proposed a Recurrent – Cascade - Neural network – Nonlinear 
Autoregressive with exogenous inputs to forecast the wave height based on the wave characteristics. 
This method is robust to hourly and daily significant wave height time series. Kumar, Savitha, and Al 
Mamun (2018) experienced an ensemble of Extreme Learning Machine (ENS-ELM) to predict the daily 
wave height and proved that its performance was better than Support Vector Regression SVR (Support 
Vector Regression)). Berbić et al (2017) applied neural network (ANN) and support vector machine 
(SVM) in real-time wave height prediction. The prediction accuracy decreases as the period for the 
forecast increases, however, ANN and SVM were both accurate in some cases and ANN is slightly more 
accurate for the next 0.5 to 5.5 hours. Prahlada and Deka (2015) implemented a wavelet decomposed 
neural network model to forecast wave height time series for lead time up to 48 hours. This hybrid 
model was proved to perform better than the single machine learning model. Therefore, methods 
involving artificial neural networks seem to demonstrate the efficiency of neural networks in predicting 
the short-term significant wave height, however, they are complicated with the lack of interpretability. 

Given the scope of the thesis and the complex seasonality of the wave height time series data, 
Zubier (2020) included wind speed, wind shear velocity, and differences between wind and wave 
direction as exogenous variables for the neural net autoregressive model. These exogenous variables 
help to increase the accuracy of the prediction model. Among artificial neural network types, the feed-
forward neural network autoregressive model could bridge the gap between deep learning and 
traditional time-series modeling with its fast computing and interpretability (Triebe, Laptev, and 
Rajagopal, 2019). Therefore, we applied a feed-forward neural net autoregression model to our 
significant wave height time series data based on the instruction in Forecasting Principle and Practice 
(Hyndman, 2021) with the support of the fpp3 package in R (Rob Hyndman, 2021).  

2.1.2.3. Short-term wind speed and wind energy prediction 

In this thesis, short-term wind speed prediction is conducted to calculate the detailed wind 
power generated and downtime cost caused by the O&M activities, thus providing the optimal 
scheduling for the vessels. Currently, under the development of data science, machine learning 
methods for weather forecasts prove to provide accurate hourly and daily predictions. Specifically, 
deep learning and hybrid models in wind speed forecasting are being researched intensively for the 
application of time-series data. With regards to the deep learning approach, they have been widely 
applied to classification and regression thanks to their robustness to non-linearity of real-world data 
and ability to automatically extract hidden data. Current deep learning methods are Convolutional 
Network (CNN) (Lecun, Bengio, and Hinton, 2015), Deep Belief Network (DBN) (Hinton and Osindero, 
no date), generalized denoising auto-encoders (Bengio et al., 2013), and Long-short Term Memory 
(LSTM) (Hu and Chen, 2018).  

In the field of wind speed prediction, hybrid models based on deep learning approaches are 
gaining momentum since they can deal with the non-linear features of the wind speed time series by 
applying different data preprocessing before feeding into the forecasting model. The most current 
techniques in this approach are the following: Neshat et al (2021) suggested a hybrid model of a 
bidirectional long short-term memory neural network, a hierarchical evolutionary decomposition 
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technique, and an improved generalized normal distribution optimization algorithm for hyper-
parameter tuning. This hybrid model can derive the non-linearity features of wind speed data. The 
parallel bi-directional long-term memory model outperformed the recurrent model in both whole and 
detailed sub-series prediction. The combination of a generalized normal distribution algorithm, a 
downhill local search, and a further mutation is robust and effective in adjusting the hyper-parameters 
of recurrent deep learning models. In addition, categorizing the wind speed time series into four 
seasons enhanced the performance of their models sometimes. Duan et al (2021) developed a hybrid 
prediction system which consists of Improved Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (ICEEMDAN), Recurrent Neural Network (RNN), ARIMA (Auto-Regressive 
Integrated Moving Average), and error correction method. First of all, the ICEEMDAN decomposed the 
nonlinear and non-stationary wind speed data into a series of more simple subseries. Secondly, the 
RNN model is used to forecast each subseries. Then, the predicted wind speed and error are retrieved. 
Next, the ICEEMDAN decomposed the error and the ARIMA predicted the error subsequence to obtain 
the prediction error. The final wind speed prediction was achieved by aggregating the previously 
predicted wind speed and the current predicted error. Daniel et al (2020) compared artificial neural 
networks (ANN) trained with Bayesian regularization, decision trees based on stochastic gradient 
boosting (SGB), and generalized additive models (GAMs). The results of this research proposed that 
ANN outperformed other methods based on root mean square error (RMSE). In contrast, SGB was 
better in terms of mean average error (MAE) and the related mean average percentage error (MAPE). 
However, these methods are too complicated and often take many hours to train the model. In their 
research, Spyros and colleagues pointed out that LSTM might over-parametrize by multiple 
magnitudes, which made it meaningless to compare with simpler statistical models (Spyros Makridakis, 
2018). In addition, there are similar works that raised the need for proper and understandable deep–
learning methods for time series modeling (Deepak A. Kaji, 2019), (Spyros Makridakis, 2018). 
Therefore, we did not apply them to our thesis. 

Given the multivariate wind speed and wind energy time series data set at the hourly level, 
Blanchard and Samanta (2020) constructed two nonlinear autoregressive neural network models with 
and without exogenous inputs (NARX and NAR respectively). They showed that both models were 
superior to the baseline persistence model for 5 hours ahead forecasting, however, NARX was slightly 
more accurate with fewer data required than NAR. NARX with temperature as exogenous inputs was 
recommended if you had more weather indices at hand, NAR was more suitable when you only had 
the wind speed time series. NARX better performed with less than 28-hour lag. In addition, the higher 
the number of neurons is, the worse the model is due to the optimization process of the local optima 
in the network parameters. They suggested the number of hidden layer neurons varied between 2 and 
3 (NAR) to 3 and 6 (NARX). Noman et al., 2021 also proposed a multistep wind speed prediction by 
using a Non-linear Autoregressive Neural network with Exogenous inputs thanks to its best accuracy 
despite limited prior knowledge of the wind speed history. Therefore, we applied Non-linear 
Autoregressive Neural Network with and without Exogenous inputs to predict the short-term wind 
speed under the instruction of Forecasting Principle and Practice, 3rd edition (Hyndman, 2021). 

Regarding wind energy prediction based on wind speed, Kumar et al., (2017) proposed a 3-layer 
artificial neural network to extract the dependency of the variable in the training process by showing 
a non-linear complex relationship of the time series. They used air density, temperature, and wind 
direction to forecast the wind speed before applying predicted wind speed to forecast the wind energy. 
In addition, a feed-forward neural network with a hidden layer of 15 was used to forecast wind daily 
average wind energy (Cristian-Dragos Dumitru & Adrian Grigor, 2017). This model could capture the 
evolution of wind energy considering its history and the average wind speed of the area under the 
study. Therefore, inspired by these studies, we also applied Non-linear Autoregressive Neural networks 
with and without Exogenous inputs to predict wind energy in short term under the instruction of 
Forecasting Principle and Practice, 3rd edition (Hyndman, 2021).  

2.2. Methodology 
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In this section, we introduce the prediction methods which are applied to forecast the wind 
speed and wave height for O&M activities. Firstly, a general description of forecasting methods is 
provided, after that, each method applied in the thesis is discussed in more detail. 

2.2.1. Long-term wind speed prediction 

In terms of long-term wind speed prediction, we applied the average daily mean wind speed 
time series from 2014 to 2019. This time series is slightly decreasing with multi-seasonality features 
whose annual seasonality is stable. In addition, this data set is not stationary with a non-zero mean 
and volatile variance.  

2.2.1.1. Dynamic Harmonic Regression 
The Dynamic Harmonic Regression of Unobserved Components (UC) type takes advantage of 

the Fourier terms to capture the seasonal pattern, trend, cyclical and irregular components of the data 
while applying the non–seasonal Autoregression Integrate Moving Average (ARIMA) (Fourier – ARIMA) 
to model the error terms (Young, Pedregal, and Tych, 1999). It applies Kalman Filter and Fixed Interval 
Smoothing algorithms to approximate recursively the unobserved components while optimizing the 
hyperparameters by the cost function. This cost function is not based on Maximum Likelihood but on 
the difference between the logarithmic autoregressive spectrum of the data and the logarithmic 
pseudo-spectrum of the model. Here, the Fourier terms are the pairs of sine and cosine defined as 
follows to capture the seasonality in the data: 

𝑆𝑘(𝑡) = 𝑠𝑖𝑛𝑒(
2𝜋𝑘𝑡

𝑚
) and 𝐶𝑘(𝑡) = 𝑐𝑜𝑠𝑖𝑛𝑒(

2𝜋𝑘𝑡

𝑚
)    (1) 

The forecasting function of the weather data is written as follows: 

𝑦𝑡 = 𝛽0 + ∑ [𝛼𝑘𝑆𝑘(𝑡) + 𝛾𝑘𝐶𝑘(𝑡)]
𝐾
𝑘=1 + 𝜀𝑡   (2) 

Here the 𝑚 is the seasonal period length, 𝛽0 is the constant, 𝑆𝑘(𝑡) and 𝐶𝑘(𝑡) is the 𝑘𝑡ℎ Fourier terms 
at time 𝑡, while 𝐾 is the upper limit of how many pairs of Fourier terms should be included in the 
model, and 𝑦𝑡 is the weather data time series. The Fourier terms’ frequency increases when the 

number of pairs 𝐾 increases. 𝛼𝑘 and 𝛾𝑘 are the regression coefficients of the 𝑘𝑡ℎ Fourier terms. Since 
the seasonality of the time series is modeled by these Fourier terms, 𝑒𝑡 which is the error terms of 
time 𝑡, is modeled by the non-seasonal Autoregressive Integrated Moving Average model.  

This Fourier – ARIMA model assumes that the seasonal pattern does not change over time which 
is suitable for the average daily mean wind speed since its yearly seasonal components have the same 
pattern over time as in Figure 22. It is also the strongest seasonal component in the time series. The 
only concern is the weekly seasonal components fluctuate more wildly as in Figure 22, which may 
affect the accuracy of the model.  

One more advantage of Fourier – ARIMA over the Seasonal ARIMA and Exponential Smoothing 
methods with Trends and Seasonality (ETS) is that Fourier – ARIMA can be constructed with any 
seasonal period length, especially for large period time series as daily time series (Rob J Hyndman, 
2021).  

Thirdly, since the average daily mean wind speed time series has both weekly and yearly 
seasonal components, Fourier – ARIMA can develop different Fourier terms for different seasonal 
periods separately. This enables the model to handle the multi-seasonality nature of our data set. In 
addition, the smaller the 𝐾 is, the smoother the seasonal pattern. In addition, the value of 𝐾 is not 
larger than half of the seasonal period length 𝑚. Therefore, we can choose 𝐾 based on the given 
selection criteria which will be discussed in section 2.2. 

Finally, although Seasonal ARIMA allows the seasonality of the time series to change over the 
period under the study, in this case, the annual seasonal pattern is substantially constant. In addition, 
because the annual and weekly seasonal patterns are not smooth, it does not make sense to make the 
seasonal differencing of one year, or in another word, compare the current value with the observation 
one year ago. 

2.2.1.2. Seasonal Naïve prediction 
Seasonal Naïve prediction is a simple benchmarking forecast which takes the last observation of 

the same season in the past as the forecast. For example, the prediction of all January is equal to the 
last value observed in January (Rob J Hyndman, 2021).   
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2.2.2. Non-linear Autoregressive Neural Network with and without Exogenous input (NARX)  

Regarding the short-term prediction method for wind speed, wind power, and sea state, we 
applied a Non-linear Auto-regressive Neural network with Exogenous inputs (NARX) to capture the 
non-linear relationship between the time series of the predictors and response variable without prior 
assumptions. There are, in general, many advantages of artificial neural network methods (Alberto 
Pliego Marugán, 2018). Firstly, they are adaptive learning via the training process and construct their 
structure to represent the data. Secondly, they are robust to missing values or damaged structure in 
the data. Thirdly, they can be computed in parallel and online to accelerate the speed of the model. 
Finally, there are special chips designed for neural networks to integrate into the system. 

The Non-linear Auto-regressive Neural Network with Exogenous inputs is the neural network 
structure that resembles the brain structure and nodes are organized in different layers. The top layer 
is the output of the prediction, and the bottom layer is the set of input values which are the time lag 
of the response and independent variables. In between these two layers are intermediate layers 
containing “hidden nodes” or “hidden neurons” (Rob J Hyndman, 2021). In R, we used the fable 
package (Mitchell O'Hara-Wild, 2021) which applies the multilayer feed-forward network with 1 layer 
of hidden nodes. In this neural network, lagged values of the response and exogenous variables are 
used as predictors in the input layer. In addition, the previous layer of nodes creates input for the next 
layer of nodes.  

In this neural network structure, the “weights” are the coefficients attached to these predictors. 
The weights are selected in the neural network framework using a “learning algorithm” that minimizes 
a “cost function” such as the Mean Squared Error (MSE) or Mean Absolute Percentage Error(MAPE). 
In the hidden layer, we apply a weighted linear combination to the inputs before transferring them to 
each hidden node. For example, the weighted linear combination is (Rob J Hyndman, 2021): 

𝑧𝑗 = 𝑏𝑗 + ∑ 𝑤𝑖,𝑗𝑥𝑖
𝑛
𝑖=1      (3) 

We then adjust the results by non-linear function like the sigmoid function below before being 
the output or being transferred to the next layer (Rob J Hyndman, 2021): 

𝑠(𝑧)  =  
1

1+𝑒−𝑧
       (4) 

This process tends to minimize the impact of extreme input values, thus making neural networks 
robust to outliers. Here, 𝑧𝑗 is the result of layer 𝑗, 𝑛 is the number of nodes in layer 𝑗. 𝑏𝑗 and 𝑤𝑖,𝑗 

(weights) are parameters that are estimated in the data. We restrict the weights from being too large 
by the “decay parameter”. We take a random value of the weights to start the process and then update 
them using the data. This also creates randomness in the data; therefore, we train the network several 
times using different random starting points and then average out the results (Rob J Hyndman, 2021). 
The Neural Non-linear Auto-regressive Neural Network without Exogenous inputs shares the same 
structure, however, we do not feed the exogeneous inputs in the model. 

In this thesis, we denote the Non-linear Auto-Regressive Neural network with Exogenous inputs 
as 𝑁𝐴𝑅𝑋(𝑝, 𝑃, 𝑘)𝑚 and Non-linear Auto-Regressive Neural network as  𝑁𝐴𝑅(𝑝, 𝑃, 𝑘)𝑚 to indicate 𝑝 
lagged inputs, 𝑘 neurons in the hidden layer, 𝑃 is the number of seasonal lagged inputs, 𝑚 is the 
seasonal period. The fable package automatically chooses the value of 𝑝, 𝑃, 𝑘 with the default value of 
𝑃 is 1, 𝑝 is selected from the optimal linear model fitted to the seasonally adjusted data, and 𝑘 =

 
𝑝+𝑃+1

2
 (rounded to the nearest integer). For multi-step-ahead forecasting, we use the one-step ahead 

and historical data as inputs and continue this process until we complete the forecast horizon (Mitchell 
O'Hara-Wild, 2021). 
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Figure 6: Neural network structure for a non-linear autoregressive model with exogeneous input for 
the multi-step-ahead forecast. Source: Blanchard and Samanta (2020) 

Since a neural network is not created from the well-defined stochastic model, we could not 
derive the prediction interval from the forecasted results. However, we can apply simulation of 
multiple future sample paths based on bootstrapped residuals to calculate the prediction intervals. 
Here, we assume that the errors are homoskedasticity and normally distributed, then, for each value 
of errors randomly drawn out from historical values, we generate one possible future sample-path 
drawn from the forecast distribution. By repeating this process, we construct the information of all the 
future values based on the fitted neural network (Hyndman, 2021). 

Since the distributions of the hourly wind speed and wind power time series are not normal and 
there were zero values in them, we could not apply Box-Cox transformation to these data sets. In 
addition, the fable package does not integrate the extension of the Box-Cox transformation for non-
positive values, therefore, we scale the input data by subtracting the column means and dividing by 
their respective standard deviations. 

The limitation of the neural network forecasting method is its lack of interpretability and the 
forecasting horizon. A neural network is a type of black-box model which requires further analysis 
algorithm to explain why the model produces such results. Unfortunately, there is no package of black 
box interpretation available for the NARX model run by the fable package in R. Secondly, since the 
forecasting horizon of short-term NARX might be less than 48 step-ahead, therefore, we applied NARX 
to mean wind speed and average power at hourly prediction with the forecast horizon of 24 hours 
only. Moreover, the results of NARX and NAR are not stable so we have to set the same sample before 
running the model. 

2.2.3. Model validation and selection criteria 
2.2.3.1. Ljung – Box test for residual diagnostics 

Fitted values after Box-Cox transformation at time 𝑡: 𝑦𝑏𝑡̂ is a forecasted value at time 𝑡 using all 
previous observations of the Box-Cox transformed time series. 

Innovation residual at time 𝑡 is the difference between the real observation of the time series 
after the Box-Cox transformation (𝑦𝑏𝑡) and its predicted value at time 𝑡 (Rob J Hyndman, 2021): 

𝐼𝑅𝑡  =  𝑦𝑏𝑡  −  𝑦𝑏𝑡̂     (5) 
 

There are two essential criteria of a good forecasting model in terms of innovation residuals 
(Rob J Hyndman, 2021). Firstly, the innovation residuals should not be correlated with each other or 
there should not be any pattern in the residual graph. Because uncorrelation between residuals shows 
that the model captures all the information of the data set. 

Secondly, the innovation residual should have zero mean, or else the forecast is biased. 
These two criteria are important to assess the ability to capture all information of the original 

data set for prediction. If they are not satisfied, then the forecasting models can still be improved. 
However, these conditions are not meant for selecting the best forecasting method since there might 
be many prediction models satisfying them at the same time. In addition, these qualified models can 
also be improved.  
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One more thing to note is that there are two more properties to support the evaluation of the 
prediction intervals. Firstly, are the innovation residuals homoskedastic, or do they have a constant 
variance? Secondly, is the distribution of the innovation residuals normal? (Rob J Hyndman, 2021). 

To formally evaluate the autocorrelation function between residuals, Ljung – The box test is 
carried out (G. M. Ljung, G. E. P. Box, 1978) based on: 

𝑄 ∗ =  𝐵(𝐵 + 2)∑ (𝐵 −  𝑘)−1𝐴𝑅𝑘
2 𝑙

𝑘 = 1      (6) 
 

Here, 𝐵 is the number of observations in the time series, 𝐴𝑅𝑘 is the autocorrelation for lag 𝑘, 
and 𝑙 is the first 𝑙 autocorrelation that we use to test. This 𝑄 ∗ statistic follows a 𝜒2 distribution with 
(𝑙 −  𝐾) degree of freedom where 𝐾 is the number of parameters in the model. Then we conduct a 
hypothesis testing with the null hypothesis (𝐻0) and the alternative hypothesis (𝐻𝑎) as follow:  

{
𝐻0:               𝑇ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚  
𝐻𝑎:  𝑇ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑟 𝑛𝑜𝑡 𝑟𝑎𝑛𝑑𝑜𝑚

   (7) 

If the result of this test is statistically significant (p-value < 0.05), there is enough evidence to 
reject 𝐻0 and the residuals are correlated. In contrast, if this test is not statistically significant (p-value 
≥ 0.05), then there is not enough evidence to reject 𝐻0 or the residuals are not different from a white 
noise series or random series. 

2.2.3.2. Corrected Akaike’s Information Criterion (AICc) 

Prediction accuracy is an important criterion to select a forecasting model, however, different 
models with a variable number of predictors or parameters can achieve the same desired accuracy. 
Therefore, we need to find a parsimonious prediction model which achieved a targeted accuracy with 
the least predictors. Therefore, the Corrected Akaike’s Information Criterion (AICc) (Hurvich and Tsai, 
1989) will also be used to evaluate different models constructed in this thesis. It is defined as:  

AICc = 𝑇𝑙𝑜𝑔 (
∑ 𝑒𝑡

2𝑇
𝑡=1

𝑇
) + 2 × (𝑘 + 2) +

2×(𝑘+2)×(𝑘+3)

𝑇−𝑘−3
   (8) 

Here,  𝑇 is the observation number used to construct the model, 𝑘 is the predictor number in the 
model. In this way, the AICc penalizes the sum of squared error with the predictor number T. Therefore, 
the smaller the AICc value is, the more parsimonious the model is. 

2.2.3.3. Evaluation of the distributional forecast accuracy 
2.2.3.3.1. Winkler score 
To measure the accuracy of the prediction interval for the wind speed, we apply the Winkler 

score to check how far one actual observation lies within or outside of the prediction interval (Winkler, 

1972). If the 100(1 − 𝛼)% prediction interval at time 𝑡 is defined by [𝑙𝛼,𝑡; ℎ𝛼,𝑡], the Winkler score is 

the interval length with the penalty for the observation which is outside the interval: 

{
 

 𝑊𝛼,𝑡 = (ℎ𝛼,𝑡 − 𝑙𝛼,𝑡) +
2

𝛼
(𝑙𝛼,𝑡 − 𝑦𝑡)                                  𝑖𝑓 𝑦𝑡 < 𝑙𝛼,𝑡 

𝑊𝛼,𝑡 = (ℎ𝛼,𝑡 − 𝑙𝛼,𝑡)                                                𝑖𝑓 𝑙𝛼,𝑡  ≤  𝑦𝑡  ≤ ℎ𝛼,𝑡

𝑊𝛼,𝑡 = (ℎ𝛼,𝑡 − 𝑙𝛼,𝑡) + 
2

𝛼
( 𝑦𝑡−ℎ𝛼,𝑡)                                 𝑖𝑓 𝑦𝑡 > 𝑙𝛼,𝑡

   (9) 

We can see that if the observation lies in between the prediction interval, the Winkler score is 
the interval length, and it is small. Whereas, if the observation falls outside the interval, the penalty 
will be proportional to the distance between the observation and the interval, which makes the 
Winkler score larger. 

2.2.3.3.2. Continuous Rank Probability Score (CRPS) 

To establish a weather window of the average daily wind speed, we need to evaluate the 
accuracy of the whole forecasting distribution. Therefore, we can apply the Continuous Ranked 
Probability Score (CRPS) proposed by Gneiting and Katzfuss, 2014.  

First, we calculate the quantile forecast 𝑓𝑝,𝑡 of probability 𝑝 at time 𝑡. If we denote 𝑦𝑡 as an 

observation at time 𝑡, then with the 20th percentile, we have 𝑓0.2,𝑡 and 𝑦𝑡 is expected to be less than 

𝑓0.2,𝑡 with the probability of 20%. Then the Quantile Score 𝑄𝑝,𝑡 is defined as: 
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𝑄𝑝,𝑡 = {
2 × (1 − 𝑝)(𝑓𝑝,𝑡 − 𝑦𝑡) 𝑖𝑓  𝑦𝑡 <  𝑓𝑝,𝑡

2 × 𝑝(𝑦𝑡 − 𝑓𝑝,𝑡)               𝑖𝑓 𝑦𝑡  ≥  𝑓𝑝,𝑡
    (10) 

The Quantile score 𝑄𝑝,𝑡 can be considered as an absolute error if 𝑝 = 0.5. If 𝑝 > 0.5 then 𝑄𝑝,𝑡 will 

place a heavier penalty to 𝑦𝑡 > 𝑓𝑝,𝑡 than when 𝑦𝑡 < 𝑓𝑝,𝑡 and vice versa.  

The CRPS is an average of 𝑄𝑝,𝑡 over all values of 𝑝 therefore, it takes the average for each of the 

predictive densities and the corresponding observation over the period under the study. The CRPS and 
Mean Absolute Error (MAE) (for deterministic forecasting) are directedly comparable since CRPS is the 
generalization of MAE with a given lead time and nominal/normalized scale. Given the same lead time, 
nominal scale, and data set, if a probabilistic forecast has a CRPS value of 7%, it is better than the 
deterministic forecast with the MAE value of 8%. The lower the CRPS, the better the prediction 
distribution.  

2.2.3.4. Evaluation of the point forecast accuracy 
2.2.3.4.1. Root Mean Squared Error (RMSE) 
Since the prediction methods used in this paper will automatically transform the result back to 

its original scale and within each method, we also tune the different parameters to find the most 
optimal model, a scale-dependent error measurement is necessary. In addition, the same time series 
is used across different models and different types of prediction methods. Therefore, we use Root 
Mean Squared Error (RMSE) to measure the accuracy of the forecasting model (Rob J Hyndman, 2021). 

RMSE = √
1

𝑛
∑ (𝑦𝑡 − 𝑦𝑡̂)

2𝑛
𝑗=1       (11) 

 
2.2.3.4.2. Mean Absolute Percentage Error (MAPE) 
To give a better perspective of how large an error is relative to the real observation value, we 

used Mean Absolute Percentage Error (MAPE). This measurement emphasizes the errors which 
account for large percentages of the actual observations. MAPE can also be applied to evaluate how 
well the model fits with different data sets: 

MAPE = 
1

𝑛
∑ |100 ×

𝑦𝑡−𝑦𝑡̂

𝑦𝑡
|𝑛

𝑡=1      (12) 

% Accuracy = 100% - MAPE 
 

The % Accuracy of over 70% is desirable. MAPE is scale-independent, however, there are two 
constraints of MAPE. Firstly, if 𝑦𝑡 is 0, MAPE will be undefined and if 𝑦𝑡 is close to 0, MAPE will be 
extremely large for any 𝑡 period. Secondly, MAPE requires a meaningful error for the unit of 
measurements (Hyndman and Koehler, 2006). The less MAPE is, the better the model is. In this thesis, 
there is no day without wind so the average daily mean wind speed can use MAPE to measure the 
point forecast accuracy. However, for the hourly mean wind speed and hourly significant wave height, 
there will be many observations of zero, therefore, MAPE will not be applied for them.  

2.2.3.4.3. Forecast evaluation on a rolling origin – Time-series Cross-Validation 
Forecast evaluation on a rolling origin or Time series cross-validation is a procedure in which the 

training set consists of all observations that occurred before a series of test sets, while the test sets 
are formed by only one observation in the time series. In this way, the origin of the forecast rolls 
forward in time (Rob J Hyndman, 2021). 
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Figure 7: Illustration of Timeseries CV (Blue dots are training set, the orange dot is test set) (Rob J 
Hyndman, 2021) 

The forecast accuracy is calculated by taking the average of error measurements like RMSE or 
MAPE over the test sets. Therefore, the best model will have the lowest error. This procedure can be 
modified to allow multi-step ahead prediction. This procedure is used to compare different models 
with the same time series. 

2.2.4. Data decomposition method – Seasonal and Trend decomposition using Loess (STL) 

After several reviews of wind speed and wave height prediction methods, we saw that the 
weather indices time series were reported with multiple seasonality, non – stationary, and non-linear 
trends in data Heaton et al., 2019 Huang and Dong, 2021 for example. In addition, specifying the type 
of seasonality, trend, and their impact on the existing time series is crucial to capture the variance of 
the data in the statistical modeling beside visual diagnosis. Therefore, in current research, for more 
accurate quantitative analysis to discover the trend and seasonality of the chosen weather time series, 
“Seasonal and Trend decomposition using Loess,”(Cleveland et al., 1990) or STL for short was applied 
to the time series before constructing prediction model. Because STL is a filtering process that can 
evaluate and decompose the time series into trend, the multi-seasonality, and the remaining 
components robustly with different granularities and missing values, it was applied to wind speed time 
series as in Laib et al., 2018, Guignard et al., 2019. For significant wave height time series, Yang et al., 
(2021) also applied STL decomposition to the wave height times series before using a convolutional 
neural network for forecasting. This decomposition method was also applied to significant wave height 
data in Ramachandra, (2019) and Rodolfo Piscopia, (2015). 

Since the 𝜆 values of the Box-Cox transformation for weather data in the Table 10 are between 
0 and 1 and the time series illustrate a stable magnitude of seasonality in Figures 9, 10, 19, we can 
assume that the data has an additive decomposition where 𝑋𝑡 is the original wind speed time series, 
𝑆𝑒𝑎𝑠𝑜𝑛𝑡 are the seasonal components, 𝑇𝑟𝑒𝑛𝑑𝑡 is the trend components, and 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡 is the 
remainder components (Rob Hyndman, 2021). The weather indices time series can be rewritten as 
follow:  

𝑋𝑡 = 𝑆𝑒𝑎𝑠𝑜𝑛𝑡 +  𝑇𝑟𝑒𝑛𝑑𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡     (13)  

Seasonally adjusted data is the time series after eliminating the seasonal components, which 
are: 

𝑋𝑡  − 𝑆𝑒𝑎𝑠𝑜𝑛𝑡       (14) 

Detrended data is the time series after eradicating the trend components, which is: 
𝑋𝑡  − 𝑇𝑟𝑒𝑛𝑑𝑡       (15) 

STL decomposition is also useful in measuring the strength of trend and seasonality of the data 
(Xiaozhe Wang, 2006). Trend strength is calculated as:  

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑡𝑟𝑒𝑛𝑑 =  𝑚𝑎𝑥(0,1 – 
𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)

𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡+𝑇𝑟𝑒𝑛𝑑𝑡)
)    (16) 
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since if the time series is strongly trended, the variance of seasonally adjusted data is much stronger 

than the variance of the remainder component itself. This makes 
𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)

𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡+𝑇𝑟𝑒𝑛𝑑𝑡)
 smaller and 

closer to 0, which turns 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑡𝑟𝑒𝑛𝑑 closer to 1. In contrast, if the trend components are not that 
strong, the two variances should be approximately similar. Therefore, 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑡𝑟𝑒𝑛𝑑 will be closer 
to 0. 

Season strength is defined as: 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑠𝑒𝑎𝑠𝑜𝑛 =  𝑚𝑎𝑥(0,1 – 
𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)

𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡+𝑆𝑒𝑎𝑠𝑜𝑛𝑡)
)   (17) 

 
since if the time series has a strong seasonal component, the variance of detrended data is much 
stronger than the variance of the remainder component itself. This makes 

𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)

𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡+𝑆𝑒𝑎𝑠𝑜𝑛𝑡)
 closer to 0, which turns 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑠𝑒𝑎𝑠𝑜𝑛 closer to 1 and vice versa. 

STL decomposition can be conducted by using function model() with STL command in fpp3 
package in R (Rob Hyndman, 2021). The formulas of component strength for the decomposed time 
series with more than two seasonal components are described in the appendix.  

The advantage of STL decomposition is that it can automatically capture and decompose the 
time series without prior assumptions of trend and seasonality. Therefore, we can use it to recognize 
the multi-seasonality in data without any bias. Thus, it supports the Fourier prediction in defining the 
multi-seasonality of the time series and selecting the number of Fourier terms. However, the 
components might not have the same unit of measurement as the original time series.  
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3. DATA 

This section provides more information about the data sources which are used for the thesis, 
their reliability, and the transformations required to perform the analysis. Because the thesis focuses 
on the case of Gemini Wind Park (no. 5 in Appendix 6.1), the wind climate data, wave height, wind 
turbine specification, and other related data will be gathered within or near the location of Gemini 
Wind Park with the coordination of 54°02′10″North 5°57′47″East where the red cross in the below 
picture locates.  

3.1. Data overview 

In this thesis, among different weather indices provided by the KNMI, we applied hourly mean 
wind speed, hourly significant wave height, and hourly wind power output for the short-term 
prediction and the average daily mean wind speed, average daily temperature for the long-term 
prediction. The average daily mean wind speed and the average daily temperature were aggregated 
by taking the average of the hourly mean wind speed and hourly temperature respectively. We 
selected the temperature as the exogenous input to predict wind speed in the long term since their 
correlation efficiency is statistically correlated. In addition, in practice, the temperature is the easiest 
weather index that can be measured and converted into different altitudes. Whereas, max wind gust 
is almost linearly correlated with mean wind speed. Besides, the air pressure, wind direction, and 
relative humidity are more difficult to measure in practice or hard to convert into different altitudes 
to feed into the prediction model.  

In addition, since the safety wind speed is defined at 10-meter heigh, the wind speed which can 
rotate the turbine blades are at hub height level (89.5 m), while the temperature is at sea level. 
Therefore, before feeding these data into any prediction models, we have to convert them into the 
weather indices of the same height corresponding to the purpose of that model.  

3.1.1. Hourly wind speed data in the Dutch North Sea 

The data was collected from The Royal Netherlands Meteorological Institute (KNMI)2 from 2011 
to 2020 from station AWG-1 located at 53° 30' North 05° 57' East which is closest to the Gemini Wind 
farm (marked as a red cross in the figure above). The data set consists of hourly records of the weather 
data as in the following table with 87672 observations. In this data set, the mean wind speed is the 
hourly mean wind speed recorded at 10 m above sea level. From this point onward, if nothing else is 
mentioned, the wind speed presented in the thesis is the hourly mean wind speed recorded at 10 m 
height. The full data set detail can be found in Appendix 6.2. 

Table 1: Wind speed data set and variable definitions (Source: KNMI) 

Variable name Definition 

YYYYMMDD Date (YYYY=year, MM=month, DD=day) 

HH (Time) Time (time (hour, Amsterdam time) 

DD (Wind_direction) 
Mean wind direction (in degrees) during the 10 minutes preceding the time of 
observation 

T (Temperature) The temperature at 1.50 m at the time of observation 

As can be seen in Table 2 below, for Wind_direction, the value of 990 degrees means that the 
wind blew in many directions and causes unnecessary outliers to the time series. There are 324 
observations with this value and the associated weather indices are in the normal values so we will 
first turn them into missing values and impute them later with the imputation algorithm. This leads to 

 
2 https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens_Noordzee 
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3332 missing observations in Wind_direction at the hourly level. For the full data set statistics 
explanation, please see Appendix 6.2. 

For short-term wind speed and wind power prediction, hourly data was applied to construct the 
forecasting model. In this data set, the number of consecutive missing values in each weather indices 
is particularly large for Wind_direction, Mean_wind_speed, and Max_wind_gust. More than 2400 
hourly consecutive observations at the beginning of the data set were not recorded, which means 
there are missing data for more than 100 consecutive days of the weather data at the beginning of the 
time series. The values in the data set were missing due to the failure of the weather station at that 
time. This issue creates a loss of information in one season in the data set. Table 3 below summarizes 
the total missing values of each weather index and the largest number of consecutive missing values 
in each one of them. For long-term wind speed forecast, the thesis aims to establish the annual pattern 
of the wind speed to schedule the vessel by a statistical model for daily data, therefore, missing values 
should first be treated. For outliers which are higher than the third quartile plus 1.5 times the 
interquartile range, they are always present in the data set due to natural extreme weather conditions 
and they are not errors. Therefore, we kept them in the data set to ensure the integrity of the data. 
We aggregated the average daily mean wind speed by taking the average of the hourly mean wind 
speed every 24 hours. 

Table 2: Hourly climate data set and variable descriptions excluding missing values (Source: KNMI).  

Variable name Unit Mean Median 
Standard 
Deviation 

Maximum Minimum 

YYYYMMDD - - - - - - 

HH (Time) - - - - - - 

DD (Wind_direction) 
(360=north, 90=east, 
180=south, 270=west, 
0=calm 990=variable) 

- - - - - 

FH (Mean_wind_speed) m/s 6.99 7 3.18 25 0 

T (Temperature) degrees Celsius 10.76 10.40 5.65 34.10 -9.10 

Table 3: Summary of missing values of weather indices 

Variable name Missing values 
The largest number of 

consecutive missing values 

DD (Wind_direction) 3008 2423 

FH (Mean_wind_speed) 3030 2424 

T (Temperature) 983 312 

 

Regards the distribution of the hourly mean wind speed in the data set, it is skewed to the right 
as in Figure 8. 
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Figure 8: Hourly mean wind speed distribution before imputation 

The boxplot of the hourly mean wind speed per month after imputation in Figure 9 shows that 
the wind season in the North Sea can be divided into two seasons. The extended winter from October 
to the next March with the median wind speed of around 8 m/s with the range from 0 to 25 m/s. 
Whereas the extended summer season with a lower median wind speed of just around 5 m/s and a 
smaller range from March to the end of September. As in Figure 10, the hourly mean wind speed time 
series has no constant mean, and the variance also evolves. However, we can see a clear seasonal 
pattern in the time series in which the wind speed was much higher from October to March then lower 
down and hit the bottom in the middle of the year.  

 

Figure 9: Hourly mean wind speed per month

 

Figure 10: Hourly mean wind speed 2016-2019 

m
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In general, the hourly mean wind speed data is not stationary with a strong seasonal pattern. In 
addition, it is not normally distributed but skewed to the right and there are many missing values within 
the data. Its distribution is not normal but skews to the right. 

3.1.2. Average daily mean wind speed data in the Dutch North Sea 

Firstly, for long-term wind speed prediction, the average daily mean wind speed from 2014 to 
2019 was used to build the forecasting model for 2020 since we are interested in the average daily 
downtime energy output of the wind farm. Secondly, the time series from 2014 to 2019 does not have 
many missing values to impute which makes the data aggregation by the daily average value more 
precise. Thirdly, if there is any seasonality in the data, the forecasted seasonal pattern shall be mostly 
influenced by the shape of the seasonality near the end of the time series but not so much by the 
pattern at the beginning of the time series. Moreover, to reduce the computation time, we decided to 
use the data from 2014 to 2019 with 2191 observations. The summary of the average daily climate 
data after being aggregated from the selected imputed hourly data set is provided in below Table 4. 
This data set is calculated based on the already imputed hourly data set. According to it, there is no 
day with zero average daily mean wind speed. For the full data set statistics, please see Appendix 6.2. 

As can be seen in Figure 11 below, from 2014 to 2019, there was not a visible trend in average 
daily mean wind speed. This time series is not stationary since there is no constant mean and the 
variance increases at the end of the time series. This time series also illustrates a strong seasonal 

pattern which increases in size as the levels of the series increase.  

Zooming into the most recent three years from 2017 to 2019 in Figure 12, there is an annual seasonal 
pattern of the average daily mean wind speed. As can be seen, the average daily mean wind speed 
often increased and peaked at the end of the year (from October to next March) and hit the bottom in 
the middle of the year (from March to September). The red arc connects two observations on the 1st 
of November while the green arc connects two observations on the 1st of May in 2018 and 2019. 

Table 4: Average daily climate data from 2014 – 2019. 

Variable name Unit Mean Median 
Standard 
Deviation 

Maximum Minimum 

Index Year – Month – Day - - - - - 

Mean_wind_speed m/s 6.94 6.63 2.61 17.92 1.29 

Temperature degrees Celsius 11.05 10.63 5.49 26.53 -5.79 

Figure 11: Average daily mean wind speed after imputation 2014-2019 
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This annual seasonal pattern is more obvious for data aggregated at the monthly level as in 
Figure 13. The average monthly wind speed started to increase from October to next March and lower 
from March to September. Except for the sudden dips in October 2015 and 2016 due to El Nino (Becker, 
2016) Therefore, we can divide the annual wind climate into two seasons, the strong wind season is 
the extended winter from last October to March and the calm season is the extended summer from 
March to September. 

Based on Figure 14, the average daily mean wind speed from 2014 to 2019 is skewed to the 
right. In addition, its autocorrelation function (ACF) plot illustrates a sinusoidal pattern whose 
autocorrelations are larger for seasonal lags of one year. In addition, in Figure 15, we can see that the 
autocorrelations decrease when the lags go from the beginning of the year to midyear before 
recovering when the lags go toward the end of the year. This shows a stable annual seasonality in the 
data (Hyndman, 2021). In general, this average daily mean wind speed possesses a strong and stable 
annual seasonality, and it is not stationary. Besides, its distribution is not normal. 

 

 

Figure 13: Monthly average daily wind speed 2014-2019  
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Figure 12: Average daily mean wind speed 2017-2019 



 

22 
 

 

Figure 14: Distribution of the average daily mean wind speed 2014-2019 

 

Figure 15: Autocorrelation function plot of the average daily mean wind speed 2014-2019 

3.1.3. Hourly wave height data in the Dutch North Sea 

The wave height data of the Dutch North Sea was collected from the Copernicus Marine Service3 
which consists of hourly significant wave height in meters at the Gemini wind farm location. For vessel 
design, the limiting wave states of vessels have traditionally been described only with significant wave 
height (𝐻𝑠) which is defined as the average value of one-third highest waves (Bai and Jin, 2016). 

The data set obtained only includes the wave height measurement in meters and the time it was 
recorded. Therefore, the seasonality and nonlinearity of the data will be analyzed by STL 
decomposition.  

There are 34381 hourly observations of the significant wave height from 2018 to 11th Jan 2021 
in the data set. To assist the analysis, time variables such as Hours, days, Weekdays, Months, Year were 
included in the data set. Fortunately, there is no missing value in this data set. The table below explains 
the variables used in this data set. Since the analysis is in The Netherlands, the date and time were 
converted to Amsterdam time (UTC+1).  

 
3 https://view-cmems.mercator-ocean.fr/ARCTIC_ANALYSIS_FORECAST_WAV_002_014 
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The boxplot of hourly significant wave height per month from 2018 to 2021 (Figure 16) also 
illustrates that hourly significant wave heights from March to October are lower with the median 
around 0.8 m and their range is between around 0.3 and 3.2 m with outliers up to 4.5 m. Significant 
wave height in the winter has a median of around 1.5m and ranges from about 0.3 to 4.5 m with 
outliers up to more than 6m. 

Table 5: Variable definition and description of wave height data set 2018-2021 

 

 

Figure 16: Boxplot of significant wave height per month 2018-2021 
As can be seen in Figure 17, the hourly significant wave height time series does not have a 

constant mean and its variance evolves. In addition, the distribution of the wave height is skewed to 
the right as in Figure 18. 

 

Figure 17: Hourly significant wave height time series 

Variable 
name 

Definition Minimum Maximum Mean Median 
Standard 
Deviation 

Time 
Date (YYYY=year, MM=month, 
DD=day) and Time (HH=hour, 
MM=minute, SS=second) 

- - - - - 

VHM0 Significant wave height (m) 0.15 6.35 1.40 1.20 0.84 
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Figure 18: Hourly significant wave height distribution 2018-2021 

3.1.4. Wave height restriction of transportation vessel 

Besides, if the maintenance service requires the replacement of the turbine’s components like 
blades or generator, transportation vessels that assist the lifting process such as jack-up vessels have 
to be chartered.  

A jack-up vessel is a self-elevating unit with a buoyant hull equipped with about 3-6 legs. These 
legs can station themselves on the seafloor to raise their hull above the sea surface, which enables 
crane operation in a stable environment despite harsh weather conditions (Dalgic, Lazakis, Turan, et 
al., 2015a). Table 6 below provides the weather restriction of the jack-up vessel. As can be seen from 
the table, conditions for the operation of jack-up vessels are stricter than jacking conditions. However, 
wind speed at the hub level is an additional condition that enables lifting operations to take place.  

During the mobilization of the jack-up vessel, the survivability wave height and wind speed allow 
the vessel to sail without the elevated risk of sinking and capsizing. Since the author assumed the major 
repairs could not be interrupted after the maintenance activities start, the jack-up vessel can only start 
the O&M activity if there is no expected storm during the maintenance period. During the operation 
of the jack–up vessel, it can only be jacked up and down within the wave height and wind speed at sea 
level jacking limit. In addition, the lifting activity of the jack-up vessel can only be implemented if the 
wind speed at the hub is less than the wind speed at the hub level limit because the main O&M 
activities involve heavy equipment lifting. 

In the case of the Gemini Wind Park, Van Oord’s Aeolus vessel was chartered, its specifications 
are presented in the table below (Crol, 2015). The picture of this vessel can be found in Appendix 6.11. 

Table 6: Weather restriction of Van Oord’s Aeolus vessel. Source: (Crol, 2015) 

 Jacking 
Operability 

Jacking Lifting 

Max wave height (m) 1.80 1.80 3.60 

Max wind speed at sea 
level (m/s) 

40 15 
Not 

Applicable 

Max wind speed at hub 
level (m/s) 

Not Applicable 
Not 

Applicable 
20 
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3.1.5. Cost data 
3.1.5.1. Energy production of Gemini wind farm 

Gemini wind farm features 150 Siemens SWT-4.0-130 wind turbines4 with a total capacity of 600 
MW. This turbine model has a rated power of 4000 kW with a cut-in wind speed of 5.0 m/s, rated wind 
speed of 12 m/s, and cut–out wind speed of 25 m/s. 85% of the electricity generated from Gemini will 
be purchased by Delta and the rest is purchased by HVC. Since their purchased prices are confidential, 
in the thesis, the author will use an electricity price of 17 cents/kWh as reported in De Ingenieur 
(www.deingenieur.nl, 2017) 

The actual Dutch offshore wind energy production time series was retrieved from Entsoe – 
Transparency Platform (transparency.entsoe.eu, 2022) from 2017 to 2020. The energy data is 
aggregated over all Dutch offshore wind farms every 15 minutes. Therefore, to extract the average 
energy production of Gemini per hour per turbine from the total offshore wind energy, we followed 
this process of calculation. First, we calculate the actual average total offshore wind energy per hour 
in The Netherlands by summing every 4 observations to get the aggregated power per 15 minutes. 
After that, we divided the results by 4 to get the average offshore wind power generated in The 
Netherlands per hour in MWh. 

Table 7: Operational wind farms and their respective nominal capacity in the Netherlands. Source: 
((RVO), 2021) 

Wind farm 
Capacity wind farm 

(MW) 
Proportion (%) In use since 

Borssele V (Innovation site) 19 0.77 2021 

Borssele I & II 752 30.57 2020 

Borssele III & IV 731.5 29.74 2020 

Gemini 600 24.39 2016 

Luchterduinen 129 5.24 2015 

Prinses Amalia 120 4.88 2008 

Egmond aan Zee (OWEZ) 108 4.41 2007 

Total 2459.5    

The second step is to extract the average energy production of Gemini per hour out of the whole 
country’s production by estimating its proportion of energy contribution. As can be seen in Table 7 the 
proportion of nominal energy contributed by the Gemini wind farm is approximately 24.39% in 2021. 
However, since the time series under study was from 2017 to 2020, therefore, we have to recalculate 
the proportion of Gemini wind farms in 2020 when the Borssele I, II, III, and IV wind farms were 
installed. From 2017 to March 2020, the proportion of energy contributed by Gemini to the Dutch 
national gridline was 62.69%. From the 13th of April5 to the 27th of November6, there were 94 turbines 
installed in Borssele I and II with a nominal capacity of 8MW each turbine. Therefore, we assumed that 
each month, there were 8 turbines installed and connected to the national gridline in Borssele I and II. 
From the 7th of August7 to the 26th of November8, there were 77 turbines installed and connected in 

 
4 https://www.geminiwindpark.nl/turbines--nacelles--rotorblades.html#t1 
5https://www.deme-group.com/news/turbine-installation-borssele-1-2-successfully-completed-deploying-
deme-offshores-unique 
6 https://www.offshorewind.biz/2020/11/27/borssele-1-2-fully-commissioned/ 
7 https://www.blauwwind.nl/en/news/2020/7/first-power-borssele-iii-iv 
8 https://www.blauwwind.nl/en/news/2020/11/installation-of-the-final-turbine-for-borssele-iii-iv 

about:blank#t1
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Borssele III and IV with a nominal capacity of 9.5 MW for each turbine. Therefore, we assumed that 
each month, there were 19 turbines installed and connected to the national gridlines in Borssele III 
and IV. Table 9 below shows the corresponding proportion of energy generated by Gemini each month 
in 2020 while the four wind farms above were being installed in 2020. 

The third step is to calculate the wind energy generated per turbine per hour in the Gemini wind 
farm. Each observation was divided by 150 (since there are 150 turbines in the Gemini wind farm) and 
then multiplied by 1000 to convert from MWh to kWh.  

After cleaning and aggregating the data, the summary statistics of the wind power per turbine 
in Gemini from 2017 to 2020 are described in the below table. Wind electricity generation is measured 
at the hourly level. In this thesis, the term “wind electricity generation”, “wind energy”, and “wind 
power” are used interchangeably with the same unit of measurement. Since the nominal of the 
Siemens SWT 4.0 – 130 turbine model in Gemini has the nominal power generating capacity of 4000 
kWh, the maximum value of the real power of 3814.4 makes sense. This indirect power output 
calculation does not consider the possible energy lost due to the daily maintenance. Therefore, this 
issue might affect the accuracy of the prediction model. The detail of the proportion estimation can be 
found in appendix 6.10. 

Table 8: Wind power per turbine in Gemini offshore windfarm statistics from 2017-2020 

Index 
Wind electricity 

generation (kWh) 

Min 
0 

Median 
1516 

Mean 
1677.80 

Max 
3814.4 

Another way to collect the Gemini energy output directly is using the proportion of Gemini wind 
farm’s average actual annual output compared to the total actual annual offshore wind energy 
production9. From 2017 to 2020, the proportion of the Gemini’s actual annual output is around 67.2% 
which was only 5% higher than the nominal output but it is harder to calculate the wind energy output 
each month. Therefore, we will proceed with the proportion of the nominal output in this thesis.  

3.1.5.2. Chartering cost of Jack-up vessel 

Since the chartering and related cost of The Van Oord’s Aeolus jack-up vessel is confidential, the 
thesis will apply the cost data from (Dalgic, Lazakis, Dinwoodie, et al., 2015b). It is assumed that the 
Aeolus jack-up vessel is chartered on a fix-on-fail basis (2-8 weeks), not being purchased for the whole 
lifetime of the wind farm. It is available during the charter period. After that, if there are more 
incomplete tasks, the daily demurrage rate will be charged until all repairs are done and the vessel will 
sail back to shore if the agreed charter period is not long enough to fix all issues. Because we do not 
have the exact cost of The Aeolus, we use the chartering rate of the jack-up vessel in Dalgic, Lazakis, 
Turan, et al., 2015b in the table below. As you can see, the daily charter rate is seasonally-based and 
the winter charter rate is cheaper than the summer charter rate. The whole cost of a jack-up vessel is 
given in Appendix 6.7.  

Table 9: Jack-up short-term charter parameters. (Source:Dalgic, Lazakis, Turan, et al., 2015b) 

Parameter Value 

Daily charter rate 
172500 Pound/day (April – September) 

116250 Pound/day (October – March) 

 
9 https://nl.wikipedia.org/wiki/Windturbines_in_Nederland 
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Parameter Value 

Demurrage +30% daily rate 

Jack-up/down period 3 hours 

Hub removal time 8 hours 

3.2. Data preprocessing and analysis methods 
3.2.1. Random forest imputation for missing values 

To estimate the missing values, methods like the last observation carried forward, the next 
observation carried backward, and linear interpolation between time stamps, are not applicable since 
they cannot generate the seasonality in the original data. Since there are 2424 consecutive missing 
values in wind speed data, the last observation carried forward only uses the value of the last 
observation to fill the whole range of missing values and turns the weather indices in this period into 
straight lines. The next observation carried backward shares the same mechanism and results. The 
linear interpolation between time stamps method assumes a linear relationship between the two 
known values at the beginning and the end of the missing period, therefore, the imputed values also 
create a straight line in the missing period of 101 days or around 4 months. Therefore, it fails to 
regenerate the pattern of the missing parts in the data set and the imputed data loses the seasonal 
variance inhibited in the weather indices. In addition, if we copy the whole data of the same period 
next year to the missing part, we will lose the correlation between these two years. 

In contrast, the imputation of missing values based on the random forest algorithm of (Leo 
Breiman and Adele Cutler, 2011) is a non-parametric imputation method which is robust to both 
categorical and numeric variables, non-linear relations, multi-collinearity, seasonality, and high 
dimensionality (Stekhoven, 2011). It requires no assumption or transformation of the data before 
imputing and it preserves the seasonal variance of the weather indices better. Therefore, the 
missForest package (Daniel J. Stekhoven & Peter Bühlmann, 2011) was applied to impute the hourly 
missing values of the data set. It applies a random forest to the observed parts of each variable and 
then predicts the missing parts of that variable. It repeats these two steps continuously and runs 
iteratively to update the imputed matrix variable-wise. Next, it assesses its performance between 
iterations by considering the difference(s) between the results of the previous and new imputation. 
The algorithm will stop (for both one-type and mixed-type variables) in case this difference increases 
or a specified maximum iteration made by the user is reached. This package allows at max 10 iterations, 
however, due to large computational time, 5 iterations (maxiter = 5) were used. Table 13 below 
summarizes the computational time and errors of the different tuning parameters with 5 iterations. 

The fundamental concept of random forest is a decision tree learner which uses the tree-like 
structure to form the relationship between features and outcomes. A random forest is constructed by 
a number of trees (ntree) on bootstrapped training samples to minimize the variance of outcome and 
the correlation between these decision trees. In each training sample, only a subset of variables in the 
data set (mtry) is selected randomly to grow a full tree and find the results.  

To impute the missing data in the training sample, the missing value is first filled by the median 
of the variable if it is a continuous variable, then we refine this guessing by finding similar observations 
to the one with the missing value. This refining process is conducted by feeding all the data to each 
tree in the random forest, the similar observations are those which stay in the same node. After that, 
the missing value is calculated as the weighted average of these observations based on the proximity. 
We iterate this refining process around 5 times until the missing values converge. In this way, each 
tree in the random forest is not correlated with other trees and the algorithm removes potential 
correlation or multi-correlation between variables in the data set since only a subset of variables were 
applied to build each tree. These imputations were assessed by the Out-Of-Bag errors (Mean Squared 
Error – MSE) per variable (Daniel J. Stekhoven & Peter Bühlmann, 2011) and implemented by an Intel 
i7 chip with an 8-core CPU. 
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In addition, to provide the imputation algorithm with the perspective of time, three variables of 
the day, month, and weekdays were added to the data set, thus there are 6 weather index variables 
(Wind_direction, Mean_wind_speed, Max_wind_gust, Temperature, Air_pressure, Relative_humidity) 
and 4 variables indicating time (Time, Month, Day, Weekdays) used to feed the missForest imputation 
algorithm. We tuned the number of trees in each forest (ntree) from 2,10,25 to 50. For the number of 
variables randomly sampled per split (mtry), we used the default value of the square root of the 
number of variables in the data set and 7. We will impute the data set from 2011 to 2019 for building 
the forecasting models and keep the data in 2020 as-is for testing purposes. 

3.2.2. Box-Cox Transformation 

Since the distributions of the average daily mean wind speed, the hourly mean wind speed, and 
hourly wave height are all skewed to the right, we need to normalize the distribution of these time 
series to ensure the assumptions of the statistical forecast models. Unfortunately, log transformation 
could not successfully make these data sets normally distributed as in the below pictures. The log-
transformed weather data sets are skewed to the left. Therefore, Box-Cox transformation was applied 
to these data to better normalize the distribution of the data (G. E. P. Box & D. R.Cox , 1964). This 
transformation applies both a logarithmic and power transformation based on the parameter 𝜆 as 
follows:  

𝑦𝑏𝑡 = {
log(𝑦𝑡)        𝑖𝑓 𝜆 =  0
𝑦𝑡
𝜆 − 1

𝜆
    𝑖𝑓 𝜆 ≠  0

      (18) 

𝑦𝑏𝑡 is the Box-Cox transformed value of the weather index 𝑦𝑡 at time 𝑡, 𝜆 can take any values, 
and log(𝑦𝑡) is the natural logarithm. With function coef() and powerTransform() in the Companion to 
Applied Regression (CAR) package, we can find the best value of lambda to normalize the distribution 
of the data (John Fox and Sanford Weisberg, 2019). After implementing these above functions, the 
weather indices are more normally distributed as in Figure 19. 

The back-transformation of the Box-Cox transformation is: 

𝑦𝑡 = {
exp(𝑦𝑏𝑡)                           𝑖𝑓 𝜆 =  0

exp (
𝑙𝑜𝑔(1+𝜆𝑦𝑏𝑡)

𝜆
)    𝑖𝑓 𝜆 ≠  0

     (19) 

One more thing to note is that the point forecast after the Box-Cox transformation of the 
prediction is the median, not the mean of the forecast distribution, therefore when we use the mean 
of the forecast distribution, we call it a bias-adjusted point forecast which is calculated by the following 
formula (Rob J Hyndman, 2021): 

𝑦𝑡+ℎ|ℎ̂ = {
exp(𝑦𝑏𝑡+ℎ|ℎ̂ )[1+

𝜎ℎ
2

2
]                           𝑖𝑓 𝜆 =  0

 (𝜆𝑦𝑏𝑡+ℎ|ℎ̂ +1)
1

𝜆 [1 +
𝜎ℎ
2(1−𝜆) 

2(𝜆𝑦𝑏𝑡+ℎ|ℎ̂ +1)2
]   𝑖𝑓 𝜆 ≠  0

   (20) 

𝑦𝑡+ℎ|ℎ̂ is the back-transformed mean of the h-step ahead forecast distribution from time t, 

𝑦𝑏𝑡+ℎ|ℎ̂  is the h-step ahead forecast mean and 𝜎ℎ
2 is the variance of the h-step forecast in the Box-Cox 

transformed scale. As can be seen, the further the forecast away, the larger the forecast variance. This 
back-transformation will be automatically transformed by the fable package in R(Mitchell O’Hara-Wild 
et al., 2021). One thing to note is that not all the weather data types are non-negative. For 
climatological data like temperature, the data may contain many negative observations, therefore, the 
Box-Cox transformation family allowing negative values was applied (D. M. Hawkins, S. Weisberg, 
2017). It is the Box-Cox transformation of 𝑧 statistics where: 

𝑧 =  0.5 × (𝑦𝑡 +√𝑦𝑡
2 + 𝛾2)     (21) 
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Table 10: Lambda value of the Box-Cox transformation of weather data 

3.2.3. Weather data transformation at different height 
3.2.3.1. Wind speed at different height 

Since the wind turbine tower is 89.5 meters high, the wind speed was also converted to the 
corresponding height for calculation instead of the 10 meters height as was used in the original data 
set. Therefore, the thesis applies the hourly wind speed transformation at 10m above the sea level to 
the hub height of 89.5m based on the formula from Kubik, Coker, and Hunt (2011):  

𝑢(ℎ2)

𝑢(ℎ1)
 =

𝑙𝑜𝑔(ℎ2)−𝑙𝑜𝑔(ℎ0)

𝑙𝑜𝑔(ℎ1)−𝑙𝑜𝑔(ℎ0)
      (22) 

Where u(ℎ1) is the wind speed u at ℎ1 = 10 m, u(ℎ2) is the wind speed at ℎ2 = 89.5 m, ℎ0 = 
0.0001 m. Therefore, the wind speed at 89.5-meter height is: 

 u(89.5) = 1.19u(10)       (23) 

3.2.3.2. The temperature at different height 

Since the temperature data of KNMI was recorded at 1.5 meters height, we converted it to the 
temperature at 89.5 meters height based on the US Standard Atmosphere 1976 (NOAA, NASA, & The 
United States Airforce, 1976): 

𝑇𝑒𝑚𝑝(ℎ2)  =  𝑇𝑒𝑚𝑝(ℎ1)  + 𝐿𝑏 × (ℎ2  −  ℎ1)     (24) 

where  𝑇𝑒𝑚𝑝(ℎ2), 𝑇𝑒𝑚𝑝(ℎ1) are the temperature in Kevin at ℎ2 and ℎ1respectively, 𝐿𝑏 is the base 
temperature lapse rate per kilometer of geopotential altitude. 𝐿𝑏 = -6.5 K/km = - 0.0065 K/m. 
Therefore, the temperature at 89.5 meter height in Celsius: 

𝑇𝑒𝑚𝑝(89.5) + 273.15 = 𝑇𝑒𝑚𝑝(1.5) − 0.0065 × (89.5 − 1.5) + 273.15  

↔  𝑇𝑒𝑚𝑝(89.5)  =  𝑇𝑒𝑚𝑝(1.5) − 0.0065 × (89.5 − 1.5) 

Data set Lambda (𝝀) 

Hourly mean wind speed 0.55 

Average daily mean wind speed 0.33 

Hourly significant wave height 0.08 

Figure 19: Distribution of weather data after Box-Cox Transformation 
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↔  𝑇𝑒𝑚𝑝(89.5)  =  𝑇𝑒𝑚𝑝(1.5) − 0.572     (25) 

Because we have used temperature as an exogenous input to predict the wind speed, the 
temperature has to be at the same altitude as the wind speed. In addition, we selected the 
temperature as the only exogenous input since other weather indices like wind direction, atmospheric 
pressure, and relative humidity are hard to measure and convert into different altitudes, while 
maximum wind gust is almost linearly correlated with the mean wind speed. 

3.3. Data preprocessing and analysis results 
3.3.1. Hourly mean wind speed data imputation results  

As can be seen in Table 11 below, given the same number of variables randomly sampled per 
split (mtry), increasing the number of trees in the random forest for each variable reduces the overall 
imputation errors but increases the computation time. If we also increase the value of mtry along with 
the number of trees, we trade off between the accuracy of the imputation algorithm and the 

computation time. Here, when we doubled ntree and took mtry = 7 instead of √10 the computation 
time almost tripled. The more trees and mtry, the less imputation error and the longer time we have 
to wait for completing the data because there might be observations which are missing completely 

without any weather indices recorded. Therefore, if mtry = √10 there will be the case that the 
randomly selected variables for the subset are all missing and harder to find similar observations to 
refine the first guess, whereas, with mtry = 7, the day, month, and weekdays will have a higher chance 
of being included and provide more data to each tree to find the similar observations and increase the 
accuracy of the imputation. The higher the number of trees and the number of randomly selected 
variables, the more accurate the imputation is. If we keep increasing ntree and mtry, the imputed wind 
speed pattern will more and more resemble the real wind speed pattern, however, in this case, we 
have to trade off the long computation time for accuracy since it already took nearly 6 hours for 
imputing the data set with mtry = 7 and ntree = 50.  

Table 11: OOB errors per variable of each imputation model 

 

As can be seen from Figure 20 below, the most missing records of wind speed were between 
February and May 2011. The red squares mark the same period from February to May in 2011 and 
2012 when there is much less missing value for comparison. Random forest imputation imputed the 
missing data with a volatile pattern of the mean wind speed instead of a straight line therefore, it 
preserves the variance of the wind speed time series. However, in comparison with the same period 
in 2012, the volatility and the variance of the imputed mean wind speed were smaller. This is negligible 
since the missing values only account for around 3% of the data set. Besides, missing value imputation 
does not increase the information of the data set but prevents the loss of information when applying 
data analysis methods that require complete data. In addition, with mtry = 7 and ntree = 50, the 
imputed data resemble the wind speed pattern of the same period the most, therefore, we will use 
this imputed data set in our further research.   

 
ntree = 2 and 

mtry = √𝟏𝟎 

ntree = 10 
and mtry = 

√𝟏𝟎 

ntree = 25 
and mtry = 

√𝟏𝟎 

ntree = 50 
and mtry = 7 

O
O

B
 e

rr
o

r 

(M
SE

) Mean_wind_speed 0.79 0.58 0.52 0.52 

Temperature 1.49 1.10 0.88 0.49 

Computation time (minutes) 11.23 44 154.87 352.51 
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Figure 20: Hourly mean wind speed 2011-2012 after imputed with mtry = 7 and ntree = 50 (red 
squares indicate the same period of the two given years) 

3.3.2. Hourly mean wind speed data analysis  

After implementing STL on the hourly mean wind speed at 10 meters height by the fpp3 package 
in R, the data can be decomposed as follows with three seasonal components: 

𝑉𝑡 = 𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛_𝑦𝑒𝑎𝑟𝑡 +  𝑇𝑟𝑒𝑛𝑑𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡   (26) 

where  𝑉𝑡 is a wind speed time series, 𝑆𝑒𝑎𝑠𝑜𝑛_𝑦𝑒𝑎𝑟𝑡 is a yearly seasonal component, 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 
is a weekly seasonal component, 𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡  is a daily seasonal component, and 𝑇𝑟𝑒𝑛𝑑𝑡 is a trend-
cycle component, and 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡 is a remainder component. The Mean wind speed is the original 
average daily mean wind speed, the Trend column is the trend following the movement of the time 
series ignoring the daily, weakly, yearly seasonal fluctuations, and random fluctuations.  

In Figure 21, the trend component slightly declines over the period from 2015 to 2019 with a 
deep plunge at the end of 2016. This plunge was due to the El Nino and La Nina effects in 2015 and 
2016. The yearly seasonal component remained almost the same with the V-shape pattern ranging 
from -2.5 to 7.5. The wind rose from the middle of the year to the end of the year before decreasing 
at the beginning of the next year. The weekly seasonal component fluctuated around 0 with a larger 
variance at the beginning and the end of the year compared to that in the middle of the year. It ranged 
from -4 to 6. The daily seasonal component also fluctuated around 0 with a more constant variance. 

One more thing to note is the vertical scale of each component. The longer the vertical bar on 
the left is, the smaller the range of the data is and the weaker the corresponding component is. Here 
in Figure 21, the daily and weekly seasonal components are both weaker than the yearly seasonal 
component.  

The strength of each component shows that the yearly seasonal component (0.291) is the 
strongest in the time series following the weekly seasonal component (0.141) and daily seasonal 
component (0.073). In addition, the yearly seasonal component peaks in December and hit the bottom 
in June, whereas the trough and peak of the weekly and daily seasonal components are in December 
and January respectively. The formulas of each component's strength with three seasonal components 
are given in Appendix 6.3. 

In conclusion, the hourly mean wind speed time series from 2014 to 2019 is not stationary with 
a multi-seasonality of annual, weakly, and daily seasonal components. This hourly time series has a 
slightly decreasing trend. The annual seasonality of this time series does not seem to evolve much over 
time. Since the hourly wind speed at 89.5-meter height is the direct linear transformation of hourly 
wind speed at 10-meter height, the STL decomposition structure and components of hourly wind 
speed at 89.5-meter height remain the same as that of hourly wind speed at 10-meter high. 
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Figure 21: Hourly mean wind speed 2015 - 2019 (top) and its three additive components 
obtained from a robust STL decomposition 

3.3.3. Average daily mean wind speed time series analysis 

After implementing STL on the average daily wind speed at 10 meters in height, the data can be 
decomposed as followed with two seasonal components: 

𝑉𝑡 = 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛_𝑦𝑒𝑎𝑟𝑡 +  𝑇𝑟𝑒𝑛𝑑𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡     (27) 

where  𝑉𝑡 is a wind speed time series, 𝑆𝑒𝑎𝑠𝑜𝑛_𝑦𝑒𝑎𝑟𝑡 is a yearly seasonal component, 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 
is a weekly seasonal component, 𝑇𝑟𝑒𝑛𝑑𝑡 is a trend-cycle component, and 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡 is a remainder 
component. The Mean wind speed is the original average daily mean wind speed, the Trend column is 
the trend following the movement of the time series ignoring the weakly, yearly seasonal fluctuations 
and random fluctuations  

As can be seen, the yearly seasonal component is the strongest and influence the pattern shape 
of the series, followed by the weekly seasonal component and trend component (0.32, 0.15, and 0.02 
respectively) 

As can be seen in Figure 22 below, the trend component of average daily mean wind speed is 
approximately similar to that of hourly mean wind speed. It slightly decreases over the period under 
the study with the deepest plunge at the end of 2016. The weekly seasonal components fluctuate 
around zero mean with no specific pattern. However, we can notice that these components fluctuate 
with a wider range at the beginning and the end of the year while they remain close to zero with a 
much smaller range in the middle of the year. In this figure, both the largest and smallest weekly 
seasonal components are in December.  

One more thing to note is that since this time series is the average daily mean wind speed, the 
possible cycles are 7 days per week and then 365 days per year only. This might be the reason why 
there is no daily seasonal component in the average daily mean wind speed. 
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Figure 22: Average daily mean wind speed 2014-2019 (top) and its three additive components 
obtained from a robust STL decomposition 

In Figure 22, the yearly seasonal components clearly illustrate a repetitive V-shape pattern with 
a fluctuation range from around -3 to 5 every year. The largest yearly seasonal component is in 
December and the smallest yearly seasonal component is in June. However, for the weekly seasonal 
component, the largest and smallest value were both in December. The remaining components in the 
below figure fluctuate around zero, however, with no trend and seasonal pattern. 

One more thing to note is the vertical scale of each component. The longer the vertical bar on 
the left is, the smaller the range of the data is and the weaker the corresponding component is. Here, 
we can see that 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 is weaker than season_year. In addition, at different granularities 
(hourly and daily), the yearly seasonal component of wind speed has the same pattern of V-shape.  

In conclusion, the average daily mean wind speed time series from 2014 to 2019 is not stationary 
with a multi-seasonality of annual and weakly seasonal components, and a slightly decreasing trend. 
The annual seasonality of this time series does not seem to evolve much over time. Since the daily 
wind speed at 89.5-meter height is the direct linear transformation of daily wind speed at 10-meter 
height, the STL decomposition structure and components of daily wind speed at 89.5-meter height 
remain the same as that of daily wind speed at 10-meter height.  

The hourly wind power distribution is not normally distributed, along with the multi-seasonality 
features would require a robust prediction method that can handle these characteristics of the time 
series.  

3.3.4. Hourly wind power time series analysis 

After implementing STL on the hourly mean wind speed at 10 meters height, the data can be 
decomposed as follows with three seasonal components with 𝑃𝑡 is the average power generated at 
time 𝑡 (Figure 23): 

𝑃𝑡 = 𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛_𝑦𝑒𝑎𝑟𝑡 +  𝑇𝑟𝑒𝑛𝑑𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡   (28) 

As can be seen from the figure below, the wind power was quite stable from 2017 to 2019 before 
gradually decreasing in 2020, this trend is also confirmed by the declining trend of the wind speed at 
the Gemini site in the hourly wind speed time series analysis above. This trend is the weakest 
component of the hourly average wind power time series with a strength value of around 0.01.   
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Figure 23: STL decomposition of the hourly average wind power generated by each turbine in Gemini 
wind farm from 2017 – to 2020 

The 𝑆𝑒𝑎𝑠𝑜𝑛_𝑦𝑒𝑎𝑟𝑡 the component also followed a V-shape pattern which increased and peaked 
from October to March before decreasing toward the middle of the year (ranging from about 2000 to 
-1250). This is also the strongest component with a strength of 0.39. The 𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡 and 
𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡, however, do not have a specific pattern and fluctuated wildly. For the  𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 
component, the fluctuation range was the largest around the winter months and started to shrink 
toward the middle of the year (ranging from around 1000 to -1000 and 250 to -250 respectively). The 
𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 component of the hourly average wind power is weaker than the 𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡 
component with the strength (0.14 and 0.05 respectively). In addition, the distribution of this time 
series is not normal and symmetric (Figure 24). 

 

 

Figure 24: Hourly average wind power distribution 2017 - 2020 

3.3.5. Hourly wave height time series analysis 

As can be seen from Figure 25 below, there are two seasonal components in the hourly 
significant wave height time series but there is not a visible trend in significant wave height. In addition, 
unlike other time series at the hourly level in this study, hourly significant wave height only has weekly 
and daily seasonality:  

𝑊𝑎𝑣𝑒𝑡 = 𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 + 𝑇𝑟𝑒𝑛𝑑𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡    (29) 
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Figure 25: STL decomposition of hourly significant wave height 2019 - 2019 

For the  𝑇𝑟𝑒𝑛𝑑𝑡 component, there is no specific trend from 2018 to 2019, however, within each 
year, there was a decrease from the beginning to the middle of the year before recovering from July 
to December. The  𝑇𝑟𝑒𝑛𝑑𝑡 component is also the strongest component with a strength of 0.58. The 
𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡  and 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 both fluctuated wildly from October to March before shrinking their 
range in the middle of the year. For 𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 component, the fluctuate from around 1 and -0.75, 
whereas, in the summer, its range was only from -0.25 to 0.25 with a strength of 0.19. For 
𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡  component, in the winter, it fluctuated around -0.5 and 0.5 during the winter months 
and from -0.125 to 0125 during the summer months with a strength of 0.03. 

In conclusion, the wind speed, wind power, and significant wave height time series are all non-
stationary with multi-seasonality. While the wind speed at both daily and hourly lever and the hourly 
average wind power have a significantly strong yearly seasonal component with a V-shape pattern, the 
significant wave height time series did not have a yearly seasonal component after STL decomposition. 
Since there were only 2 years under study, there might not be enough data for the algorithm to capture 
the yearly component of the significant wave height time series. In addition, the decreasing trend in 
both wind speed and wind power in the Gemini site raises requires a better prediction and O&M 
scheduling to reduce the downtime cost and vessel chartering fee. 
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4. PREDICTION AND ANALYSIS RESULTS 
In this chapter, we present a long-term prediction of 1 year ahead from the 1st of January 2020 

to the 31st of December 2020 with average daily mean wind speed to sketch the weather window of 
one year and then select the month and date which are forecasted with the least wind speed for 
maintenance. Since the least wind speed will produce the least energy, we will schedule the jack-up 
vessel to conduct maintenance or replacement of the wind turbine accordingly. Since the location of 
the Gemini wind farm is further away from other Dutch offshore wind farms, the wind climate might 
be different. Therefore, they might have different days with the least wind to conduct O&M service. 
In this scenario, different wind farms can share the same jack-up vessel to reduce the chartering cost 
and utilize the vessel. In this chapter, sections 4.1 and 4.3 provide the answer for RQ 1 and RQ2, while 
section 4.2 is dedicated to RQ3.  

After selecting the weather window by long-term prediction in 2020, we implemented short-
term prediction on the hourly mean wind speed, hourly significant wave height, and hourly wind 
energy generated to assess the accessibility and safety of the wind farm in each forecasted weather 
window. Given the forecasted weather condition and power generated, the wind farm operator could 
manage the O&M activities accordingly. We suggest the wind farm operator apply this process of long-
term wind speed prediction every year to prepare for the scheduling and sharing of the jack-up vessel 
while applying short-term weather window and power prediction to make a final adjustment of the 
maintenance execution to the actual weather.  

  

 

Figure 26: Process of using long-term and short-term forecast 

4.1. Long-term wind speed prediction 

Regarding the long-term daily wind speed prediction, we aim to find the best forecast model in 
terms of both accuracy and parsimony. In section 3.3.3 we established that there are two seasonal 
periods in the average daily wind speed time series, namely the weekly and yearly components. This 
multi-seasonality could not be captured by a seasonal ARIMA model. In addition, the strongest 
seasonal component in this time series has a repetitive V-shape pattern every year, therefore, we can 
assume a constant seasonal pattern over time to apply Dynamic Harmonic Regression. In the Fourier 
forecasting methods, the number of the pairs of Fourier terms for the weekly seasonality can be 3 at 
max and the number of the pairs of Fourier terms for the yearly seasonality can reach 182. Thus, we 
first selected the model with the least AICc score of 3928.50 whose number of weekly Fourier pairs is 
3 and 2 pairs of annual Fourier pairs with first-order autoregression model - AR(1,0,0) for the error 
terms. We denote it as F-ARMA(3,2)x(1,0,0) model. This selection process is implemented by our 
algorithm in R and it returned the final results with the least AICc score. 
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As can be seen in Figure 27, the mean point forecast and the 95% prediction interval of this 
model are quite smooth and could not capture the variance of the true observations well. For the long-
term wind speed prediction, we need an accurate prediction interval to sketch out the schedule of the 
O&M activities. Although F-ARMA(3,2)x(1,0,0) satisfied all the requirements of the residuals 
assumption which were further explained in Appendix 6.4, we need to improve it to produce better 
forecast distribution and capture the dynamic of wind speed 1 year ahead of time. 

 

Figure 27: Mean point forecasting and 95% Prediction interval of F-ARMA(3,2)x(1,0,0) in 2020 

We improved this model in two directions. The first direction is increasing the number of pairs 
of Fourier terms for yearly seasonality until the innovation residual is correlated with each other based 
on the Ljung-Box test while keeping the number of pairs of Fourier terms for weekly seasonality at 3. 
The second direction is including the Temperature at 10-meter height as external regressors of the 
model and finds the model with the lowest AICc.  

Regarding the first approach, the number of pairs of Fourier terms can reach 20 pairs without 
making the innovation residuals correlated with each other. We denote it as F-ARMA(3,20)x(1,0,0). In 
Figure 28, we can see that the forecast distribution with a 95% prediction interval is more volatile and 
follows the pattern of the true observations better than that of F-ARMA(3,2)x(1,0,0). F-
ARMA(3,20)x(1,0,0)’s point forecast is also more wiggly to capture more variance of wind speed 
dynamic. The only problem with F-ARMA(3,20)x(1,0,0) is a large number of estimators, which may not 
be optimal in terms of model parsimony. 

 

Figure 28: 95% Prediction interval and point forecast of the F-ARMA(3,20)x(1,0,0) in 2020 
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Regarding the second approach, we aim to select an external regressor that might affect the 
wind speed to include in the model. We selected temperature at 10-meter height as the only external 
regressors since the correlation coefficient (-0.23) is statistically significant. We can see that the 
pattern of the daily temperature time series repeated over time, especially the yearly seasonal 
components remained almost the same from 2017 to 2020 in Figure 29. Therefore, we could apply 
Fourier ARMA to predict the temperature and use this forecasted temperature as the exogenous 
inputs for our wind speed prediction model. We denote this model as F-ARMA(3,2)x(1,0,0)xTemp. 

 

Figure 29: STL decomposition of Temperature at 10-meter height 

The innovation residuals of F-ARMA(3,2)x(1,0,0)xTemp are uncorrelated based on the Ljung-Box 
test result (Table 14). Therefore, it could also capture all information of the data and the mean point 
forecast is unbiased.  Besides, its innovation residuals are normally distributed with constant variance, 
therefore, its prediction interval and forecast distribution are credible which is further explained in 
Appendix 6.4. In Figure 30, we could see that the F-ARMA(3,2)x(1,0,0)xTemp’s forecast distribution 
captures the dynamic of the wind speed better than F-ARMA(3,2)x(1,0,0) since its mean point forecast 
follows the wind speed pattern, for example, on the 1st of February 2020, both the real observation 
and mean point forecasting hit the bottom before recovering afterward. 

Figure 30: 95% Prediction interval and point forecast of F-ARMA(3,2)x(1,0,0)xTemp in 2020 
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In terms of prediction accuracy, F-ARMA(3,2)x(1,0,0)xTemp has better RMSE, MAPE than F-
ARMA(3,2)x(1,0,0) and F-ARMA(3,20)x(1,0,0) with much less parameters compared to F-
ARMA(3,20)x(1,0,0). Besides, the CRPS of F-ARMA(3,2)x(1,0,0)xTemp is also smaller than those of F-
ARMA(3,2)x(1,0,0) and F-ARMA(3,20)x(1,0,0), therefore, its forecast distribution is more accurate. In 
addition, it has the lowest AICc score of 3905.86 among the three models, which makes it the most 
parsimonious model. Besides, the mean point forecast could capture the pattern of real observations 
in a way that its peaks and troughs occur close to the day of the real peaks and troughs of the wind 
speed. Therefore, F-ARMA(3,2)x(1,0,0)xTemp is selected to benchmark with seasonal naïve prediction. 
This is also proved by its CRPS score which is 5 times higher than that of F-ARMA(3,2)x(1,0,0)xTemp. 
Therefore, the prediction interval of this model might not be reliable. In addition, the RMSE of the time 
series cross-validation for the training set of F-ARMA(3,2)x(1,0,0)xTemp is 1 unit lower than that of 
seasonal naïve prediction (2.60 and 3.55 respectively). 

Therefore, to answer Research Question 1, we selected a Fourier model with 3 pairs of Fourier 
terms for weekly seasonality, 2 pairs of Fourier terms for yearly seasonality, the average daily 
temperature as an external regressor, and a first-order autoregressive model for error terms to predict 
long-term wind speed. The F-ARMA(3,2)x(1,0,0)xTemp is written as follows where 𝑦𝑏𝑡 is the wind 
speed at time 𝑡 after Box-Cox transformation, 𝜑𝑡 =  0.465𝜑𝑡  +  𝜀𝑡 is the first order autoregression of 
the error term 𝜀𝑡 with 𝑡 = 0,1,2…: 

𝑦𝑏𝑡 =  2.213 +  0.010𝑠𝑖𝑛 (
2𝜋𝑡

7
) − 0.013𝑐𝑜𝑠 (

2𝜋𝑡

7
) −  0.030𝑠𝑖𝑛 (

4𝜋𝑡

7
) + 0.015𝑐𝑜𝑠 (

4𝜋𝑡

7
)

− 0.017𝑠𝑖𝑛 (
6𝜋𝑡

7
) + 0.022𝑐𝑜𝑠 (

6𝜋𝑡

7
) +  0.137𝑠𝑖𝑛 (

2𝜋𝑡

365.25
) + 0.570𝑐𝑜𝑠 (

2𝜋𝑡

365.25
)

− 0.039𝑠𝑖𝑛 (
4𝜋𝑡

365.25
) + 0.068𝑐𝑜𝑠 (

4𝜋𝑡

365.25
) +  0.036𝑇𝑒𝑚𝑝𝑡 +𝜑𝑡 

Where 𝜑𝑡 =  0.465𝜑𝑡  +  𝜀𝑡 

𝜀𝑡  ~ 𝑁𝐼𝐷(0, 0.345)     (30) 

Table 12: Accuracy measurements of wind speed forecasting models 

 

With 𝑡 = 0,1,2…, the pairs of Fourier terms represent the weekly and yearly seasonality of the 
average daily mean wind speed after Box-Cox transformation in the corresponding timestep. In 

 
10 Error calculated by forecast package which use indexing from t = 1 
11,12, 13 Error calculated by forecast package which use indexing from t = 0 
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Conclusion 

Train Test Train Test      

F-ARMA(3,2)x(1,0,0) 3928.50 2.15 2.60 27.71 34.72 11.1 1.46 - 0.61 
Uncorrelated 

residuals 

F-ARMA(3,20)x(1,0,0) 3972.56 2.13 2.58 27.68 35.6 10.9 1.45 - 0.08 
Uncorrelated 

residuals 

F-ARMA(3,2)x(1,0,0)xTemperature 3905.86 2.13 2.60 27.38 34.0 11.20 1.36 2.60 0.71 
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residuals 
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Not 
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Not 
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ble 

3.58 

Not 

availa

ble 

51.53 142 5.08 3.55 0.00 
Correlated 

residuals 
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addition, After Box-Cox transformation with 𝑡 = 0,1,2…, if other factors stay the same, Temp(t) 
increases by 1 unit will make the wind speed ybt increase by 0.036 unit. 

Although this type of model has a MAPE of 35.5 which means on average, its error of point 
forecasting is 35% as large as the real wind speed value, the purpose of long–term wind speed 
forecasting is to establish the wind speed window which focuses more on the forecasting distribution. 
Therefore, the smallest CRPS of 1.43 is acceptable. 

4.2. Weather window prediction results 

At Gemini, SOV and helicopters are used for daily maintenance. For helicopters, they are only 
occasionally used in emergencies and their wind speed limit is around 20 m/s which is the same as the 
wind limit of the jack-up vessel’s lifting activity (Hu and Yung, 2020a). Therefore, we did not consider 
helicopters in this research. Based on industry knowledge from Blocklab.nl, the Windea La Cour is not 
able to carry out major maintenance and replacement of big wind turbine components such as turbine 
blades, gearboxes, and generators. In addition, the Gemini wind farm has been operating for more 
than 4 years which increases the failure rates of these main components. In this case, the Gemini wind 
farm operator must schedule a jack-up vessel to conduct maintenance and replacement for these 
major components. Therefore, we selected Van Oord’s Aeolus jack-up vessel as a research object for 
this thesis since it was also used to install monopiles for the Gemini wind farm during the construction 
phase (Gemini Wind Park, 2018).  

In this thesis, we assumed that the jack-up vessel only carries the gearbox for a major 
replacement to simplify the calculation. This might not be true in real life since to fully optimize the 
capacity of the jack-up vessel, they often load many components onto one vessel at once. However, 
since this thesis concentrates on optimizing the logistics and supply chain of offshore wind farm 
maintenance, simulating the whole operation with one major component of the wind turbine is the 
first step for the financial model. In addition, the jack-up vessel can only lift one component to repair 
one turbine at a time. Therefore, the chartering duration of the vessel will add up concerning the 
number of major components it carries and the repair time of the respective components.  

Based on Carroll et al; (2015), the gearbox has the highest failure rate of 0.154 failures per 
turbine per year with a considerable average replacement time of 231 hours (excluding travel times, 
lead time, and waiting time due to inaccessibility). We used the data from this research since the 
turbine model used in the Gemini wind farm has similar characteristics to the wind turbines of this 
research sample which were offshore wind turbines from 3 to 10 years old with a capacity between 2 
and 4 MW. The failure rate in this research was small since this failure rate was defined as the “visit to 
a turbine, outside of a scheduled operation, in which material is consumed” which did not consider 
the total stoppage of the turbine during its operation. 

After that, to create the weather window of wind speed based on the long-term prediction for 
2020, the mean point forecast, upper bound, and lower bound of the 95% prediction interval in F-
ARMA(3,2)x(1,0,0)xTemp is converted from 10-meter height to 89.5-meter height to compare with the 
cut-in and cut-out wind speed value (5 m/s and 25 m/s respectively) of the turbine model. This means 
that below 5 m/s and above 25 m/s, the wind turbine stops producing energy. With this wind speed 
forecasting distribution, the wind farm operator could calculate the average daily wind energy based 
on the power coefficient of the wind turbine to estimate the largest and smallest energy generated 
per day, per week, and month in 2020. However, since this power coefficient is confidential, we could 
not estimate the wind power generated throughout 2020. Therefore, we assume that the day with the 
lowest average daily wind speed will produce the least wind energy and vice versa. 

From Figure 31, based on our forecasts in 2020, at hub height level, the wind speed was able to 
produce energy almost all year round since the upper limit of 95% prediction interval was lower than 
both the cut–out wind speed (25 m/s) and lifting wind speed limit (20 m/s). The cut-in wind speed lies 
within the forecast distribution, therefore, on each day, there would be a time that the wind speed 
was either lower than 5 m/s or higher than 5 m/s.  
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For the jacking operation of the jack-up vessel, the wind speed must be lower than the jacking 
wind speed limit (15 m/s). Based on our calculation and Figure 32, we could not conduct a jacking 
operation in January and December since the upper limit of the 95% prediction interval might be higher 
than 15 m/s. Specifically, from the 4th to the 9th, 11th to 13th, 15th to 16th of January 2020, and from the 
5th to 7th, 16th to 24th, 26th to 31st of December 2020. 

 

Figure 31:Wind speed weather window for Gemini wind farm at 89.5-meter height in2020 

 

Figure 32: Wind speed weather window for Gemini wind farm at 10-meter height in 2020 

Based on Adverse Weather Sailing and Adverse Weather Working Guidelines (UK offshore 
Operators Association/ Chamber of Shipping, 2002), when the mean wind speed at a 10-meter height 
is from 20 to 25 knots (approximately 7.83 to 9.78 m/s) and/or the wave height is from 3 to 4 m/s, the 
shipmaster must conduct a risk assessment, before beginning or continuing any operation alongside 
an installation, and crane driver. Therefore, we used the wind limit of 7.83 m/s as the reference for 
human safety to work outside of the vessel and compared it with the mean point forecast at 10-meter 
height. Because on average, it takes around 10 days to repair one gearbox (Carroll et al; 2015), the 
jack-up vessel could not operate in January, February, and December 2020 due to insufficient weather 
windows. Specifically, we forecasted that the weather window in 2020 could not allow the jack-up 
vessel to operate from the 2nd to 18th and 26th to 27th of January, from the 6th to 17th and 22nd to 27th 
of February, from 25th of November to 31st of December. 
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Since the summer is the peak season for chartering a jack-up vessel to conduct maintenance and 
replacement service, the chartering rate is the most expensive in June, July, and August. In addition, 
the wind speed decreased from March to the middle of the year before recovering until the end of the 
year based on section 3.1.2. Therefore, the downtime cost might increase from September to 
November and lead us to forecast weather windows in March, April, and May in 2020. Then within 
each month, we picked the day with the lowest forecasted average daily mean wind speed as the 
starting point to predict the weather window of 1 day before and 1 day after that for maintenance 
since we assume the lowest average daily wind speed will produce the least energy and revenue. After 
that, we can determine the hourly mean wind speed, hourly significant wave height, and hourly wind 
power of the weather window around that day for downtime cost calculation and accessibility of the 
wind farm. This process is illustrated in Figure 33 below. In March, April, and May of 2020, the day with 
the lowest forecasted average daily mean wind speed point forecast is 30th March, 28th April, and 27th 
May 2020 respectively.  

Therefore, to answer Research Question 3, each year, we suggest making a one-year ahead wind 
speed prediction to find the favorable weather window with the least wind speed each month. Then, 
the wind farm operator could start to schedule the jack-up vessel and share the vessel with other wind 
farms if possible. Based on the long-term forecast of 2020 for the Gemini wind farm, we recommend 
conducting maintenance with the jack-up vessel from March to May. More specifically, the jacking and 
lifting activities of jack-up vessels might be around the 30th of March, 28th of April, and 27th of May 2020 
respectively for the least forecasted wind in the selected weather window. We recommend building 
another medium-term prediction of 3 months to verify the local minimum of each selected weather 
window, however, due to time scope, we skip this step in our thesis. The chartering period of the jack-
up vessel depends on the number of turbines which need maintenance and replacement, however, for 
major maintenance and replacement of the gearbox, 1 day per turbine on average is recommended 
(Carroll, Mcdonald, and Mcmillan, 2015). For other wind farms, each year, they should update the 
weather and power data to construct a new forecast for the next year before planning and chartering 
the vessel. 

 

Figure 33: Simplified process of weather window selection 

4.3. Short-term wind speed and wave height prediction 

Suppose the jack-up vessel was booked to implement maintenance and replacement on the 30th 
of March or the 28th of April 2020 based on the long-term wind speed prediction, for each scenario, 
delays might occur due to inevitable external factors on-site or the wind farm operator wants to gain 
more revenue from high wind speed on that day. In this thesis, we want to find out whether it is cost-
effective to delay the maintenance service for more revenue gained from the wind farm or not. Based 
on The Crown Estate, (2014), there can be a 1- or 2-days delay in the execution of a jack-up vessel on-
site due to various reasons. Therefore, for each selected day in the chosen weather window, we will 
conduct short-term predictions of the wind speed, wind power, and wave height to measure the 
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downtime cost of the preventive maintenance given these delays. As a wind farm operator or the 
captain of the jack-up vessel, we have to consider the chance of weaker or stronger wind speed given 
the current weather conditions. For example, if today, the wind speed is already strong, there will be 
a higher chance that on the next day the wind speed will be weaker, therefore, with short-term 
prediction, we could make the decision-makers more informed about their next step. This is even more 
important since based on the wind speed analysis in chapter 3, there was a decreasing trend in hourly 
mean wind speed from 2014 to 2019. 

 

Figure 34: Overview of planning requirements and potential for delays depending on repair scenario 
utilized. Source: The Crown Estate, (2014)  

Due to the limitation of the Non-linear Autoregressive Neural Network with and without 
exogenous inputs (NARX and NAR), we can only predict the power 24 hours ahead of time. Therefore, 
with the scenario that the jack-up vessel is mobilizing to the wind farm on the 27th of March 2020, we 
will forecast the wind speed, wind power, and wave height on the 28th of March 2020 based on the 
real observations until the present value of wind speed on the 27th of March 2020. In another word, 
we have to decide whether to continue the maintenance service or delay this operation to the 28th of 
March 2020 since the real wind speed on the 27th of March 2020 was quite strong, there would be a 
higher chance that the wind speed of the next day might be lower. The forecast for the 29th of March 
will be based on the real values until the 28th of March, and so on for the 31st of March. The same 
process will be applied to the scenario that the jack-up vessel is sailing to the wind farm on the 27th, 
28th, and 29th of April 2020. However, in this case, the real wind speed on the 27th of April 2020 was 
quite weak, therefore, the chance of a weaker wind speed on the next day might be lower. For the 
time scope of this thesis, we will not consider the downtime cost of the 27th of May and its delays. 

Regards the short-term prediction, we focused on the mean point forecasting of the wind speed 
and wind power one day ahead of time. Therefore, only RMSE and MAPE were considered to evaluate 
the model accuracy. Firstly, we compared NARX with wind speed as exogenous inputs and NAR for 
wind power prediction. Although the NARX(44,1,23)24 performed slightly better than NAR(44,1,22)24 
with the MAPE of 24.4% and 26.5% respectively for the prediction of hourly mean wind speed on the 
28th of March 2020, we found that NARX(44,1,23)24 and NAR(44,1,22)24 both had normally distributed 
and homoscedastic residuals. However, the residuals of NARX(44,1,23)24 were more or less correlated 
based on the autocorrelation function plot in Figure 35 while the residuals of NAR(44,1,22)24 were not. 
For both NARX and NAR models, we could not conduct the Ljung-Box test since R could not find 
appropriate degrees of freedom for these models. Therefore, we decided to use a Neural Network 
Non-linear Autoregression model without Exogenous inputs for short-term prediction only since this 
method could capture all the information in the data series (Figures 35 and 36).  

Regards the hourly mean wind speed, the NAR(44,1,22)24 and NAR(44,1,40)24 were constructed 
to predict the weather on the 29th and the 30th of March 2020. They provide reliable forecasts on the 
29th, the 30th of March 2020, and the 27th of April 2020 with the MAPE value of less than 15%. However, 
the prediction of the hourly wind speed on the 31st of March 2020 and the 29th of April 2020 are not 
reliable with the MAPE values of 84.3% and 155% respectively. As can be seen in Figure 36, the 
forecasted wind speed on the 31st of March 2020 and the 29th of April 2020 captured the pattern of 
wind speed on the same days in 2018 and 2019. Because the Neural Network is a black-box model, we 
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could not explain its relationship between parameters and lagged input like a normal autoregression 
model. However, if we compared the forecasted values with the real values of that day and the same 
days in previous years, we might have some clues. Since the NAR(44,1,22)24 learned from 44-hour 
lagged data, its 24-step ahead prediction could not deviate too much from the past data. Therefore, it 
could not capture the sudden large drop in the real observations of the wind speed on these days in 
2020 well. This sudden change might be because 2020 was an abnormal year in the Netherlands in 
which many unpredicted and never-before-seen extreme weather events happened, namely the 
spring drought12 and the warmest March in history13. Therefore, we can only rely on the prediction of 
the 29th, 30th of March 2020, and the 27th, 28th of April 2020 for wind speed analysis. 

 

Figure 35: Residual checks of NARX(44,1,23)24 for the 28th March 2020 

 

Figure 36: Residuals check of NAR(44,1,22)24 for the 28th March 2020 

 
12 https://www.amsterdamiww.com/water-solutions-3-risks-and-resilience/more-drought-in-the-netherlands/ 
13 https://www.iamexpat.nl/lifestyle/lifestyle-news/tuesday-officially-warmest-march-22-ever-recorded-
netherlands 
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Figure 37: Real and forecasted wind speed from 29th to 31st March and 27th to 29th April 2020 

Regards wind power, the NAR(44,1,22)24, NAR(44,1,40)24, and NAR(26,1,30)24 model only 
provides an accurate forecast on the 29th, 30th of March with the MAPE value of 15.58%, and 31.8%. 
However, the forecast of wind power on the 31st of March 2020, 27th, 28th, and 29th of April 2020 was 
overestimated with quite large prediction errors (up to 2096%). These large errors might be due to the 
inconsistency in the energy output data of the Gemini wind farm which was aggregated from The Dutch 
National offshore wind energy production. We aggregated the nominal wind energy capacity of this 
wind farm without considering the energy lost due to daily and major maintenance during the period 
under the study. Therefore, with the hourly mean wind speed of 7.14 m/s at hub height level, each 
turbine produced 622.87 kWh on average on 27th April 2018, 2133.62 kWh on average on 27th April 
2019, and 1910.34 kWh on average 30th March 2020. However, for the same model of a wind turbine, 
it should produce the same amount of wind energy per given wind speed. Moreover, the real power 
generated was close to zero in many observations (Figure 38), they also inflated the MAPE 
exponentially based on the formula (14). However, since the fable package in R will construct the new 
model again with the new data, it will provide more accurate data with the real energy output provided 
by the wind farm. Therefore, to make the use case and prototype of the solution for Blocklab, we will 
proceed with the forecasted wind energy for further analysis of downtime cost. 

 

Figure 38: Real and forecasted wind power from 29th to 31st March and 27th to 29th April 2020 

Regards the significant wave height forecast, the NAR(42,1,22)24 model predicted the significant 
wave height with acceptable accuracy with MAPE values from 10% to 36% on the 29th, 30th of March 
2020,  from 27th to 29th of April 2020, except for the prediction on the 31st of March whose MAPE was 
around 50%. Therefore, we will use this model’s results for further analysis. 
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Although other papers using wind speed, wind power, and wave height at different locations, at 
different granularity, with different forecast horizons, and with a different type of neural network, the 
MAPE value of less than 25% is considered as a reliable prediction in (Kadhem et al., 2017; Kumar et 
al., 2017; Dhiman and Deb, 2020; López and Arboleya, 2022). Therefore, NAR(40,1,22)24, 
NAR(44,1,22)24, NAR(26,1,30)24, NAR(42,1,22)24 for wind speed, wind power, and significant wave 
height prediction on the 29th and 30th of March is reliable. 

For more detailed prediction accuracy of all prediction models, please refer to Table 19 in 
Appendix 6.6. 

In conclusion, to answer Research Question 1, the fable package constructed a Non-linear 
Autoregressive Neural Network structure that iterates 20 networks and uses 1013 or 1841 weights, 
each network uses 44 lags, 1 seasonal lag of 24 hours, and 22 or 40 hidden nodes -  NAR(44,1,22)24, 
NAR(44,1,40)24 to predict the wind speed in 24 hours ahead of time on the 29th, 30th March 2020, and 
27th, 28th April 2020. Regards Research Question 2, the fable package constructed a Non-linear 
Autoregressive Neural Network structure that iterates 20 networks and uses 969 weights, each 
network uses 42 lags, 1 seasonal lag of 24 hours, and 22 hidden nodes to predict the significant wave 
height is 24 hours ahead of time. However, since NAR is a black-box model, we could not interpret the 
model easily and need further research to interpret it.  

4.4. Economic analysis of offshore wind farm O&M activities based on the wind speed 
prediction. 

After forecasting the energy output per turbine, we multiplied the energy output in kWh by its 
price of 17cent/kWh as in section 3.1.5.1.  

From 29th to 30th March 2020, the model NAR(44,1,22)24 and NAR(26,1,30)24 captured the 
decreasing trend in power generation and downtime cost of the turbine (Figure 39). In addition, the 
total downtime cost error of forecasted energy output was less than 15.5% of the real energy output 
price on both days. We consider; therefore, this forecasting total energy output and downtime cost 
were reliable on these days of 2020. If we conducted the maintenance on the 29th of March 2020, we 
would lose 11008.35 euros per turbine based on the forecasted energy output, whereas, if we 
conducted the maintenance on the 30th of March 2020, we would only lose 8336.64 euros per turbine 
based on the forecasted energy output. Therefore, if we delayed the maintenance activity for one day, 
we would save 2671.71 euros per turbine. However, based on Figures 41 and 42, the 29th and 30th of 
March 2020 were not safe for jack-up vessel Aeolus to conduct jacking and maintenance. Thus, we 
recommend conducting daily and small maintenance on these days using a vessel with better sea-
keeping capability such as the service operation vessel Windea La Cour (ModernPowerSystem, 2016). 
This short-term prediction, also verifies the result of F-ARMA(3,2)x(1,0,0)xTemp that the wind speed 
on the 30th March was weaker than on other days. 
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Figure 39: Real and forecasted wave height from 29th to 31st March and 27th to 29th April 
2020 

From 27th to 28th April 2020, the model could not capture the decreasing trend in power 
generation and the downtime cost of each turbine, however, from the 28th to 29th of April 2020, the 
prediction model could predict a slight decrease in wind power (Figure 40). In addition, the total 
downtime cost error of forecasting energy output was more than half of the real energy output price, 
therefore, we recommend using other meteorological models to predict the wind speed and then the 
power in case you do not have the exact energy output time series at hand. However, if we assume 
that these forecasts are correct, delaying the maintenance service from the 27th to the 28th of April 
2020 will make us lose 365 euros per turbine, whereas, if we keep running the turbine until the 28th of 
April 2020 and conduct maintenance service on the 29th of April 2020, we save 107 euro. Moreover, 
the weather window on these days allows the Aeolus jack-up vessel to conduct maintenance. 

Therefore, regards Research Question 4, due to the limitation of our forecasting horizon in the 
Non-linear Autoregressive Neural Network method and the data collection method, we could not 
determine the trade-off of the delay in maintenance activities for more than 1 day in terms of wind 
power generated and its corresponding revenue. However, in the case of Gemini offshore wind farm 
with Aeolus jack-up vessel, based on our forecast in 2020, if we delay the maintenance service for 1 
day from the 28th to the 29th of April 2020, we will save 107 euros in downtime cost per turbine. 

 

 

Figure 41: Downtime cost of real and forecasted power generated per turbine from 29th to 30th 
March and 27th to 28th April 2020 
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Figure 40: Forecasted wave height window for O&M activities 
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 Figure 42: Forecasted weather window of wind speed at 10-meter and hub height level 

Based on Table 10, the demurrage rate of a jack-up vessel (including inflation from 2015) is 
around 119813 euros14 per day (summer charter rate). Therefore, if we assume on the 28th of April, all 
turbines generate 4404 euros per day in revenue and 4297 euros per day on the 29th of April 2020 and 
if we delay the maintenance service to the 29th of April, each day we need to conduct maintenance to 
119813/4297 ≈ 28 turbines to offset the demurrage rate of the jack-up vessel alone. However, in 
practice, it is impossible to conduct maintenance for 28 turbines in a day since the jack-up/jack down 
and hub removal times are 11 hours on average per turbine. In addition, it takes on average 22 hours 
to conduct major repairs for one gearbox (Carroll, Mcdonald, and Mcmillan, 2015). This downtime will 
create a tremendous loss in revenue for the wind turbine which our model, unfortunately, cannot 
foresee plus the daily chartering rate and demurrage rate. Therefore, regards Research Question 5, 
the wind farm operator should not delay the maintenance activities of the jack-up vessel for more 
energy generated since the demurrage rate and other related costs of the jack-up vessel is too large 
compared to the revenue gained by the energy generated by the wind turbines. 

4.5. Suggestion for the weather window prediction in the renewable market application. 

Given the wide range of geophysical, geotechnical, and environmental differences present 
between different offshore wind farms in the Dutch North Sea and different turbines located on a 
single windfarm means that on the same day or in the same months, the wind climate and energy 
output can be much different. The Fourier F-ARMA(3,2)x(1,0,0)xTemp prediction model provides a 
weather window of up to one year to plan. Therefore, if a group of offshore wind farms first run this 
model to find their favorable weather window to conduct the maintenance, they can then schedule 
and share the jack-up vessel to repair the turbine in one wind farm after another as in Figure 43. 

Besides, the short-term weather and significant wave height forecast based on a Non-linear 
Autoregressive Neural Network could evaluate the accessibility and safety to execute the replacement 
and major maintenance of huge components in the wind turbines on-site when the preventive 
maintenance starts. 

 
14 We assume 10% inflation rate and the exchange rate is on the 23rd of April 2022: 1 Pound Sterling = 1.19 EUR  
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Figure 43: Vessel sharing policy illustration. Source: (Uit Het Broek et al., 2020) 

By using these models to support the planning and deployment of the jack-up vessel, we also 
recognize that it is not possible to trade off between the revenue gained by delaying the maintenance 
service with the chartering and demurrage rate of the jack-up vessel if the wind farm charters it alone. 
However, if we develop the planning and scheduling of the jack-up vessel in a resource-sharing 
approach between different offshore wind farms, the revenue will increase from around 52 million to 
110 million Pound Sterling in the case of the UK offshore wind farms (The Crown Estate, 2014). In the 
case of vessel sharing policy based on (Uit Het Broek et al., 2020), some maintenance costs which 
depend on chartering and leasing time will partly become fixed costs. Thus, if we purchase a vessel 
and share it between wind farms, we could take advantage of the economy of scale and lower the 
fixed cost with larger collaboration. In this way, five participating wind farms with service providers 
deliver the best collaboration with the highest cost-benefit of 45% (6.5 million euros), the highest 
utilization of 89.4% compared to vessel leasing. However, to execute vessel sharing we must optimize 
the pre-operational stages, especially the planning process, which takes up to 6 months for one jack-
up vessel provider (The Crown Estate, 2014)  

Given the opportunity of vessel sharing in optimizing the O&M activities, Blocklab can integrate 
our long-term prediction models to harmonize the scheduling and chartering of a jack-up vessel by 
establishing the schedule and route of a jack-up vessel shared by the different wind farms to reduce 
the paperwork, less lead time and less lost in power production during this process. The short-term 
forecasting models, on the other hand, support ad-hoc evaluation of offshore windfarm accessibility 
on-site to adjust the plan and to ensure the safety of the crew. Therefore, the long-term and short-
term prediction models could all be applied to optimize the project planning, project consent, contract 
negotiation, and technical information exchange not only within the group of offshore wind farms but 
also between them and the vessel providers (Figure 44). 

 

Figure 44: Interaction between planning, jack-up vessel operations, and turbine maintenance tasks   
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5. CONCLUSION  
In this chapter, we summarize the answers to our research question and discuss the limitation 

of the thesis. 
5.1. Conclusion 
After developing a forecast for long-term wind speed, short-term wind speed, significant wave 

height, and wind energy output for the Gemini wind farm in 2020, we can answer the research 
problem:  

 “How offshore wind farm operators can apply the weather window of wave height and wind 
speed forecasting in planning the jack-up vessel in an efficient way while ensuring some safety 

standards?” 

as follows. 

First, we conducted the long-term average daily mean wind speed prediction by the Fourier-
ARMA model to sketch out the wind speed forecast distribution for 2020 (Research question 1). This 
prediction model can capture the dynamic and the variance of the real average daily wind speed time 
series in 2020 with its 95% prediction interval. Based on this long-term prediction of 2020, we 
forecasted a decreasing trend of the wind speed at the beginning of the summer and compared the 
weather condition with the safety standards of the jack-up vessel to select the local minimum in March, 
April, and May 2020. Specifically, we forecasted that in 2020, the local minimum of the average daily 
mean wind speed in March was the 30th and the local minimum of average daily mean wind speed in 
April was the 28th of April (Research question 3). After that, we recommend building a medium-term 
prediction to verify these local minima of each weather window before fixing the maintenance 
moments.   

Due to time restrictions, we skipped the medium-term prediction and implemented the Non-
linear Autoregressive Neural Network for short-term wind speed, wind power, and significant wave 
height prediction one day before and after these two selected days to verify the long-term prediction 
results and establish the trade-off between the revenue gained by the higher wind speed and the 
demurrage rate of the jack-up vessel. The performance of the NAR model for wind speed was much 
better on the 29th and 30th of March 2020 with the MAPE of less than 15%, however, it appeared that 
we could not conduct maintenance service on these days due to unsafe wind speeds and wave height 
condition (Research question 1). Regardings the forecasted weather window in April 2020, the wind 
speed and wave height were predicted to be more favorable to implement maintenance although the 
prediction error was a bit larger than the forecasted weather window in March 2020 (Research 
question 2). The wind power prediction was unfortunately not accurate due to the wind energy data 
collection that could not capture the correct nominal wind energy produced by the Gemini wind farm.  

In the third part of the research, we calculate the trade-off between the revenue gained by the 
wind power when we delay the maintenance service and the demurrage rate of the jack-up vessel. We 
found that delaying is not cost-effective to offset the demurrage rate of the jack-up vessel (Research 
question 4). However, we can apply long-term and short-term predictions of the weather data every 
year to establish the schedule of chartering the same jack-up vessel between different wind farms. 
Thus, enabling the vessel sharing approach of the jack-up vessel to optimize the vessel use, reduce the 
chartering cost, documentation time, and contract negotiation (Research question 5). In this way, we 
could reduce the lead time of jack-up vessel deployment and the downtime cost of the broken turbine. 
We also suggest investigating the weather window from October 31st to November 1st since a delay at 
that time may be more profitable due to a lower demurrage rate. 

5.2. Limitations and further research 

The first limitation is the computation time of the machine learning models for missing values 
imputation and short-term prediction. For the missing value imputation model, we recommend 
stronger machine learning methods such as Multiple Imputation through XGboost (Deng and Lumley, 
2021). This method is the fastest implementation of gradient boosted trees available in R. It can 
capture the interactions, variability, and non-linear relations while maintaining high computational 
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efficiency. For short-term prediction using a Non-linear Autoregressive Neural Network, we suggested 
running our models on cloud services to take advantage of its computation power and reduce running 
time compared to our personal computer. 

The second limitation of this work is the forecasting horizon of the Non-linear Autoregressive 
Neural Network model. Since this method can only make a reliable 24-step ahead forecast for hourly 
data. It restricts the wind farm operators to organize the maintenance and operation activities on-site 
only one day ahead of time. We suggest applying the Bayesian Neural Network (Mohsin, Ramli, and 
Imdad, 2021) or Long Short-Term Memory Recurrent Neural Network (Akram and El, 2016) to predict 
the wind speed and wind energy 72 hours ahead of time. This longer forecasting horizon will be more 
beneficial to the orchestra of operation and maintenance service of the offshore wind farm.  

The third limitation of the Non-linear Autoregressive Neural Network in this thesis is the 
unstable prediction accuracy and model interpretability. This method performs very well on some days 
for wind speed, wind power, and wave height with the MAPE values of less than around 25%, however, 
its errors can reach approximately 2090% on other days. Therefore, we recommend applying 
parameter optimization methods to improve the model prediction results such as the novel hybrid 
forecasting system of ensemble empirical mode decomposition, extreme learning machine, and multi-
objective grey wolf optimization(Wu et al., 2020) to balance the accuracy and stability. For the 
interpretability of the model, we need further research on this topic to improve the model or we can, 
instead, Fourier ARMA as the last resort if the model interpretation is necessary.  

In addition, since the thesis was written to forecast the weather window in 2020, the prediction 
is only valid in the Gemini location in 2020, we recommend the users to update the most current 
weather data, wave height, and wind energy at your location to make the long-term and short-term 
forecasting before planning the O&M activities and chartering the jack-up vessel in the future.  

Finally, the large errors in the wind energy prediction may mostly be due to the indirect 
calculation of Gemini wind farm’s wind energy output which did not consider the energy lost due to 
daily and major maintenance during the period under the study instead of the actual energy output 
produced by the wind farm itself. Therefore, the prediction will be more accurate if we can collect the 
actual energy output which is confidential. 
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6. APPENDIX 
6.1. Gemini wind farm and weather station location 

 

Figure 45: Offshore wind farm map planning (2021) in the Netherlands with the location of 
weather station marked in the red cross (Source: The Government of The Netherlands) 

6.2.  Weather data set 

  

https://www.government.nl/topics/renewable-energy/offshore-wind-energy
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Table 13: Wind speed data set and variable definitions (Source: KNMI) 

Variable name Definition 

YYYYMMDD Date (YYYY=year, MM=month, DD=day) 

HH (Time) Time (time (hour, Amsterdam time) 

DD (Wind_direction) 
Mean wind direction (in degrees) during the 10 minutes preceding the time 
of observation 

FH (Mean_wind_speed) Hourly mean wind speed at 10m height 

FX (Max_wind_gust) Maximum wind gust during the hourly division 

T (Temperature) The temperature at 1.50 m at the time of observation 

P (Air_pressure) Air pressure reduced to mean sea level, at the time of observation 

U (Relative_humidity) Relative atmospheric humidity at 1.50 m at the time of observation 

Table 14: Hourly climate data set and variable descriptions excluding missing values (Source: KNMI).  

Variable name Unit Mean Median 
Standard 
Deviation 

Maximum Minimum 

YYYYMMDD - - - - - - 

HH (Time) - - - - - - 

DD (Wind_direction) 

(360=north, 
90=east, 
180=south, 
270=west, 0=calm 
990=variable) 

- - - - - 

FH 
(Mean_wind_speed) 

m/s 6.99 7 3.18 25 0 

FX (Max_wind_gust) m/s 9.35 9 4.08 36 1 

T (Temperature) degrees Celsius 10.76 10.40 5.65 34.10 -9.10 

P (Air_pressure) kPa 101.46 101.54 1.04 104.65 97.17 

U (Relative_humidity) % 80.01 81 11.27 100 26 

 

Table 15: Summary of missing values of weather indices 

Variable name Missing values 
Largest number consecutive 

missing values 

DD (Wind_direction) 3008 2423 
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FH (Mean_wind_speed) 3030 2424 

FX (Max_wind_gust) 3028 2424 

T (Temperature) 983 312 

P (Air_pressure) 642 167 

U (Relative_humidity) 1123 333 

 

Table 16: Average daily climate data from 2014 - 2019 

Variable name Unit Mean Median 
Standard 
Deviation 

Maximum Minimum 

Index Year – Month – Day - - - - - 

Wind_direction 

(360=north, 
90=east, 
180=south, 
270=west, 0=calm 
990=variable) 

- - - - - 

Mean_wind_speed m/s 6.94 6.63 2.61 17.92 1.29 

Max_wind_gust m/s 9.29 8.79 3.37 24.50 2.67 

Temperature degrees Celsius 11.05 10.63 5.49 26.53 -5.79 

Air_pressure kPa 101.50 101.50 1.00 104.30 97.40 

Relative_humidity % 79.89 80.29 8.74 99.83 51.67 
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Figure 46: Distribution of log-transformed weather data 

6.3. STL Decomposition 
Since there are only one seasonal component in the STL decomposition of the literature review, 

we defined the component strength of time series with more than two seasonal components as follow:  

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑡𝑟𝑒𝑛𝑑 =  𝑚𝑎𝑥(0, 1 − 
𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)

𝑉𝑎𝑟(𝑇𝑟𝑒𝑛𝑑𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)
) 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑆𝑒𝑎𝑠𝑜𝑛_𝑦𝑒𝑎𝑟𝑡  =  𝑚𝑎𝑥(0, 1 − 
𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)

𝑉𝑎𝑟(𝑆𝑒𝑎𝑠𝑜𝑛_𝑦𝑒𝑎𝑟𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)
)  

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡  =  𝑚𝑎𝑥(0, 1 − 
𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)

𝑉𝑎𝑟(𝑆𝑒𝑎𝑠𝑜𝑛_𝑤𝑒𝑒𝑘𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)
)  

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ_𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡  =  𝑚𝑎𝑥(0, 1 − 
𝑉𝑎𝑟(𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)

𝑉𝑎𝑟(𝑆𝑒𝑎𝑠𝑜𝑛_𝑑𝑎𝑦𝑡 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡)
) 

 
6.4. Residual checks of prediction models 
As can be seen in Figure 47, F-ARMA(3,2)x(1,0,0) ‘s residuals are normally distributed and 

fluctuate around a zero mean, which proves that the innovation residuals are unbiased. Except for 
some extreme values at the beginning of 2016, 2017, and 2019, we can say that the variance of its 
residuals is constant. In addition, the Ljung-Box test result (Table 14) does not have enough evidence 
to reject the null hypothesis that the residuals are white noise or uncorrelated at a 0.05 significant 
level. These features ensure the homoskedasticity of the residual and the reliability of the prediction 
intervals. Thus, 
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Figure 47: Residual check for Fourier(3,2)x(1,0,0) 

For the F-ARMA(3,20)x(1,0,0), its innovation residuals are normally distributed with a zero mean 
and constant variance based on. Therefore, the prediction intervals and forecast accuracy are reliable. 
Also, the Ljung-Box test results showed that its residuals were not correlated. 

 

Figure 48: Residual checks of the F-ARMA(3,20)x(1,0,0) 

 

For the F-ARMA(3,2)x(1,0,0)xTemp, its innovation residuals are normally distributed with a zero 
mean and constant variance based on Figure 49. Therefore, the prediction intervals and forecast 
accuracy are reliable. Also, the Ljung-Box test results showed that its residuals were not correlated so 
the model could capture all the information in the data. 
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Figure 49: Residual check F-ARMA(3,2)x(1,0,0)xTemp 

As can be seen in Figure 49, the innovation residuals of the seasonal naïve forecasting model 
have zero mean, constant variance, and normal distribution. However, they are correlated as the result 
of the Ljung-Box test is significant (Table 14). 
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Figure 51: Residual checks of the Seasonal naive model 

6.5. Missing values imputation results 

Table 17: OOB errors per variable of each imputation model 

 

ntree = 2 
and mtry = 

√𝟏𝟎 

ntree = 10 
and mtry = 

√𝟏𝟎 

ntree = 25 
and mtry = 

√𝟏𝟎 

ntree = 50 
and mtry = 

7 

O
O

B
 e

rr
o

r 
(M

SE
) 

Wind_direction 4401.25 2695.07 2900.00 2561.43 

Mean_wind_speed 0.79 0.58 0.52 0.52 

Max_wind_gust 1.33 0.96 0.87 0.83 

Temperature 1.49 1.10 0.88 0.49 

Air_pressure 0.36 0.22 0.18 0.13 

Relative_humidity 44.52 31.66 23.94 20.43 

Computation time (minutes) 11.23 44 154.87 352.51 

 

Figure 50: Average daily mean wind speed per month from 2014-2019 
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Figure 52: Hourly mean wind speed 2011-2012 after imputed with ntree = 2 and mtry = √10 (red 
squares indicate the same period of the two given years) 

 

Figure 53: Hourly mean wind speed 2011-2012 after imputed with ntree = 10 and mtry = √10 (red 
squares indicate the same period of the two given years) 
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Figure 54: Hourly mean wind speed 2011-2012 after imputed with ntree = 25 and mtry = √10 (red 
squares indicate the same period of the two given years) 

6.6. Accuracy measurements of Non-linear Autoregressive Neural Network models 

Table 18: Accuracy measurements of wind speed and power short-term forecasting models 

 Model description RMSE15 MAPE16 Computation 
time (minutes) 

Wind speed 28/03 – NAR(44,1,22)24 
20 networks and 1082 

weights 
4.27 27.9 20 

Wind power 28/03 – NARX(44,1,23)24 
20 networks and 1082 

weights 
858 24.4 20 

Wind power 28/03 – NAR(44,1,22)24 
20 networks and 1013 

weights 
931 26.5 15 

Wind speed 29/03 – NAR(44,1,22)24 
20 networks and 1013 

weights 
1.21 8.25 15 

Wind power 29/03 – NAR(44,1,22)24 
20 networks and 1013 

weights 
876 15.5817 15 

 
15 Error calculated by forecast package which use indexing from t = 0 
16 Error calculated by forecast package which use indexing from t = 0 
17 Since there was a zero observation  in the real observation on the 29/03, MAPE could not be calculated. This 
might be an error of the data set, however, since the real wind speed of two observations were the same, we 
assume that the energy generated of the two observations were the same 
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Wind speed 30/03 – NAR(44,1,40)24 
20 networks and 1841 

weights 
1.34 15.5 20 

Wind power 30/03 – NAR(26,1,30)24 
50 networks and 1841 

weights 
587 31.8 45 

Wind speed 31/03 – NAR(44,1,40)24 
50 networks and 1841 

weights 
2.88 84.3 45 

Wind power 31/03 – NAR(44,1,22)24 
20 networks and 1013 

weights 
1522 688 15 

Wind speed 27/04 – NAR(44,1,22)24 
20 networks and 1013 

weights 
0.854 13.4 15 

Wind power 27/04 – NAR(44,1,22)24 
20 networks and 1013 

weights 
733 205 15 

Wind speed 28/04 – NAR(44,1,40)24 
40 networks and 1841 

weights 
1.62 40.9 45 

Wind power 28/04 – NAR(44,1,22)24 
20 networks and 1013 

weights 
737 187 15 

Wind speed 29/04 – NAR(44,1,40)24   
40 networks and 1841 

weights 
2.92 155 45 

Wind power 29/04 – NAR(40,1,22)24 
20 networks and 1013 

weights 
893 2096 15 

Wave height 29/03 – NAR(42,1,22)24 
20 networks and 969 

weights 
0.36 10 15 

Wave height 30/03 – NAR(42,1,22)24 
20 networks and 969 

weights 
0.25 13.3 15 

Wave height 31/03 – NAR(42,1,22)24 
20 networks and 969 

weights 
0.69 54.6 15 

Wave height 27/04 – NAR(42,1,22)24 
20 networks and 969 

weights 
0.278 38 15 

Wave height 28/04 – NAR(43,1,22)24 
20 networks and 991 

weights 
0.148 25.3 15 

Wave height 29/04 – NAR(42,1,22)24 
20 networks and 969 

weights 
0.335 36 15 

6.7. Chartering cost of the jack-up vessel 
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Table 19: Jack-up short-term charter parameters. (Source:Dalgic, Lazakis, Turan, et al., 2015b) 

Parameter Value 

Fuel consumption in port 2 ton/day 

Fuel consumption in operation 10 ton/day 

Daily charter rate 
172500 Pound/day (April – September) 

116250 Pound/day (October – March) 

Demurrage +30% daily rate 

Mobilization cost and mobilization time 

114000 Pound – 10 months 

229000 Pound – 8 months 

473500 Pound – 6 months 

686500 Pound – 4 months 

947500 Pound – 2 months 

Low sulfur marine gas oil 550 Pound/ ton 

Parameter Value 

Jack-up/down period 3 hours 

Hub removal time 8 hours 

Port re-supply time 24 hours 

 

6.8. Correlation plot between weather indices 
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Figure 55: Correlation of weather indices at 10 meter height (Wind_direction_tf, 
Mean_wind_speed_10_tf, Max_gust_10_tf, Air_pressure_10_tf, Relative_humidity_bc, 
Temperature_tf are the wind direction, mean wind speed, max wind gust, air pressure, and relative 
humidity after Box-Cox transformation respectively) 

Based on the correlation chart of different weather indices after Box-Cox transformation at 10-
meter height in Figure 55, maximum wind gust is highly correlated with mean wind speed, whereas 
relative humidity is almost not linearly correlated with mean wind speed. Wind direction is harder to 
predict and could not be assumed to be the same in the next year. The air pressure at 10-meter height 
is directly correlated with the temperature at 10 m height due to the conversion formula based on 
(NOAA, NASA, & The United States Airforce, 1976) and it is also not easy to predict.  

6.9. Prediction intervals from bootstrapped residuals 
In forecasting, we express the uncertainty in our forecasts using a probability distribution. Then, 

we make an assumption of normal distribution for the possible future values distribution. The point 
forecast is the mean of this distribution. 

As the result, the prediction interval gives an interval of where the real future values lie with a 
certain probability. In this thesis, we use 80% and 95% prediction intervals (Rob J Hyndman, 2021). In 
addition, since we use Box-Cox transformation for the data, the prediction intervals for the h-step 
forecast are calculated in the transformed scale, then the endpoints of the interval are transformed 
back to the original scale. Thus, preserving the probability coverage of the intervals, however, they will 
not be symmetrical around the point forecast. The prediction interval illustrates the uncertainty of the 
forecast. 

In case, the assumption of normally distributed residuals is violated, we can use the prediction 
intervals of bootstrapped residuals or bootstrapped prediction intervals instead (Rob J Hyndman, 
2021). This kind of prediction interval only relies on the assumption of uncorrelated residuals with 
constant variance. 

Firstly, on the Box-Cox transformed scale, we simulate different sample paths of the future 
forecast by sampling the forecasting errors (𝑒𝑏𝑡+1) from the pool of previously observed errors (or 

residuals) from the past. In this way, we assume the future errors are similar to the past errors 𝑒𝑏𝑡, 𝑦𝑏𝑡̂ 
is the forecasted value or a fitted value 

𝑦𝑏𝑡+1|𝑡 = 𝑦𝑏𝑡̂ + 𝑒𝑏𝑡+1     (31) 

 
We can continue to simulate the next future observations by repeating this process with 𝑒𝑡+2 

sampling from the previous forecasting errors:  
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𝑦𝑏𝑡+2|𝑡+1 = 𝑦𝑏𝑡+1̂ + 𝑒𝑏𝑡+2      (32) 

 
Thus, we can simulate the whole set of possible predictions. After that, we calculate the 

bootstrapped prediction intervals by taking the percentiles of the future sample paths per forecast 
horizon. This process, therefore, measures the uncertainty of the predicting by only historical data. 
However, without the assumption of normal residual distribution, the bootstrapped prediction interval 
is asymmetric, and the point forecast is the mean of the bootstrap samples. The number of sample 
paths is arbitrary so we will take a bootstrap of 100 samples. 

6.10. Gemini energy output proportion calculation in 2020 

Table 20: Gemini energy output proportion calculation in 2020 

Month 
Gemini capacity 

(MW) 
Borssele I & II 
capacity (MW) 

Borssele III & IV 
capacity (MW) 

Gemini energy 
output 

proportion in 
The Netherlands 

(%) 

January - March 600 0 0 62.69 

April 600 12 x 8 0 57 

May 600 24 x 8 0 52 

June 600 36 x 8 0 48 

July 600 48 x 8 0 44 

August 600 60 x 8 19 x 9.5 37 

September 600 72 x 8 38 x 9.5 31 

October 600 94 x 8 57 x 9.5 26 

Nov to Dec 600 94 x 8 77 x 9.5 24.60 

6.11. Van Oord Aeolus jack-up vessel 

 

Figure 56: Van Oord Aeolus jack-up vessel. Source: https://www.vanoord.com/  
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