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Abstract

In this research, text classification is applied to Dutch Data Processing Agreements (DPA). A

DPA governs the obligations and rights between two commercial parties regarding the processing

of personal data of consumers obtained by one party and processed by the other. Text classifica-

tion on DPA’s enables lawyers to decrease time spent on reviewing these contracts while making

contracting more consistent and human error-free. Researching these potentials is worthwhile

as the global legal market (worth 1 trillion US Dollars annually) remains underdigitalized. This

research contributes by assessing which state-of-the-art text classification algorithm is the most

capable and if the performance can be elevated by applying Model Ensembling. The considered

state-of-the-art models are Bidirectional Encoder Representations from Transformers (BERT),

a Robustly optimized BERT (RoBERTa), and Universal Language Model Fine-tuning for Text

Classification (ULMFiT). Previous research has shown that BERT and RoBERTa outperform

ULMFiT on multiple language tasks. In this research, the Rotation Estimated version of Dutch

BERT (i.e. BERTje) outperforms ULMFiT with a macro-weighted F1-score of 0.88 on 100% of

the data, but with limited data, ULMFiT is better at predicting classes that differentiate based

on a sequential pattern. At last, Model Ensembling improves model performance by 3% when

enough data is available, giving a macro-weighted F1-score of 0.91 on 100% of the data. The

Model Ensembling is done with two different models to compare performance, i.e., Logistic Re-

gression and Linear Discriminant Analysis (LDA). Results show that with limited data Logistic

Regression performs better than LDA, but LDA outperforms Logistic Regression when enough

data is available.
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1 Introduction

The field of Law is at the center of all business activity, causing it to be one of the largest markets

with an annual global turnover of 1 trillion (1012) US Dollars (Toews, 2019). Yet, this market

remains profoundly underdigitalized, as it is notoriously slow to adopt new technologies (Toews,

2019). Rich (2020) found that contract review and drafting can be made more efficient by text

classification algorithms, as it is estimated that inefficient contracting leads to a value loss of 5% to

40% on a given deal. By implementing text classification algorithms, lawyers can shift their focus

from routine activities to more high-value work (Dale, 2019; Toews, 2019).

Text classification is a sub-domain of Natural Language Processing (NLP). Text classification

is the field of computational techniques that focuses on the automatic analysis of human language

(Cambria & White, 2014). The general idea is to input labeled texts into a Machine Learning algo-

rithm that learns how certain words can predict a set of classes. To date, the highest performance

in text classification has been achieved by different implementations of Neural Networks, which has

led to a focus on this methodology (Devlin, Chang, Lee, & Toutanova, 2018). As a result, Neural

Networks are the focus of this research and are explained in detail in section 4.2.

Van der Ploeg, Austin, and Steyerberg (2014) found that Neural Networks are data-hungry,

meaning that they can only perform well on data sets that contain many observations. Howard and

Ruder (2018) found a procedure that satisfies this data hunger through unsupervised pretraining of

the Neural Network, essentially applying transfer learning in an NLP setting. Transfer learning in

NLP consists of training a model on large amounts of general textual data, enabling the model to

learn general properties of language, i.e., the meaning of words, grammar, and word dependencies.

The model then only needs to be adjusted to a specific purpose, which in this research is the

classification of legal clauses.

Collecting labeled data for legal contracts is expensive, as the person labeling the data must

be an expert in the legal domain. Furthermore, the classes in the data can be very unbalanced

for contracts, as an unacceptable clause is less common. An unacceptable clause is a clause that

contains such wording that it results in an extremely one-sided relation among parties. Favorably,

Neural Networks are not harmed by class imbalance as long as there is enough data for each class

to learn its parameters. There is thus a need to find the optimal use of data that does not need to

account for class imbalance.

Rotation Estimation can maximize the utilization of the given data in Neural Networks, as
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training a Neural Network requires a separate validation set. Rotation Estimation is a procedure

in which the training set is split into k -Folds, where one of the k -Folds is the validation set, and the

other k-1 -Folds are the training set, and the model is trained k times with a different validation

set every time. This could reduce the randomness of the split and, more importantly for Deep

Learning, the model sees every observation in the training data set (Geisser, 1993). One downside

is that it might become harder to signal bias with the validation set as the parameters have seen

the observations in the validation set.

Sakkis et al. (2001) has built on top of this idea by introducing Model Ensembling with multiple

Level 1 Models and a Level 2 Model. The Level 1 Models are trained to predict to which observation

a class belongs. The Level 1 Models then try to predict the classes of the observations in the

validation set. The Level 2 Model then learns how to optimally combine these predictions into a

final prediction. The procedure of Model Ensembling is explained in more detail in section 4.8.

The Level 1 Models in this research are state-of-the-art Neural Networks.

The state-of-the-art Neural Networks for text classification are Bidirectional Encoder Rep-

resentations from Transformers (BERT), Robustly optimized BERT (RoBERTa), and Universal

Language Model Fine-tuning for Text Classification (ULMFiT), which are explained in sections 2

and 4.

These models are considered state-of-the-art text classification algorithms, because of their

performance in classifying consumer reviews. Text classification is mostly applied to consumer

reviews, meaning there are few studies done where NLP is applied in a legal context (Grimes, 2017;

Medhat, Hassan, & Korashy, 2014). The supporting literature will therefore mostly be about NLP

on consumer reviews.

Theoretically, the underlying assumptions of modeling consumer reviews and contractual clauses

are the same. Clauses in a contract can be classified based on their content and corresponding con-

sequences, equivalent to how reviews can be classified based on their sentiment. Only, the required

preprocessing differs, as legal documents and consumer reviews differ in structure. Contracts are

generally longer, contain insertion fields, fewer spelling mistakes, and no emoticons. Moreover,

clauses typically contain titles that convey information about the content of the clause, and each

clause begins with an article number or symbol.

This research considers one type of contract, being Data Processing Agreements (DPA). A

DPA governs the rights and obligations of two commercial parties on processing personal data of

consumers, where generally one party has collected the personal data and delegates its processing
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to the other party. A DPA is governed and made obligatory by the General Data Protection

Regulation (GDPR). As a result, DPAs are typically well structured, meaning each clause handles

one topic, allowing for multi-class classification. The main research question is as follows:

– ”How can we successfully classify clauses in a Dutch Data Processing Agreement with limited

data?”

To be able to answer the research question, the following sub-questions are answered:

1. How must a DPA be preprocessed for text classification?

2. What are the current state-of-the-art text classification algorithms and what are their differ-

ences?

3. What are the resulting effective differences between the models in terms of performance?

4. How does the amount of training data affect the performance of the models?

5. Can Rotation Estimation and Model Ensembling improve prediction performance?

This research contributes to the academic literature on the application of text classification,

specifically in a legal context. This research examines how the current state-of-the-art NLP models

perform on limited data of legal documents, and whether the performance can be enhanced by

Model Ensembling. At last, this research aims to further stimulate investigation on how to add

value by reducing review time, human error, and inconsistency.

This thesis continues as follows. Section 2 discusses the existing literature of text classification.

Section 3 discusses the data itself, the appropriate preprocessing, the data correction method-

ology, the reasoning behind the data classes, and the data partitioning. Section 4 contains the

methodology of the models. Section 5 evaluates and interprets the results. Section 6 answers the

sub-questions and the main question. Section 7 discusses the limitations of this research and gives

recommendations for future research.

2 Literature Review

This research aims to compare different Neural Networks in their ability to classify legal clauses

on different amounts of data. For this purpose, the considerations and research that went into

the development of the current state-of-the-art in NLP are explained in this section. This section

concludes with a summary of the main theoretical differences between the three models compared.
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2.1 Bag-of-Words

At the beginning of text classification, the bag-of-words (BoW) approach was used to numericalize

documents. The BoW transforms a document into a numeric feature matrix with a fixed length,

where each feature is the word occurrence, word frequency, or term frequency-inverse document

frequency score. The BoW approach has two major disadvantages: the word order is ignored and

it can barely encode the semantics of words (Zhang, Wang, & Liu, 2018). As the word order is

ignored, a lot of information is lost, as the sentences ’Not only do I love the new iPhone’ and ’Only, I

do not love the new iPhone’ are represented in the same way. The disadvantage of not representing

word semantics in the data is that similarity among words is neglected, as relationships between

words can not be quantified. As a solution N -grams were introduced, unfortunately, they were

found to be ineffective in a BoW-approach (Bekkerman & Allan, 2004).

2.2 Contextualised Word Embeddings

The shortcomings of BoW are overcome by using Word Embeddings with a Continuous-BoW or

skip-grams (Mikolov, Karafiát, Burget, Černockỳ, & Khudanpur, 2010). Word Embeddings consist

of real numbered vectors that represent words, where each word has its own vector that contains

information about that word. Conceptually, words that are similar in their meaning and grammar

should have similar vectors. The first model that creates a vector for each word is the Word2Vec

model, where it learns the word vectors by predicting one word based on its context (Mikolov,

Chen, Corrado, & Dean, 2013).

Unfortunately, the Word2Vec has two downsides. To begin with, as every word is represented by

one vector, multiple senses of a word cannot be represented. Most words have multiple senses that

depend on the context. For example, the word ’company’ in the sentences ’My friends and family

are great company ’ and ’Apple is a market-leading and innovative company ’ has two different

meanings that depend on the context. Furthermore, the meaning of a word that the vector can

describe is incomplete, as the vector is created on a fixed number of words, meaning that not all

words that influence the meaning of a word can be taken into account.

These downsides are overcome by training Neural Network on top of the Word Embeddings,

which increases the number of trainable parameters and creates a Deep Learning model. The added

trainable parameters are the weights and biases in the Neural Network. The meaning of a word

is then encoded in the multiplication of the vector in the Word Embeddings with the weights and
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biases in the model, enabling the representation of different senses of words (Y. Goldberg, 2017).

The Neural Network and the Word Embeddings are estimated by training the model on a large

corpus of texts, where it has to predict an output that is based on word dependencies, such as

predicting the word given the context or vice versa. The parameters then have obtained knowledge

about the grammar, meaning of words, and word dependencies (Howard & Ruder, 2018). Such

a model is called a Language Model (LM). There are multiple variations in defining a Language

Model, in this research, we focus on the LM of the BERT model and the LM of ULMFiT.

2.3 Recurrent Neural Networks

RNN is a good architecture for language modeling, as RNN is designed to handle sequential data.

Text data is sequential as the sequence of words influences the meaning of a text. By inputting

words sequentially RNN’s achieve high-performance (Mikolov et al., 2010).

One downside of RNNs, however, is that they have difficulty learning long-term dependencies

because meaningful words far back in the sequence become inaccessible due to vanishing gradients

(Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001). Vanishing gradients disable weights that are

further back in the sequence from learning word relations. How vanishing gradients relate to the

learning process in RNNs is explained in section 4.3.2.

Vanishing gradients are especially problematic for legal documents, as sentences can become

extensive. E.g., for the sentence: ’The obligations of the Processor arising from this Data Processing

Agreement also apply to those who process personal data under the authority of the Processor .’,

to correctly predict the last word in this sentence the model must understand whose authority is

meant, meaning the model has to bridge a gap of over 19 words. As that gap becomes larger, it

becomes more difficult for RNNs to access important information. RNNs are explained in section

4.3. ULMFiT is an RNN with Long Short-Term Memory (LSTM), which is explained in 4.3.3.

2.4 Universal Language Model Fine-tuning for Text Classification

ULMFiT is an Adam Weight Dropped-Long Short-Term Memory (AWD-LSTM) model (Howard

& Ruder, 2018). ULMFiT increased the model performance by transfer learning to obtain con-

textualized Word Embeddings as explained in the introduction and section 2.2. The pretrained

weights only have to be trained once per language and significantly improve performance and con-

vergence (Howard & Ruder, 2018). For Dutch there is only one pretrained ULMFiT model, which

is developed by van der Burgh and Verberne (2019) and pretrained on 79MB of text data.
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The LM in AWD-LSTM is estimated by calculating the likelihood that a word is next in a

sequence (Y. Goldberg, 2017). The RNN autoregressive predicts the next word in a sentence,

where the possible output is every word in the Word Embeddings, resulting in a final classification

layer with as many output neurons as there are words in the Word Embeddings. After each word

in the sequence, every word in the Word Embeddings obtains its probability on the likelihood it

follows after that word. Thus predicting the word given the context, where the context is equal to

all preceding words in the sequence.

2.5 Transformers: BERT & RoBERTa

Transformers have an entirely different model structure, they do not use a recurrent structure as

in RNNs. The Transformer was introduced by Vaswani et al. (2017) and outperformed the Google

Neural Machine Translation while allowing for more parallelization. BERT was introduced by

Devlin et al. (2018) and uses only one part (i.e. ’Encoder’ ) of the Transformer model, as the other

part (i.e. ’Decoder’ ) is solely meant for translation, technical explanation of BERT is provided in

section 4.5.

BERT is the current state-of-the-art for NLP and builds on top of all the best ideas for NLP.

BERT was developed with the idea to make clever use of ”free” data, replacing the need to create

data. The model is explained in section 4.5 and visualised in Figures 6 to 10.

One of BERT’s main advantages over other models is that it reads from both left to right and

right to left. Pretraining of BERT must be done on a very large corpus of text with many iterations,

as the model has at least 110 Million parameters. When there is not enough data, BERT is very

prone to overfitting (H. D. Lee, Lee, & Kang, 2020a). BERT has two model sizes, BERT Base and

BERT Large, there is unfortunately no Dutch BERT Large model yet.

There is currently only one pretrained Dutch BERT model available, being BERTje. BERTje is

a BERT Base model and is pretrained on 12GB of uncompressed text of around 2.4 billion tokens

(de Vries et al., 2019).

2.5.1 Pretraining

BERT is pretrained bidirectionally by using masking through auto-encoding, which means that

some percentage of the input tokens are hidden at random so that the model can learn contex-

tualized Word Embeddings by predicting the hidden tokens (Devlin et al., 2018). Furthermore,
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’Next-Sentence Prediction’ is also applied during pretraining, which lets the model learn relation-

ships between sentences. It is technically explained in section 4.6.

2.5.2 RoBERTa

RoBERTa is a variation of BERT that is pretrained on a larger amount of data, without Next-

Sentence Prediction. RoBERTa improves between 2-20% over BERT and was introduced by Face-

book (Liu et al., 2019). RobBERT is a Dutch RoBERTa model and is pretrained on 39GB of text

of around 6.6 billion words (Delobelle, Winters, & Berendt, 2020). RobBERT has outperformed

all Dutch text classification models on all language tasks, except Named Entity Recognition.

2.6 Summary

The current state-of-the-art in NLP is dominated by Neural Networks, where the architecture

varies among models. ULMFiT is an AWD-LSTM, which is an RNN with LSTM cells. BERT and

RoBERTa are Transformers. BERT and RoBERTa are pretrained on a larger amount of data and

consist of more parameters. RoBERTa is trained on even more data than BERT but without the

Next-Sentence Prediction.

3 Data

This section describes the data classes, data collection, data preprocessing, data correction, and

data partitioning.

3.1 Data Labels

Contracts undergo different judgments dependent on the use case. E.g., a business that outsources

data processing has more interest in strict clauses than the business that processes the data. This

does not change the correct classification of the content of a contract, it does however impact the

conclusion of the contract review. Therefore, the labels only relate to the content of a contractual

clause. The final judgment is done by looking up whether the content is ’ok’, ’not ok’ or ’alert’

in a dictionary approach, where the dictionary depends on the use case. A dictionary approach

simply entails matching keywords, hence this research only focuses on the correct classification of

the content of a clause.
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In total 68 classes are used. As it relates to the content of the clause, some translated ex-

amples are liability-limited (’aansprakelijkheid-beperkt’), ’liability-unlimited’ (’aansprakelijkheid-

onbeperkt’ and ’databreach-48hours’ (’datalek-48uur’). These examples illustrate how the action

required depends on the use case, as only the content is classified.

3.2 Data Collection & Correction

The text data is collected and labeled by interns and lawyers of ICTRecht, a legal firm located

in Utrecht, the Netherlands. As the data is labeled by a third party, the risk of researcher bias

is reduced. The data consists of 600 labeled Dutch Data Processing Agreements (DPAs). The

agreements are separated into multiple strings by cutting after each new-line argument (’\n’),

where each string is labeled according to one of the 68 classes. In total there are 19860 labeled

clauses in the DPA data set. The distribution of the classes is given in Table 3 in Appendix A.

Due to human error, there are mistakes in the labels. To find these mistakes, a ULMFiT model

is trained on 100% of the data. Using that model, the validation loss per observation is calculated

for the entire data set. This is done by flipping the training and validation set. With the loss

per observation, the data frames are sorted in descending order. The cut-off point is determined

where the first observation clearly has the right class. The observations with the highest losses are

put into a separate file. This file is sent back to ICTRecht for reconsideration. By this procedure

around 1.500 observations in the data set (roughly 10% of the whole data) have been corrected.

3.3 Data Preprocessing & Partitioning

Natural Language Processing requires preprocessing of the corpus, where the required preprocessing

depends on the characteristics of the corpus, for example, legal documents are less likely to contain

typos than reviews. For this matter, the following preprocessing steps are taken.

To begin with, the header of each article is put into sequence with their respective clause,

embedded with special tokens to signal separation between the header and the content of the clause.

For DPAs it was found that the model performance increases substantially by implementing the

header of a clause into the sequence of text, by wrapping the header into a begin marker and an

end marker. Furthermore, all words are included, as it is unlikely that a contract contains typos

or uninformative words. Any symbols created by text conversions can be deleted through regular

expressions, as they contain Unicode.

Furthermore, as every new line in a document is considered as a separate string, many strings

12



in the data contain noise, e.g., they are as long as two or three words, only consist of a sign field,

or only contain the date. This noise is filtered out by regular expressions in a function call so

that new data can easily undergo the same procedure.

At last, the beginning of each string is characterized by either a number depicting the article

number of the clause or a symbol indicating it is a summation. These tokens do not convey anything

about the content and implication of the clause. Therefore, for all strings that begin with a number,

the number is replaced by ”new-article”. And for all strings that begin with a symbol, the symbol

is replaced by ”summation”.

After the strings have been preprocessed, the data is split into a stratified test and training set

with a 20% to 80% ratio. This results in 3950 observations in the test set and 15797 in the training

set for 100% of the data. The test set needs to be of a considerate amount to properly evaluate the

different algorithms, while not sacrificing too much training data. With a stratified test set of 10%,

not all classes are represented, and as there are still 15797 observations to train, this is considered

a good split.

The differences in model performances are evaluated on different subsets of the data, being 20%,

40%, 60%, 80%, and 100% of the training set. Within these subsets, a 20% validation set is created.

This is required for proper fine-tuning to prevent overfitting. Furthermore, the 20% validation set

is also used for Model Ensembling, thus requiring a substantial amount of observations.

4 Methodology

This section describes the mathematics behind the algorithms applied as well as their application

and evaluation. This section continues as follows: first, the basics of Neural Networks are explained.

Second, Recurrent Neural Networks, LSTM-cells, and AWD-LSTM regularisation are explained.

Third, BERT and RoBERTa are explained. At last, the procedures of Rotation Estimation, Model

Ensembling, and Model Evaluation are explained.

4.1 Practical Considerations

The GPU used for this research is an Nvidia Tesla T4 15 GB GPU, with CUDA Version 11.0.

The underlying package for ULMFiT, BERTje, and RobBERT is PyTorch. ULMFiT is developed

and provided by FastAI, BERTje and RobBERT are variations of the standard BERT model as

developed and provided by HuggingFace. A random seed is set in every environment (CUDA,
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CPU, PyTorch) to make the results as reproducible as possible.

4.2 Basic principles of Neural Networks

In this thesis multiple state-of-the-art Neural Network architectures are evaluated and ensembled.

For sake of comprehension, a general introduction into Neural Networks is given in this section,

explanation of the exact architectures used follows later in this chapter. In Figure 1 a simple deep

Neural Network is visualized.

Figure 1: Feed Forward Artificial Neural Network architecture. Source: (Zhong &

Enke, 2019)

All layers contain neurons, which are represented by circles. The vertical rows of neurons are

layers, where the first layer is the input layer (Xi), the last layer is the output layer (Ok), and

the layer in between is the hidden layer (Hj). The hidden layer and output layer process the data

by using matrix multiplication. Within each neuron, a weight is multiplied by the input vector.

The weights vector of a hidden layer consists of the weights of all the neurons, meaning they pass

through every layer is one matrix multiplication between the input vector and the weight vector.

In the output layer, the result of the model is generated, being either classification or regression.

4.2.1 Activation functions

The output of the multiplication within each neuron depends on the activation function. There are

many activation functions (Lederer, 2021). The activation function Rectified Linear Units (ReLU)

is found to be optimal for hidden layers, as it is a nonlinear function that can learn complex

relationships while acting like a linear function (Goodfellow, Bengio, & Courville, 2016). ReLUs
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react more proportionate in all areas, do not push large and small values into a small range and,

as a result, are better able to differentiate between multiple values. ReLUs are thus more sensitive

and saturate less, which means the model can learn more relationships in the data and it suffers

less from the vanishing gradient problem, which is explained later in section 4.3.2 (Goodfellow et

al., 2016). The formula of the ReLU is:

ReLU(s) = max(0, s) (1)

The output o of a node q within layer l is equal to the transformation of the activation function a

on scalar s, where s is equal to the sum of all outputs of the previous layer l − 1 multiplied by a

distinct weight wq and added up by a distinct bias term bq. The formula for the output o of neuron

q in layer l is thus:

o[l]
q = a[l](s[l]

q ) = a[l](
∑

w[l]
q o

l−1] + b[l]q ) , (2)

In classification, the final layer is either a sigmoid for binary classification or a softmax for multi-

class classification. The formula of the softmax activation function is as follows:

Softmax(s) =
esp∑C
j e

sj
, (3)

Where p refers to the actual class of the one-hot encoded vector j = 1, 2, ..., C, where C is the total

number of classes, s is the scalar output of the weights and biases of the final layer for the actual

class p and all classes j. By dividing the output by the sum of all possible outputs it ensures that

the sum of all probabilities equals 1.

4.2.2 Loss function

Optimization of the parameters is done by minimizing a loss function, where the loss function

depends on the problem. In this research, the loss function used is the cross-entropy loss function.

Cross-entropy loss measures the difference between two probability distributions for several out-

comes. These probabilities distributions are the true outcome and the predicted outcome, where

the predicted outcome tries to approximate the true outcome. On the left side of the formula, the

general equation for cross-entropy loss is given and on the right side it is adjusted for multi-class

cross-entropy loss, i.e.:

L(ŷ, y) = − 1

N

N∑
i=1

C∑
c=1

y · log ŷi = − 1

N

N∑
i=1

C∑
c=1

y · log
esp∑C
j e

sj
, (4)
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where y is a one-hot encoded vector where the value is 1 at the index of the actual class and 0

otherwise. ŷi is a vector that contains the probability scores outputted by the Neural Network for

each class. By multiplying the vector y with the probabilities vector ŷi, the loss is calculated based

on the estimated probability of the class it should have predicted (Cp), with a reference value of 1.

Doing so, it automatically accounts for the negative classes as the probability score of the positive

class also depends on the probability scores of the negative classes. At last, PyTorch computes the

loss per batch to speed up convergence.

4.2.3 Regularisation: Weight Decay, Dropout, and Early Stopping

To enable a model to make accurate predictions on new data, it has to generalize well (Goodfellow

et al., 2016). Model generalization can be increased through regularisation, which leads to the

bias-variance trade-off (Reed & Marks, 1999).

Overfitting is when the model has low variance on the training data and generalizes poorly on

unseen data. Overfitting can be dealt with by either increasing the number of training samples or

reducing the complexity of the network (i.e., increasing bias) (Bishop, 1995). A model can overfit

the data when it has the capacity to do so, meaning that the model is too complex in relation

to the number of data points. Artificial Neural Networks are likely to overfit the data, as they

contain many parameters (Reed & Marks, 1999). Overfitting is signaled by using a validation set:

the model overfits the training data when the loss on the validation set does not decrease while the

loss on the training set decreases.

One way to reduce the complexity of the model (increase bias) is by ensuring the weights in

the model remain small, as large weights cause sharp differences in the activation functions and

therewith large changes in output for small changes in inputs (Reed & Marks, 1999). Weight Decay

specifically serves that matter. Weight Decay and Dropout are the most common bias terms used

in Neural Networks (Goodfellow et al., 2016).

Weight Decay is inspired on L2-regularisation, where the sum of the square of the pa-

rameters is added to the loss function to prevent the parameters from becoming too large (James,

Witten, Hastie, & Tibshirani, 2021). In Neural Networks, a fraction of the parameters is subtracted

from its update by backpropagation. The implementation of weight decay is further explained in

section 4.2.4.

Dropout reduces the model’s complexity as it narrows the network. In Figure 2 the
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effect of Dropout in a Neural Network is visualized. During training, when a unit is dropped, it

is temporarily removed along with all its incoming and outgoing connections. As a result, each

update to a layer during training is executed with a different form of that layer. Effectuating that

it approximates training a large number of Neural Networks in parallel, as it estimates multiple

variations at different time steps (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,

2014). Moreover, the parameters become noisy and are forced to cooperate more, making the

model more robust (Srivastava et al., 2014).

Figure 2: Dropout. Source: (Srivastava et al., 2014)

The probability that a neuron is dropped is depicted by the Bernoulli distribution. Dropout

ensures the sum of the activations remains constant by rescaling the leftover activations by multi-

plying with 1
1−p , where p is the probability of dropout. p = 0.5 maximizes the number of possible

networks sampled from the probability distribution, maximizing the regularisation through dropout

(Srivastava et al., 2014).

Early Stopping gives the possibility to automatically stop the training cycle when the

validation loss has not decreased since a certain amount of epochs, the hyperparameter that deter-

mines this amount of epochs is called patience. The patience is set to 5 in ULMFiT, as it can

take a few epochs for the model to improve and the epochs are fast. The patience in BERTje and

RobBERT is set to 2, as the epochs take longer.

4.2.4 Optimization

Neural Networks optimize their parameters by minimizing a loss function through backpropagation,

a learning rate, and an optimizer. These are explained in this section.
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Backpropagation is the process of computing the partial derivatives to determine in which

direction the weight and biases must be adjusted to decrease the loss function, formally put: ∂L(ŷ,y)
∂ŷ .

This formula can be rewritten to: ∂L(θ)
∂θ , where θ is the parameter vector of all weights and biases,

as all other terms are constant. The L(θ) is computed at the output layer, which means that the

partial derivatives of the loss with respect to the weights and biases are calculated recursively, for

which the chain rule is applied (Werbos, 1990).

Optimizer: Stochastic Gradient Descent (SGD) is a first-order derivative optimiza-

tion algorithm that adjusts the weights and biases sequentially in the direction that decreases the

error rapidly, formally put:

θupdated = θ − γ ∂L(θ)

∂θ
, (5)

where θupdated are the updated parameters and γ is the learning rate. The learning rate determines

the pace of convergence: a high learning rate amplifies the updates, but runs the risk overshooting

the local minimum causing convergence failure (Kingma & Ba, 2017).

Optimizer: Adam is a variation of SGD which improves convergence by momentum.

Momentum entails the alteration of the parameter update for every parameter by dividing the

gradients for each parameter with the square of their recent gradients (Kingma & Ba, 2017).

Adam must be decoupled from weight decay (AdamW), which results in a good optimizer (Loshchilov

& Hutter, 2019). Adam has a low memory requirement, is invariant to diagonal rescaling of gra-

dients, and is computationally efficient, making it well suited for problems with large data and

parameters (Kingma & Ba, 2017). AdamW is the default optimizer in both Transformers and FastAI.

Decoupling weight decay from Adam means that weight decay is not computed in the loss. The

weights are updated in the following step-wise manner: first, the gradients are computed, then the

unbiased exponential moving average is calculated over two different ranges determined by β1 and

β2 (i.e., formulas 6 and 7), the weight update is calculated and applied.

mt =
β1mt−1 + (1− β1)gt

1− β1
, where gt =

∂L(θ)

∂θ
, (6)

vt =
β2mt−1 + (1− β2)gt

1− β2
, (7)

θupdated = θt − γ · λ+
mt

vt
(8)

Where β1 and β2 are hyperparameters that are set to their default values, being 0.9 and 0.99

respectively. These values are empirically found to work well (Kingma & Ba, 2017). The weight
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update is then calculated by applying formula 8, where γ is the learning rate and λ is the weight

decay.

Adam is applied on the loss function, which PyTorch computes per batch, as mentioned in sec-

tion 4.2.2. The batch size determines how many observations are in each batch. The recommended

batch size for BERT and RoBERTa is 32, but due to computational limitations, the batch size is

12 (Liu et al., 2019). The batch size used for ULMFiT is 64.

4.3 Recurrent Neural Networks

Everything stated in the previous section is directly applicable to the RNN architecture. The

architecture of a simple RNN is given in Figure 3. It illustrates how the network is unfolded over a

sequence of length n. s represents the neurons, x the word inputs, and y is the dependent variable.

A simple RNN has a layer with one neuron for each word input, where the weight matrix is the

same for all input layers.

Figure 3: Recurrent Neural Network architecture. Source: (Roelants, n.d.)

In this model, the gradients at each step are calculated for all previous layers, meaning the

gradients are calculated in the usual way, alias backpropagation through time (BPTT). Conse-

quently, the model becomes as deep as the number of tokens in a document, making the model

computational infeasible for larger documents, as the derivatives need to be calculated for all words

with each their layer. The solution is called truncated backpropagation through time (TBPTT),

which deletes the gradient history up until a certain activation, resulting in a ’stateful’ model. The

gradient history is deleted at the end of an input sequence, the length of this input sequence is a

hyperparameter.
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4.3.1 Bidirectional RNN’s

A downside of an RNN-model is that an RNN-based LM only can read the context from either

right to left or left to right. Training a bidirectional RNN Language Model is not possible, as the

model then can see the word it must predict. As it is not possible to train an LM, it is not possible

to pretrain the explanatory variables, being the weights in the model. This is a problem for limited

data, as with enough data the parameters can be trained directly during the estimation of the

classification model.

For limited data, the solution is to train two separate LM’s and then average the predicted

probabilities during classification, which worked well for ULMFiT (Howard & Ruder, 2018). Given

that this research is about limited data, that procedure is applied.

4.3.2 Vanishing Gradients in RNN’s

Although the unrolled RNN seems deep, as every hidden to hidden layer uses the same weight

matrix, the network is effectively not that deep as it cannot compute any sophisticated computation

that outperforms a linear model. The solution is to use a multi-layer RNN. However, multi-layer

RNNs result in very deep models that have vanishing gradients (D. Goldberg, 2000). ReLUs as an

activation function are the least susceptible to vanishing gradients, as all other activation functions

require taking the derivative of a value between 0 and 1 (Hochreiter et al., 2001). Nonetheless,

as parameter updates are based on backpropagating the loss value from the final layer to the first

layer, the backpropagated error decreases exponentially as a function of distance from the final

layer, regardless of the activation function (Sussillo, 2014). As a result, the weights that describe

relations between words further apart cannot be quantified. The solution is applying LSTM-cells,

which is further explained in section 4.3.3.
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Figure 4: LSTM Neural Network architecture. Source: (Olah, 2015)

4.3.3 Long Short-Term Memory

LSTM is explained crudely, as explaining it from top to the bottom is out of scope for this research,

for interested readers I refer to Hochreiter and Schmidhuber (1997) for a more technical explanation.

LSTM-cells use four gates to retain memory and focus on the main classification task, separating

these two tasks enables the model to learn weights that approximate word dependencies between

words further apart in a sequence. For this mean, the LSTM has one hidden state and one cell

state (Hochreiter & Schmidhuber, 1997). The cell state is responsible for retaining memory, while

the hidden state focuses on the classification task.

The architecture of a LSTM cell is given in Figure 4, the cell state is represented by the

horizontal line running through the top of the diagram and the hidden state by ht. The gates are

highlighted in yellow and are mathematically formulated from left to right:

ft = σ(Wf · [ht−1, xt] + bf ), where σ =
ez

ez + 1
, (9a)

it = σ(Wh · [ht−1, xt] + bi) , (9b)

at = tanh(Wh · [ht−1, xt] + ba), where tanh =
ez − e−z

ez + e−z
, (9c)

The equations of 9 represent the mechanisms to alter the cell state. Equation 9a is called the

forget gate and outputs a value between 0 and 1 to determine which elements of the cell state to

forget. The equation of 9b is the input gate and decides which values are updated by a sigmoid,

equation 9c is the addition gate and creates a vector of new values ranging between 1 and −1 to

add to the cell state. The cell state is updated as follows: first, the vector of the forget gate (9a)
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is Hadamard multiplied (�) with the previous cell state and then added up by the result of the

Hadamard multiplication of the input gate (9b) and addition gate (9c); formally put:

C(t) = ft � Ct−1 + it � at , (10)

The hidden state that solely focuses on classification is determined by the output gate. The

output gate determines which values of the cell state are used for calculating the hidden state;

formally put:

ot = σ(Wo · [ht−1, xt] + bi) . (11)

The cell state is first put through a tanh to rescale the values to range between −1 and 1 and then

Hadamard multiplied by the output gate; formally put:

h(t) = ot � tanh(Ct) , (12)

Applying LSTM cells increases memory capability, (partially) solving the problems caused by van-

ishing gradients. By separating the cell state and the hidden state the backpropagation is done

separately for each state. The model thus has to update more parameters, which increases the

capacity of the model but also increases the risk of overfitting. Merity, Keskar, and Socher (2017)

wrote a paper that evaluates how to best regulate an LSTM architecture, which forms the basis on

which ULMFiT is developed (Howard & Ruder, 2018).

4.3.4 Regularizing LSTM: AWD-LSTM

The model Merity et al. (2017) developed is the AWD-LSTM model, which is the best regularized

LSTM architecture to date. AWD-LSTM uses Dropout, DropConnect, Weight Decay, Activation

Regularization (AR), and Temporal Activation Regularization (TAR). The amount of regularization

can be adjusted between epochs for all methods, meaning the regularization can be applied when

overfitting is observed, potentially accelerating convergence.

Activation Regularization is similar to weight decay, as the weighted mean of the square

of all activations of the last layer is added to the loss. This prevents the activations of the layers

from increasing if it does not decrease the loss by a considerate amount, forcing the parameters to

remain small. The weighting is a tuneable hyperparameter.

Temporal Activation Regularization is applied to make the difference between two con-

secutive activations as small as possible to stabilize the model. To this end, the squared difference
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between the activations of the current time step and the previous time step is multiplied with a β

and added to the loss function.

4.3.4.1 Dropout & DropConnect

AWD-LSTM uses dropout at multiple layers. It is applied to the embedding layer, input layer,

weights, and hidden states. Finding the right ratio between the different dropouts is a tedious task.

Howard and Ruder (2018) have found empirically good ratios for text classification, where their

magnitude is adjusted through a dropout multiplier.

Applying naive-classical dropout techniques on the input and embedding layer disrupts the

ability of the LSTM to learn long-term dependencies (Merity et al., 2017). Instead, DropConnect

is applied, where elements are zeroed in a way that the same parts of hidden units are disabled

throughout the sequence of every layer, to keep the masked weights consistent for each forward

and backward pass within one epoch (Wan, Zeiler, Zhang, Cun, & Fergus, 2013). DropConnect is

applied on all dropouts in ULMFiT, except for Output Dropout.

Embedding Dropout applies DropConnect on the vectors in the Word Embeddings,

effectively setting some elements in the Embeddings vector to zero.

Input Layer Dropout applies DropConnect in the input vector, effectively setting some

elements in the input vector to zero, which means some words are entirely masked.

Weight Dropout applies DropConnect on the weights of the hidden-to-hidden matrices.

The hidden-to-hidden matrices are the matrices that are of size input× 1150, where some elements

are randomly set to 0.

Hidden Dropout applies DropConnect on the output of a LSTM layer to another. It

zeros out the inputs of the stacked LSTM layers. For illustration, as the AWD-LSTM of ULMFiT

consists of three layers, for some words the output from layers 1 to 2 or from 2 to 3 is randomly

zeroed.

Output Dropout is only applied in the Language Model, where it zeroes final sequence

outputs from one layer before feeding it to the classification head. This way the different layers

better learn to cooperate.

4.4 AWD-LSTM: ULMFiT

This section focuses on the implementation of AWD-LSTM and its extensions in ULMFiT, being:

the applied training cycle, Discriminative Fine-tuning, Gradual Unfreezing, and Concat Pooling.
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4.4.1 Optimization: Training Cycle

Fit Flat Cosine schedules the learning rate so that the model is fit at the learning rate set

and then applies a cosine annealing near the end of the fitting cycle. The fitting cycle is determined

by the number of steps in each epoch multiplied by the number of epochs. The effect of Fit Flat

Cosine training on the learning rate over multiple steps is shown in Figure 5, where the x− axis is

for 249 batches in 25 epochs, resulting in 6225 steps.

Figure 5: Learning rate adaptation over training steps with Fit Flat Cosine

Hyperparameter scheduler

The main advantage of this learning rate schedule is that the increases and decreases in valida-

tion loss evolve relatively constant, which is beneficial for the Early Stopping Callback as it makes

the improvement of the model more predictable. A downside is that the cosine annealing may not

be utilized when the training cycle is stopped too early. The learning rate is decreased manually

when the model has stopped because the training loss did not decrease.

Discriminative fine-tuning was introduced by Howard and Ruder (2018) and builds on

the idea that different layers capture different types of information and thus should be fine-tuned

to different extents. Howard and Ruder (2018) have empirically determined that the learning rate

must decrease by a factor of 2.6 for each layer from top to bottom.

FastAI lets you pass a Python slice object anywhere that a learning rate is expected. A slice

converts a learning rate into a log-uniform collection from its beginning to its end. The first value

passed is the learning rate in the earliest layer of the Neural Network, and the second value is the

learning rate in the final layer. The layers in between have learning rates that are multiplicatively

equidistant throughout that range.

Learning rates are plotted against the losses, as introduced by (Smith, 2015) and further
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explained in Appendix B. Practically, this way the learning rate would be set too low, leading to

longer training times. For this reason, the procedure as explained in Appendix B is applied with a

minimum value for the learning rate, depending on the place in the training cycle.

Gradual Unfreezing consists of freezing all the parameters of the model and unfreezing

them layer by layer from last to first. Howard and Ruder (2018) found that this improves model

performance, and attributed it to the fact that the last layer contains the least general knowledge

and that it reduces the risk of catastrophic forgetting. When all layers are unfrozen, the whole

model is optimized altogether.

Model Resetter ensures that the hidden state and the cell states are reset after each epoch

through a call back. When fitting the model, the states must be reset to 0 to start with a clean

slate. This prevents the model from saturating and subsequently failing to improve.

4.4.2 Architecture

The Word Embeddings contain vectors of 400 numbers for each word (11,008 words on 100% of the

data). These vectors pass three stacked LSTMs. The first LSTM transforms the Word Embeddings

vector into a vector of size 1150, the second LSTM also outputs a vector of 1150 and the third

LSTM transfers it back into a vector of 400. The dimensions of W∗ and b∗ in equations 9 to 11

is thus 1150 for the first and second LSTM, the dimensions of W∗ and b∗ in the third LSTM are

400. The total amount of trainable parameters on 100% of the data is 24, 625, 808 for the Language

Model and 24, 680, 070 for the final classification model. This number may seem impressive to

the average reader, but not all parameters are moving. As the parameters in the earlier layers of

the model contain general knowledge, the parameters that are moving are only in the last layers.

Furthermore, given that the chain rule inevitably emphasizes updates in the last layers, the only

parameters that should be moving are in the last layers. This further underscores the benefits of

pretraining, as the pretrained parameters containing general knowledge do not have to move as

they are accurately estimated on large amounts of data.

The encoder component of the AWD-LSTM model used in ULMFiT is visualized in Figure 13 in

Appendix C. This encoder is used in both Language Modeling and classification, only the decoder

differs. In language modeling, the vector of 400 (the last hidden state) is multiplied by a decoder

matrix of 400× 11, 008, after which a softmax function transforms all values into probabilities for

each word (vector of shape 1× 11, 008).
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In classification, the last hidden state is concatenated with the max-pooled and the mean-pooled

hidden state. The max-pooled hidden state is the vector containing the largest value for each of

the 400 features of all hidden states in the sequence. The mean-pooled hidden state contains the

average of all features in the hidden states in the sequence. This is called Concat Pooling, which

prevents losing information(Howard & Ruder, 2018). The result is a vector of 1× 1200 features.

This vector is then passed into a layer of 50 ReLU activations, which reduces the dimension

to 50, then another layer with 50 ReLU’s rescales the output to 68, after which a Softmax layer

rescales the outputs to obtain a probability for each class.

4.4.3 Applied Training Procedure

The language model and the classification model both apply all optimization techniques as men-

tioned in this section (4.4), only the values differ. The AR and the TAR for both models are set to

1 and 2 respectively, which is the default value in ULMFiT (Howard & Ruder, 2018). This section

further explains the values used for estimating both models.

4.4.3.1 Language Model

The default dropout probabilities for the Language model are as follows: 0.1 for output dropout,

0.15 for hidden dropout, 0.25 for input dropout, 0.02 for embedding dropout, 0.2 for weight dropout.

First, the pretrained model from van der Burgh and Verberne (2019) is matched against the

vocabulary in the training set. In the beginning, the minimum learning rate is set to 0.01 and a

dropout multiplier of 0.3 is applied. When the model stops improving, the learning rate is decreased

to 0.005 and the weight decay increased to 0.25. Then, the dropout multiplier increases to 0.6 and

1. When the dropout multiplier is equal to 1, the minimum learning rate is also decreased to 0.0001.

4.4.3.2 Classification Model

The default dropout probabilities for the classification model are as follows: 0.4 for output dropout,

0.3 for hidden dropout, 0.4 for input dropout, 0.05 for embedding dropout, 0.5 for weight dropout.

First, the encoder of the Language Model is loaded. The dropout multiplier is set to 0.5 and the

minimum learning rate is first set to 0.005. After gradual unfreezing, the learning rate is to 0.001

and a for loop with different values for weight decay is applied. Then the dropout multiplier is set

to 1 and gradual unfreezing is applied. When all layers are unfrozen the learning rate is decreased

to 0.0001 and the weight decay is again for looped in ascending order to 1.
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4.5 Transformers: BERT and RoBERTa

This section is about the architecture and the training cycle after pretraining of BERT and

RoBERTa. As mentioned in section 2.5.2, only the pretraining procedure differs between BERT

and RoBERTa. Therefore, in this section, the mentioning of BERT also refers to RoBERTa, as it

explains both models.

BERT is a bidirectional variation on the Transformer architecture introduced by Vaswani et al.

(2017) and only utilizes the encoder part in text classification. This section thus focuses on the

foundation of Transformers in BERT, and how BERT extends beyond them.

BERT consists of Positional Encoding (section 4.5.1) and 12 encoder layers. Each encoder layer

consists of two sub-layers: one Multi-Head Attention sub-layer (MHA), two Add and Normalisation

operations, and one Feed Forward Neural Network (FFNN) sub-layer. MHA is further explained

in section 4.5.2. FFNN is further explained in section 4.5.4.

The vector of each word with size d in the Word Embeddings flows through its own path in

the encoder. The encoder receives a list of word vectors as input. The word dependencies are

incorporated in the Attention layers, but not in the FFNN layers. As word relations are not

incorporated in the FFNN layers, multiple words can be processed at the same time, thus allowing

for parallelization in those layers

Figure 6: Methodology of the encoder stack in transformers and the attention mechanism. Obtained

from Vaswani et al. (2017).

4.5.1 Positional Encoding

Positional Encoding adds a matrix consisting of elements whose values are based on the place of

the words in the sequence i and the element in the vector j. The model learns these patterns to
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encode word order. Figure 7 visualises positional encoding. After positional encoding, the words

are put through Multi-Head Attention.

Figure 7: Positional Enconding in BERT and RoBERTa

4.5.2 Multi-Head Attention

The Multi-Head Attention (MHA) sub-layer consists of 12 Self-Attention operations. Self-Attention

takes in one Query (QQQ), one Key (KKK), and one Value (VVV ) matrix, each containing one vector for

each word. The QQQ, KKK, and VVV matrices are obtained by multiplying the input vector of each word

with a weight matrix that is trained. The QQQ and KKK matrices are multiplied, divided with
√
d,

scaled by a Softmax, and finally multiplied with VVV . The QQQ and KKK vectors generate the amount of

attention a word obtains in VVV , resulting in a new matrix ZZZ. Self-Attention is formulated as:

Softmax(
QQQ ·KKKT

√
d

) · VVV = ZZZ (13)

Self-Attention is further explained and illustrated in Appendix D. The outputs of the 12 Self-

Attention operations in Multi-Head Attention are concatenated in one final matrix. This enables

the model to focus on multiple positions, as it creates multiple representation subspaces. As a

result, 12 ·ZZZ matrices are obtained. These are concatenated and multiplied with a weight matrix,

to obtain a final matrix ZZZ that can be put into the FFNN sub-layer. The mechanism behind

Multi-Head Self-Attention is visually represented in Figure 8.

Figure 8: Mathematical representation of Multi-Head Attention
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4.5.3 Add & Normalisation

For both MHA and FFNN the original input is added to the output of its sub-layer and then

normalized. Before adding the input and output matrices, Dropout is applied on the output

matrix. The ’Add & Norm’ step is visualized in Figure 9 below.

Figure 9: Add and Normalisation

The formula of normalization as stated in the bottom of Figure 9 (x−x̄σ+ε ) shows that for each

element in the matrix the average is subtracted and then divided by the standard deviation added

up with epsilon. Epsilon is a hyperparameter to tune.

4.5.4 Feed Forward Neural Network

The Feed-Forward Neural Network (FFNN) is visualized in Figure 10. The FFNN follows the

structure as explained in section 4.2. The FFNN layers use the ReLU activation. The inner layer

has a dimensionality of 768, the dimensionality of the input and output is 512.

Figure 10: Feed Forward Neural Network layer in BERT and RoBERTa
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4.6 Pretraining procedure

As mentioned in section 2.5 BERT is pretrained bidirectionally by using masking through auto-

encoding. To prevent the model from failing to estimate parameters for words that are masked,

the masked words are not always hidden. The tokens are hidden 80% of the time, replaced with a

random token 10% of the time, and the actual token 10% of the time (Devlin et al., 2018). ’Next-

Sentence Prediction’ is done by letting the model must predict whether a sentence (B) follows after

another sentence (A), where sentence B is the actual next sentence 50% of the time, which is then

labeled as IsNext and NotNext otherwise.

4.6.1 Learning cycle

The hyperparameters that are tuned for BERT and RoBERTa are the learning rate, dropout, and

weight decay. The hyperparameter for epsilon is set to 1−8, the scheduler used is linear schedule

with warmup with 0 warming up steps. The optimization algorithm is Adam as explained in section

4.2.4. The recommended batch size for both models is 32 (Delobelle et al., 2020; Devlin et al., 2018),

due to GPU memory restrictions the batch size is set to 12 as the program otherwise crashes.

4.6.1.1 Learning rate

The default learning rate for BERT is 1−5, which is small. However, considering that the learned

contextualized embeddings are not initialized from zero, but pretrained on an enormous amount

of data, small adjustments make sense. Setting the learning rate to 1−2 or 1−3 increased the error

rate on the first two epochs. The learning rate is set to 1−4 and is divided by a factor of ten when

both the training and validation loss did not improve.

4.6.1.2 Dropout & Weight Decay

BERT is prone to overfitting when the data is limited, as empirically found by Devlin et al. (2018).

There has been limited work on how to regularize BERT, as there is only one article published that

regularises BERT. H. D. Lee, Lee, and Kang (2020b) developed a Neural Network that automatically

optimizes BERT. For the sake of this research, the regularisation terms are put to their maximum

value, as it otherwise overfits quickly. I refer to H. D. Lee et al. (2020b) for further research.

The dropout values on the attention heads and the hidden states are thus set to 0.5, which is

equal to the maximum of regularisation as explained in section 4.2.3 (Baldi & Sadowski, 2013).
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The weight decay in BERT and RoBERTa increases by 0.25 if the validation loss failed to improve

after an epoch, with a maximum value of 1.

4.7 Rotation Estimation

Stratified K-Fold Rotation Estimation can be applied in statistics to optimize the generalization

(i.e. prediction performance). The data is split into K − folds, where each of k folds is used for

validation once and the other k−1 for training. The K resulting models then predict the probability

that an observation in the test set belongs to one of the classes, the predicted probabilities are then

averaged and the highest resulting probability determines to which class an observation belongs.

The advantages are twofold: the randomness of the split is removed and the data is fully used.

For all models, the effect of 5-Fold Stratified Rotation Estimation is considered. The decision

about the number of folds is arbitrary but most often set to either 5 or 10. Considering that an

epoch with BERTje and RobBERT takes 5 minutes for only 20% of the data, 5-Folds is chosen

with the main argument of computational feasibility.

4.8 Model Ensembling

Figure 11 visually represents how Model Ensembling obtains the final predictions. The Model

Ensembling method applied uses the predictions of Level 1 Models as the inputs for a Level 2

Model, where the Level 2 Model combines the predictions to obtain the final prediction (Sakkis et

al., 2001).

Figure 11: Methodology of Model Ensembling
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The Level 1 Models are pretrained on a stratified subset of the data to obtain their parameters.

The Level 1 Models then predict the class of every observation in a ’hold-out-fold’, which in this

case is the validation set. The predicted probabilities are stored in matrix AM,C . The Level 2 Model

then learns how to best combine these predicted probabilities into a final prediction. The Level 2

Model cannot be learned on observations the Level 1 Models used to estimate their parameters,

as the Level 2 Model then solely focuses on the best performing model instead of combining all

models.

Model Ensembling can add value when the error terms of the Level 1 Models deviate, as the

Level 2 Model can then learn how to best combine the Level 1 Models. Therefore, it is logical to

assume that Model Ensembling can increase prediction performance with multiple Neural Networks

as Level 1 Models, as different Neural Network architectures approximate a function differently

(Goodfellow et al., 2016). The Level 1 and 2 Models can be any Machine Learning model. The ML

models considered as Level 2 Models are Multinomial Logistic Regression and Linear Discriminant

Analysis, as it is intuitive to linearly combine the predictions of the Level 1 Models into final

predictions.

Multinomial Logistic Regression constructs a linear predictor function that gives probability

scores for a class dependent on the linearly combined explanatory variables, thus estimating the

conditional distribution of the response class given the predictors. Logistic Regression is supposed

to converge faster than LDA (James et al., 2021). LDA is often preferred over Multinomial Logistic

Regression as it would lead to more stable parameters (James et al., 2021). The loss function

as stated in formula 4 is optimized for both LDA and Logistic Regression. For both Logistic

Regressions as LDA for L − 1 classes p + 1 parameters must be estimated, which is equal to

((68−1) ·(68 ·3+1) =) 18291 parameters. The mathematics behind Multinomial Logistic regression

are explained in Appendix E, for LDA in Appendix F.

4.9 Model Evaluation

The prediction performance of the models is evaluated with the macro-weighted Fβ-score, macro-

weighed refers to the procedure of weighting the Fβ-score for each class by its amount of observa-

tions. The Fβ-score consists of precision and recall. Precision penalizes False Positives and recall

penalizes False Negatives. A False Positive occurs when the model falsely predicts a class, a False

Negative occurs when the model falsely does not predict a class, alias Type I and Type II errors.
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The Fβ-score captures both errors and is calculated as follows:

Fβ =
(β2 + 1) · precision · recall

(β2 · precision) + recall
, where Precision =

True Positive

True Positive + False Positive
,

&Recall =
True Positive

True Positive + False Negative
,

(14)

The β determines the desired weight distribution between precision and recall, as for β < 1 recall

is favored, for β > 1 precision is preferred, and with β = 1 they are equal. β = 1 is used, as they

are considered equally important. Based on a more thorough legal understanding of the classes,

the weights can be adjusted for some classes. This is for further research.

In determining the F1-score, the classes ’considerans-present’ and ’compliance-present’ are dis-

regarded, as they constitute leftover classes that are legally uninteresting. The F1-score for the

whole model is calculated by calculating the macro-weighted mean of the F1-scores of the other

classes, following the formula:

macro− weighted F1 =
n1

N
· L1F1 +

n2

N
· L2F1 + · · ·+ nj

N
· LjF1 , (15)

Where LjF1 is the F1-score of the jth class, with observations nj of total observations N . Calcu-

lating the total F1-score this way accounts for the class imbalance in the data. Again, with more

thorough legal knowledge certain classes can be given a larger weight if they are considered to be

more important.

The best-performing models are also compared by a Confusion Matrix. A Confusion Matrix lies

at the foundation of the F1-score, as it compares the predicted classes against the actual classes,

identifying True Positives, True Negatives, False Positives, and False Negatives. By looking at this

Matrix, it is deducible how the model performs for the 68 classes individually.

5 Results

In this section, the performance of the models is compared on different subsets of data, where

the differences in performance are explained based on the theory provided in the previous sections.

First, the general prediction performance of the models as measured by the macro-weighted F1-score

is compared, then the model performance per class is discussed.

5.1 General Performance

As can be seen in Table 1, all models perform comparably well on different amounts of data. Figure

12 shows that the differences in prediction performance between the models are not large and that
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Model Ensembling can enhance prediction performance.

The prediction performance of the models on 20% of the data is visually represented in Figure

12. The importance of pretrained contextualized Word Embeddings for limited data is underscored

by the fact that the right-to-left ULMFiT performs the worst. The importance of pretraining

does however fade when enough data is available, which is illustrated in Figure 12 as right-to-left

ULMFiT overtakes both BERT and RobBERT on 100% of the data.

Rotation Estimation with a majority vote improves prediction performance for all models on all

data levels except for BI-LSTM ULMFiT on 100% of the data. This could be due to the amount

of averaging required to obtain the final predictions. Figures 20 to 24 in Appendix G and Table 2

furthermore illustrate that Rotation Estimation works the best for the Transformer models as the

data increases compared to ULMFiT.

Table 1 shows that ’Next-Sentence Prediction’ applied in BERTje is more valuable than the

increment in data used for pretraining RobBERT for text classification of DPAs, as BERTje and

Rotation Estimated BERTje outperform RobBERT and Rotation estimated RobBERT on all data

levels.

The Level 2 Models in Model Ensembling failed to estimate its parameters until 80% of the

data is used, as it only improves over Rotation Estimated BERTje after that threshold. Notably,

the LDA only outperforms Logistic Regression when 100% of the data is used, meaning that LDA

requires more data than Logistic Regression. Simultaneously, it signals that LDA does outperform

Logistic Regression when enough data is available, which is further illustrated by Figures 25 and 26

in Appendix G as the slope of the increase in prediction performance for LDA remains the largest

compared to Logistic Regression.

34



Table 1: Macro-weighted F1-score of the Models for different amounts of data (in Percentage (%)

Data

Level

BERTje RE

BERTje

RobBERT RE Rob-

BERT

F-

ULMFiT

RE F-

ULMFiT

B-

ULMFiT

RE B-

ULMFiT

BI-

ULMFiT

RE BI-

ULMFiT

LR En-

semble

LDA En-

semble

20% 76,490 79,882 69,718 74,893 71,934 75,134 65,216 71,246 72,316 75,086 78,720 76,809

40% 80,181 85,883 78,984 84,1912 80,140 82,420 79,740 80,552 80,552 82,119 84,929 81,749

60% 84,428 88,214 81,998 86,636 83,033 85,352 81,797 84,075 84,130 85,587 87,669 85,347

80% 85,585 88,348 84,297 87,871 85,665 87,846 85,366 85,686 86,410 87,284 89,244 87,283

100% 87,011 88,827 84,083 87,991 87,279 87,707 87,262 87,712 88,398 87,907 90,874 91,217

The abbreviations are as follows: ’RE’ stands for Rotation Estimated, ’F’ for Forward, ’B’ for Backwards and ’BI’ for Bidirectional

Table 2: Added Value of Prediction Performance of Rotation Estimation compared to the model on its own based on the natural logarithm

of change (D = 100 · ln( VCV
Vsolo

))

Data Level BERTje RE RobBERT RE F-ULMFiT RE B-ULMFiT BI-ULMFiT

20% 4,339 7,159 4,352 8,842 3,758

40% 6,867 6,384 2,806 1,013 1,926

60% 4,387 5,502 2,755 2,747 1,717

80% 3,177 4,153 2,514 0,375 1,007

100% 2,066 4,544 0,489 0,515 -0,5575
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Figure 12: Macro-weighted F1-score for all data levels for all different models
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5.2 Summarized Confusion Matrices

As shown in Figure 12 the best performing models as measured by the macro-weighted F1-score

are Ensembling with LDA, Ensembling with Logistic Regression, Rotation Estimated BERTje, BI-

LSTM ULMFiT and Rotation Estimated RobBERT. The differences are not large, but Ensembling

convincingly adds value. The macro-weighted F1-score provides no insight into how the models

perform in the individual classes, which is why summaries of the confusion matrices of all models

are given in Tables 4 to 7 in Appendix H.

Table 4 and 5 in Appendix H shows that BERTje and RobBERT fail to predict the same

11 of 68 classes. They fail to predict ’datalek-12uur’, ’datalek-48uur’, ’datalek-36uur’, ’datalek-

72uur’, ’datalek-8uur’, ’aardsoort-inclausule’, ’looptijd-eigen’, ’retourkeuze-vw’, ’verzoeken-zelf ’,

’wijzigingen-alleenvv’ and ’wijzigingen-alleenvw’, which only have 14, 64, 26, 16, 2, 9, 6, 9, 30

and 19 observations, respectively.

Table 6 in Appendix H shows that BI-LSTM ULMFiT fails to predict 5 out of the 68 classes,

being ’aardsoort-inclausule’, ’datalek-12uur’, ’datalek-72uur’, ’datalek-8uur’ and ’retour-keuze-vw’,

with, respectively, 9, 14, 16, 2 and 9 observations. The BI-LSTM ULMFiT model needs fewer

observations to distinguish between these clauses. Notably, the ’datalek’ -class performed better,

which could be explained by the fact that such a clause follows a standard formula where the

amount of hours (i.e. ’uur’) is explicitly stated in a similar place in a sequence, causing the

recurrent structure of ULMFiT to outperform the Positional Encoding used in Transformers.

Table 7 shows that Model Ensembling with Logistic Regression fails to predict 7 classes, whereas

Table 8 shows that Model Ensembling with LDA fails to predict 3 classes. LDA thus outperforms

Logistic Regression on both macro and micro levels when enough data is available.

6 Conclusion

This thesis tried to answer the question: ”How can we successfully classify clauses in a Dutch Data

Processing Agreement with limited data?”. Previous research showed that BERT, RoBERTa and

ULMFiT are the models that provide the potential to yield high performance. For this research,

600 different DPAs were labeled by independent interns and lawyers of ICTRecht. Moreover, five

sub-questions were formulated to define the appropriate research.

To answer sub-question 1, in the preprocessing of DPAs there should be no filtering based on the

occurrences of words, as typos are far from custom and every word can have meaning. Adding the
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headers into the sequence increases model performance. At last, codes based on text conversions

can be filtered through regular expressions.

Regarding sub-question 2, which was about the identifying the current state-of-the-art algo-

rithms and evaluating their differences. Previous research found that the current state-of-the-art

text classification algorithm available for Dutch texts is ULMFiT, BERT and RoBERTa. The main

theoretical differences between ULMFiT, BERT, and RoBERTa, is that BERT and RoBERTa only

differ in pretraining while ULMFiT is an entirely different model. BERT and RoBERTa are both

Transformers that only contain the encoder part for text classification. They apply Positional

Encoding to encode word order and Multi-Head Attention to learn the relations and relative im-

portance among words. They are both prone to overfitting. RoBERTa is pretrained on more textual

data and does not use the ’Next-Sentence Prediction’-procedure. ULMFiT, on the other hand, is a

Recurrent Neural Network with LSTM cells that is fully optimized according to the AWD-LSTM

model and is pretrained on a smaller corpus of data than both BERT and RoBERTa. ULMFiT en-

codes the word order through its recurrent architecture and learns relations and relative importance

among words by using the cell state in the LSTM. Furthermore, ULMFiT uses more regularisation,

being Activation Regularisation, Temporal Activation Regularisation, DropConnect, Dropout, and

Weight Decay, while BERT and RoBERTa only apply Dropout and Weight Decay. At last, BERT

and RoBERTa are inherently bidirectional, while the ULMFiT used has to average the predictions

of two separate models to become bidirectional.

To continue to sub-questions 3 and 4, on 20% and 60% of the data BERTje was the best

performing model but is overtaken by BI-LSTM ULMFiT on 40%, 80%, and 100%. RobBERT was

one of the worst-performing models, indicating that Next-Sentence Prediction adds value to the

Contextualized Word Embeddings of the BERT architecture. Rotation Estimated BERTje was the

best performing up until 80% of the data, after which it was overtaken by Model Ensembling.

At last, sub-question 5, was about the relevance of Model Ensembling. Model Ensembling

only outperformed all models at 80% of the data, implying the validation set did not have enough

observations before this threshold to correctly estimate its parameters. Furthermore, it was found

that LDA is the best Level 2 Model if there is enough data. LDA had the best macro-weighted

F1-score on 100% of the data and was able to correctly classify classes that all Level 1 Models left

out. Logistic Regression outperformed LDA up until 100% of the data, indicating that it is a better

model for limited data.

In conclusion, all Figures showed that Rotation Estimated BERTje outperformed every Level
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1 Model on every level of data. BERTje outperforming RobBERT signals that the ’Next-Sentence

Prediction’ is valuable for estimating parameters in text classification of legal documents. BERTje

did, however, leave out 11 classes whereas ULMFiT only left out 5, where the deficit in the classes

’datalek’ is attributed to the lesser competence of encoding words positions through Positional

Encoding compared to the recurrent structure in RNN’s. Furthermore, BERTje is pretrained on

a vast amount of data, making it an unfair competition on smaller amounts of data. Only when

an ULMFiT model is pretrained on an as large amount of data, a proper comparison can be

made. The BERT architecture is however faster in computation time if the GPU memory is large

enough, as it allows for more parallelization. Ultimately, prediction performance can be improved

by Model Ensembling, where Logistic Regression is a more appropriate Level 2 Model than LDA

if the data is limited, but eventually, LDA does obtain better parameters and then outperforms

Logistic Regression.

7 Discussion

As this is one of the first researches of NLP in the legal domain, there are still a lot of territories

to explore, allowing for suggestions for future research. This section thus discusses the limitations

of this research and gives suggestions for future research.

To begin with, some classes have few observations making it more difficult to train and evaluate

parameters that distinguish those classes. As a result, BERT might eventually perform comparable

or better if there is more data in both the test and training set for those observations. Data

augmentation could also enhance model performance as it artificially creates those observations.

Data augmentation creates new observations by adjusting existing observations, but only has a

minor effect for text classification on consumer reviews (Liesting, Frasincar, & Trusca, 2021).

In addition, the residual classes ’considerans-present’ and ’compliance-present’ have many ob-

servations, meaning it heavily influences optimization of the loss function. Model performance

could be improved if these classes are weighted less in the loss function, letting the parameters fo-

cus less on optimizing for these classes. Also, as the border between these classes is vague, putting

them together into one class might also increase model performance as it does not try to learn to

distinguish characteristics that are not present.

Furthermore, the regularisation of BERT and RobBERT has been set to its maximum capacity.

This was acceptable as the models still overfit the data after around 7 to 8 epochs. Nonetheless, as
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mentioned earlier in section 4.6.1.2, applying Automated BERT Regularisation to determine the

optimal regularisation may increase the performance (H. D. Lee et al., 2020b).

As mentioned in the conclusion, BERTje and RobBERT are pretrained on much more data,

making it an unfair competition for ULMFiT. It could thus be interesting to pretrain ULMFiT on

a comparable amount of data and then evaluate the performance on limited data. Furthermore,

it could be interesting to train a Bidirectional ULMFiT with masking through auto-encoding as

used in BERT, allowing for pretraining a bidirectional language model instead of averaging the

predictions of two models. Furthermore, a bidirectional ULMFiT can also be trained purely on the

classification task.

A domain-specific legal BERT model could be interesting, as BioBERT has increased model per-

formance for medical texts by 12.24% for question answering (J. Lee et al., 2019). It is however dully

noted that English Legal-BERT was trained on 12 GB of Legal texts and only improved slightly

on BERT Base on text classification (Chalkidis, Fergadiotis, Malakasiotis, Aletras, & Androut-

sopoulos, 2020). Nonetheless, the effect on limited data might be interesting for Dutch contracts.

Moreover, another advantage of developing a Dutch Legal-BERT model is that it can be applied to

any NLP task, as only the classification head must be trained for each specific task. E.g., Named

Entity Recognition is interesting to extract party names, contract duration, and amounts of penalty

payments.

Another interesting application is multi-label classification, where an observation can belong

to multiple classes. This is particularly useful for contracts where a clause can contain multiple

statements about different matters, which is often the case for contracts used in the United States.

This could more accurately classify the exact description of every clause.

Also, other Transformer architectures could be explored. To date, RoBERT and BERTje are

the only Dutch Transformer models available. It could therefore be interesting to train other Trans-

former models on large amounts of Dutch text data. Moreover, Deep Forests is a new interesting

development in the field of NLP that obtained comparable results to Neural Networks while being

more interpretable (Zhou & Feng, 2017).

At last, model interpretability is an interesting area to explore. E.g., the importance of certain

words in determining a class could be explored, so that a lawyer can inspect the model’s decision-

making. It is however dully noted that interpretability in NLP shall remain an issue, as humans

do not read the text in a particular interpretable way either. Reading texts, among other things,

always applies to previous knowledge in different domains, making it difficult to determine what
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specifically pinpoints interpretations.

8 Final Remarks

The results have shown that the different state-of-the-art models perform comparably on different

amounts of data, where BERTje and its Rotation Estimated version performed the best on smaller

amounts of data. Eventually, Model Ensembling enhances prediction performance.

The findings of this research can reduce the time required on reviewing DPAs. Reviewing a

DPA by hand takes around an hour, whereas the algorithm is done within a minute. In a well-

defined procedure, a lawyer then only has to check clauses that the model was unsure of, as given

by its loss value. Also, some sample tests must be performed to ensure the algorithm works right.

This research has shown the potential of text classification on contracts, as this field is highly

underdigitalized, there is a lot of value to be created.
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Appendix A Data Distribution

Table 3: Data distribution for the DPA’s.

46



Appendix B Optimal Learning Rate FastAI

This plot is drawn by taking the bias-corrected exponentially weighted average losses over an

interval of the logarithm of learning rates. First, the average loss L̄ on index i is calculated:

L̄i = β ∗ L̄i−1 + (1− β) ∗ Li = β2 ∗ L̄i−2 + β(1− β) ∗ Li−1 + βLi = ...

= (1− β)βiL0 + (1− β)βi−1L1 + ...+ (1− β)βLi−1 + (1− β)Li

(16)

Formula 16 shows that the weights are all powers of β, meaning the sum of our weights is equal to:

(1− β) ∗ 1− βi+1

1− β
= 1− βi+1 (17)

Meaning the plotted average is:

smoothed L̄i =
L̄i

1− βi+1
(18)

Finally, the quantity at each step must be calculated, because taking a simple ratio leads to all

points being concentrated near the end, as the loss is plotted against the log of the learning rates.

The step q is determined as follows:

lrN−1 = lr0 × qN−1 ⇐⇒ qN−1 =
lrN−1

lr0
⇐⇒ q = (

lrN−1

lr0
)

1
N−1 (19)

Meaning the x-axis value of lr at index i is calculated as follows:

log(lri) = log(lr0) + i log(q) = log(lr0) + i
log(lrN−1)− log(lr0)

N − 1
(20)

Finally, the optimal learning rate can be deduced from the graph. The optimal learning rate is one

order of magnitude before the minimum, as that learning rate is on the edge between improving

and becoming unsolvable.
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Appendix C ULMFiT architecture

Figure 13: Embeddings and model encoder visualized (the batch size of 3 is merely exemplary)
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Appendix D Self-Attention

Figure 14: Mathematical representation of Self-Attention
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Appendix E Multinomial Logistic Regression

Multinomial Logistic Regression constructs a linear predictor function that gives probability scores

for a class dependent on the linearly combined explanatory variables, thus estimating the conditional

distribution of the response class given the predictors. For this purpose, it uses the logistic function

with maximum likelihood. The logistic function can be estimated as a log-linear function, where

the probability that class C is k for observation i is equal to the total of the parameters βk for

features Xi with the logarithm of the partition function Z, coming down to the following:

logP (Ci = k) = βk ·Xi − log(Z) (21)

The logarithm of the partition function (Z) is added to ensure that all the probabilities sum to

one. Considering that the probabilities sum to 1 and exponentiating both sides turns the additive

term into multiplication, that Z can be rewritten as:

P (Ci = k) =
1

Z
eβk·Xi and

J∑
j=1

P (Ci = j) = 1 ,

J∑
j=1

1

Z
eβj ·Xi(=)Z = eβj ·Xi ,

(22)

Given formula 21 and formula 22, estimating the probability of class k equals the softmax procedure

given in formula 3, where the softmax outputs a vector with probabilities for every class. The

Softmax implementation of Multinomial Logistic Regression equals:

P (Ci = k) =
eβk·Xi∑J
j=1 e

βj ·Xi
, (23)

As formula 23 is the same as the classification layer in the Neural Networks, the same loss function as

stated in formula 4 is optimized. The coefficients are estimated by the gradient-based optimization

algorithm Limited-memory Broyden-Fletcher-Foldfarb-Shanno (L-BFGS).
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Appendix F Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) estimates the distribution of the predictors X separately for

each class C and then uses Bayes’ theorem to estimate P (C = j|X = x) (James et al., 2021). LDA

thus tries to divide the data space into C separate spaces, which are determined by X. For sake of

clarity, Bayes’ theorem is stated as the following:

P (C = j|x) =
P (x|C = j) · P (C = j)

P (x)
, (24)

In LDA P (x|y) is modeled as a multivariate Gaussian distribution with density, being X ∼ N(µ,Σ),

which is formally defined as (James et al., 2021):

P (x|C = j) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µj)TΣ−1

j (x− µj)
)
, (25)

where µj is a class-specific mean vector and Σ is a covariance matrix that is shared by all classes

C. Applying the distribution function to the Bayes theorem results in the following probability

estimation for each class j:

δj(x) = xTΣ−1µj −
1

2
µTj Σ−1µj + logP (C = j) , (26)

where P (C = j) is the class prior probability, µjthe class-wise mean vectors and Σ the covariance

matrix. The formula can be solved by applying Singular Value Decomposition (SVD) on the input

matrix X and on the class-wise mean vectors (µj), as the covariance matrix is assumed to be

constant across classes.
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Appendix G Accuracy and macro-weighted F1-score over differ-

ent data levels

Figure 15: BERTje Figure 16: RobBERT

Figure 17: Forward (Left-to-Right) ULMFiT Figure 18: Backward (Right-to-Left) ULMFiT
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Figure 19: Averaged predictions of Backward

and Forward ULMFiT (BI-LSTM)

Figure 20: 5-Fold Stratified Rotation Estimated

BERTje

Figure 21: 5-Fold Stratified Rotation Estimated

RobBERT

Figure 22: 5-Fold Stratified Rotation Estimated

Forward (Left-to-Right) ULMFiT
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Figure 23: 5-Fold Stratified Rotation Estimated

Backward (Right-to-Left) ULMFiT

Figure 24: 5-Fold Stratified Rotation Estimated

Averaged predictions of Backward and Forward

ULMFiT (BI-LSTM)

Figure 25: 5-Fold Stratified Rotation Estimated

Level 1 Models with Logistic Regression

Figure 26: 5-Fold Stratified Rotation Estimated

Level 1 Models with Linear Discriminant Analy-

sis
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Appendix H Summary Confusion Matrices

Table 4: Summary of the Confusion Matrix of Rotation Estimated BERTje
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Table 5: Summary of the Confusion Matrix of Rotation Estimated RobBERT
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Table 6: Summary of the Confusion Matrix of BI-directional ULMFiT (not Rotation Estimated)
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Table 7: Summary of the Confusion Matrix of Model Ensembling with Logistic Regression
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Table 8: Summary of the Confusion Matrix of Model Ensembling with LDA
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