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Abstract 
Significant global health challenges are being faced in the 21st century are adverse health 
impacts attributable to ambient air pollution, where atmospheric fine particulate matter 

(PM2.5) contributes the most to the environmental burden of disease particularly for those 
living in urban areas. While extensive scientific studies conducted in the last three decades 

reveal that on-road transportation is one of the significant contributors of PM2.5 
concentrations in urban areas, more recent studies conversely find that vehicle transportation 

on the roadways merely represents a relatively small contribution of total PM2.5 in the cities 
due to the continual automotive technology improvement and stringent emission regulations. 
Such contradiction raises arguments of whether on-road transportation is a major source of 

ambient PM2.5 in urban areas at present and what could be expected from further reduction 
of on-road transportation emissions to improve urban’s air quality in the future. Accordingly, 
the purpose of this thesis is to clarify such arguments by investigating the causal relationship 

between on-road transportation and PM2.5	concentrations in urban areas based on the most 
recent available dataset. By performing the instrumental variable estimations with data on 381 
U.S. cities from 2001-2016. This thesis finds that on-road transportation does not lead to a 

significant increase in the overall concentrations of PM2.5 in the U.S. cities. For policy 
implication, the results suggest that the gains from any policy aimed at reducing on-road 

traffic emissions further to lower PM2.5 concentrations in urban areas would be marginal to 
insignificant. 
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1. Introduction 

Significant global health challenges are being faced in the 21st century, ranging from 
outbreaks of vaccine-preventable diseases, increasing rates of non-communicable diseases, 
obesity and physical inactivity to unintentional injuries and health impacts attributable to the 
environmental pollutants (World Health Organization [WHO], 2019). Apart from the ongoing 
global pandemic of coronavirus disease (COVID-19), which scourged one of the most 
significant rapid losses of life and severe economic recession (McKibbin & Fernando, 2020), 
ambient air pollution is, in actual fact, the greatest environmental health threat due to it 
stimulates the most morbidity and mortality (Manisalidis et al., 2020; WHO, 2019). According 
to the World Health Organization (2019), every day nine out of ten people globally breathe 
polluted air. Of these, the adverse health implications attributable to ambient air pollution 
exposure are particularly critical for those living in urban areas where tailpipe emissions, the 
crucial negative externalities of road transport, are one of the greatest contributors imposing 
to the overall deterioration of air quality (Amato et al., 2014; Grange et al., 2017; Manisalidis 
et al., 2020; Pant & Harrison, 2013; von Schneidemesser et al., 2019). 

Ambient air pollution causes and aggravates various non-communicable diseases, 
scourging around 7 million premature deaths annually (WHO, 2019). According to the 
American Thoracic Society (2019), the effects of short-term exposure to ambient air pollution 
are temporary. The symptoms range from slight physical discomfort such as shortness of 
breath, coughing, wheezing, and skin irritation to a greater extent severe states like 
pneumonia and asthma, particularly those susceptible and vulnerable populations (Lui et al., 
2019). These symptoms can be exacerbated over the long-term ambient air pollution exposure, 
causing permanent respiratory diseases such as chronic asthma and cardiovascular diseases 
like myocardial infarction, heart failure, and pulmonary insufficiency (Manisalidis et al., 
2020). Apart from major respiratory and cardiovascular diseases, ambient air pollution, 

especially atmospheric fine particulate matter (PM2.5), one of the six key primary air 
pollutants1, has been defined as carcinogenic to humans by the International Agency for 
Research on Cancer (IARC) (Loomis et al., 2013). As a consequence, ambient air pollution 
contributes the most to the environmental burden of disease, which urgently prompts 
international cooperation for repeated calls to rethink approaches to mitigation (Giles-Corti et 
al., 2016; United Nations Economic Commission for Europe [UNECE], n.d.). 

Focus on the atmospheric fine particulate matter, the most dangerous air pollutants 
that constitutes one of the most significant challenging problems for health, air quality, and 
climate change policy (Fuzzi et al., 2015). Extensive scientific studies conducted in the last 

 
1 According to the World Health Organization (WHO), six major air pollutants are particulate matter, 
ground-level ozone, carbon monoxide, sulfur dioxides, nitrogen dioxides, and lead (United States 
Environmental Protection Agency, n.d.). 
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three decades reveal that the negative externality of on-road transportation is one of the 
primary pollution sources imposing an appreciable approximately 25 percent contribution to 

total PM2.5 concentrations in urban areas globally (Amato et al., 2014; Davidson et al., 2005; 
Hodan & Barnard, 2004; Karagulian et al., 2015; Pant & Harrison, 2013). However, there are 

substantial differences in the cities’ PM2.5 concentrations contributed by on-road 
transportation across regions. In developing countries such as China, India, Brazil, and 
Southeast Asia countries, the operation of on-road vehicles accounts for up to 34-37 percent 

of total PM2.5 concentrations. In contrast, in developed countries like the United States, 
Western Europe, Japan, and the Nordic countries, on-road transportation contributes much 

less to PM2.5 concentrations, ranging between 21-24 percent in total (Karagulian et al., 2015). 

This lower PM2.5 concentration attributable to the negative externalities of on-road 
transportation in developed counties is primarily due to several decades of cleaner 
automotive technology improvement, clean air action, and stringent regulations that have 
been implemented in such countries (Mathissen et al., 2011; Thorpe & Harrison, 2008; Winkler 
et al., 2018). 

Figure 1.1 

Average annual PM2.5	concentrations and total vehicle kilometers travelled (VKT) in the U.S. during 
2000-2020 

      

Note. The left x-axis is the concentration scale in μg/m³, while the right x-axis is the scale of total vehicle 
kilometers traveled (VKT) in a million kilometers. It is noted that there is a sudden drop in total VKT 
in 2020. This is due to a lockdown regulation to combat the COVID-19 pandemic. The annual 
PM2.5	concentrations are retrieved from the U.S. Environmental Protection Agency (EPA). The total 
vehicle kilometers traveled is obtained from the U.S. Federal Highway Administration (FHWA).    
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For example, in the U.S., economic instruments of command-and-control policies for 
addressing the problem of transport externalities such as vehicle emission and fuel standards 
began regulating in the 1970s. These federal emission standards are set through a combination 
of legislative mandates of Clean Air Act (CAA) amendments, regulations managed by the 
Environmental Protection Agency (EPA), and as well as improvement of cleaner engine 
technologies (e.g., three-way catalytic converters, lean nitrogen oxides traps, selective catalytic 
reduction, and diesel particulate filters) imposed to the automotive industry (The U.S. 
Environmental Protection Agency [EPA], n.d.). Currently, the federal Tier 3 emission 
standards for light-duty vehicles and the closely aligned California LEV III standards are 
phased in from 2017 through 2025 (Winkler et al., 2018; EPA, n.d.). As a result of the stringent 

regulations and automotive technology improvements, ambient concentrations of PM2.5 in 
most cities in the U.S. have dropped significantly, roughly up to 41 percent since 2000, despite 
the continued growth of the total mileage driven (as shown in Figure 1.1) (Mathissen et al., 
2011; The U.S. Federal Highway Administration [FHWA], n.d.; Thorpe & Harrison, 2008). 

While a number of scientific studies conducted in the last three decades indicate that 

on-road transportation is one of the significant contributors to PM2.5 concentrations in urban 
areas, more recent studies, on the other hand, find that vehicle transportation on the roadways 

is now merely representing a relatively small contribution of total PM2.5 in the cities, where 
again automotive technology improvement, clean air action, and stringent regulations have 

been major factors to a reduction PM2.5 concentrations trend (Harrison et al., 2021; Li & 
Managi, 2021). As a consequence of the recent finding, this raises arguments among scientists 
about whether on-road transportation is a major source of cities’ air pollution at present, and 
what could be expected from further reduction of on-road transportation emissions to 
improve urban’s air quality in the future (Amato et al., 2014; Grange et al., 2017; Harrison et 
al., 2021; Hong-Li et al., 2017; Pant & Harrison, 2013; Winkler et al., 2018). This thesis, 
therefore, is built inspired by such arguments and an attempt to mitigate ambient air pollution 
in urban areas. Consequently, this thesis aims to clarify whether on-road transportation is a 

significant source of ambient concentrations of PM2.5 in urban areas based on the most recent 
available dataset and to understand the potential to reduce on-road traffic emissions further 
to improve air quality. To achieve the research objectives, the causal relationship between on-

road transportation and the level of ambient fine particulate matter (PM2.5) concentrations 
across U.S. metropolitan areas is investigated by employing the most recent dataset that 
covers advanced automotive cleaner technologies and stringent emission standards (e.g., the 
federal Tier 2 and 3 emission standards and the California LEV II and III regulations). 
Accordingly, this thesis seeks to answer the following research question: 

“Based on the most recent dataset, is emissions from on-road transportation a pollution source that 

significantly contributes to fine particulate matter (PM2.5) concentrations in urban areas?”.  
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This thesis provides several important contributions to the existing literature and 
policy-making relevance in several ways. Firstly, this study will provide insights into the 

causal effects of on-road transportation on ambient PM2.5 concentrations in urban areas, 
where total vehicle kilometer traveled (VKT) is employed as an indicator of on-road vehicle 
usage. Although a large number of atmospheric science research has been conducted about 
the contribution of on-road transportation to the deterioration of air quality in the last three 
decades, studies covering a more recent dataset on on-road transportation and concentrations 

of PM2.5 are limited. Consequently, there is insufficient recent formal statistical evidence 

regarding the association between on-road transportation and PM2.5 concentrations in urban 
areas. Among the existing literature, the paper closest to this thesis is Li and Managi (2021), 

which studies the quantitative association of annually county-level PM2.5 concentrations with 

on-road transportation across the contiguous United States. However, the paper employed 

average on-road CO2 emission to measure on-road transportation. In addition, Li and Managi 
cover the scope of their empirical analysis that included non-urban areas, where source 

appointment, chemical composition, and the formation of PM2.5 are considerably different 
from those in the urban areas. Consequently, conducting this thesis will help address the 
current shortage of research in urban environments.  

Secondly, as mentioned earlier, the reduction PM2.5 concentrations trend despite the 
growing tendency of the total mileage driven raises arguments among scientists towards 

whether emission from the road vehicle fleets is a significant source of PM2.5 in urban areas. 
The contributions of this thesis that throw light on the most recent empirical evidence of the 

effect of on-road transportation on ambient PM2.5 concentrations will potentially support 

future researchers in clarifying the significance of cities’ ambient PM2.5 concentrations 

attributable to on-road transportation. Furthermore, air pollution such as PM2.5 is a critical 
negative externality of road transport (Santos et al., 2010). To date, economic instruments of 
command-and-control approaches such as those vehicle emissions and fuel standards in the 
U.S. and the European emission standards are the most widely used policy for addressing the 
problem of transport externalities (Santos et al., 2010). The results of this thesis will help 
policymakers address the optimal transport policy and understand the potential of 
implementing the command-and-control policies in the reduction of the negative externality 
of road transport to improve urban air quality in the future.  

The remainder of this thesis paper is structured as follows: Section 2 is the theoretical 
framework providing a rich understanding of the atmospheric particulate matters, including 

source apportionment, physical and chemical characteristics of PM2.5, as well as a review of 
relevant studies, that is crucial in developing the research hypothesis. In Section 3, data and 
descriptive statistics are described, followed by methodology, and statistical analysis results 
are presented in Section 4 and 5, respectively. Section 6 discusses the research’s findings, 
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policy implications, limitations, and suggestions for future research. Lastly, the conclusion of 
this thesis paper is summarized in Section 7.  

 

2. Theoretical Framework 

Atmospheric particulate matter is a highly variable and complex mixture of aerosol 
particles and chemical species. Although a significant amount of research conducted in the 
last three decades has been revealed that on-road transportation is a major source contributing 

to total PM2.5	concentrations in urban areas (Amato et al., 2014; Grange et al., 2017; Pant & 
Harrison, 2013), assessment of how and to what extent to which on-road transportation 

contributes to PM2.5 in urban areas are difficult to quantify and not straight forward (Hodan 

& Barnard, 2004; Davidson et al., 2005). This is because PM2.5 concentrations have temporal, 
seasonal and spatial variations, which depend primarily on a complex interplay between 
various factors, including altitude, the number of anthropogenic activities, geographic 
attributes, meteorological conditions, and atmospheric conditions present in a particular 
place. Thereby, in order to understand the contribution of on-road transportation, especially 
in the scope of driving and mileage, to the urban environment, it is essential to understand 
various relevant aspects of the atmospheric particulate matters, such as sources, chemical 
characteristics, chemical compositions, and their formation. Accordingly, in this theoretical 
framework, this thesis starts by providing the fundamental knowledge of atmospheric 
particulate matter. This section includes source apportionment, physical and chemical 

characteristics of PM2.5. The second section discusses the contribution of on‑road 

transportation to PM2.5 concentrations in urban environments through the three general 
processes, followed by a review of relevant recent studies that investigate the causal 
relationship between on-read transportation (i.e., in an aspect of driving and mileage) and 

concentrations of PM2.5 in the third section. Lastly, the research hypothesis is formulated 
based on the relevant theory from atmospheric science and existing studies. 

2.1 Source apportionment, physical and chemical characteristics of PM2.5 
Atmospheric particulate matter or particles in the atmosphere is a central component 

of the atmospheric chemical and climate system, a component of biological systems and global 
biogeochemical cycles, and a significant air pollutant posing adverse effects on human health 
(Royal Society of Chemistry [RSC], 2014). The term “particulate matter” or “PM”, according to 
Seinfeld and Pandis (2016), Page 47, is “an aerosol particle may consist of a single continuous 
unit of solid or liquid containing many molecules held together by intermolecular forces and 
primarily larger than molecular dimensions (>0.001 µm); a particle may also consist of two or 
more such unit structures held together by inter particles adhesive forces such that it behaves 
as a single unit in suspension or on deposit”. Whereas an “aerosol” is technically defined as a 
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tiny particle dispersed in gases, often usage refers to the aerosol as the particle component 
only (Seinfeld & Pandis, 2016). 

Atmospheric aerosol particles have a range of shapes and morphologies. Generally, 
atmospheric aerosols are particles ranging in size from a few nanometers (nm) to ten 
micrometers (µm) in diameter. Based on their size, atmospheric aerosol particles are 
commonly distributed into a trimodal mode; (i) an ultra-fine or a nucleation mode (<0.01 µm 
diameter), (ii) a fine or an accumulation mode (0.01-2.5 µm diameter), and (iii) a coarse mode 
(2.5-10 µm diameter) (Seinfeld & Pandis, 2016). Accordingly, fine particulate matter, 

commonly known as PM2.5, is the atmospheric aerosol particles with aerodynamic diameters 
ranging between 0.01-2.5 µm. 

Particles in the atmosphere are a highly variable and complex mixture of aerosol 
particles and species. According to the atmospheric science studies, atmospheric aerosol 
particles are generated by direct particle emissions from natural sources, such as windborne 
dust, soil dust, sea salt, biological debris and volcanoes, and by anthropogenic activities, such 
as the combustion of fuels and agricultural activities; all of these direct particle emissions are 
often referred to as primary aerosol. Apart from being emitted directly as particles, atmospheric 
aerosol particles can also arise from a formation of gaseous precursor emissions in the 
atmosphere through the chemical gas-to-particle conversion process. Particles that are 
resulted from the gases formation are referred to as secondary aerosol (Seinfeld & Pandis, 2016). 

Table 2.1 demonstrates a range of emission estimates of  atmospheric aerosol particles 
originating from natural and anthropogenic sources on a global basis. According to Table 2.1, 
a significant large portion of atmospheric aerosol particles globally is emitted by natural 
sources, accounting for approximately 98 percent in total. However, most natural-origin 
aerosol particles are in the coarse mode, which poses much less harmful to human health than 
fine particles (Zanobetti & Schwartz, 2009). Concerning only the fine particulate matter, most 

primary PM2.5 are released in the carbonaceous-based aerosol (e.g., element carbon or black 

carbon) or mineral-based aerosol. In contrast, most secondary PM2.5 is the tropospheric 
aerosols comprising of sulfate, nitrate, ammonium, and compounds of carbonaceous-based 

aerosols such as organic carbon, of which approximately 86 percent of PM2.5 (both primary 
and secondary) globally are anthropogenic origin (Hyslop, 2009; Seinfeld & Pandis, 2016). In 
the U.S., a recent study reveals that anthropogenic activities contribute to almost 90 percent 

of total PM2.5 in the urban areas, of which unspecified sources of human origin contributes 
about 46 percent, followed by 24 percent from traffic, 12 percent from domestic fuel burning, 
and only 9 percent from industries, respectively (Karagulian et al., 2015). However, the study 

did not quantify the category of cities’ PM2.5 as primary and secondary. To get an estimated 

fraction of primary PM2.5 and secondary PM2.5 attributable to especially transport sectors, we 
refer to the EPA National Emissions Inventory report in 1999. According to Table 2.2, on-road  
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Table 2.1 

Global emissions estimates from major atmospheric aerosol particles source appointment 

Emission Sources  Estimated flux (Tg yr-1) Particle size mode 

Natural    
   Primary    
       Soil dust 2,980 Fine and coarse 
       Sea salt 10,100 Mainly coarse 
       Volcanic dust 30 Coarse 
       Biological debris 50 Coarse 
   Secondary    
       Sulfates from DMS 12.4 Fine 
       Sulfates from volcanic SO2 20 Fine 
       Organic aerosol from biogenic VOCs 11.2 Fine 

Anthropogenic 
   

   Primary    
       Industrial dust (except black carbon) 100 Fine and coarse 
       Black carbon 12 Fine 
       Organic aerosol 81 Fine 
   Secondary    
       Sulfates from SOx 48.6 Fine 
       Nitrate from NOx 21.3 Fine and coarse 

Note. The terminology of aerosols is defined as tiny particles dispersed in gases. Dust is suspensions of 
solid particles produced by mechanical disintegration of material such as crushing, grinding, and 
blasting; aerodynamic diameter > 1 µm. Soot is agglomerations of particles of carbon impregnated with 
“tar”, formed in the incomplete combustion of carbonaceous material. Fine particles have an 
aerodynamic diameter of 2.5 µm or less, while coarse particles have diameters generally larger than 2.5 
µm and smaller than or equal to 10 µm. Source. Adapted from Seinfeld and Pandis (2016), Table 2.21, 
P.54. 

Table 2.2 

Primary PM2.5	and PM2.5	Precursors Emitted in the US in 1999, in million tons 

Emission Sources VOCs NOx SOx NH3 Primary PM2.5 

Stationary fuel combustion 1.447 9.586 15.513 0.074 1.040 
Industrial  1.266 0.781 1.313 0.155 0.447 
Solv/Store/Waste/Misc.  8.235 0.541 0.051 0.098 0.515 
Off-road transportation 2.829 4.417 0.444 0.035 0.318 
On-road transportation 5.612 8.347 0.300 0.263 0.184 
Agriculture crops 0 0 0 0.723 0.871 
Agriculture livestock 0 0 0 3.585 0.086 
Fires 0 0 0 0 1.196 
Paved roads 0 0 0 0 0.628 
Unpaved roads 0 0 0 0 1.097 
Other fugitive 0 0 0 0 0.525 
Total 19.391 23.674 17.623 0.627 2.505 

Note. Source: EPA National Emissions Inventory report (1999). 
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transportation contributes approximately 23 percent of total PM2.5 in the U.S., of which 14 

percent is classified as the primary PM2.5 and the rest 86 percent is the secondary PM2.5. 
In addition to types of atmospheric aerosol particles and their source appointment; 

size distribution, chemical composition, and mass vary by location depending on altitude, the 
number of anthropogenic activities, geographic attributes, meteorological conditions, and 
atmospheric conditions present in a particular place (Davidson et al., 2005). These variations 
ultimately affect the formation and life cycle of aerosol particles yielding different 

concentrations of PM2.5 in different places (Davidson et al., 2005; Seinfeld & Pandis, 2016).  
Generally, the chemical composition of atmospheric aerosol particles in the typical 

urban area comprises of natural crustal materials (e.g., carbonates and silicates), inorganic 
constituents or minerals (e.g., sulfate, nitrate, ammonium, sodium, potassium, and chloride), 
trace metals (found in fuels and derived from crustal sources and vehicle brake and tire wear), 
and organic components—the latter consist of both elemental and organic carbon. Elemental 
carbon, often known as black carbon, is emitted predominantly by incomplete combustion. 
Organic carbon can result from atmospheric oxidation and subsequent condensation of low-
volatility organic compounds. Volatile organic compounds (VOCs) are chemical compounds 
that included a variety of both natural and synthetic substances. They are emitted as gases 
where the predominant chemical element is hydrocarbons. VOCs are described as volatile due 
to their properties of high vapor pressure and low water solubility, making the compounds 
easily evaporate, releasing molecules into the atmosphere (EPA, n.d.). Currently, there are 
more than 300 different kinds of VOCs that can be detected by chromatography (Han & 
Naeher, 2006). Among them, traffic-related VOCs posing a carcinogenic to human are the 
aromatic compounds such as benzene, toluene, ethylbenzene, and isomers of xylene (BTEX). 
Ammonia, primarily derived from agriculture, readily liquefies in aqueous particles and 
neutralizes sulfate and nitrate, usually found as ammonium sulfate or ammonium nitrate in 
urban regions (RSC, 2014; Seinfeld & Pandis, 2016).  

Figure 2.1 shows a schematic diagram of the composition of PM2.5	at various sites in 
the United States, Canada, and Mexico. According to Figure 2.1, the chemical composition of 

PM2.5	in the U.S. is dominated by sulfate (SO	4
	2-), nitrate (NO3

- ), ammonium (NH4
+) (resulting 

from sulfur oxides (SOx), nitrogen oxides (NOx), and ammonia (NH3), respectively), and 
organic carbonaceous components (e.g., black and organic carbon). In the West, nitrate and 
carbonaceous-based compounds are the most abundant chemical species, while in the East, 

the most abundant chemical species in PM2.5	are sulfate and carbon-based compounds. 
Nevertheless, in terms of the absolute magnitude, it has a temporal and seasonal reliance 
based on the species’ volatility and the impact of the photochemical reaction of the secondary 
aerosols. The “other” category includes aerosol particles such as natural bioaerosols (e.g., 
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microbial, plant, and animal sources), and water associated with the aerosol particles 
(Davidson et al., 2005). 

Figure 2.1 

Schematic diagram of chemical composition of PM2.5	at several urban and rural locations 

 
Note. Figure is retrieved from Hyslop (2009), P.187. 

2.2 Contribution of on-road transpiration to PM2.5	in urban areas 

On-road transportation contributes to ambient PM2.5	concentration levels through 
three general processes: (i) a direct emission from the vehicle tailpipes (exhaust emissions), 
(ii) emissions due to wear and tear of vehicle parts and re-suspension of dust (non-exhaust 
emissions), and (iii) a formation of traffic-emitted gaseous precursor emissions in the 

atmosphere through the chemical gas-to-particle conversion process. PM2.5		emitted from 

process (i) and (ii) are typically referred to as primary PM2.5, whilst formed from process (iii) 

is generally known as secondary PM2.5	(Han & Naeher, 2006; Pant & Harrison, 2013; Amato et 
al., 2014). 
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Contribution of on-road transpiration to primary PM2.5 

To begin with the first contribution process, primary PM2.5	particles emitted directly 
from the exhaust tailpipes of on-road vehicles can be visible as white or black smoke, 
especially if the particles are emitted in a sufficient vast quantity. Even though all types of on-
road combustion engines release a certain amount of particulate matter, on-road diesel-

powered vehicles are known to be the key source of PM2.5 emissions in the transportation 
sector with typically light- and heavy-duty trucks playing the largest role (Klimont et al., 
2017). In addition, atmospheric aerosol particles emissions from diesel-powered and gasoline-
powered vehicles are different in terms of composition; diesel-powered vehicles release both 
a more significant mass of fine and ultra-fine modes of aerosol particles compared to gasoline-
powered vehicles (Rose et al., 2006). Likewise, diesel-powered vehicles is extensively found 
for releasing a considerable higher amount of black smoke, approximately six to ten times, 
than gasoline-powered vehicles, which typically emits white smoke (Watson et al., 1994; 
Weingartner et al., 1997; Ntziachristos et al., 2007).  

Regarding the second process, non-exhaust atmospheric aerosol particles consist of 
various emissions that do not derive from a vehicle's tailpipe. These include aerosol particles 
generated from the abrasion of tire wear, brake wear and road surface, the corrosion of other 
vehicle components such as the clutch, and the resuspension of road dust (Pant & Harrison, 
2013). Although these non-exhaust emissions represent a relatively small share of the total 

PM2.5	from on-road traffic-related as they contribute mainly to the coarse mode of aerosol 
particles, their importance recently gained more attention due to little to no policies or 
technologies implemented to reduce wear emissions or resuspension in the past (Kuhlbusch 
et al., 2009; Amato et al., 2012; Harrison et al., 2011, 2012b; Denier van der Gon et al., 2013). In 
contrast to exhaust emissions, many of the research and policy actions in the last few decades 
has focused on the development of cleaner automotive technologies and stringent regulations, 
resulting in a significant drop in total ambient aerosol particles from exhaust emissions of 
road transport over time, despite an increase in total kilometers driven (Thorpe & Harrison, 
2008; Mathissen et al., 2011).  

Generally, non-exhaust emissions are enriched in trace metals (e.g., Cu, Zn, Ba, Sb, 
Mn) and contain fewer organic carbonaceous components (Amato et al., 2009; El Haddad et 
al., 2009; Gietl et al., 2010). According to Harrison et al. (2012), a study at the Marylebone Road 
sampling site, London, reported that the size distributions of trace metals were indicative of 
aerosol sources. Keuken et al. (2010) conducted research on traffic-related PM in the 
Netherlands concluded that resuspension of accumulated deposited PM and road wear-
related particles are the primary sources of non-exhaust emissions; meanwhile, tire wear and 
brake wear contribute to zinc (Zn) and copper (Cu) respectively. Nevertheless, Narváez et al. 
(2008) showed that even though most particles arise from tire wear, brake wear, and road 

surface abrasion are in coarse mode, abrasion of such can contribute significantly to PM2.5. 
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Concerning road dust and road surface wear, a study held in Monterrey, Mexico, showed that 

re-suspended dust was found to be contributing almost 20-25 percent to total PM2.5 (Mancilla 
& Mendoza, 2012). However, many studies (e.g., Gertler et al., 2006; Thorpe et al., 2007; 
Laidlaw et al., 2012) argued that contribution of re-suspended road dust particles has a 
regional and seasonal variable which heavily influenced by various parameters such as 
vehicle movement (particularly traffic speed), street maintenance, meteorological parameters 
and speed of traffic. Likewise, concentrations of trace metals in non-exhaust particles also 
varies based on many factors, including traffic volume and pattern, vehicle fleet 
characteristics, driving and traffic patterns, and meteorological and geological conditions of 
the region (Omstedt et al., 2005; Amato et al., 2011a,b; Duong and Lee, 2011). 

Contribution of on-road transportation to secondary PM2.5 
Concerning the third contribution process, apart from direct exhaust and non-exhaust 

emissions, incomplete fuels combustion of vehicle engines moreover emit several exhaust 

gases such as volatile organic compounds (VOCs), nitrogen oxides (NO and NO2, together 

called NOx), sulfur oxides (SOx), and ammonia (NH3). These exhaust gases, albeit a relatively 
small part of combustion gases, are noxious or toxic substances that threaten human health, 

and more importantly, they have been considered the most significant PM2.5 precursor 
pollutants (EPA, 1999; McMurry et al., 2004; Davidson et al., 2005). According to the 

atmospheric science studies, the secondary PM2.5 is subsequently formed within the 
atmosphere as a result of a photochemical reaction, nucleation, coagulation, condensation, 
and other atmospheric processes between the precursor pollutants after exiting through the 
exhaust stream of vehicle tailpipes (Kelly & Fussell, 2012).  

Figure 2.2 illustrates life cycles and the formation process of the secondary PM2.5. 

According to Figure 2.2, the life cycles of the secondary PM2.5 begins a formation by nucleation 
process. “Nucleation” is a chemical reaction occurring when precursor pollutants, 

predominantly volatile organic compounds (VOCs), nitrogen oxides (NOx), sulfur oxides 

(SOx), and ammonia (NH3), begin to form particles, typically at the ultra-fine mode 
(aerodynamic < 0.01 µm diameter), by accumulating existing droplets of the inorganic and 
organic vapors around them. This chemical reaction process is initiated by the absorption of 
energy in light (e.g., ultraviolet, visible light, or infrared radiation). The consequence of 
molecules’ absorbing lights creates transient excited states, allowing chemical species to fall 
apart, change to new structures, or combine with each other or other molecules. Next, these 
ultra-fine particles are further transformed by the coagulation process. “Coagulation” is a 
process that aggregates finely divided particles together and forms large flocs (Chang, 2016). 
Furthermore, this term is typically employed to describe the cooling of exhaust gases, causing 
the conversion of some exhaust vapors into particles (Hodan & Barnard, 2004). Additionally, 
according to atmospheric science studies, the coagulation process albeit influences the 
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formation of PM2.5. It can lead to the settling of some particulate matter, hence drawing those 
particulate matter from the atmosphere. For particles that are not removed by the coagulation 
process, they subsequently have a chemical interaction with other chemical species or vapors, 

e.g., sulfuric acid (H2SO4), nitric acid (HNO3), and ammonia (NH3), leading the particle to 
grow in aerodynamic diameter (Hodan & Barnard, 2004). Ultimately, the coagulation process 
with optimal environmental conditions can lead to particle formation that is too large to 
remain airborne resettled to the land. This process is thus one of the mechanisms that regulate 
the PM concentration levels in the atmosphere (Hodan & Barnard, 2004; Seinfeld & Pandis, 
2016).  

Figure 2.2 

Life cycles of the atmospheric particulate matter  

 
Note. Adapted from Fuzzi et al. (2015). 

Focusing in detail on the formulation of PM2.5	from traffic-emitted VOCs precursors, 
VOCs gases in the atmosphere are often oxidized by species such as the hydroxyl radical (OH) 

and ozone (O3), yielding the secondary organic aerosols (SOA), which are one type of PM2.5. 
However, the products from VOCs oxidization are not always transformed into fine particles. 
Only the oxidation products with low volatilities and further deposits on existing particles 

will become a PM2.5, which depends on several factors such as atmospheric abundance, 
chemical reactivity, oxidant availability, and product volatility present in the atmosphere at 
given time oxidation occurs (Hodan & Barnard, 2004).  
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Referring to Table 2.2, the EPA National Emissions Inventory (1999) reports that on-

road vehicle sources contribute a significant amount of PM2.5 precursor VOCs, taking up 
approximately 30 percent of the total VOCs in the U.S. In line with an investigation in 
Baltimore metropolitan area, Maryland, the study showed that on-road vehicle exhaust 
contributed approximately 29 percent of the VOCs in the area (Hodan & Barnard, 2004). 
Although these studies quantify the estimated contributions of on-road transportation to 
ambient VOCs, there are no estimates of how much of the VOCs from on-road transportation 

results in the formation of PM2.5.  

Apart from VOCs, significant amounts of PM2.5 are also formed from nitrogen oxides, 
sulfur oxides, and ammonia. According to the Northern Front Range Air Quality Study 

(NFRAQS) in Colorado by Watson et al. (1998), NOx emissions from combustion sources are 

comprised mostly of nitric oxide (NO), while SOx emissions are mostly gas-phase sulfur 

dioxide (SO2). Similar to VOCs, both NOx and SOx must be oxidized, generally by species like 

the hydroxyl radical (OH), ozone (O3), oxygen (O2), and water vapor (H2O) before becoming 
fine particulate nitrate and sulfate. Given the same amount of traffic-emitted nitrogen oxides, 

sulfur oxides, and ammonia across the U.S. regions, concentrations of PM2.5, resulting from 
the formation of these precursor pollutants, have seasonal and regional variation. This 
difference is primarily due to atmospheric conditions (Watson et al., 1998). In the wintertime, 

PM2.5 formed from nitrogen oxides and sulfur oxides are limited by the abundance of 
atmospheric oxidizers and water vapor. As illustrated in Figure 2.3, nitric oxide (NO) and 

sulfur dioxide (SO2) have to be oxidized transforming into nitric acid (HNO3) and sulfuric 

acid (H2SO4), respectively, prior to chemical reaction with other substances to form PM2.5; 
nevertheless, the atmospheric conditions in winter are not favorable for the formation of nitric 

acid in most areas of the U.S. In the contrarily, ammonia can directly form PM2.5	as 

ammonium nitrate (NH4NO3) and ammonium sulfate [(NH4)2SO4] in the wintertime. In 

contrast, this chemical reaction is reversed by higher temperatures in summertime (McMurry 

et al., 2004). This implies that traffic-emitted NOx and SOx would considerably contribute to 

PM2.5 formation during summertime and in warmer winter climates such as in the southern 

states. In addition to nitrogen oxide and sulfur dioxide, this formulation of PM2.5	from 
ammonia suggests that regions with higher ammonia emissions, primarily emitted from 

agricultural activities, have higher PM2.5 concentrations during wintertime when 

PM2.5	formation from nitrogen oxide and sulfur dioxide are not active. 
Referring again to Table 2.2, the EPA’s National Emission Inventory (1999) shows that 

on-road vehicles usage contribute a significant amount of PM2.5	precursor NOx, accounting 

for about 35 percent of totals. On the other hand, it only contribute a small portion of PM2.5 

precursor SO2 especially when compared to stationary source fuel combustion categories. 
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Likewise, PM2.5	precursor ammonia are released in a minimal amount from on-road vehicles 
usage compared to agriculture activities. It is noted, however, that contribution of on-road 

vehicle usage toward the production of PM2.5 from the secondary chemical gas-to-particle 
conversion process was not quantified in the original report. What only observed in the report 

are the amount of PM2.5 precursor pollutants that were contributed by transport sectors. 

Figure 2.3 

Chemical reaction of PM2.5	precursor pollutants in the PM2.5	formation process 

 
Note. The significant traffic-emitted PM2.5	precursors are shown in green squares. Yellow squares are the 
PM2.5	resulting from the chemical formation process. Adapted from McMurry et al. (2004). 

Assessments of the relationship and the degree to which on-road vehicle usage really 

contributes to PM2.5 in urban areas is difficult to quantify (Hodan & Barnard, 2004; Davidson 

et al., 2005). This is especially true of the secondary PM2.5, where atmospheric chemistry and 
the chemical reaction between precursor pollutants significantly depend on environmental 
conditions (e.g., intensity of solar radiation, temperature, humidity, and other chemical 
compounds present in the atmosphere) and the interactions between the gases can be 
nonlinear. For example, the chemical interactions between nitrogen oxides, sulfur oxides, and 

ammonia can lead to counterintuitive results. Reduction of sulfur dioxides (SO2) from fuel 

combustion has typically lowered the concentration of sulfate (SO	4
	2-), nevertheless might 

increase the level of nitrate (NO3
- ) because of the availability of ammonia (NH3) that was 
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related to sulfate (SO	4
	2-) before the reductions of sulfur dioxides (SO2) occurred (Kelly & 

Fussell, 2012). Likewise, the formation of PM2.5 from the VOCs is influenced by four 
components: atmospheric abundance, chemical activity, oxidizer availability, and volatility. 

Among the four components, volatility plays a dominant role in PM2.5 formation. At a given 
temperature and pressure, organic compounds with high volatility, such as alkanes and 

alkenes with one to six carbon atoms vapor, is unlikely to form PM2.5. In comparison, larger 
alkanes and alkenes with more than six atoms are more likely to condense into a liquid or 

solid, forming PM2.5. Such examples also pose the difficulties of establishing precise and 

effective policies for reducing atmospheric PM2.5 (Davidson et al., 2005). 

2.3 Recent studies of contribution of on-road vehicle usage to PM2.5 
In the previous sections, a number of scientific research in the last three decades 

showed that on-road vehicle usage is a major source contributing to total PM2.5 concentrations 
in urban areas. An increase in vehicle use on the roadway has been found to be significantly 

associated with a rise in PM2.5 concentrations (Pant & Harrison, 2013). However, due to the 
development of cleaner technologies (e.g., three-way catalytic converters, lean NOx traps, 
selective catalytic reduction (SCR), and diesel particulate filters), clean air actions and 
stringent regulations have led to substantial declines in emissions per vehicle despite 
increased vehicle travel, especially in the last recent decade (Winkler et al., 2018; Harrison et 
al., 2021). As a result, recent studies (e.g., Harrison et al., 2021; Li & Managi, 2021) found that 

on-road vehicle transportation contributes to total ambient PM2.5	less significant than the last 
three decades, posing an argument of whether on-road vehicle usage is still a significant 
source of air pollution (Amato et al., 2014; Chen et al., 2018; Grange et al., 2017; Li et al., 2017; 
Pant & Harrison, 2013; Yin et al., 2015). 

Harrison et al. (2021) employed a machine-learning-based Random Forest algorithm 
and a twin site approach to estimate the contribution of road traffic to the roadside and urban 

concentrations of nitrogen dioxide, primary coarse particulate matter, and PM2.5 in six major 
cities (i.e., London, Paris, Berlin, Beijing, Istanbul, and Hong Kong). The results reveal that on-

road vehicle usage contribution to PM concentrations, especially PM2.5, has diminished very 
appreciably in the studied cities. Vehicle transportation on the roadways at present represents 

a relatively small contribution of total PM2.5 in urban areas; nevertheless, it remains a major 
source of nitrogen dioxide and a significant source of primary coarse particles. In line with the 
study conducted in the U.S., Li and Managi (2021) applied the spatial panel Durbin model 
and the geographical and temporal weighted regression to investigate the quantitative 

association of PM2.5 concentrations with on-road transportation. Based on the panel data from 
2001 to 2016 of 3,017 counties across the contiguous U.S., their analysis reveals that on-road 
transportation is no longer the dominant source of air pollution in the U.S. As the results show 



16 
 

that, on average, only a marginal amount around 1.09 percent of the PM2.5 concentrations is 
attributable to on-road transportation. Furthermore, the study reveals that an increase of 

approximately 6.17 billion km per km2 on-road transportation is associated with a 1-μg/m3 

county-level PM2.5 concentrations increase. 

2.4 Research hypothesis 
 Building upon the fundamental knowledge of source apportionment, physical and 

chemical characteristics, and the chemical formation of PM2.5 from the atmospheric science 
studies, and the relevant scientific studies regarding the contribution of on-road vehicle usage 

to PM2.5	concnetrations in urban areas; the research hypothesis is formulated accordingly: 

Hypothesis: On-road transportation is positively related to ambient PM2.5 concentrations 
in urban areas. 
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3. Data and Descriptive Statistics 

To investigate the causal relationship between on-road transportation and PM2.5 
concentrations across cities in the United States, the analysis requires four main types of 
longitudinal data covering continuous sixteen time periods; years 2001 to 2016. The required 
four types of data include (i) a description of ambient air pollutions, specifically the average 

annual PM2.5 concentrations and average annual on-road CO2 emissions per square kilometer 

(km2), (ii) a description of highway statistics, (iii) a description of sociodemographic, 
geographical, meteorological and economic features, and finally, (iv) a description of the 1947 
planned national system of interstate highways. These acquired datasets are constructed at 
the Core Based Statistical Area (CBSA) level across the conterminous U.S., including Alaska 
and Hawaii. The CBSA is the U.S. geographic area defined by the Office of Management and 
Budget (OMB) that consists of the county or counties or equivalent entities associated with at 
least one core (urbanized area or urban cluster) of at least 10,000 population. It represents a 
highly populated core area and adjacent communities socioeconomically tied to the urban 
center by commuting. CBSAs consist of Metropolitan and Micropolitan statistical areas (U.S. 
Census Bureau, 2012). Apart from the four primary data, CBSA polygon geography was 
acquired from the 2016 Census TIGER/Line Shapefiles databases to define the core-based 
statistical area boundaries, map and analyze by using a Geographic Information System (GIS). 
Overall, there are 381 selected CBSAs in this analysis’s sample. 

Throughout the analysis, a dependent variable is the average annual PM2.5 
concentrations; an independent variable is the average on-road daily vehicle kilometers 
travelled (VKT). Apart from the main variables of interest, this study also controlled for 

exogenous variables that could potentially correlate with both PM2.5 concentrations and on-
road transportation; the relevant exogenous variables consist of geographical attribute (e.g., 
traffic congestion), sociodemographic characteristics (e.g., population density, and industrial 
jobs used as a proxy of industrial activities), meteorological conditions (e.g., temperature, 
precipitation, and wind speed), and lastly, economic factors (e.g., GDP, gasoline and diesel 
price, and gasoline and diesel state tax). Additionally, this thesis relied on the interaction term 
between the 1947 planned of the U.S. interstate highway system and fuel prices as an 
instrumental variable for on-road transportation. For robustness checking, the average annual 

on-road CO2 emissions per km2, and traffic intensity per CBSA are employed as the 
alternative measure of on-road transportation, an independent variable of this study. Besides, 

PM2.5 concentration calculated at the median value is used as an alternative measure of PM2.5 
concentration per CBSA apart from the aggregate value. Detailed information regarding data 
employed for the robustness checking is described in section 5.3. Table A1 in Appendix A 
summarizes variables and data sources, while Table 3.1 below reports descriptive statistics for 
the main variables of interest across 381 Metropolitan areas in 51 states. 
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Table 3.1 

Descriptive Statistic 

Variable   Mean Std. Dev. Min Max Observations 

PM2.5	concentrations  
(satellite-derived) at 
an aggregate value 
(μg/m³) 

overall 56,728 64,309 2,333 1,445,782 N = 6,096 
between 

 
60,130 2,871 660,288 n = 381 

within 
 

22,999 -168,335 1,053,705 T = 16 

PM2.5 concentrations  
(satellite-derived) at a 
mean value (μg/m³) 

overall 9.01 3.12 0.79 27.40 N = 6,096 
between 

 
2.56 1.12 14.27 n = 381 

within 
 

1.79 4.82 31.06 T = 16 
Average PM2.5 
concentrations  
(monitoring station-
derived) (μg/m³) 

overall 10.39 3.12 2.9 51.2 N = 3,296 
between 

 
2.36 4.23 17.93 n = 206 

within 
 

2.05 3.85 46.25 T = 16 

On-road daily VKT  
(‘000 km) 

overall 42,301 95,751 189 770,931 N = 5,240 
between 

 
92,656 1,082 727,117 n = 376 

within 
 

7,509 -98281 99,497 T = 13.9 
Population density 
(people per km2) 

overall 100.67 118.83 2.43 1,026 N = 6,096 
between 

 
118.79 2.71 1,016 n = 381 

within 
 

6.67 38.82 168.94 T = 16 
Industrial activities  overall 11,495 23,426 246 275,515 N = 5,888 

between 
 

22,624 544 208,481 n = 381 
within 

 
5,387 -63,344 87,558 T = 15.5 

Traffic congestion  overall 10,051 3,709 363 21,756 N = 4,387 
between 

 
3,633 374 19,998 n = 362 

within 
 

929 4,849 18,917 T = 12.1 
GDP 
(millions dollars) 

overall 33,900 94,700 717.24 1,640,000 N = 6,096 
between 

 
93,200 1,784.81 1,250,000 n = 381 

within 
 

17,300 -2.69,000 4,260,000 T = 16 
Precipitation 
(mm) 

overall 80.31 35.13 1.10 267.01 N = 6,096 
between 

 
31.64 4.18 137.18 n = 381 

within 
 

15.34 21.39 223.85 T = 16 
Temperature 
(°C) 

overall 13.95 4.65 -5.32 25.31 N = 6,096 
between 

 
4.52 -2.22 23.73 n = 381 

within 
 

1.10 10.83 17.40 T = 16 
Wind speed 
(mph) 

overall 4.41 1.82 0.61 13.82 N = 6,032 
between 

 
0.91 1.73 7.49 n = 377 

within 
 

1.57 0.06 12.95 T = 16 
Gasoline price 
(dollars per gallon) 

overall 2.61 0.75 1.39 3.68 N = 6,096 
between 

 
0 2.61 2.61 n = 381 

within 
 

0.75 1.37 3.68 T = 16 
Gasoline tax 
(dollars per gallon) 

overall 0.22 0.07 0.02 0.51 N = 6,096 
between 

 
0.06 0.08 0.35 n = 381 

within 
 

0.04 0.02 0.48 T = 16 
Diesel price 
(dollars per gallon) 

overall 2.74 0.90 1.32 3.97 N = 6,096 
between 

 
0 2.74 2.74 n = 381 

within 
 

0.90 1.32 3.97 T = 16 
Diesel tax  
(dollars per gallon) 

overall 0.22 0.08 0.08 0.64 N = 6,096 
between 

 
0.07 0.08 0.40 n = 381 

within 
 

0.04 0.04 0.47 T = 16 
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3.1 Dependent variable  
The average annual PM2.5 concentrations from 2001-2016 are retrieved from NASA's 

Socioeconomic Data and Applications Center (SEDAC). The SEDAC is the Distributed Active 
Archive Centers (DAACs) in the Earth Observing System Data and Information System 
(EOSDIS) of the U.S. National Aeronautics and Space Administration (NASA), focusing on 
developing and operating systems that support the integration of earth science and 
socioeconomic data (SEDAC, n.d.). The retrieved 2001-2016 dataset contains average annual 

concentrations of ground-level fine particulate matter (PM2.5) with dust and sea-salt filtered, 
measured in micrograms per cubic meter (μg/m³) . This dataset integrates the Aerosol Optical 
Depth (AOD) retrievals from multiple satellite instruments, including the NASA Moderate 
Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer 
(MISR), and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) (see Van Donkelaar et al., 
2016). The dataset is available in the GeoTIFF raster file format with a spatial resolution of 
0.01x0.01-degree (e.g., grid cells 1.1 km on a side at the equator), covering the global land 
surface from 70 degrees north to 55 degrees south. 

To assign the concentrations of PM2.5 data into the selected 381 CBSAs in the 
conterminous U.S., Alaska and Hawaii, the CBSA polygons were first overlaid on the satellite 

average annual PM2.5 concentrations GeoTIFF raster. By doing so, we determine which 

satellite PM2.5 grid cells overlay consolidated the CBSAs. This assignment process has done 
by executing a Zonal Statistics tool in the GIS software. It should be noted, however, that the 
CBSA polygons differ in geographical size; each CBSA polygons contain a different number 

of the satellite PM2.5	grid cells, where each grid cells have different average annual PM2.5 

concentration values. Accordingly, by taking the Zonal Statistics tool, the PM2.5 concentration 

value of each CBSA is calculated as an aggregate value of all satellite PM2.5 grid cells that fall 
within each CBSA polygon. Appendix B illustrates this assignment process. 

In addition, this thesis complements the primary dataset with the average annual 

PM2.5 concentrations collected at the ground-level monitoring stations from the EPA Air 
Quality Statistics Report. This ground-level monitoring stations data is used to validate the 

satellite-derived data. The scatter plot demonstrating the correlation between PM2.5 
concentrations derived from ground-level monitoring stations and satellite (see Appendix C). 
As expected, the correlation is high, with an approximate value of 72 percent. 

The first row of Table 3.1 provides descriptive statistics for the average annual PM2.5 
concentrations calculated at the aggregate value. Generally, there are 6,096 observations 
across 381 CBSAs over sixteen-time periods in total. The overall observations have the 

aggregated average annual PM2.5 concentrations ranging from 2,333 to 1,445,782 μg/m³, 
where the mean value is approximately 56,728 μg/m³. As expected, when looking at a map of 

the average annual PM2.5	concentrations calculated at the aggregate value (Figure 3.1), it is 
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pretty apparent that the larger CBSAs have a relatively higher aggregated average annual 

PM2.5	concentrations than the smaller one. This is simply because larger CBSAs encompass a 

broader land area scale, including more satellite PM2.5 grid cells that fall within their 

boundary, making their aggregated average annual PM2.5 concentrations much higher. 

Figure 3.1 

Map of aggregated average annual PM2.5 concentrations by CBSA over the past sixteen years from 
2001-2016 

 
Note. White areas are non-selected-CBSA areas or non-CBSA areas, while the shaded polygons are the 
381 selected CBSAs for the analysis. 

However, it is interesting when considering the average annual PM2.5 concentrations 
calculated at the mean value. Figure 3.2 apparently depicts that larger CBSAs do not always 

have higher average annual PM2.5 concentrations than those smaller CBSAs, or vice versa. The 

second row of Table 3.1 provides descriptive statistics for the average annual PM2.5 
concentrations calculated at the mean value. Generally, the overall observations have the 

average annual PM2.5 concentrations ranging from 0.79 to 27.40 μg/m³, where the average 
value is approximately 9 μg/m³. This mean value lands the U.S. cities  in general at a “good” 
rating according to the U.S. Air Quality Index (AQI), which according to the stringent U.S. 
standards of measurement, is any concentration value between 0 to 12 μg/m³. Interestingly, 

when observing the map of the average PM2.5 concentrations over the past sixteen years 
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(Figure 3.2), the different levels of the average annual PM2.5 concentration calculated at the 
mean value do not spatially scatter across the contiguous territory; instead, it clustered by 
division and state. For instance, most CBSAs with lower concentration values (0 to 8 μg/m³) 
are in the Mountain division (e.g., Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, 
Utah, and Wyoming) and the Pacific division (e.g., Washington, Oregon, Alaska, and Hawaii). 
In contrast, the majority of CBSAs with a “moderate” air quality rating (i.e., concentration 
between 12.1 to 35.4 μg/m³) are clustered at the East-north-central division, notably, Illinois, 
Indiana, and Ohio. These states moreover have recently failed to meet Environmental 

Protection Agency (EPA) standards for annual PM2.5 concentrations due to significant 
emissions from a large number of the oil and gas refinery industry, almost 7,400 sites, 
particularly in Indiana (Saenz, 2019). 

Figure 3.2 

Map of average PM2.5 concentrations and AQI category by CBSA over the past sixteen years from 
2001-2016 

 
Note. White areas are non-selected-CBSA areas or non-CBSA areas, while the shaded polygons are the 
381 selected CBSAs for the analysis. 
 

Lastly, consider the average annual PM2.5 concentrations collected at the ground-level 
monitoring stations. The third row of descriptive statistics Table 3.1 shows that ground-level 
monitoring station-derived concentrations are relatively higher than the satellite-derived 
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data, suggesting that ground-level monitoring stations may be located in more polluted areas. 
Therefore, using the ground-level monitoring station-derived concentrations may be labeled 
endogenous errors of measurement. 

3.2 Independent variable  
 On-road vehicle kilometers travelled (VKT) is employed as a primary measure of on-
road transportation. It measures the total mileage for all on-road vehicles driven in a 
geographic area over a particular time, generally in an annual period. VKT is calculated by 
totaling up the number of kilometers traveled by all on-road vehicles (e.g., light-duty vehicles, 
motorcycles, trucks, and busses), including both personal and commercial travel on all 
roadways within a region (Williams et al., 2016). In addition, VKT is also a fundamental metric 
executed extensively in transportation planning to perform various functions, such as an 
allocation of resources, estimation of vehicle-related emissions, computation of energy 
consumptions, and evaluation of traffic effects (Kumapley & Fricker, 1996).    

Data on the on-road daily VKT are retrieved from the annual Highway Statistics report 
provided by the U.S. Federal Highway Administration (FHWA). However, there are only 
fifteen years of observations obtained in total (i.e., between 2001-2008 and 2010-2016) because 
the data in the year 2009 are not available in the annual Highway Statistics series. Besides, the 
FHWA reports their statistics data in the level of “urbanized areas” where the term “urban” 
used in the report is defined as “areas include, at a minimum, a census place with an urban 
population of 5,000 to 49,999 or a designated urbanized area with a population of 50,000 or 
more” (FHWA, 2014). Since this study constructs the observation unit at the CBSA level.2 Each 
CBSA typically aggregates county or counties associated with one or more urbanized areas. 
By using VKT data collected at the level of “urbanized areas”, this study, therefore, 
consolidates “urbanized areas” in the same CBSA together and calculates the on-road daily 
VKT per each CBSA at the aggregate value. It should be noted, nevertheless, that CBSA 
boundaries often encompass much land that is not “urban” in the ordinary sense of the word. 
This fact, indeed, could lead to an argument of a measurement error. That is, on-road daily 
VKT derived from totaling up VKT data at the “urbanized areas” level does not seem to 
entirely represent an actual VKT of each CBSA, which also includes VKT from the non-
urbanized areas. However, according to the FHWA Highway Statistics (2016), almost 80 
percent of total on-road VKT is in urbanized areas. Thereby, we expect that using VKT data 
collected only from urbanized areas will not pose a significant bias in the estimation, 

especially when the main interest of this paper is to investigate the relationship between PM2.5 

 
2 This study constructs the unit of observation at the level of “CBSA” instead of  “urbanized area” 
because the “urbanized area” level is relatively small in size. This could potentially lead to a 
measurement error, particularly when measuring the level of PM2.5 concentrations, as PM2.5 can easily 
diffuse across the adjacent areas. Furthermore, most of the relevant variables required in this study’s 
analysis are provided at the CBSA level. 
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concentrations and driving in the city boundary. As a consequence, the first assumption was 
made that on-road daily VKT derived from the aggregate of VKT data at the “urbanized 
areas” level represents an on-road daily VKT of a given CBSA.3 

Figure 3.3  

Map of average daily on-road Vehicle Kilometers Travelled (VKT) by CBSA from 2001-2016 

 
Note. White areas are non-selected-CBSA areas or non-CBSA areas, while the shaded polygons are the 
381 selected CBSAs for the analysis. 

The fourth row of Table 3.1 reports descriptive statistics for the on-road daily VKT. 

The overall number of observations is lower than the average annual PM2.5 concentrations 
and other variables due to the unavailability of the 2009 data and some missing values. The 
average mileage driven per day by the U.S. cities is approximately 42,301,000 km. When 
observing the map of the average daily on-road VKT by CBSA over 2001-2016 (Figure 3.3), 

like the aggregated average annual PM2.5 concentrations map (Figure 3.1), an average daily 
on-road VKT is scattered across the U.S. territory where the larger CBSAs tend to have a 
higher level of on-road daily VKT than the smaller CBSAs, and vice versa. Naïve comparison 

thus suggests a positive correlation between the aggregated PM2.5 concentrations and driving. 

 
3 The first assumption was made that way because the data of on-road daily VKT are not available at 
the CBSA level. Alternatives are available at the state and national level, however, they does not 
applicable to this study’s unit of observations. 
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3.3 Control variables 
Besides the main variables of interest, several exogenous variables that could potentially 

correlate with both PM2.5 concentrations and on-road transportation are controlled in some 
econometric models. Such exogenous variables are geographical attribute (e.g., traffic 
congestion), sociodemographic characteristics (e.g., population density, and industrial jobs 
used as a proxy of industrial activities), meteorological conditions (e.g., temperature, 
precipitation, and wind speed), and lastly, economic factors (e.g., GDP, gasoline and diesel 
price, and gasoline and diesel state tax). The validity of these exogenous variables is described 
in detail in the following sections. 

Geographical attribute 
To begin with geographical attribute, traffic congestion is a condition in transport often 

defined as periods when traffic volume exceeds road capacity, typically caused by high traffic 
volumes. It is characterized by slower speeds that negatively impact the transportation system 
by increasing travel times, travel costs, and air pollution (Zhang & Batterman, 2013; Sardari 
et al., 2018). According to Zhang and Batterman (2013), high traffic volumes or traffic 
congestion lowers the average speed, which increases travel time, thus directly increasing 
tailpipes emissions. Furthermore, traffic congestion can alter driving patterns. Driving under 
“congestion” conditions leads to an increased number of speedups, slowdowns, stops, and 
starts, which increases tailpipes emissions compared to “cruise” conditions, particularly with 
high power acceleration. In addition to impacts on ambient air pollution, adverse outcomes 
caused by traffic congestion have been found to affect commuters’ travel behavior. According 
to Ben-Akiva et al. (1985), commuters change their travel behaviors to maximize utility and 
save time by avoiding traffic congestion. Such results in lower demand for travel, therefore, 
lower VKT. To measure traffic congestion, data on Annual Average Daily Traffic (AADT) 
acquired from the U.S. FHWA are employed as a proxy of traffic congestion. AADT is a 
fundamental traffic element to many transportation performance and planning measures. It 
indicates vehicle traffic volume on a road segment and measures how busy a road is (FHWA, 
2018). Traditionally, AADT estimates the mean traffic volume across all days for a year for a 
given location along a roadway, computed by dividing the sum of total traffic for the entire 
year by 365 days. However, the retrieved AADT data from the FHWA are computed using 
the FHWA AADT method to reduce bias (see FHWA, 2018, P.6).  

Sociodemographic characteristics 
Population densities, also typically referred to as the economic density, are the number 

of economics agents living or working within a spatial unit (Burton, 2002; Neuman, 2005). The 
population density characteristics have been widely found to substantially influence the 
concentrations of air pollutions (Ewing & Cervero, 2010; Frank et al., 2008; Nam et al., 2012; 
Stone, 2008; Stone et al., 2007), and a reflector of transportation demand in cities (Lai et al., 
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2000). According to the studies, cities with low population densities are often characterized 
by sprawling development patterns with low mixed-use, scattered, and highly segregated 
land uses and economic activities. These combined characteristics encourage vehicle 
dependency and increase trip length, VKT, and fuel consumption, consequently raising 
tailpipes emissions. Conversely, high population density cities are typically characterized by 
high mixed-use and high density of the built environment (Ahfeldt & Pietrostefani, 2017). This 
urban development pattern is associated with a shorter trip length, resulting in less 
automobile use and VKT (Bechle et al., 2011). However, the traffic concentration in dense areas 
can lead to a high concentration of emissions (Troy 1996), while taller buildings in high dense 
cities tend to emit fewer pollution particles but could also trap pollution known as a “street 
canyon” (Ahfeldt & Pietrostefani, 2017). Data on population density are the GeoTIFF raster 
file provided by the University of Southampton from 2001 to 2016 with a 100-m resolution 
and estimated via unconstrained top-down methods (see Lloyd et al., 2019). The assignment 

process of population density to each CBSA has been performed as with PM2.5 concentration 
data (Appendix B). 

According to Karagulian et al. (2015), industrial activities are one of the primary 

pollution sources contributing to total PM2.5. Globally, industrial activities contribute 

approximately 15 percent, while it contributes around 9 percent to the total PM2.5 in the U.S. 
cities. Apart from being a significant source of air pollution, industrial activities also directly 
influence travel demand through transportation of raw materials and freight, and as well as 
commuting of workers and laborers. Consequently, having a greater amount of industrial 
activities is likely to associate with higher VKT. To quantify the number of industrial activities, 
the total number of jobs hired in the industrial sectors is used to proxy industrial activities. 
Industrial employment information is obtained from the U.S. Census Bureau's Longitudinal 
Employer-Household Dynamics (LEHD). The LEHD categorized a range of employment 
types using the North American Industry Classification System (NAICS). According to the 
NAICS, the total number of industrial employment is the sum of jobs in agriculture, forestry, 
fishing and hunting, mining, quarrying, oil and gas extraction, utilities, construction, 
manufacturing, wholesale trade, and transportation and warehousing. 

Meteorological conditions 
 Temperature, precipitation, and wind speed are the three influential meteorological 

conditions affecting the diffusion, dilution, and accumulation of PM2.5 concentrations (Liang 

& Gong, 2020; Wang & Ogawa, 2015). Temperature affects PM2.5 through photochemical 

reactions of  PM2.5 precursor pollutants in the atmosphere. As described in detail in the 

theoretical framework section, PM2.5 pollution generally arises from a direct emission from 
pollution sources and from a formation of gaseous precursor emissions in the atmosphere 
through the gas-to-particle conversion process. Sunlight and high-temperature increase the 
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rate of photochemical reactions of sulfur dioxides (SO2), nitrogen oxides (NOx) and VOCs to 

a formation of PM2.5 precursor pollutants (Wang & Ogawa, 2015). Consequently, the hotter 

the day and the more intense the sun, the more PM2.5 are formed from its precursor pollutants. 
Unlike temperature conditions, precipitation and wind speed have been found to 

significantly negatively correlate with the concentration of PM2.5 (Hernandez et al., 2017; Liu 
et a;., 2020; Wang & Ogawa, 2015). Precipitation has a wet scavenging effect on aerosol 
particles. It affects the natural deposition process of particulate matter. The low relative 
humidity is conducive to the adhesion of atmospheric particulate matters on moisture 

particles, leading to more accumulation of PM2.5 concentrations in the atmosphere. At the 
same time, relatively high humidity leads to a growth in the size of moisture particles to the 

point of “dry deposition” that lowers PM2.5 concentrations in the atmosphere by rainfall 
(Wang & Ogawa, 2015). For wind speed, it could transport emissions from the pollution 
sources to the adjacent areas. However, light winds cause emissions to build up above ground 
level (Wang & Ogawa, 2015).  

In addition, extreme meteorological conditions trigger more energy consumption in 
buildings and automobiles, which emits more air pollution. Moreover, it also affects travel 
behavior; dwellers are more likely to switch from active transport modes (e.g., walking and 
cycling) to automobile dependency on hot, cold, snowy and rainy days, causing more VKT. 
Information on meteorological features is obtained from WorldClim global climate and 
weather data website (see Fick & Hijmans, 2017). The retrieved data are also available in the 

GeoTIFF raster file with a very high spatial resolution of about 1 km2. The assignment process 

of meteorological features to each CBSA has been performed as with PM2.5 concentration data. 

Economic factors 
 Fuel prices, both gasoline and diesel, directly affect driving behavior in terms of 
transportation costs. Rising fuel prices can be seen in declining fuel consumption, roadway 
traffic volumes and VKT, and shifting commuters’ choice of transport modes to respond to 
higher transportation costs (Austin, 2008). According to the Congressional Budget Office 
(CBO) research, people are less responsive to the changes in fuel prices in the short run than 
in the long run. In the short run, a 10 percent increase in the retail price of fuel decreases 
consumption by about 0.6 percent and VKT by as little as 0.2 to 0.3 percent; at the same time, 
fuel consumption and VKT decline much larger, in the long run, roughly 4 and 1.5 percent, 
respectively (Austin, 2008). In addition, volatile petroleum prices typically affect the expected 
rate of economic growth through their effect on supply and demand for goods, the firm’s 
productivity, energy consumption to produce goods, and consequently emissions (Blanchard 
& Gali, 2007; European Central Bank, 2004). Likewise, taxes on fuel increase transportation 
costs and productivity costs, leading to lower VKT and emission (Chen & Lin, 2015).   
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 Gross domestic product (GDP) is a useful indicator of economic activity. The 
relationship between economic growth, VKT, and air pollution has long been observed to be 
significantly correlated but in a dynamic way (Luo et al., 2014; Liddle, 2009; Pozdena, 2009). 
One aspect of a rising GDP is that it indicates employment growth, resulting in a higher 
commuter’s travel demand. Rising GDP also implies higher productivity, which correlates 
with increased production capacity, raw material, and freight transportation. All of which 
raise VKT. At the same time, rising GDP due to the concentration of manufacturing industries 
activities can deteriorate air quality from a more emission of higher productivity (Liang & 
Gong, 2020). 
 Lastly, data on yearly gasoline and diesel prices and yearly gasoline and diesel state 
taxes are acquired from the U.S. Energy Information Administration (EIA). In contrast, data 
on the annual GDP per each CBSA are obtained from the U.S. Bureau of Economic Analysis 
(BEA). 

3.4 Instrumental variables 
In the instrumental variables estimation, this paper relies on the interaction term between 

the 1947 planned national system of interstate highways and fuel prices as an instrumental for 
driving. The interstate highways system was first described in a Bureau of Public Roads report 
to Congress, Toll Roads and Free Roads, in 1939. It was authorized for designation by the 
Federal-Aid Highway Act of 1944, with the initial designations in 1947, planned to construct 
a 40,000 miles (or approximately 64,000 km) interstate highway system (Weiner, 1997). This 
interstate highways system plan considered a strategic highway network proposed by the 
War Department, the location of military establishments, interregional traffic demand, and 
the distribution of population and economic activity at that time. By 1980, the federal 
interstate highway system was substantially complete (Duranton & Turner, 2012). 

To measure kilometers of the 1947 planned national system of interstate highways in 
each CBSA, this study first constructed a digital map of the 1947 interstate highway plan. This 
process has been done by converting an image of the original plan retrieved from its paper 
record (United States House of Representatives, 1947) to a digital map as performed in 
Duranton and Turner (2012). After that, Kilometers of 1947 planned interstate highways in 
each CBSA are calculated directly from this digital map. Figure 3.4 depicts an digital map of 
the 1947 planned national system of interstate highways over the selected 381 CBSAs, while 
an image of the original plan can be found in Figure D1, Appendix D. 

Across the selected 381 CBSAs, the 1947 national system of interstate highways was 
planned to construct through 292 CBSAs. The mean kilometers of the 1947 interstate highways 
plan per the selected CBSAs is roughly 95 km. Validity of the 1947 planned national system 
of interstate highway and its interaction term with fuel prices instrument is discussed in detail 
in the methodology section. 
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Figure 3.4 

Digital map of 1947 planned National System of Interstate Highways  

 
Note. The red lines are the 1947 planned interstate highways. The light pink shaded polygons are the 
selected CBSAs in the study sample. Data source: Map based on United States House of Representatives 
(1947). 
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4. Methodology 

The objective of this thesis is to investigate the causal relationship between on-road 

transportation and PM2.5 concentrations across U.S. cities. Accordingly, this study begins by 
testing the proposed hypothesis of whether on-road transportation is positively related to the 

concentrations of PM2.5 in urban areas, employing the ordinary least squares (OLS) models. 
However, endogeneity problem often arises from using the OLS estimations, potentially 
causing the risk of biased and inconsistency for the OLS estimator (Bun & Harrison, 2019). 
Consequently, the instrumental variables (IV) estimation, a common technique for obtaining 
a consistent estimator of the coefficient of interest, is then performed to address the 
endogeneity problems. The detailed methodologies to test the research’s hypothesis are 
described in the following section. 

4.1 OLS estimations 
 The OLS estimations are firstly employed for this empirical analysis to investigate the 

causal effect of driving on PM2.5 concentrations. Throughout the OLS models, a dependent 

variable is the average annual satellite-derived PM2.5 concentrations, an independent variable 
is on-road daily vehicle kilometers travelled (VKT).  Apart from the main variables of interest, 
eleven exogenous variables as suggested by theoretical and empirical literature to correlate to 
the level of ambient air pollutions and on-road vehicle usage described in detail in section 3.3 
are included in some OLS models to limit any potential endogeneity problem. 

In order to obtain the possible BLUE (Best Linear Unbiased Estimator) of the OLS 
estimator, the data and regression models are required to satisfy all of the standard Gauss 
Markov assumptions. Firstly, several variables are transformed into the logarithmic 
functional form to meet linearity in parameters assumption and to achieve approximate 
homoscedasticity by removing a systematic change in the spread of the residuals over the 
range of measured values. By taking a logarithmic transformation, furthermore allows direct 
comparison between elasticities (Wooldridge, 2015). Secondly, no perfect collinearity means 
that none of the independent variables is constant and there are no exact linear relationships 
among the independent variables (Wooldridge, 2015). Another concern about collinearity is 
multicollinearity which refers to a highly (but not perfect) correlation between multiple 
independent variables. Although the problem of multicollinearity cannot be clearly defined, 
for estimating the parameters, it is better to have less correlation between each independent 
variable (Wooldridge, 2015). The rule of thumb is that severe multicollinearity may be present 
if the correlation between independent variables > 0.8 in absolute value. Appendix E reports 
the Pairwise correlation coefficient among independent variables to clarify the collinearity. 
According to the Pairwise correlation coefficient reports, only the correlation between 
industrial activities and GDP, and the correlation between gasoline and diesel prices happens 
to have a higher correlation coefficient exceeding the rule of thumb. 
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Lastly, the zero conditional mean assumption indicates no correlation between the 

independent variable (x) and the error term (ε), or in other words, the error term has an 

expected value of zero given any value of the explanatory variable, Ε(ε|x)	=	0. This assumption 
is also referred to as exogeneity. Conversely, a situation in which an independent variable is 

correlated with the error term or Ε(ε|x)	≠ 0, is referred to as endogeneity leading to a violation 
of the zero conditional mean assumption and causing the OLS estimator biased and 
inconsistent. Endogeneity arises from unobserved or omitted variable bias, measurement 
error in the independent variable, and simultaneity bias (Wooldridge, 2015).  

This study utilized time fixed effect and entity fixed effect (e.g., a fixed effect at the 
CBSA and state level) in the regression models to limit estimation biases, particularly from 
unobserved variables. By combining both fixed effects allows eliminating bias from 
unobserved or omitted factors that vary across the CBSAs and states but are constant over 
time (entity fixed effect) and allows to control for unobserved or omitted variables that vary 
over time but are constant across the CBSAs and states (time fixed effect) (Wooldridge, 2015). 
Some examples of variables that are unobservable or difficult to measure and strongly 
influence ambient air pollution and driving but could be addressed by using the fixed effects 
are land-use planning policies and related rules and programs implemented to reduce fine 
particle pollution emissions. According to Burchell and Lahr (2008), each cities’ and state’s 
institutional structure for land-use policies decision-making is different. For instance, cities 
and local governments autonomously control their land-use policies in states like Maryland, 
Virginia, New England states, and other East Coast states. In contrast, state authorities and 
regional governments have much control over land-use planning policies in most Midwest, 
Rocky Mountain, and West Coast states. In addition, different rules, policies, and programs 
aimed to reduce fine particle pollution emissions have been implemented differently across 
the states (EPA, n.d.). For example, California’s cap-and-trade program, the cap-and-invest 
implemented in Washington, and the Illinois Climate Action Plan (iCAP). These different 
programs and policies could effect on-road vehicle usage and emissions vary across the states.  

Putting together, thereby, the OLS estimation model is as follows: 

ln (PM2.5 concentrationsit) = β0 +	β1 ln ( on-road daily VKTit) +  γ1 ln ( traffic congestionit) 

          																+ γ2 ln ( population densityit) 	+  γ3 ln ( industrial activitiesit) 

            + γ4 ln ( temperatureit) + γ5 ln ( precipitationit) 

                                                +  γ6 ln ( wind speedit) +  γ7 ln ( GDPit) + γ8 ln ( gasoline pricesit ) 

                                                +  γ9 ln ( diesel pricesit) +  γ10 ln ( gasoline taxesit) 

                                                +  γ11 ln ( diesel taxesit) +   αc + λts + εit                                                 (1)         
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where i indexes CBSAs, t indexes time periods. β0 is the intercept, β1 is the parameter of 

interest measuring the effect of on-road daily VKT on the PM2.5 concentrations.  γ1 to  γ11 are 

the estimated regression coefficients that quantify the association between the exogenous 

variables and the PM2.5 concentrations. 	αc is the CBSA fixed effect, λts  is the interaction term 

between time and state fixed effects, and εit is the error term. 

 A causal interpretation of the coefficient of interest requires variation in on-road daily 

VKT to be exogeneous to other factors of PM2.5 concentrations. On-road daily VKT is 
influenced by a whole raft of factors. Some of the factors could well directly cause ambient air 
pollutions. While including both time and state fixed effects to control for other determinants 
of ambient air pollutions may help solve endogeneity problems, these fixed effects cannot 
control for characteristics that vary across the CBSAs, states and change over time, which can 
still be a source of omitted variables bias. As a consequence, this study resolves this problem 
by relying on instrumental variables estimations. 

4.2 IV estimations  
Instrumental variables regression is a technique for acquiring a consistent estimator of 

the coefficient of interest (Wooldridge, 2015). This study exploit the interaction term between 
the 1947 planned of the U.S. interstate highway system and fuel prices as an instrumental 
variable for driving to resolve endogeneity. To see how the IV estimation addressing the 
endogeneity problem, this study consider the system of equations: 

yit = θ0  + βxit	+ δit                            (2) 

xit  = π0 + π1	zit + ηit     (3) 

In the context for this equations system, given that yit denotes PM2.5 concentrations, xit 

indexes on-road daily VKT, and zit is the interaction term between 1974 interstate highway 
plan and fuel prices instrument. Endogeneity problem arises when the on-road daily VKT is 

correlated with the error term or Ε(δit|xit) ≠ 0. This bias can be resolved by exploiting 
instrumental variables estimations. According to the system of equations, it will be identified 
only if the interaction term between the 1974 interstate highway plan and fuel prices 
instrument satisfies two conditions. Firstly is a relevance condition that requires that, 
conditional on control variables, interaction term between the 1974 interstate highway plan 

and fuel prices instrument predicts the on-road daily VKT, or	π1	≠ 0. Secondly is exogeneity 
condition or exclusion restriction. This condition requires that interaction term between the 

1974 interstate highway plan and fuel prices instrument affect PM2.5 concentrations only 

through their effect on on-road daily VKT, or Ε(zit|δit) = 0. 
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Regarding the relevance condition, evidence from empirical and historical research 
suggests that the instrument should be relevant as it predicts the on-road daily VKT. 
According to Duranton and Turner (2011), the 1947 plan of the U.S. interstate highway system 
was subsequently constructed and substantially complete by the 1980s. This plan, therefore, 
represents most of the highways system operating today. In addition, Duranton and Turner 
observe that the assignment of highways to CBSAs according to the 1974 plan results in more 
roadway in the present. Cities that received more roadways in the 1947 plan tend to have 
greater roadway kilometers than cities that received fewer. Furthermore, their finding reveals 
that on-road VKT increases proportionately to roadway kilometers. Consequently, using the 
1947 plan of the U.S. interstate highway system as an instrument for on-road daily VKT 
should satisfy the relevance condition. 

Concerning the exogeneity condition, common sense suggests that the 1974 interstate 

highway plan should not directly affect the level of PM2.5 concentrations unless only through 
their effect on the on-road daily VKT. The 1947 plan was first drawn to “connect by routes as 
direct as practicable the principal metropolitan areas, cities and industrial centres, to serve the national 
defense and to connect suitable border points with routes of continental importance in the Dominion of 
Canada and the Republic of Mexico” (U.S. Federal Works Agency, 1947, cited in Michaels, 2008). 
According to the mandate, the 1947 highway plan makes no mention of environmental 
related-issues. Thereby, it can be concluded that the 1947 highway plan was drawn, as 
stipulated by its mandate, to connect major metropolitan areas and to serve national defense 
as of the mid-1940s. To sum up, the 1947 highway plan predicts the current roadway 
kilometers but should not predict future environmental issues, particularly air pollution.  

It is noted that employing the interaction term between the 1974 interstate highway 
plan and fuel prices as an instrument will leverage the time-variant impacts of the roadway 
kilometers. 

Formally, the IV estimates for examining the impact of on-road daily VKT on PM2.5 
concentrations obtained following the standard two stage least squares procedure (2SLS) are 
accordingly:              

ln (on-road daily VKT&
it) = β0 + δ	interaction term between highway plan and fuel pricesit							  

                + γ'Xit + 	αc + λts + εit                                                                (4) 

ln (PM2.5 concentrationsit) = β0 + ω ln (on-road daily VKT&
it)  +  γ'Xit +  αc + λts + εit          (5)                                                                                                     

Equation (4) is the first-stage regression, i indexes CBSAs, t indexes time periods. β0 is 

the intercept, δ is the coefficients measuring the effect of instrumental variable on on-road 

daily VKT. Vector Xit corresponds to vector of control variables, as outlined in equation (1) 

excluding gasoline and diesel prices, and γ' is a conformable vector of coefficients.	αc is the 
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CBSA fixed effect, λts is the interaction term between time and state fixed effects, and εit is the 

error term. Equation (5) is the second-stage regression, ω is the 2SLS estimator indicating the 

effect of on-road daily VKT on PM2.5 concentrations.  

4.3 Conceptual model 
Based on the theoretical framework, data, and methodology sections, the model tested in 

this study is schematic as follows: 
 

Figure 4.1  

Schematic conceptual model 
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5. Results 

This results section proceeds in three steps. First, results from the OLS estimations 

showing the relationship between PM2.5 concentration and the preferred measures of driving, 
i.e., on-road daily VKT, are presented, followed by results from the instrumental variable 
estimations employed to resolve the endogeneity problem. Finally, this thesis verifies that 

these relationships are robust to different PM2.5 concentrations and driving measures by 
presenting the results from both the OLS and IV estimations depicting the relationship 

between PM2.5 concentration measured at the median value and the alternative measures of 

driving, i.e., traffic intensity and aggregated CO2 emissions from the on-road transportation 
sector. 

5.1 OLS estimations 
This study first estimates structural Equation (1) by OLS. These baseline OLS 

estimations only provide valid estimates of the econometric model if unobserved factors of 

on-road daily VKT are uncorrelated with unobserved factors of the level of PM2.5 
concentrations. As described in detail in section 4.1, this condition presumably fails to hold; 
consequently, the following results estimated by OLS should be regarded as primarily 
descriptive.  

Columns 1, 2, 3, and 4 of panel A in Table 5.1 report the results of OLS estimations of 

driving on ambient air pollution. The dependent variable is the natural logarithm of PM2.5 
concentrations computed at the aggregate value in every column, and the measure of driving 
is the natural logarithm of on-road daily VKT in all specifications. The unit of observation is 
the CBSA. 

To begin with column 1, this study regresses the natural logarithm of aggregated PM2.5 
concentrations on the natural logarithm of on-road daily VKT to find an elasticity of 16.7%, 
statistically significant at the one percent level. This suggests that a 1% increase in on-road 

daily VKT would result in an approximately 0.17% increase in the aggregate level of PM2.5 
concentrations. At the sample mean, this represents that every 423,010 kilometers increase in 

daily vehicle mileage is associated with 94.74 μg/m³ increases in the aggregate level of PM2.5 

concentrations. As expected, the effect of on-road vehicle use on PM2.5 concentrations is 
marginal, which is in line with the finding by Li and Managi (2021). In column 2, a full set of 
control variables (i.e., geographical, sociodemographic, meteorological, and economic factors) 
are added to the specification in column 1 and estimate an adverse effect of on-road daily VKT 

on PM2.5 concentrations, with an elasticity of -1.3%, statistically significant at the five percent 
level. Contradictorily to column 1,  this negative elasticity implies that a 1% increase in on-

road daily VKT would decrease the aggregate level of PM2.5 concentrations by about 0.01%. 
The differences between the two elasticities assumably due to a loss of observations, dropped 
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from 5,240 to 4,150, accounting for about 21%, when including control variables. Another 
reason is probably due to the collinearity of on-road daily VKT and some control variables 
such as population density, industrial activities, and GDP. 

In column 3, this study returns to the specification of column 2 but also includes the 

entity fixed effect at the CBSA level. Estimating the elasticity of aggregate PM2.5  
concentrations with respect to on-road daily VKT yields a coefficient much smaller in 
magnitude relative to column 2 but not statistically significant at the one or five percent level. 
Consistent with this, including both CBSA fixed effect and the interaction term between state 
and time fixed effects  in column 4 also provides a negative coefficient on on-road daily VKT 
which is slightly different from that of column 3, from the elasticity of -0.8% to -0.4%, however, 
the coefficient is also not statistically significant. Among the four baselines OLS regressions, 
the preferred specification is column 4, where a full set of the control variables, CBSA fixed 
effect, interaction term between time fixed effect and state fixed effect are included in the 
estimating equation.  

In spite of differences across specifications, the OLS elasticity of the aggregate PM2.5 
concentrations relative to on-road daily VKT remains small, ranging between -1.3% and 
16.7%. If we restrict attention to the preferred specification, column 4, then on-road 

transportation does not significantly affect the aggregated concentrations of PM2.5. 

5.2 IV estimations 
Column 5, 6 and 7 in Table 5.1 reports the results of instrumental variable estimations. 

Before proceeding to the main IV results, this study first provides estimates of the first-stage 
regression reported in panel (B). This results from estimating equation (4), in which in column 
5, the natural logarithm of on-road daily VKT is regressed on the interaction term between the 
1947 interstate highways plan and fuel prices instrument. In column 6, a full set of control 
variables (i.e., geographical, sociodemographic, meteorological, and economic factors) are 
added to the specification in column 5. Lastly, in column 7, a complete set of control variables 
as well as fixed effects are additionally added to the specification in column 5.  

Regarding the relevance condition, in all specifications, the Kleibergen-Paap rk Wald 
F-statistics tests on the interaction term between the 1947 interstate highways plan and fuel 
prices coefficient of column 5, 6 and 7 are 1,276, 33.74 and 17.52, respectively. The Kleibergen-
Paap rk Wald F-statistics tests of the three IV models exceed the rule of  thumb, 10.  This has 
two important implications; (i) it indicates that the instrument is not weak, and (ii) the 
relevance condition is satisfied. Concerning the effect of the interaction term between the 1947 
interstate highways plan and fuel prices instrument on on-road daily VKT, as expected, the 
coefficient is positive, suggesting that the interaction term between the 1947 interstate 
highways plan and fuel prices instrument positively predicts VKT on the roadways, in line 
with the finding by Duranton and Turner (2011). 
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Table 5.1 

On-road daily VKT and aggregated PM2.5 concentrations 

 (1) (2) (3) (4) (5) (6) (7) 
(A) Main result OLS OLS OLS, FE OLS, FE IV IV IV, FE 

Ln(On-road daily  
      VKT)    

0.167*** -0.013** -0.008 -0.004 0.634*** 0.685*** 0.237 
(0.009) (0.007) (0.014) (0.007) (0.014) (0.118) (0.150) 

Ln(Population 
      density) 

 -0.795*** 
(0.009) 

0.161** 
(0.065) 

0.047 
(0.038) 

 -1.133*** 
(0.063) 

-0.230 
  (0.174) 

Ln(Industrial  
      activities) 

 0.310*** 0.179*** -0.022**  0.343*** -0.032** 
 (0.015) (0.017) (0.011)  (0.026) (0.013) 

Ln(Traffic  
      congestion) 

 0.011 0.045* -0.001  -0.517*** -0.067 
 (0.016) (0.025) (0.012)  (0.095) (0.045) 

Ln(GDP)  0.522*** -0.357*** 0.005  0.070 0.017 
  (0.015) (0.025) (0.024)  (0.074) (0.027) 
Ln(Precipitation)  0.150*** 0.022** 0.028  0.260*** 0.029 
  (0.009) (0.009) (0.017)  (0.027) (0.018) 
Ln(Temperature)  -0.035** -0.029 0.011  -0.044 0.032 
  (0.014) (0.021) (0.063)  (0.028) (0.068) 
Ln(Wind speed)  -0.046*** -0.031*** -0.044***  0.032 -0.041*** 
  (0.011) (0.007) (0.009)  (0.025) (0.009) 
Ln(Gasoline tax)  
       

 -0.010 -0.078***   0.318***  
 (0.027) (0.017)   (0.086)  

Ln(Diesel tax)  -0.101*** -0.002   -0.279***  
  (0.024) (0.013)   (0.058)  
Ln(Gasoline price)  1.430*** 0.742***     
  (0.188) (0.106)     
Ln(Diesel price)  -1.347*** -0.537***     
  (0.160) (0.091)     
Constant 9.057*** 2.089***   4.673*** 8.616***  
 (0.081) (0.174)   (0.132) (1.093)  
        
(B) First Stage        
dependent variable: Ln(On-road daily VKT)    

Interaction term between 1947  
highways plan and fuel prices 

  0.002*** 
(0.000) 

0.0003*** 
(0.000) 

0.0001*** 
(0.000) 

City FE No No Yes Yes No No Yes 
Year and State FE No No No Yes No No Yes 
Observations 5,240 4,150 4,149 4,097 5,240 4,150 4,097 
R-squared 0.089 0.878 0.172 0.021 -0.609 0.463 -0.348 
Kleibergen-Paap 
rk Wald F-test 

    1,276 33.74 17.52 

Notes. Panel (A) is the main result. The dependent variables is ln(aggregated	PM2.5 concentrations) in 
all columns. Panel (B) is the first stage result. The dependent variable is ln(On-road daily VKT) and the 
control variables are also included in the first stage regression in Column 6 and 7. Robust standard 
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Panel (A) of column 5 and 6 are the main IV estimation result from estimating the 
second-stage. In addition, the specification of column 6 is conditional on a complete set of 

control variables. The elasticity of the aggregated PM2.5 concentrations with respect to the on-
road daily VKT is 63.4% and 68.5%, indicating that a 1% increase in on-road daily VKT would 

result in approximately 0.63% and 0.69% increase in the aggregate level of PM2.5 
concentrations for column 5 and 6, respectively. The elasticities are statistically significant at 
all conventional levels.  

Lastly, consider column 7. This column is the preferred IV estimation resulting from 
estimating the second-stage, equation (5). The specification is conditional on a complete set of 
control variables, CBSA fixed effect, and the interaction term between time fixed effect and 

state fixed effect. Estimating the elasticity of aggregated PM2.5 concentrations with respect to 
on-road daily VKT yields a coefficient smaller in magnitude relative to that in columns 5 and 
6, from the elasticity of 63.4% and 68.5%, to 23.7%. However, the elasticity obtained from the 
preferred specification in column 7 is not statistically different from zero. 

Overall, the results  obtained from IV estimations suggest that one additional percent 

of on-road daily VKT would lead to an increase in the aggregated concentrations of PM2.5 in 
the U.S. cities, ranging between 0.63% and 0.69%. When compare the IV estimation results 
with the OLS estimation results. These obtained elasticities from IV estimates are dramatically 
larger than the preferred OLS baseline estimation. This indicates that omitted variables 

correlated with on-road vehicle usage and concentrations of PM2.5 cause economically 
important bias under the OLS estimates of the relationship between on-road transportation 

and PM2.5 concentrations. However, if we restrict attention to the preferred specification, 
column 7, then on-road transportation does not significantly affect the aggregate 

concentrations of PM2.5. Accordingly, the research hypothesis stating that “On-road 

transportation is positively related to ambient PM2.5 concentrations in urban areas” is rejected.  

5.3 Robustness checking 
This study provides a series of additional estimates to verify the stability of the 

estimated relationship between on-road vehicle usage and PM2.5	concentrations results 
presented in Table 5.1. Two additional estimates are (i) average traffic intensity and median 

PM2.5 concentrations, and (ii) aggregated CO2 emissions from on-road transportation sector 

and aggregated PM2.5 concentrations. 

5.3.1 Average traffic intensity and median PM2.5 concentrations 

In the first part of robustness checking, this study employs PM2.5 concentrations 

calculated at the median value per CBSA as an alternative measure of ambient PM2.5 levels 
apart from the aggregate value presented in the main estimates. In addition, the study also 
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employs an average traffic intensity per CBSA as an alternative measure of on-road vehicle 
use.  

Data on the median PM2.5 concentrations from 2001-2016 are also retrieved from the 

satellite average annual PM2.5 concentrations GeoTIFF raster provided by NASA's 
Socioeconomic Data and Applications Center. The process in assigning the concentrations of 

satellite PM2.5 data into the selected 381 CBSAs in the conterminous U.S., Alaska and Hawaii, 
has been performed in the similar manner as in section 3.1. However, by taking the Zonal 

Statistics tool, the PM2.5 concentration value of each CBSA is calculated as median value of all 

satellite PM2.5 grid cells that fall within each CBSA polygon. For an alternative measure of on-
road vehicle use, average traffic intensity per CBSA is computed by dividing the aggregated 

on-road daily VKT by the size of CBSA. Overall, the mean value of the median PM2.5 
concentrations is 8.74 μg/m³ per CBSA, while the mean value of the average traffic intensity 
is 12.78.  

Throughout the first part of robustness checking, the dependent variable is the natural 

logarithm of median PM2.5 concentrations in every column, while the measure of driving is 
the natural logarithm of average traffic intensity in all specifications. The unit of observation 
is the CBSA. Additionally, in each column of Table 5.2, this study estimates a specification 
similar to that of all columns as in Table 5.1, with CBSA fixed effect, the interaction term 
between time and state fixed effects, as well as a full set of control variables 

Columns 1, 2, 3, and 4 of panel (A) in Table 5.2 report the results of OLS estimations of 

on-road transportation on PM2.5 concentrations. Generally, OLS estimates of median PM2.5 
concentrations on average traffic intensity yield the elasticity consistent with the primary 
estimate in terms of magnitude and significance.  

Consider results from the preferred instrumental variable estimations. Column 5, 6 
and 7 of panel (B) reports that the three specifications satisfy the relevance condition as the 
Kleibergen-Paap rk Wald F-statistics tests on the interaction term between the 1947 interstate 
highways plan and fuel prices coefficient are larger than rule of thumb, 10. Focusing on the 
preferred specification (column 7), which includes a complete set of control variables, CBSA 
fixed effect, and the interaction term between time and state fixed effects. Main IV estimate 
result in panel (A) of column 7, reports an elasticity of 20%, which is slightly lower than the 
elasticity of 23.7% obtained from the primary estimate. Additionally, both elasticities are not 
significantly different from zero. 

Generally, these results indicate that the findings appear to be robust to different on-
road transportation measures. Measuring on-road transportation by average traffic intensity 

and measuring PM2.5 concentrations at the median value provide consistent results that on-

road transportation does not significantly affect the concentrations of PM2.5 in urban areas.  
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Table 5.2 

Average traffic intensity and median PM2.5 concentrations 

 (1) (2) (3) (4) (5) (6) (7) 
(A) Main result OLS OLS OLS, FE OLS, FE IV IV IV, FE 

Ln(Average traffic 
      intensity)    

0.053*** -0.043*** -0.009 -0.005 -0.041*** 0.248* 0.199 
(0.003) (0.005) (0.014) (0.007) (0.015) (0.135) (0.156) 

Ln(Population 
      density) 

 0.220*** 
(0.009) 

0.171*** 
(0.065) 

0.055 
(0.038) 

 -0.200 
(0.195) 

-0.178 
  (0.180) 

Ln(Industrial  
      activities) 

 0.146*** 0.180*** -0.022**  0.187*** -0.030** 
 (0.009) (0.017) (0.011)  (0.028) (0.013) 

Ln(Traffic  
      congestion) 

 -0.018 0.045* -0.002  -0.227** -0.057 
 (0.012) (0.025) (0.012)  (0.098) (0.045) 

Ln(GDP)  -0.193*** -0.361*** 0.004  -0.160*** 0.014 
  (0.009) (0.025) (0.026)  (0.016) (0.027) 
Ln(Precipitation)  0.159*** 0.024** 0.030*  0.199*** 0.030* 
  (0.006) (0.010) (0.018)  (0.023) (0.018) 
Ln(Temperature)  0.030*** -0.027 0.009  0.060*** 0.027 
  (0.010) (0.021) (0.063)  (0.016) (0.066) 
Ln(Wind speed)  -0.008 -0.032*** -0.044***  0.017 -0.041*** 
  (0.008) (0.007) (0.009)  (0.014) (0.009) 
Ln(Gasoline tax) 
       

 -0.037** -0.078***   0.100  
 (0.017) (0.017)   (0.067)  

Ln(Diesel tax)  -0.086*** -0.002   -0.167***  
  (0.015) (0.013)   (0.042)  
Ln(Gasoline price)  0.935*** 0.737***     
  (0.134) (0.107)     
Ln(Diesel price)  -0.767*** -0.530***     
  (0.113) (0.091)     
Constant 2.081*** 2.261***   2.170*** 4.697***  
 (0.005) (0.118)   (0.015) (1.128)  
        
(B) First Stage        
dependent variable: Ln(Average traffic intensity)    

Interaction term of 1947 Interstate 
highways plan and fuel price 

  0.001*** 
(0.001) 

0.0001*** 
(0.000) 

0.0001*** 
(0.000) 

City FE No No Yes Yes No No Yes 
Year and State FE No No No Yes No No Yes 
Observations 5,240 4,150 4,149 4,097 5,240 4,150 4,097 
R-squared 0.082 0.427 0.170 0.021 -0.175 -0.231 -0.233 
Kleibergen-Paap 
rk Wald F-test 

    270.23 7.11 17.52 

Notes. Panel (A) is the main result. The dependent variables is ln(Median PM2.5 concentrations) in all 
columns. Panel (B) is the first stage result. The dependent variable is ln(Average traffic intensity).  
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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5.3.2 Aggregated CO2 emissions from on-road transportation sector and aggregated PM2.5 
concentrations 

In the second part of robustness checking, this study employs CO2 emissions from on-
road transportation sector as an alternative measure of driving to highlight the robustness  of 

the estimated relationship between on-road vehicle usage and PM2.5	concentrations results 
presented in Table 5.1. 

The on-road CO2 emissions have been used as an indicator of on-road vehicle usage 
by several empirical studies (e.g., Gately et al., 2015; Gurney et al., 2009; Li & Managi, 2021). 

Data on the average annual CO2 emissions from on-road transportation sector are retrieved 
from the Database of Road Transportation Emission (DARTE) provided by the National 

Aeronautics and Space Administration. In the DARTE database, average annual on-road CO2 
emissions from motor gasoline and diesel fuel consumption are computed by combining the 
Federal Highway Administration's Highway Performance Monitoring System (HPMS) 
roadway-level vehicle miles traveled with state-specific emissions factors for multiple types 
of vehicles on six classes of urban and rural roads. This DARTE database, furthermore, 
provides insights into how urban areas contribute to climate change (see Gately et al., 2019). 

The average annual on-road CO2 emissions are available at GeoTIFF raster file with 1-km 
spatial resolution over the conterminous U.S. This study repeats the same process as 

performed with the PM2.5	concentrations data to assign the CO2 emissions computed at the 

aggregate value to the selected 381 CBSAs. Overall, the mean value of on-road CO2 emission 

is approximately 3,200 million metric tons per km2. 
Columns 1, 2, 3, and 4 of panel (A) in Table 5.3 report the results of OLS estimations of 

on-road transportation on PM2.5 concentrations. The dependent variable is the natural 

logarithm of aggregated PM2.5 concentrations in every column, while the measure of driving 

is replaced by the natural logarithm of aggregated on-road CO2 emissions in all specifications. 
The unit of observation is the CBSA. Additionally, in each column of Table 5.3, this study 
estimates a specification similar to that of all columns as in Table 5.1 and 5.2, with CBSA fixed 
effect, interaction term between time and state fixed effects, as well as a complete set of control 
variables. Overall, the elasticity of OLS estimates of an alternative measure of driving on the 

aggregated PM2.5 concentrations are more extensive than those in the primary estimate; 
however, all of the elasticities are positive. In column 1, this paper obtains an elasticity of 
51.2% instead of 16.7%. Adding a full set of control variables in the specification in column 2 
yields lower elasticity of 13.4%, statistically significant at the one percent level. In column 3, 
this study returns to the specification of column 1 but also includes CBSA fixed effect. 

Estimating the elasticity of PM2.5 concentrations with respect to on-road CO2 emissions gives 
a slightly larger elasticity of 14.2%. Lastly, adding control variables, CBSA fixed effects and 
interaction term between time and state fixed effects in the specification in column 4 yields a 



41 
 

dramatically lower elasticity of 2.3%. Based on these OLS estimates results, the effect of an 

alternative measure of on-road transportation—aggregated on-road CO2 emissions—on 

aggregated PM2.5 concentrations is minimal, consistent with the OLS estimates results using 
the on-road daily VKT as a primary measure of on-road transportation.  

Next, considering results from the preferred method to investigate the relationship 

between on-road transportation and PM2.5 concentrations, the instrumental variable 
estimations. Focusing on the preferred specification (column 7), which includes a complete 
set of control variables, CBSA fixed effect, and the interaction term between time and state 
fixed effects. The Kleibergen-Paap rk Wald F-statistics tests on the interaction term between 
the 1947 interstate highways plan and fuel prices coefficient, conditional on control variables, 
CBSA fixed effect, and the interaction term between time and state fixed effects, is 20.75, 
suggesting that interaction term between the 1947 interstate highways plan and fuel prices is 

a strong instrument in predicting CO2 emissions from the on-road transportation sector, and 
the relevance condition is satisfied. In panel (A) of column 7, the elasticity from the 2SLS 
estimate is 47.4%, which is larger than the elasticity of 23.7% obtained from using on-road 
daily VKT as a primary measure of on-road transportation. Furthermore, both elasticities are 
not significantly different from zero. 

Overall, these results suggest that the finding are robust to different on-road 
transportation measures. In the preferred IV estimations, both reports consistent results; on-

road transportation does not significantly affect the concentrations of PM2.5 in urban areas.  
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Table 5.3 

Aggregated CO2 emissions from on-road transportation sector and aggregated PM2.5 concentrations 

 (1) (2) (3) (4) (5) (6) (7) 
(A) Main result OLS OLS OLS, FE OLS, FE IV IV IV, FE 

Ln(On-road CO2 
      emissions)    

0.512*** 0.134*** 0.142*** 0.023 -0.017*** 0.110*** 0.474 
(0.007) (0.013) (0.032) (0.018) (0.005) (0.036) (0.378) 

Ln(Population 
      density) 

 0.169*** 
(0.006) 

0.094 
(0.065) 

0.034 
(0.038) 

 0.165*** 
(0.006) 

-0.220 
  (0.216) 

Ln(Industrial  
      activities) 

 0.127*** 0.168*** -0.023**  0.116*** -0.032** 
 (0.009) (0.017) (0.011)  (0.012) (0.013) 

Ln(Traffic  
      congestion) 

 -0.063*** 0.030 -0.004  -0.061*** -0.030 
 (0.010) (0.025) (0.012)  (0.011) (0.024) 

Ln(GDP)  -0.281*** -0.378*** -0.002  -0.249*** -0.097 
  (0.013) (0.025) (0.025)  (0.025) (0.086) 
Ln(Precipitation)  0.151*** 0.026*** 0.031*  0.149*** 0.027 
  (0.007) (0.009) (0.018)  (0.008) (0.018) 
Ln(Temperature)  0.020** -0.026 0.008  0.036*** 0.030 
  (0.010) (0.021) (0.062)  (0.010) (0.068) 
Ln(Wind speed)  -0.004 -0.032*** -0.043***  0.003 -0.043*** 
  (0.008) (0.007) (0.009)  (0.008) (0.009) 
Ln(Gasoline tax)  
       

 0.003 -0.069***   0.007  
 (0.016) (0.017)   (0.017)  

Ln(Diesel tax)  -0.093*** -0.003   -0.098***  
  (0.014) (0.013)   (0.014)  
Ln(Gasoline price)  0.880*** 0.697***     
  (0.135) (0.108)     
Ln(Diesel price)  -0.705*** -0.495***     
  (0.115) (0.092)     
Constant -0.250* 1.703***   2.504*** 1.876***  
 (0.144) (0.136)   (0.099) (0.262)  
        
(B) First Stage        
dependent variable: Ln(On-road CO2 emissions)    

Interaction term of 1947 Interstate 
highways plan and fuel price 

  0.0021*** 
(0.000) 

0.0003*** 
(0.000) 

0.0000*** 
(0.000) 

City FE No No Yes Yes No No Yes 
Year and State FE No No No Yes No No Yes 
Observations 6,032 4,185 4,185 4,135 6,032 4,185 4,135 
R-squared 0.451 0.427 0.173 0.022 -0.020 0.419 -0.162 
Kleibergen-Paap 
rk Wald F-test 

    1,081 381.38 20.75 

Notes. Panel (A) is the main result. The dependent variables is ln(Aggregated	PM2.5 concentrations) in 
all columns. Panel (B) is the first stage result. The dependent variable is Ln(On-road CO2 emissions). 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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6. Discussion 

This thesis aims to clarify whether on-road transportation is a significant source 

contributing to ambient PM2.5 concentrations in urban areas and to understand the potential 
to reduce on-road traffic emissions further to improve air quality. To achieve that, 

investigation on the causal relationship between on-road transportation and PM2.5 
concentrations across metropolitan areas in the U.S. is performed by testing the proposed 

hypothesis of whether on-road transportation is positively related to the PM2.5 concentrations 
in urban areas. Ultimately, this thesis seeks to answer the research question that “Based on the 
most recent dataset, is emissions from on-road transportation a pollution source that significantly 

contributes to fine particulate matter (PM2.5) concentrations in urban areas?”.  

6.1 Discussion of results 
Based on the empirical evidence, this thesis does not find support for the proposed 

research hypothesis stating that “On-road transportation is positively related to ambient PM2.5 
concentrations in urban areas”. While according to the atmospheric science studies, a large 
number of existing literature (e.g., Amato et al., 2014; Davidson et al., 2005; Hodan & Barnard, 
2004; Karagulian et al., 2015; Pant & Harrison, 2013) suggests that vehicle transportation on 

the roadway is positively related to the ambient concentrations of PM2.5 in urban areas, 
evidence from the 381 metropolitan areas in the U.S. over the past sixteen years conversely 
shows the insignificant results. Based on the preferred instrumental variable estimations, the 
statistical results indicate that an additional kilometer of on-road vehicle traveled does not 

lead to a significant increase in the overall concentrations of PM2.5	in U.S. cities. This, in other 
words, would suggest that on-road transportation is not a significant pollution source 

contributing to ambient PM2.5 concentrations in urban areas at present. 
Although, the empirical result of this thesis implies, contradictory to majority of the 

existing literature, that there is no significant increase in the overall PM2.5	concentrations in 
urban areas when additional kilometers of vehicle driven on the roadway. This obtained result 
is somewhat unsurprising as it is noticeable from a real-world declining trend of 

PM2.5	concentrations whereas an increasing trend of vehicle mileage over the past two 
decades (Figure 1.1). In addition, it is also observable from a growing trend of recent studies 
that there is a significant reduction in the contribution of on-road transportation to overall 

PM2.5	concentrations in urban environments (Harrison et al., 2021; Li & Managi, 2021). This 
circumstance can potentially be explained by two main factors.  

Firstly, the several successive decades of cleaner automotive technology improvement, 
clean air action, and stringent regulations have resulted in a significant reduction in emissions 

of PM2.5, PM2.5 precursors (i.e., VOCs, nitrogen oxides, sulfur oxides, and ammonia) and other 
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pollutants from transportation sectors (Mathissen et al., 2011; Thorpe & Harrison, 2008; 
Winkler et al., 2018). This is especially true of a direct emission from the vehicle tailpipes 
(exhaust emissions). In the U.S. in particular, the successive introduction of the federal Tier 2 
motor vehicle emission standards and the California LEV II regulations were phase-in 2001-
2009, brought new requirements for fuel quality such as advanced emission after-treatment 
devices (e.g., catalytic converters and particulate filters), while the ongoing federal Tier 3 
motor vehicle emission standards and the California LEV III regulations that tighten nitrogen 
oxides, sulfur oxides, and VOCs limits for vehicle engines (Winkler et al., 2018; EPA, n.d.).  As 
a result of motor vehicle emission and fuel standards and together with the Clean Air Act, 
tailpipe emission per vehicle fleet has decreased substantially, resulting in the significant 
decline in VOCs, nitrogen oxides, and sulfur oxides of about 60-80 percent since 1990, 

reduction in overall PM2.5 concentrations roughly up to 41 percent since 2000, and a steady 
air quality improvement in most cities in the U.S. (EPA, n.d.; Mathissen et al., 2011; Thorpe & 
Harrison, 2008; Winkler et al., 2018). It is noted that as vehicle exhaust emissions have 
decreased, non-exhaust emissions (e.g., abrasion of tire wear, brake wear and road surface, 
the corrosion of other vehicle components) have become a relatively more important source 
of air pollution attributable to on-road transportation (Amato et al., 2014). However, non-

exhaust emissions only contribute a much smaller share of the total PM2.5 relatively to the 
exhaust emissions. This would potentially be another factor causing the insignificant effect of 

on-road transportation on PM2.5 concentrations in the cities. 
Secondly, the life cycle, physical and chemical properties, and the formation process 

of atmospheric particulate matter play a vital role in the variation of PM2.5 concentrations in 

urban areas. As described in detail in the theoretical framework chapter, PM2.5	is a highly 
variable and complex mixture of aerosol particles and chemical species. Its concentration 
levels heavily depend on a complex interplay between various factors, including altitude, the 
number of anthropogenic activities, geographic attributes, meteorological conditions, and 
atmospheric conditions present in a particular place (Davidson et al., 2005; Seinfeld & Pandis, 
2016). While intuitively, an area with more increased vehicle tailpipe emissions would depict 

a higher PM2.5	concentrations level than those with lower vehicle tailpipe emissions, this 

intuition, however, is not always correct. This is especially true of the secondary PM2.5, where 
atmospheric chemistry and the chemical reaction between precursor pollutants are 
significantly influenced by surrounding environmental conditions (e.g., the intensity of solar 
radiation, temperature, humidity, and other chemical compounds present in the atmosphere). 

In addition, the interactions between the gases can be nonlinear, meaning that not all PM2.5 
precursors will always transform into fine particles; only those precursors with the optimal 

environmental conditions will become a PM2.5	(Kelly & Fussell, 2012). Consequently, these 
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life cycles and the chemical formation process of PM2.5		would potentially explain the 

insignificant effect of on-road transportation on PM2.5	concentrations in urban areas.  

6.2 Policy implications 
 This thesis has provided empirical evidence that on-road transportation does not lead 

to a significant increase in the overall concentrations of PM2.5 in U.S. cities. This empirical 
evidence has several practical implications for policy-making, especially air quality 
management, and what could be expected from further reduction of on-road transportation 
emissions to improve urban’s air quality in the future.  

According to data and statistical scrutiny, the insignificant effect of on-road 

transportation on PM2.5 concentrations in urban areas implies that the gains from any policy 

aimed at reducing on-road traffic emissions further to lower PM2.5 concentrations in urban 
areas would be marginal to insignificant; this is especially the case in the U.S. and other 
developed worlds where there have been progressive advanced automotive technology 
improvements and stringent vehicle emission regulations (Harrison et al., 2021). 
Consequently, as the on-road transportation sector emits a much smaller to insignificant share 

of the total PM2.5 emissions, other emission-reduction strategies can be a more cost-effective 

and practical policy in improving air quality in urban areas. For example, lowering PM2.5 
emissions from non-on-road transportation sources (e.g., domestic fuel burning and 

industries) and building unfavorable conditions for the formation of PM2.5 precursor 
pollutants (e.g., lowering ammonia emissions and oxidizing agents like ozone and hydroxyl 
radical) would result in a more significant impact on air quality improvement. For future on-
road transportation emission reduction, it might be more profitable to target reducing non-
exhaust emissions (e.g., road dust suspension), which represent a small share of 20-25 percent 
in total  (Mancilla & Mendoza, 2012) but have become a relatively more important source of 
air pollution attributable to on-road transportation (Amato et al., 2014). Additionally, it is 
interesting to note that shifting to zero-emission vehicles such as battery electric vehicles will 

yield only minor benefits for PM2.5 reduction emitted from non-exhaust sources relative to 
modern internal combustion engine vehicles (Beddows & Harrison, 2021). This is due to an 
advanced improvement of modern internal combustion engines, and the generation of 
electricity or hydrogen for zero-emission vehicles can produce upstream emissions (Harrison 
et al., 2021).     

6.3 Limitation and recommendation for future research 
As in every research, the empirical analysis of this thesis is considered in light of its 

limitations. Firstly, since this thesis intentionally constructs the dataset at the CBSA level 

instead of at a finer scale, the analysis does not consider how different PM2.5 concentrations 

are spatially distributed within a CBSA. Furthermore, the PM2.5 concentration value is 
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computed at the aggregate value, and therefore is assumed to be homogeneous across a 
certain CBSA. Such might cause ecological inference fallacy, especially when attempting to 
mitigate air pollution for a specific district in a large metropolitan where there is a significant 

difference in PM2.5 concentrations between each district. Secondly, since this thesis employed 

PM2.5	concentrations at an average annual level, this restricts this study from providing 
exciting insights regarding temporal and seasonal variations (e.g., the contribution of on-road 

transportation on PM2.5 concentrations in wintertime, summertime, burning season, or even 
during rush-hour and off-peak hours). Finally, the chemical characteristic, precursors’ 
formation, and the reaction of the fine particles were not considered in the statistical 

investigation of the effect on on-road transportation on PM2.5	concentrations. Therefore, the 
results cannot provide insights on the aspect of the chemical mechanisms, which have an 

influential impact on the level of PM2.5 concentrations in urban areas.  

In future studies, more detailed remote sensing PM2.5 concentrations and PM2.5 
precursor pollutants data with temporal and seasonal variations at a finer scale should be 
applied to the analyses. Furthermore, as mentioned in the theoretical framework chapter, on-

road transportation contributes to ambient PM2.5	concentration levels through three general 
processes: a direct emission from the vehicle tailpipes, emissions due to wear and tear of 
vehicle parts and re-suspension of dust, and a formation of traffic-emitted gaseous precursor 
emissions in the atmosphere through the chemical gas-to-particle conversion process. 

Therefore, investigating the causal relationship of each contribution process on PM2.5 
concentrations would quantify the effect of on-road transportation on air pollution more 
precisely. In addition, more information about vehicles, such as vehicle type, fuel types, 
quantity, the technology of engines, among others, are encouraged to be included in the 

investigation of the causal effect of on-road transportation in PM2.5 concentration in the future. 
Lastly, since vehicle emission standards and regulations are one of the main factors in 

explaining the insignificant effect of on-road transportation on PM2.5 concentrations in U.S. 
cities. However, the vehicle emission standards and regulations are also different worldwide. 
Therefore, employing sample data from less developed world cities with strong controls on 
traffic emissions (e.g., China and Turkey) and less developed world cities with poor controls 
on traffic emissions (e.g., India) might yield different results that lead to a different approach 
to air pollution improvement. 
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7. Conclusion 

Adverse health implications attributable to the ambient air pollution exposure, 

especially the fine particulate matter (PM2.5), are particularly critical for those living in urban 
areas. While extensive scientific studies conducted in the last three decades reveal that on-

road transportation is one of the significant contributors of PM2.5 concentrations in urban 
areas, more recent studies conversely find that vehicle transportation on the roadways merely 

represents a relatively small contribution of total PM2.5 in the cities due to the continual 
automotive technology improvement and stringent emission regulations. Such contradiction 

raises arguments about whether on-road transportation a major source of ambient PM2.5 in 
urban areas at present and what could be expected from further reduction of on-road 
transportation emissions to improve urban’s air quality in the future. Accordingly, this thesis 

has scrutinized the relationship between on-road transportation and concentrations of PM2.5, 
with an attempt to answer the following research question: “Based on the most recent dataset, is 
emissions from on-road transportation a pollution source that significantly contributes to fine 

particulate matter (PM2.5) concentrations in urban areas?”. 
By executing instrumental variable estimations, data on 381 CBSAs from 2001-2016 

and statistical results suggest that an additional kilometer of on-road vehicle traveled does 

not lead to a significant increase in the overall concentrations of PM2.5 in U.S. cities. This, in 
other words, would suggest that on-road transportation is at present not a significant 

pollution source contributing to ambient PM2.5 concentrations in urban areas. This empirical 
evidence implies that the gains from any policy aimed at reducing on-road traffic emissions 

further to lower PM2.5 concentrations in urban areas would be marginal to insignificant. 
Consequently, as the on-road transportation sector emits a smaller to insignificant share of the 

total PM2.5 emissions, other emission-reduction strategies can be a more cost-effective and 
practical policy in improving air quality in urban areas.  

Nevertheless, this thesis is not without limitations. Further research on on-road 

transportation and PM2.5 concentrations is advised to consider more detailed remote sensing 
air pollution data with temporal and seasonal variations, and more information about 
vehicles, such as vehicle type and fuel types. Additionally, the chemical mechanisms of 
atmospheric particulate matter are suggested to be included in the scrutiny. Going forward, 
it will be essential to have a more holistic view of all the three processes on-road transportation 

contributes to ambient PM2.5 concentration levels and assess the most cost-effective 
approaches to achieve the desired air pollution improvements in urban areas. 
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Appendices 

Appendix A 
Summary of variables and data sources 

Table A1 

Summary of variables and data sources 

Variables Sources 
Name of Organization URL 

Dependent variable 
(1) Average 
annual PM2.5 
concentrations   

NASA's Socioeconomic Data and 
Applications Center (SEDAC) 

https://sedac.ciesin.columbia.e
du/data/set/sdei-global-
annual-gwr-pm2-5-modis-misr-
seawifs-aod-v4-gl-03/data-
download 

Independent variable 
 

(2) On-road daily 
VKT  

The U.S. Department of 
Transportation - Federal Highway 
Administration (FHWA) 

https://www.fhwa.dot.gov/po
licyinformation/quickfinddata/
qfroad.cfm 

Control variables 
 

(3) Annual 
Average Daily 
Traffic (AADT) 

The U.S. Department of 
Transportation - Federal Highway 
Administration (FHWA) 

https://www.fhwa.dot.gov/po
licyinformation/quickfinddata/
qfroad.cfm 

(4) Population 
density 

WorldPop https://www.worldpop.org/ge
odata/summary?id=44766 

(5) Industrial 
employment  

The U.S. Census Bureau's 
Longitudinal Employer-Household 
Dynamics (LEHD) 

https://j2jexplorer.ces.census.g
ov/explore.html#1343062 

(6) Temperature 
WorldClim global climate and 
weather data  

https://worldclim.org/data/m
onthlywth.html 

(7) Precipitation 

(8) Wind speed  

(9) Gasoline and 
Diesel Prices 

The U.S. Energy Information 
Administration (EIA) 

https://www.eia.gov/dnav/pe
t/pet_pri_gnd_dcus_nus_a.htm 

(10) Gasoline and 
Diesel Taxes 

The U.S. Department of 
Transportation - Federal Highway 
Administration (FHWA) 

https://www.fhwa.dot.gov/po
licyinformation/statistics/2018
/MF205.cfm 

(11) Annual GDP The U.S. Bureau of Economic 
Analysis (BEA). 

https://www.bea.gov/ 

Robustness checking 
(12) On-road CO2 
emissions 

National Aeronautics and Space 
Administration 

https://daac.ornl.gov/cgi-
bin/dsviewer.pl?ds_id=1735 
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Appendix B 

Process in assigning the satellite PM2.5 concentrations GeoTIFF raster into the 
selected CBSAs in the United States boundary shapefile 

 
 
 

 

 

 
 
Note. Panel A exhibits a GeoTIFF raster of satellite PM2.5 concentrations. The raster contains a grid 
cell resolution of 0.01x0.01-degree, covering the global land surface from 70 degrees north to 55 
degrees south. The brighter red area represents a higher level of PM2.5 concentrations. Panel B 
presents all Core Based Statistical Areas (CBSAs) polygon shapefile over the contiguous United 
States, Alaska and Hawaii. The green areas are the CBSAS, while the white areas are non CBSAs. 
In Panel C, the CBSAs polygons are overlaid on the satellite PM2.5 concentrations GeoTIFF raster. 
By doing so, we determine which satellite PM2.5 grid cells overlay consolidated the CBSAs by 
using the Zonal Statistics tool in the GIS software. Lastly, Panel D is the output shapefile after 
assigning the satellite PM2.5 concentrations GeoTIFF raster into CBSAs. The red area represents 
high level of PM2.5 concentrations, whereas orange to light pink areas show lower concentrations, 
respectively. 
 

(A) Satellite PM2.5 concentrations  
GeoTIFF raster 

 

(B) Core Based Statistical Areas (CBSAs) 
polygons shapefile 

 

(C) Overlaying CBSAs polygons shapefile  
on satellite PM2.5 concentrations  

GeoTIFF raster 

 

(D) Output shapefile 
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Appendix C 

Scatter plot demonstrating the correlation between PM2.5 concentrations derived 
from ground-level monitoring stations and satellite 

 
Figure C1 

Scatter plot of the correlation between PM2.5 concentrations derived from ground-level monitoring 
stations and satellite 

 
Note. Vertical axis represents an average annual PM2.5 concentrations, as obtained from the 
satellite-derived measures. Horizontal axis represents average annual PM2.5 concentrations 
obtained from ground-level monitoring station. 
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Appendix D 
1947 plan of the interstate highway system  

 
Figure D1 

The 1947 plan of the interstate highway system 

 
Note. Retrieved from Duranton and Turner (2011). 
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Appendix E 

Pairwise correlation coefficient 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

(1) Aggregate PM2.5  1.000             

(2) On-road daily VKT 0.060 1.000            
(3) Population density 0.153 0.702 1.000           
(4) Industrial activities 0.065 0.585 0.670 1.000          
(5) Traffic congestion 0.029 0.453 0.448 0.415 1.000         
(6) GDP 0.036 0.632 0.741 0.882 0.341 1.000        
(7) Precipitation 0.322 0.015 0.114 -0.032 0.049 -0.004 1.000       
(8) Temperature -0.068 0.012 0.004 0.087 0.221 0.023 0.192 1.000      
(9) Wind speed 0.010 -0.020 0.072 -0.029 -0.080 0.007 0.123 -0.211 1.000     
(10) Gasoline price -0.348 0.002 0.022 -0.037 -0.036 0.041 0.001 0.023 0.134 1.000    
(11) Diesel price -0.349 0.002 0.022 -0.036 -0.038 0.041 0.004 0.015 0.132 0.996 1.000   
(12) Gasoline tax -0.185 -0.065 -0.004 -0.052 -0.011 -0.026 -0.152 -0.282 0.019 0.163 0.163 1.000  
(13) Diesel tax -0.153 -0.067 -0.002 -0.068 -0.049 -0.061 -0.018 -0.225 0.068 0.073 0.074 0.756 1.000 


