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Abstract 

The European Union has adopted ambitious targets to accelerate the energy transition. One target 

entails the increase of the share of renewable energy sources to at least 35% by 2030. Thereby, the EU 

recognizes the vital role of research and innovation in renewable energy technologies. For example, in 

the EU’s Horizon Europe (2021-2027) funding programme, the largest ever transnational research and 

innovation program, 35% of the total budget of €95.5 billion are allocated to green technology research. 

Existing studies have analysed the relevance and effectiveness of public research and development 

(R&D) funding for renewable energy technologies. However, R&D expenditures of the European 

Commission could not be included on a country level. Through an extensive data collection effort, this 

piece fills that gap and includes spending of the European Commission. For 17 European countries and 

from 2000 to 2020, this piece provides a comprehensive picture of country-specific public R&D support 

for renewable energy technologies and describes the increasing importance of the European 

Commission’s funding. Furthermore, the effectiveness of public R&D funding is analysed through a 

negative binomial regression model with fixed effects. The paper shows that public R&D support is an 

overall effective driver of green innovation while its effectiveness varies across sectors and countries. 

Various sensitivity analyses confirm its general effectiveness and relevance. Like in previous studies, 

limitations stem from restricted data availability and temporal uncertainty of innovation. These 

limitations are addressed, which shall incentivize future research and policymaking. 

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor, Erasmus 

School of Economics, Erasmus University Rotterdam or EURAC Research.   
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1. Introduction  

The European Union (EU) has embarked on a committed path towards decarbonisation. By 

2030, it aims to reduce greenhouse gas emissions by at least 55% (compared to 1990 levels). 

Climate neutrality should be reached by 2050. Accelerating transformations in the energy sector 

towards renewable energy (RE) is crucial for achieving these targets. Currently, more than 75% 

of the greenhouse gas emissions in the EU stem from the energy sector. This is why the EU 

aims to increase the share of energy produced by renewable energy sources (RES) to at least 

32% by 2030 (compared to 18% in 2018) (EU 2018a). Furthermore, in 2015, the EU and 

twenty-four governments committed to double public research and development support for 

renewable energy technologies until 2020 (Mission Innovation Initiative, in conjunction with 

Paris Agreement, see Cunliff 2019).  

Despite the European Union’s recognition of the importance of renewable energy technologies, 

the EU and its Member States are not yet on track. The International Energy Agency (IEA) 

emphasises the necessity of strengthened engagement to achieve the 32% target. One of IEA’s 

recommendations entails accelerating innovation and technology deployment (IEA 2020b). 

Recently, the IEA called more explicitly for a “new wave of innovations” in the renewable 

energy sector (IEA 2021c, p.104). 

This thesis backs up this call with current and detailed evidence. It addresses the following 

research question: What was the size of European public research and development funding for 

renewable energy sources in 2000-2020 and its effectiveness as a driver of knowledge and 

innovation?  

The main contributions and findings of this piece can be summarized as follows. Regarding the 

first part of the research question, country-specific figures over time for the European 

Commission’s research and development (R&D) funding for renewable energy technologies 

have not been available until now. This is critical, also considering the EU’s pledged 

recognition of the importance of green innovation. The present piece fills that gap through an 

extensive data collection effort. The author collected data on public R&D funding for RE 

technologies for 17 European countries1 and 21 years (2000-2020). In contrast to other sources, 

 
1 Only for these 17 countries, data were available to a sufficiently detailed extent. 16 of the 17 countries included 

are member states of the European Union. Norway was added to the analysis due to the significant amount of R&D 

funding for RE technologies the country received from the European Commission and due to its membership in 

the Steering Group of the Strategic Energy Technology Plans (SET-Plans) (Section 2.1). 
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these data also include country-specific public R&D support from the European Commission 

(EC) and are not limited to R&D support that stems only directly from European nation-states.  

This piece finds that the extent of available public R&D funding (including EC contributions) 

for renewable energy technologies is highly heterogeneous across countries. This diversity also 

holds for the relative importance of EC contributions. The shares of EC funding within the 

public (national + EC) R&D expenditures range, for example, from 63% for Belgium to 15% 

for France. Most total public R&D funding for RE was available in the largest economies 

(Germany, France). Relative to the size of the countries’ economies, Nordic countries and the 

Netherlands lead in available public R&D funding. Over time, public R&D funding increased 

in all countries until 2011. From 2012 onwards, however, national R&D expenditures decreased 

in most countries (except Norway, the Netherlands, Belgium and Portugal). Descriptively, this 

piece outlines the vital role of EC contributions. They stabilized public R&D support and 

compensated for decreasing national budgets. Due to the European Commission’s efforts, total 

public R&D funding for renewable energy technologies remained stable or increased during 

the last decade, despite decreasing national budgets. 

In response to the second part of the research question, the thesis contributes to existing findings 

through a detailed and recent panel dataset. The effectiveness of public R&D support as a driver 

of green innovation is estimated through a negative binomial regression model with fixed 

effects. This approach aligns with existing contributions (including Johnstone, Haščič, and 

Popp 2010; Costantini et al. 2015) and reduces potential endogeneity. An overall statistically 

significant and positive effect of public R&D funding on green innovation is confirmed for 

2000-2015. Furthermore, this result is confirmed for nearly all countries and the largest sectors 

(biomass, solar- and wind energy), whereby the size of the estimates is heterogeneous. These 

main findings are in line with and contribute to existing studies that did not include EC funding 

or were limited to earlier periods. A full normative assessment of the ideal size of public R&D 

funding goes beyond the scope of this piece. Still, the results derived from a detailed and recent 

panel dataset strongly support the general effectiveness and relevance of public R&D support. 

Furthermore, this piece contributes to existing evidence through a range of sensitivity analyses. 

The result of an overall positive and statistically significant effect of public R&D funding is 

robust: across different models (Negative Binomial regression, Poisson regression, and 

Ordinary Least Squares regression), for various measures of the dependent variable (measured 

on different quality levels and as a share of all technology patents), and for different measures 

of covariates (including the knowledge stock of renewable energy patents, controlling for 
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multicollinearity, and including an alternative measure for national R&D funding). The paper 

also shares some limitations with previous studies. Four different limitations and their 

implications are addressed. These limitations include temporal uncertainty of innovation 

outcomes, the quantification of causal effects, the lack of data on private R&D funding, and 

unobserved maturity levels of technologies. This discussion shall incentivize future research 

and policy making.  

The paper is structured as follows. Section 2 describes the political importance that European 

Member States attribute to public R&D support and the theoretical and empirical evidence on 

its effectiveness. Based on this, the contribution of the present piece is specified. Section 3 

addresses the first part of the research question. It provides comprehensive descriptive analyses 

of public R&D support for renewable energy technologies within 17 European countries and 

for 2000-2020. Section 4 describes the rest of the dataset and the empirical strategy, through 

which part two of the research question on the effectiveness of R&D funding will be addressed. 

Section 5 outlines the main estimation results. The robustness of the results is evaluated in 

Section 6. Section 7 discusses the findings and limitations of this paper and provides 

recommendations for future research and policy. Section 8 concludes. 
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2. Literature Overview and Contribution 

This section first sketches the political relevance the European Union and its Member States 

attribute to public R&D funding for renewable energy technologies (2.1.). Theoretical 

arguments (2.2.) and empirical findings (2.3.) on the effectiveness of public R&D funding 

follow. Based on this, the contribution of this piece is specified (2.4.).  

 

2.1. The Pledged, Political Relevance of Public Research and 

Development Funding 

The EU widely recognises the significance of public research and development support related 

to renewable energy sources (Bointner et al. 2016). It is generally regarded as crucial for 

successfully reaching the EU’s ambitious targets of a 55% reduction in greenhouse gas 

emissions by 2030 (compared to 1990 levels) and of an increase of the renewable energy share 

to at least 32% by 2030 (EU 2018a).  

One international acknowledgement that quantifies R&D investment targets is countries’ joint 

commitment to the Mission Innovation (MI) initiative. The MI initiative was created in 

December 2015 in conjunction with the Paris Agreement. The European Union and twenty-four 

governments committed to double public R&D support for clean energy technologies. (Cunliff 

2019)  

Other relevant publications and acknowledgements include the EU’s strategy for an Energy 

Union, launched in 2015. Therein, R&D is described as an essential pillar for the energy 

transition and for securing competitiveness in providing clean energy (European Commission 

2015b). The Strategic Energy Technology Plans (SET-Plans) also endorse the concern for 

collaborative R&D engagement. The SET-Plans are led by a Steering Group consisting of 

representatives from the EU Member States and Norway (included in the analysis), Turkey, 

Island and Switzerland (European Commission 2018). (De Negri et al. 2020) 

The National Energy and Climate Plans (NECPs) shape the EU’s energy sector governance and 

ensure that the EU meets its climate and energy targets. All Member States were obliged to 

submit a national energy and climate plan to the European Commission (by December 31st 

2019, nearly all NECPs have been submitted by the end of May 2020). While the 

implementation of the NECPs has only just started in 2020, the plans also address the necessity 

to align states’ research and development activities, particularly those that target RES (IEA 
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2020; EU 2018b). Finally, in support of the more recently published European Green Deal 

(European Commission 2019b), the European Commission’s (EC) research and innovation 

programme “Horizon Europe” (2021-2027) forms a powerful instrument. With a total budget 

of €95.5 billion, it is the largest ever transnational research and innovation program. More than 

35% of the funding will be allocated to research on green technologies. The need to mobilise 

research related to RE sources is explicitly recognised (see point 2.2.3 in European Commission 

2019a).  

Be it through the MI initiative, the European Union’s strategy for an Energy Union or the SET-

Plans, the NECPs or the European Green Deal: The EU pledged recognition of the importance 

of research and development for renewable energy technologies. This highlights the political 

relevance of a thorough analysis of public (including the EC’s) R&D funding available in 

European countries and over time, as done in this piece.  

 

2.2. The Theoretical Relevance of Public Research and 

Development Funding as Driver of Innovation 

By addressing the second part of the research question, this thesis contributes to the literature 

on public R&D support’s effectiveness. The policy measure is mainly categorised as a 

‘technology-push policy’ 2 . Public R&D support is understood as ‘pushing’ technological 

change. It directly targets progress in scientific understanding and thereby drives technological 

progress. (Jaffe and Trajtenberg 2002; Nemet 2009)  

Arguments that aim to justify technology-push policies emphasize, for example, their fostering 

of availability and exploitability of ‘technological opportunities’. Only if scientific 

understanding in a relevant industry was sufficiently strong or enhanced through public R&D 

support, opportunities are available and exploitable and, thus, innovation can be achieved 

(Rosenberg 1974; Nelson and Winter 1977; Klevorick et al. 1995). Others emphasise the 

positive impact of public R&D on firms’ capacities to absorb knowledge (Cohen and Levinthal 

1990; Mowery 1983; Rosenberg 1990). These arguments concern the justifiability of public 

 
2 Tax credits for companies that incentivize investment in R&D or taxes on competing technologies form other 

examples of technology-push policies. (Jaffe and Trajtenberg 2002; Nemet 2009) 

Pitelis (2018, p.6) mentions an alternative category of policy instruments: “systemic” ones. These act on the level 

of the innovation system as a whole, rather than targeting specific parts of innovative processes. They can provide 

a platform or support the alignment of other policy instruments, collaboration and knowledge transfer. Clearly, 

they can also include public R&D support which is of main interest in this piece, such as in the form of public 

infrastructure provisions or cooperative R&D grants. (Pitelis 2018) 
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R&D support in general. For the case of renewable energy technologies, public R&D support 

is justifiable for at least the following additional reasons.  

First, the future benefits of investments in environmental R&D are typically highly uncertain. 

Public support can de-risk R&D investments, while otherwise, private firms would have to bear 

these risks exclusively (Jaffe and Trajtenberg 2002). The second reason relates to time. 

Renewable energy technologies require significant time and R&D investments until they reach 

competitiveness. In addition, if innovation processes take a long time, future returns are 

particularly threatened by knowledge spillovers and competitors who could catch up. Public 

R&D support can tackle underinvestment and accelerate the process of reaching 

commercialisation and competitiveness (Rennings 2000; Peters et al. 2012). For example, 

public R&D support can support affiliations between institutions or the creation of innovation 

networks in which knowledge spillovers are mutually beneficial (Groba and Breitschopf 2013) 

Third, public R&D funding is justified by conceiving innovation in renewable energy 

technologies as a positive externality. For example, firms lack incentives to invest in RES 

innovation at a socially optimal level. Knowledge spillovers, from which society profits, are 

not reflected in the firms’ prices. In other words, the private return on R&D investments is 

smaller than its social return. A fourth reason for which public R&D is justifiable relates to 

these externalities. Namely, the relative competitiveness of renewable energy technologies is at 

a disadvantage: positive externalities of renewable energy are not only not reflected in its price. 

The negative externalities of environmentally harmful energy sources are also not fully 

reflected in the prices of these energy sources (Horbach 2008). For example, backing up the 

theory with numbers, the net-negative effective carbon price is estimated to amount to - 

$3.44/tCO2 for 2018 and after taking fossil fuel subsidies into account (Cunliff 2019) 3 . 

According to the World Bank, an effective carbon price of + $40–80/tCO2 would be necessary 

to meet the targets of the Paris Agreement (World Bank Group 2019). Due to these externalities 

and competitive disadvantages, innovation in RE is undersupplied in the absence of public 

interventions. Public R&D support can effectively address this market failure. It can 

compensate for competitive disadvantages that stem from externalities or fossil fuel subsidies. 

(Oltra 2008; Peters et al. 2012; Rennings 2000) 

Several authors support the view that a complementary mix of policies (including public R&D 

funding, mixed, e.g., with effective pricing of CO2 emissions) is needed to achieve the 

transition to renewable energy (e.g., Arnold et al. 2014; Mazzucato 2013; Rennings 2000). So-

 
3 For members of the Mission Innovation initiative (22 countries and the EU) (see Section 2.1.). 
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called ‘demand-pull policies’ represent an alternative to public R&D support and can form a 

part of such a mix. This piece will focus on the effectiveness of public R&D support. The 

estimation equation, though, will also include alternative demand-pull measures. Demand-pull 

measures aim to affect innovation through market demand. For example, changes in demand 

create investment opportunities and possibilities for firms to tackle unmet needs (Rosenberg 

1969). In particular, changes in the prices of conventional energy sources through, for example, 

effective taxes on carbon can affect the demand for alternative sources (such as RES) and 

incentivise innovation activities in RE technologies (Lichtenberg 1986; Popp 2002). Feed-in-

tariffs that favour renewable energy technologies form an example of a ‘price-based’ demand-

pull instrument. Firms are guaranteed a price above the market price. Tradable green certificates 

whose quantity is decreased over time form an example of a “quantity-based” demand-pull 

instrument. They make RE substitutes more attractive. Other examples for demand-pull policies 

are environmental taxes or regulative standards, in so far as they again aim to affect demand 

directly. (Nemet 2009) 

 

2.3. Empirical Evidence 

Existing contributions assess the impact of public R&D support on green innovation on a firm-

level (micro impacts, such as effects on innovation rents, productivity or competitiveness) or a 

country level (macro impacts, such as effects on social welfare, efficiency or knowledge stock) 

(Groba and Breitschopf 2013). The present piece aims to contribute to the assessment on a 

country level.  

Johnstone, Haščič, and Popp (2010) provided a frequently cited contribution that took such an 

aggregated perspective. Their data covered 25 countries and the period 1978-2003. The 

dependent variable deployed was renewable energy patent counts as a measure for innovation. 

They found that (a) RE policies (including national R&D support and measured as indices) 

drive innovation in RES and that (b) different policy measures will be effective for different 

technologies. A series of other empirical studies have confirmed these two findings (Ek and 

Söderholm 2010; Popp 2015; the following). 

Marques and Fuinhas (2012) confirmed (a) and (b) when analysing the impact of RE policies 

on RES adoption, a measure for RES development. Thus, as their dependent variable, the 

authors employed the share of RES in the total energy supply. Lee and Lee (2013) could again 

confirm (a) and (b). Adding to Johnstone et al. (2010), they emphasised that not only different 
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types but specifically customised policies were required to foster innovation in specific RE 

technologies. Subsequently, the effectiveness of domestic versus foreign public policies for RE 

innovation has been examined by Peters et al. (2012) for the case of solar photovoltaic modules 

and by Dechezleprêtre and Glachant (2014) for wind energy. Their analyses specify the validity 

of finding (a): public R&D support (as a technology-push policy) has been found to only foster 

domestic innovation, while demand-pull policies also affect foreign innovation outcomes.  

Restricting their analysis to the biofuels sector, Costantini et al. (2015) again confirmed findings 

(a) and (b). The authors conclude that both technology push and demand-pull policies positively 

affect innovation in the biofuels sector, although heterogeneously. Technology push policies 

only affect more advanced technologies (next to price-based demand-pull policies). Nesta, 

Vona, and Nicolli (2014) combined an examination of the effect of different RE policies on 

innovation with varying levels of competition. Overall, the authors confirmed finding (a) but 

concluded that RE policies are more likely effective in deregulated energy markets. Pitelis 

(2018) and Pitelis et al. (2020) again confirmed findings (a) and (b). In addition, Pitelis (2018) 

emphasised that lag structures employed in estimations matter. Pitelis et al. (2020) highlight 

that RE technologies differ in whether a mix of RE policies can effectively drive innovation or 

only demand-pull instruments.  

 

2.4. Contribution 

To these empirical findings and the stated political relevance of public R&D support for 

renewable energy technologies, this piece will contribute as follows:  

(A) The present piece will provide a comprehensive picture of the extent of R&D 

contributions for RE technologies. It will describe R&D funding issued not only by 

national governments but also by the European Commission, over time and on a sector- 

and country-level. To the author's knowledge, such a detailed descriptive analysis on a 

country level over time has not been carried out so far. This evidence will be particularly 

relevant given the importance EU Member States pledged to attribute to public R&D 

support for renewable energy technologies.  

(B) Detailed data is required to adequately capture investments and innovations that are 

environmentally friendly (Pless, Hepburn, and Farrell 2020). The piece will examine 

the validity of findings (a) and (b) based on a uniquely detailed panel dataset of 

environmentally friendly public (national + EC’s) R&D support on country-levels.  
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(C) The data employed in the estimation of this piece cover the period 2000-2015. This 

allows the author to contribute to the literature by evaluating the validity of existing 

findings based on data for very recent public R&D funding.  

(D) Various sensitivity analyses scrutinise the empirical results on the relevance of public 

R&D funding.  
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3. Public Research and Development Funding 

This section addresses the first part of the research question. It provides a thorough analysis of 

the extent of public R&D funding for renewable energy technologies in Europe. Private data 

has not been available (3.1.). Though, data on total public R&D funding could be collected as 

accumulated expenditures from two sources: the national budget of individual countries (3.2.) 

and the European Commission’s budget (3.3.)4.  

 

3.1. Private Funding  

Private R&D funding from businesses and other private sources, such as philanthropic 

organizations, plays an essential role in the total share of R&D funding for renewable energy 

technologies. For solar energy, private R&D funding estimates range from 60% to 70% of total 

R&D funding (De Negri et al. 2020). For 2011, the European Commission (2015a) provides 

comparable sector-specific figures and estimates that in 2011, 55% of total R&D funding for 

solar energy technologies stemmed from the private sector (European Commission 2015a, 

p.74). For Italy, survey data on renewable energy R&D funding from the private sector has been 

exceptionally available for 2013-2018: approximately 20%-40% of total R&D funding for RE 

technologies are estimated to stem from the private sector (IEA 2021a). A recent IEA report 

(IEA 2020a, p.43f) highlights how companies active in renewable energy technologies 

intensified their R&D efforts more strongly than other firms in the energy technology sector. 

Between 2010 and 2019, global private R&D expenditures for RE technologies have risen by 

approximately 74%.  

Collecting private R&D data for the present analysis proved to be an impossible task. Not only 

is the availability of private data restricted to a few specific RE technologies. Even if 

technology-specific data were fully available, the complex structure and distribution of 

companies across various legal entities that reside in different countries would still make a 

precise attribution of private R&D investments to countries challenging to impossible (Bointner 

et al. 2016). The implications of this restriction for the estimation results of this piece are 

discussed in Section 7.3. 

 

 
4 The risk of double counting is very limited. According to the IEA (2021a), in its data on national budgets, only 

funding that is provided by federal government institutions is considered. Thus, the sources of origin are very 

unlikely to being mixed up with EC funding. 
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3.2. National Funding  

National R&D budgets are accessible through the International Energy Agency’s (IEA) data 

browser. The “Detailed country RD&D budgets” report contains the required country- and 

sector-specific data (IEA 2021b). It is expressed in Million Euro and real values (2020 prices 

and exchange rates), which is why an inflationary adjustment was not necessary. Thereby, only 

funding within “Group 3: Renewable Energy Sources” was considered (IEA 2021a).  

Over time and across countries, national R&D expenditures in the RE sector increased from 

2000 until 2011 and decreased after that (Figure 1).5 Norway, the Netherlands and Belgium 

(and Portugal, where public R&D funding for RE was very low) were the only countries whose 

national R&D budgets for renewable energy technologies did not decrease between 2011 and 

2020. 

 

 

3.3. Budgets of the European Commission  

Data on funding from the European Commission were accessed through the Community 

Research and Development Information Service (CORDIS) (EU Publications Office 2021). 

CORDIS provides detailed information on the EU’s framework programmes for research and 

 
5 See Appendix 1, Figure A1.i for a sector-specific visualization of this development and Figure A1.ii for the 

country specific shares of total national RE R&D expenditures. 
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technological development (FPs). Approximately 85% of the R&D investments for the 

renewable energy sector from the EU have been issued through the EC’s FPs (Bointner et al. 

2016; De Negri et al. 2020). Therefore, and to avoid the risk of double-counting, the present 

analysis is limited to these FPs, in particular, to FP5 (1998-2002), FP6 (2002-2006), FP7 (2007-

2013) and Horizon 2020 (2014-2020). Only for these most recent framework programmes data 

were available to a sufficiently detailed extent. Appendix 2 specifies the steps that had to be 

carried out to collect data on EC’s R&D funding for renewable energy technologies. They 

resulted in a unique dataset that contains information on EC’s country- and sector-specific R&D 

expenditures from 2000 until 2020, expressed in 2020 prices.  

Figure 2 summarises these R&D expenditures from the European Commission6. From 2000 to 

2020, EC’s total R&D contribution for RE technologies increased by a factor of approximately 

5. This increase is observed consistently across countries. The largest economies received the 

highest amounts of R&D funding for renewable energy technologies from the European Union. 

For example, Germany (DE) received 20% (more than one billion Euros) and Spain (ES) 16%. 

Most EC contributions targeted the solar energy sector, followed by wind and biomass7. 

 

 
6 High volatility due to legislative fractionalization is frequent in the realm of public R&D expenditures on new 

energy technologies (Baccini and Urpelainen 2012). In the case of EC R&D expenditures, a high volatility and 

sudden drops (most clearly visible for the year 2014) stem from transition-periods between framework 

programmes (FPs). In the first year of new FPs, less funding is paid out as most projects are still in the application 

phase. 
7 Appendix 2 contains the similar Figure of EC expenditures over time by sector (Figure A2.i), as well as a 

visualisation of the shares of EC contributions by country (Figure A2.ii). 
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3.4. Total Public Research and Development Funding for 

Renewable Energy  

At this point, the first part of the research question will be answered. EC expenditures are added 

to the national budgets to obtain a complete picture 8 . As Figure 3 illustrates, the largest 

economies by GDP lead on average yearly R&D expenditures for renewable energy 

technologies (Germany and France, followed by Italy, the Netherlands and Spain). However, 

the picture differs when countries’ GDP is considered (Figure 4). Nordic countries lead in 

yearly public R&D funding available relative to GDP. In Denmark and Finland, public R&D 

funding available for renewable energy technologies (in % of GDP) had more than double the 

size of Germany or France. When expenses are measured relative to GDP, most large 

economies with high R&D expenditures move to the middle of the ranking. That is particularly 

striking for the case of Italy (moves from rank 3 to rank 13, among 17 countries included in the 

analysis) and Germany (moves from rank 1 to rank 9). The dataset of this piece also permits to 

shed light on the vast heterogeneity of the relative importance of EC funding. As shares of total 

public RE R&D funding between 2000 and 2020, the European Commission’s contributions 

played the most critical role for Portugal (73%) (although a country with a meagre RE R&D 

budget), Belgium (63%) and Spain (46%). In the Slovak Republic (13%), France (15%) and 

Finland (18%), the share of EC contributions constituted the lowest share of total RE R&D 

funding compared to other countries.  

 
8 See Appendix 3 for the illustration of total RE R&D expenditures (EC + national) by country (Figure A3.i) and 

sector (Figure A3.ii), and for a visualization of the shares of total R&D contributions by country over the whole 

period 2000-2020 (Figure A.iii). 
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Figure 5 displays changes over time. The graph describes the increasingly important and 

stabilizing role of EC expenditures for total public R&D funding across countries. The 

European Commission’s funding (blue line) is added to national expenditures (orange line). 

The result forms the total public RE R&D expenditures over time (green line). From 2011 

onwards, national R&D expenditures decreased or remained stable, while the European 

Commission’s expenses continued to increase in all countries. Visually, these different trends 

over time result in both total expenditure curves converging from 2011 onwards. After merging 

both sources, total public R&D expenditures stabilize. Thus, the EC’s expenditures 
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significantly contributed to stabilizing total public R&D support for renewable energy 

technologies from 2011 onwards. In Norway, the Netherlands, Belgium and Portugal, the only 

countries that consistently increased their national budgets over time, available public R&D 

funding for RE technologies even increased. Hence, for all except those countries, stagnating 

public R&D funding is driven by decreasing national financing, while EC funding compensates 

for decreasing national budgets. None of the countries could double available public R&D 

support between 2015-2020, as stated in the MI initiative. 

 

 

Furthermore, the stabilization of total public R&D funding for renewable energy technologies 

coincided with a substantial decrease in renewable energy patenting activity (Figure 6). 

However, a descriptive analysis alone is unlikely sufficient to make any conclusions on the 

general correlation between R&D expenditures and innovation outcomes. Other policy 

measures, such as demand-push measures, with the same environmental objective have been 

introduced as well. In addition, countries are vastly different in both R&D expenditures and 

patenting activity. With regards to the period after 2011, discerning a correlation between high-

level stagnating R&D expenditures and decreasing patenting activities only based on 

descriptive analyses would be more than questionable as well. As will be discussed in more 

detail in Section 7.2, unobserved drivers, such as industry decline in the solar sector, are very 

likely to have caused the decrease in patenting for renewable energy technologies in that period. 

In the following, we shall go beyond descriptive analyses. 
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4. Empirical Strategy and Data 

Part one of the research question has been addressed in the previous section. An econometric 

approach shall now permit to address part two, the effectiveness of public RE R&D funding.  

For 17 European countries9 and 19 years (2000-2018)10, data were available to a sufficiently 

detailed extent. Table A.4.i (Appendix 4) displays detailed descriptive statistics. The panel data 

allowed to estimate the following Baseline Equation (1) (which builds on existing 

contributions11): 

 

(𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑅𝐸𝑖,𝑡+1) = ß0 +  ß1(𝑝𝑢𝑏𝑙𝑖𝑐 𝑅&𝐷 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑖,𝑡) +

ß2(𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖,𝑡) + ß3(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒𝑖,𝑡) +

ß4(𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑎𝑙𝑙 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠𝑖,𝑡) + ß5(𝐹𝑒𝑒𝑑_𝑖𝑛_𝑡𝑎𝑟𝑖𝑓𝑓𝑠𝑖,𝑡) +

ß6(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑖,𝑡) + ß7(𝑇𝑎𝑥𝑒𝑠𝑖,𝑡) + ß8(𝑇𝑟𝑎𝑑𝑖𝑛𝑔_𝑠𝑐ℎ𝑒𝑚𝑒𝑠𝑖,𝑡) +

𝛼𝑖 + ℰ𝑖,𝑡               (1) 

 

The dependent variable that captures innovation output is the country-specific amount of 

patents for renewable energy technologies, lagged by one year (𝑃𝑎𝑡𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡 𝑅𝐸𝑖,𝑡+1). i = 1, 

…, N represent indexes for countries and t = 2000, …, 2015 represent time indexes. The 

regressor that is of main interest consists of (𝑝𝑢𝑏𝑙𝑖𝑐 𝑅&𝐷 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠𝑖,𝑡) that directly target 

the development of renewable energies, measured in percentages of GDP. As will be explained 

in Section 4.2., the estimation includes the additional covariates (𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖,𝑡),

(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒𝑠𝑖,𝑡)  and (𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑎𝑙𝑙 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠𝑖,𝑡),  as well as data on the 

environmental stringency of other public policies than R&D expenditures through the 

covariates (𝐹𝑒𝑒𝑑_𝑖𝑛_𝑡𝑎𝑟𝑖𝑓𝑓𝑠𝑖,𝑡),  (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑖,𝑡),  (𝑇𝑎𝑥𝑒𝑠𝑖,𝑡)  and (𝑇𝑟𝑎𝑑𝑖𝑛𝑔_𝑠𝑐ℎ𝑒𝑚𝑒𝑠𝑖,𝑡). 

The econometric approach and how it allows controlling for time-invariant country fixed effects 

(𝛼𝑖) will be described in Section 4.3.. 

 

 
9 As mentioned, all countries, except Norway, are members of the European Union: Austria (AT), Belgium (BE), 

Czech Republic (CZ), Germany (DE), Denmark (DK), Spain (ES), Finland (FI), France (FR), Hungary (HU), 

Ireland (IE), Italy (IT), The Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT), Sweden (SE), Slovakia 

(SK). 
10 While R&D data would have been available until 2020, limited availability of patent data and OECD’s EPS 

index made it necessary to restrict the estimation to 2000-2015.  
11 Johnstone et al. (2010), Costantini et al. (2015), and Pitelis (2018). 



21 

4.1. Renewable Energy Patents as the Dependent Variable  

While public R&D spending typically counts as an input measure that functions as a driver of 

innovation, patents count as an output measure (Groba and Breitschopf 2013). Data on the 

dependent variable (𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑅𝐸𝑖,𝑡+1)  are extracted from OECD's (2021) Environment 

Database for Technology Development. OECD's (2021) patent statistics have been constructed 

using algorithms and avoiding double counting. The data were sorted by year in which the 

patent has been filed (being the closest moment to the actual invention) and by inventor’s 

country of origin. The latter makes it more likely that patents can be traced back to policy 

measures in a country (such as public R&D support).  

In line with existing literature (Johnstone et al. 2010; Costantini et al. 2015), the dependent 

variable is treated with a minimal lag of + one year (𝑡 + 1). Using lags takes into account that 

innovation needs time, and it reduces possible endogeneity (such as if the number of patents 

determined the amount of public R&D funding available, and not merely the other way around) 

(Costantini et al. 2015). Hall et al. (1983) support the choice of a small time-lag: “It does 

reconfirm, however, a statistically significant effect of R&D on patenting (with most of it 

occurring in the first year or two) […]” (Hall, Griliches, and Hausman 1983, p.2). Several 

authors go even further. Some neglect any substantial lag between public R&D support and 

patent applications (Peters et al. 2012; Brunnermeier and Cohen 2003; Hall, Griliches, and 

Hausman 1986).12 

For different reasons, patent data are not necessarily a reliable measure of innovation. First, the 

filing of a patent must not reflect technology adoption. Indeed, most patents have little 

commercial value, and the adoption of the invention is often not widespread (Popp 2003). This 

piece focuses on sets of patents that were signed in at least two jurisdictions, which corresponds 

to a ‘family size’ equal to two or greater. Thus, it was possible to restrict the analysis to higher 

quality patents only (OECD 2009). Not only would it be unnecessarily costly to file patents for 

worthless inventions in more than one country (Putnam 1996). Also, evidence suggests that the 

family size of patents is, in general, strongly correlated with the economic value of an invention 

(Cremers et al. 2003).13 

 

 
12 Section 6.2. examines the robustness of the findings to alternative temporal treatments. Section 7 discusses the 

importance of the lag-choice as a potential source of limitations. 
13 Section 6.2. of this piece confirms the robustness of the main findings also to different family sizes. 
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Furthermore, not all inventions are protected by patents. A firm might prefer to keep its 

invention secret (Jaffe and Trajtenberg 2002). While this highlights how patent data cannot be 

a perfect measure, other advantages still support their use. Griliches et al. (1990) emphasise the 

strong relationship between private R&D spending (as a measure for innovative activity) and 

patents. Also, patent statistics permit a disaggregation to a detailed country and technology 

level (Popp 2003), an advantage that holds for this piece as well.  

As anticipated, the number of patents filed in the 17 countries analysed increased from 2000 

until 2011 (Figure 7). Thereafter, patenting activity in the renewable energy sector decreased. 

In 2018, only half of the patents were filed compared to 2011. Among all RE sources, the solar 

energy sector, followed by wind energy, are responsible for the largest share of total patenting 

and drive its decrease after 2011. In terms of patents, Germany (DE) is the largest renewable 

energy innovator among the countries studied14 (Appendix 4, Figure A4.i). An increase in RE 

patenting activity followed by a substantial decrease is observed for all countries. 

 

 

4.2. Additional Covariates 

Another argument against the use of patent data stems from differences between countries’ 

patenting regimes and propensity to patent. In one jurisdiction, a single patent might be 

sufficient to protect an invention. In other countries, several patents for the same level of 

 
14 Among all OECD countries and from 1990 to 2018, the US, South Korea and Germany are the largest innovators 

in renewable energy technologies (in terms of patents) (Li and Shao 2021). 
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protection might be necessary (Johnstone, Haščič, and Popp 2010). The covariate 

(𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑎𝑙𝑙 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠𝑖,𝑡) accounts for this and captures differences and changes over 

time in countries’ innovative environment and propensity to patent (OECD's (2021) 

Environment Database for Technology Development).  

(𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖,𝑡)  and (𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒𝑖,𝑡)  represent additional covariates 

(Eurostat 2021)15. Prices of fossil fuels as alternative factor inputs are an essential determinant 

of innovation in renewable energy technologies sources. Given that RES serve as substitutes 

for fossil fuels, higher prices for electricity produced by fossil fuels plausibly incentivise the 

adoption of and innovation in renewable energy technologies. The size of demand represents 

another critical driver of innovation and is measured through electricity consumption. In 

growing markets where demand is large, RE innovation is incentivized because it is easier to 

compensate initial investment costs. For both variables, a positive correlation with patenting is 

expected. (Johnstone, Haščič, and Popp 2010) 

Indices for the policy measures (𝐹𝑒𝑒𝑑_𝑖𝑛_𝑡𝑎𝑟𝑖𝑓𝑓𝑠𝑖,𝑡),   (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑖,𝑡),   (𝑇𝑎𝑥𝑒𝑠𝑖,𝑡)  and 

(𝑇𝑟𝑎𝑑𝑖𝑛𝑔_𝑠𝑐ℎ𝑒𝑚𝑒𝑠𝑖,𝑡) control for changes in other policies that affect green innovation as 

well. OECD's (2016) environment statistics database provides internationally comparable 

indices for the country-specific environmental stringency of these policy measures. The 

environmental stringency of a policy measure is determined by its effect on the explicit or 

implicit price of environmentally harmful behaviour. As explained in Section 2.1., while R&D 

subsidies count as technology-push instruments, these additional covariates describe alternative 

demand-pull policy tools in so far as they affect demand directly. The OECD database (2016) 

also provides an EPS index for public research and development funding. OECD’s definition 

of ‘public’, however, is the same as IEA’s: it excludes EC sources. Contrary to existing 

research, this piece includes EC sources.16 

 

 
15 Eurostat’s (2021) database provides a dataset on country-specific “electricity prices for domestic consumers”. 

To avoid double-counting of policy measures, electricity prices exclude taxes and levies. In addition, to permit a 

cross-country comparison, prices are expressed in terms of Purchasing Power Standards. The dataset “final energy 

consumption” complements this information. 
16  The present analysis complements past literature that could not refer to such detailed and internationally 

comparable measures. Johnstone et al. (2010, p.10): “Unfortunately due to the heterogeneous nature of the data, it 

is not possible to construct continuous variables in which the level of „stringency‟ (or „support‟) is commensurable 

across policy types and countries.” 

Note that for 14 of the 17 countries, OECD’s EPS did not provide data for the years 2013-2015. These missing 

values have been substituted estimating a linear trend based on past values. 
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4.3. Econometric Approach 

The data just introduced form a panel data set, which consists of repeated observations over 

time for the same countries. This made it possible to apply a fixed effects method, which is 

justified as follows. Unobserved characteristics of countries that do not change over time may 

be correlated with both public R&D expenditures and the innovation outcome. If they are not 

included in the regression, they may bias estimated coefficients (‘omitted variable bias’). An 

example would be unobserved differences in the quality of labour forces within countries that 

affect both patenting activity and public R&D support. Another example would be that the 

covariate (𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑎𝑙𝑙 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠𝑖,𝑡)  is not sufficient to fully capture all differences 

between countries in innovative environments. In the fixed effects method employed in this 

paper, any influence from such country-specific factors that do not change over time (fixed 

effects 𝛼𝑖) is eliminated through differencing. Explained in a nutshell, ‘differencing’ means that 

the difference between Baseline Equation (1) where 𝑡 = 𝑎 and Baseline Equation (1) where 

𝑡 = 𝑏 is calculated, whereby 𝑎 and 𝑏 are different moments in time. Through subtraction, time-

invariant between-variation in 𝛼𝑖 cancels out. Any change in the dependent variable must then 

stem from influences other than these time-invariant characteristics. (Wooldridge 2009, ch.14, 

p.481f.) 

The random effects method is an alternative to the fixed effects approach. It implies the 

assumption that any variation between countries is random and not correlated with the 

explanatory variables. In the present case, this assumption is critical. The innovative 

environment in a country, in so far as not captured by other covariates and therefore part of the 

error term (ℰ𝑖), may well be correlated with public R&D expenditures. The Hausman test allows 

to test whether the random effects model is preferable over a fixed effects model. Its null 

hypothesis is that regressors are random, in the sense that time-invariant errors (ℰ𝑖) are not 

correlated with them. For the present analysis, the result of the Hausman test is clearly 

statistically significant (Table A.4.ii in Appendix 4). Hence, it indicates that the null hypothesis 

should be rejected and that a fixed effect model should be preferred. (Wooldridge 2009, ch.14, 

p.493) 

In contrast to the random effect method, a requirement of the fixed effect method is that 

variation in R&D expenditures within countries over time is not minimal. If R&D expenditures 

were time-invariant, they would be absorbed by the intercept of a fixed effects model. In 

previous sections, it could already be observed that patents and R&D expenditures vary over 

time and between countries. Table 1. displays the extent of between and within variation more 
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clearly. Naturally, the country ID varies only between countries, while the year variable varies 

only within countries (over time). We can observe that both patents and R&D expenditures vary 

between countries. This between-country variation/ standard deviation may stem from 

unobserved fixed effects, so a fixed effects method is relevant. Also, within variation is not 

minimal and can be exploited, making a fixed effects method possible.17 (Wooldridge 2009, 

ch.14, p.481f.) 

Table 1. Between Versus Within Variation 

Variable Mean    

Standard 

Deviation Observations 

    

c_id 9.000 4.908 N =     272 

between   5.050 n =      17 

within   0 T =      16 

      

year 2007.500 4.618 N =     272 

between   0 n =      17 

within   4.618 T =      16 

      
Public R&D expenditures for RE (in 

% of GDP) 0.040 0.033 N =     272 

between   0.025 n =      17 

within   0.021 T =      16 

      

Patents RE 86.899 177.944 N =     272 

between   150.673 n =      17 

within   101.085 T =      16 

Note: Table 1 includes data from 2000 to 2015 used for the estimation. It displays between and within 

variation for the panel identifiers ‘country ID’ and ‘year’, and for the variables of primary interest 

‘public R&D funding for renewable energy technologies’ and ‘Patents in renewable energy 

technologies’. The table supports the relevance of the fixed effects method: first, variables of interest 

vary between countries and the fixed effects method can cancel out between variation that remains 

‘fixed’ across time; second, within variation is not minimal, so that the fixed effects method can be 

applied. 

 

Figures A.4.ii and A.4.iii (in Appendix 4) illustrate a presumed correlation between public R&D 

funding (in % of GDP) and RE patenting. In addition, the figures make the extent of between-

country variation and the potential relevance of controlling for country fixed effects evident. 

As soon as Germany is omitted, the group of outliers highlighted in Figure A.4.ii disappears. 

 
17 Note that an inclusion of time-fixed effects (instead of only country fixed effects) resulted in a drastic decrease 

of within variation which undermined any exploitability.  
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To scrutinize more whether public R&D funding is indeed correlated with RE patenting, even 

after controlling for other factors and policy measures introduced, Baseline Equation (1) is 

estimated through a fixed effects Negative Binomial Regression Model (NBRM). This aligns 

with existing contributions (for example, Costantini et al. 2015; Johnstone et al. 2010; Pitelis et 

al. 2020). Different to other contributions, the dependent variable (𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑅𝐸𝑖,𝑡+1) of this 

piece is constructed and weighted through algorithms (OECD 2021). Therefore, it is not 

measured as pure counts but as a continuous variable. This would make using a more 

conventional ‘Ordinary Least Square’ (OLS) model less problematic than if we dealt with a 

count variable. Also, a violation of the assumption of homoskedasticity can be taken care of 

through robust standard errors. (Wooldridge 2009, ch.8) 

However, for four reasons, this piece relies primarily on an NBRM. The first two reasons justify 

not using primarily an OLS model to estimate Baseline Equation (1). First, values of the 

dependent variable have a lower bound at 0. An OLS model cannot account for truncation at 

zero and may lead to negative results that make no sense for the non-negative dependent 

variable (patents on renewable energy technologies). The second more important reason is that 

OLS requires that residuals (ℰ𝑖) “[…] are independent of X and independently and identically 

distributed as Normal (0, 𝜎2) .” (Wooldridge 2009, p.351). Figure 8 sheds light on the 

plausibility of this normality assumption when Equation (1) is estimated as a fixed effects OLS 

model with robust standard errors. It displays the Kernel density distribution of the residuals 

obtained compared to a normal density distribution. Clearly, OLS residuals are not normally 

distributed but asymmetric and left-skewed. The violation of the normality assumption does not 

bias estimates. Though, it undermines the possibility to interpret significance levels obtained 

from an OLS model reliably, especially if the sample size is small. However, a reliable 

interpretation of those is necessary to address part two of the research question. (Wooldridge 

2009, ch.10) 
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The NBRM builds on the Poisson Regression Model (PRM). The third reason that justifies the 

choice of an NBRM represents an advantage it has compared to a PRM. Namely, the PRM 

excludes so-called ‘conditional overdispersion’ of the dependent variable by assumption. It 

assumes conditional equidispersion (𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖) = 𝐸(𝑦𝑖|𝑥𝑖)): The conditional variance of 𝑦𝑖 is 

assumed to be equal to the conditional mean 18 . Conditional overdispersion violates this 

assumption. It means that, after accounting for all predictors, the variance of the number of 

patents changes dependent on whether the mean of public R&D funding is high or low within 

a country. In other words, (all else equal) in years in which public R&D support is high in a 

country, RE patents in that country would vary more heavily than in years in which the 

country’s public R&D support was low. This is plausible to expect, for example, due to the 

uncertainty innovation processes inhibit. The presence of conditional overdispersion does not 

bias PRM estimates in their sizes, but it biases standard errors and p-values downward 

(Costantini et al. 2015). Therefore, an NBRM is chosen over a PRM.  

In an NBRM, it is assumed that the dependent variable follows a negative binomial distribution. 

Like in the PRM, the dependent variable is still assumed to follow a Poisson process. The 

 
18 This is different from the homoskedasticity assumption implied in OLS models, which means that the variance 

of residuals is constant across observations (but not equal to a mean). 

Figure 8. Density distribution of residuals obtained from estimating Equation (1) as 

fixed effects OLS model with robust standard errors. The Figure indicates a violation 

of the normality assumption. 
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difference to the PRM is that the NBRM introduces the possibility for heterogeneity in the 

variance of patents. It does so through the introduction of an unobserved error parameter η. 

More precisely, in this study, the variance of the dependent variable is specified as 

𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖) = 𝐸(𝑦𝑖|𝑥𝑖) × (1 + 𝜂) , whereby 𝜂  is positive. Compared to a PRM, where 

𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖) = 𝐸(𝑦𝑖|𝑥𝑖)  must be true, the specification 𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖) = 𝐸(𝑦𝑖|𝑥𝑖) × (1 + 𝜂)  is 

more flexible, given that 𝜂 can take on any positive value. (Cameron and Trivedi 1986) 

Finally, and fourthly, Table A.6.i (in Appendix 6) displays the model-specific values for the 

Bayesian Information Criterion (BIC) (Schwarz 1978), a measure of model fit that is commonly 

used for model selection (Burnham and Anderson 2004). The lowest BIC value is attributed to 

the NBRM estimation of Equation (1). This again supports the choice of the NBRM.19  

  

 
19 Section 6.1 scrutinises the dependence of the main findings on the choice of model. 
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5. Estimation Results 

Baseline Equation (1) is estimated through a fixed effect NBRM (Table 2), for 17 countries and 

for 2000-201520. Thereby, different control variables are included, one after the other. For the 

whole period, public R&D funding (in % of GDP), which is categorised as a technology-push 

policy, has a positive and statistically significant effect on RE patenting. Covariates other than 

EPS indices do not affect the R&D estimate in size or statistical significance (compare Columns 

1 and 2). The inclusion of EPS indices affects most estimates (Column 3). However, the R&D 

estimate remains statistically significant. In line with expectations, public policies other than 

R&D support affect RE patenting. Estimates for EPS indices are statistically significant and 

positive (except for Taxes). A comparison of BIC values supports the relevance of the inclusion 

of EPS indices in the model. Despite being a stringent overfitting model test, the BIC-value 

decreases after including EPS indices, indicating a lower penalty related to the inclusion of 

covariates. Again in line with expectations, estimates for electricity prices and energy 

consumption remain statistically significant and positive. 

The Negative Binomial regression estimates can be interpreted as follows, in the same way as 

the output of a Poisson model. For Column 3, if total public RE R&D funding increased by 0.1 

units (0.1 percentage points of GDP), keeping all other factors constant, expected RE patents 

would increase on average, across countries and years, by 60% (Wooldridge 2009, ch.17, 

p.600f)21. Notably, a 0.1 percentage points increase in public RE R&D funding would be a very 

large increase given that average RE R&D funding in % of GDP amounts to 0.04%. (see 

Appendix 4 Table A.4.i.)). Due to limitations such as temporal uncertainty of innovation 

outcomes and possible endogeneity (Section 7), quantitative interpretations of the estimates 

should be made with caution.  

As shown in Columns 4 and 5 in Table 2, the piece also accounts for changing trends in public 

R&D support and patenting after 2011. For the period 2000-2011, the main results are not 

strongly affected. Public R&D funding still has a positive and statistically significant effect on 

RE patenting. However, results for the period 2012-2015 differ. The estimate for the association 

between R&D investments and patenting for that short period does no longer result statistically 

significant. However, the small within variation and the period 2012-2015 being very short 

(only four years and 68 observations) undermine drawing conclusions from a fixed effects 

 
20 While public R&D data would have been available until 2020, limited availability of patent data and the 

evaluation of different lag-structures made it necessary to restrict the main analysis to 2000-2015. 
21  More precisely, the log of expected patents would change, which approximates a percentage change. 

(Wooldridge 2009, ch.17, p.600f) 
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method (Wooldridge 2009, ch.14, p.481f.). Furthermore, the results are likely affected by 

unobserved drivers of patenting activity (e.g., mature technologies that do not require patent 

protection) and differ for other innovation outcome measures like academic publications. 

Section 7.2. will follow up on the discussion of the estimates for 2012-2015 more in detail.  

 

Table 2. Negative binomial regression estimates for the effect of public research and development 

funding on innovation in renewable energy technologies (Equation (1)) (dependent variable: patents in 

the renewable energy sector (lag 1))  

 (1) (2) (3) (4) (5) 

 Variable 2000-2015 2000-2015 2000-2015 2000-2011 2012-2015 

Total public RE R&D in 

% of GDP 

12.660*** 12.200*** 6.058*** 5.825*** -0.267 

(0.00) (0.00) (0.00) (0.00) (0.89) 

Electricity prices  7.509*** 4.292** 8.160*** -7.074 

  (0.00) (0.00) (0.00) (0.15) 

Energy consumption  0.033*** 0.035*** 0.020* 0.024 

  (0.00) (0.00) (0.02) (0.07) 

Patents all technologies  0.000 0.000 -0.000 0.000** 

  (0.23) (0.70) (0.29) (0.00) 

Feed-in tariffs   0.045 0.059* -0.085 

   (0.08) (0.04) (0.11) 

Standards   0.153*** 0.335*** -0.029 

   (0.00) (0.00) (0.64) 

Taxes   -0.034 0.007 -0.075 

   (0.66) (0.94) (0.54) 

Trading schemes   0.158*** 0.094* -0.038 

   (0.00) (0.01) (0.53) 

Constant 0.626*** -3.373*** -3.376*** -2.597** 2.471 

  (0.00) (0.00) (0.00) (0.00) (0.11) 

Observations 272 272 272 204 68 

BIC 2170.3 2145.5 2088.7 1473.6 382.6 

Note. Table 2 shows negative binomial regression estimates for Baseline Equation (1). The first row 

displays estimates for the effect of public R&D support for renewable energy technologies (measured 

in % of GDP) on patents in the renewable energy sector. The dependent variable is the by the OECD 

constructed number of renewable energy patents per year and country, lagged by one year and restricted 

to patents of at least family size 2, which excludes low-quality patents (as described in Section 4.1.). 

The additional covariates (Section 4.2) include: final energy consumption and electricity prices for 

domestic consumers (expressed in Purchasing Power Standards) as measures of demand; the number of 

patents in all technologies (restricted to at least family size 2) as measure of the propensity to patent; 

OECD indices for the environmental policy stringency of feed-in tariffs, standards, taxes and trading 

schemes. Columns 1, 2 and 3 rely on all available years (2000-2015). Column 2 excludes alternative 

policy measures. These are included in Column 3, which displays a positive and statistically significant 

association of public R&D funding with patenting. Columns 4 and 5 differ from Column 3 only in the 

periods under scrutiny. They show that the positive and statistically significant association between 

public R&D support and patenting can only be confirmed until 2011, but not for the short period 2012-

2015 in isolation.  

BIC-values as measures for model-fit are displayed at the bottom.  

p-values are displayed in parentheses: *** Significance at the 0.1 percent level; ** Significance at the 

1 percent level; * Significance at the 5 percent level. 
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For most countries (Appendix 5, Table A.5.i.), the positive and statistically significant effect of 

R&D funding is confirmed (except for Norway and Sweden). On a sector-specific level 

(Appendix 5, Table A.5.ii.), the positive and statistically significant effect is confirmed for all 

three renewable energy sources which currently provide the most renewable energy (biomass, 

solar- and wind energy).  
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6. Sensitivity Analyses 

The following sensitivity analyses scrutinise the robustness of the finding of a generally positive 

effect of R&D expenditures on innovation in RE technologies.  

 

6.1. Robustness to the Choice of Model 

The choice of an NBRM over a PRM and an OLS model has already been justified (Section 

4.3.). Nevertheless, the importance of the choice of model is also scrutinised for its relevance 

for the R&D result. In the literature, a general consensus has emerged that the difficulties of 

research on data that shows properties of count data (such as zero truncation) can be addressed 

through employing multiple methods (Sturman 1999).  

In fact, for the whole period 2000-2015, the positive and statistically significant effect of public 

R&D funding on green innovation is robust to the choice of model, no matter whether an 

NBRM, a PRM or an OLS is chosen (see Table A.6.i in Appendix 6).22 

However, the model choice still matters, which becomes apparent comparing the estimates for 

other policy indices. This motivates the alternative estimation of a fixed effects OLS model, 

which will be explained in the next subsection. 

 

6.2. Robustness to Different Measures of the Dependent Variable 

Two alternative measures for the outcome of innovation processes used in the literature would 

have been private R&D spending or the development of prices or costs (Groba and Breitschopf 

2013). However, for the present purposes, none of these alternatives is feasible. As mentioned, 

reliable data on private R&D spending in the RE sector is not available. On the other hand, an 

analysis of industry-specific price and cost developments would have been beyond the scope 

of the piece. The different RE technologies accumulated in the present research imply different 

cost and price drivers.  

Though, it was possible to evaluate the robustness of a positive and statistically significant 

effect for R&D support regarding three other modifications of the dependent variable. 

First, as an alternative measure of the dependent variable, RE patents are replaced by the share 

of renewable technology patents of all technology patents filed in a country and a given year 

 
22 Although the statistically insignificant result for the period 2012-2015 appeared to be independent of the model 

choice as well, the period is too short for reliable conclusions.  
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(as has been suggested by Costantini et al. (2015) as an extension for future research). Equation 

(2) summarises this sensitivity analysis:  

 

(𝑅𝐸 𝑃𝑎𝑡𝑒𝑛𝑡 𝑠ℎ𝑎𝑟𝑒𝑖,𝑡+1) = ß0 +  ß1(𝑝𝑢𝑏𝑙𝑖𝑐 𝑅&𝐷 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑖,𝑡) +

ß2(𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑖,𝑡) +

ß3(𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒𝑖,𝑡)+ ß4(𝐹𝑒𝑒𝑑_𝑖𝑛_𝑡𝑎𝑟𝑖𝑓𝑓𝑠𝑖,𝑡) +

ß5(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠𝑖,𝑡) + ß6(𝑇𝑎𝑥𝑒𝑠𝑖,𝑡) + ß7(𝑇𝑟𝑎𝑑𝑖𝑛𝑔_𝑠𝑐ℎ𝑒𝑚𝑒𝑠𝑖,𝑡) +

𝛼𝑖 + ℰ𝑖,𝑡               (2) 

 

This alternative measure indicates the importance of innovation in RE technologies relative to 

innovation in all technologies. The potential violation of the homoskedasticity assumption is 

tackled by using robust standard errors. And crucially, in contrast to the Baseline Equation (1), 

in this case, the assumption of normally distributed residuals could not be rejected, as is shown 

in Figure 9. Therefore, this alternative measure of the dependent variable made it possible to 

estimate Equation (2) as a fixed effects OLS model. 

 

 

 

 

 

Figure 9. Density distribution of residuals obtained from estimating Equation (2) as 

fixed effects OLS model. The Figure indicates that the normality assumption is not 

strongly violated. 
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As shown in Table 3, again, a positive and (nearly) statistically significant effect of public R&D 

funding on innovation in the renewable energy sector is confirmed. As mentioned, quantitative 

interpretations of the estimates should be made with caution. This in mind, the coefficients in 

Column 3 can be interpreted as follows: on average and all else equal, if total public R&D 

support for RE increased by 0.1 units (0.1 percent of GDP), the share of RE patents would 

increase by 3 percentage points. This would be a very large increase considering that the 

average RE patent share across countries and years amounts to 2.8 percent (Appendix 4 Table 

A.4.i ). Roughly, it would amount to a doubling of the RE patent share. 

This result provides additional credibility for the findings obtained so far. Furthermore, 

analysing the period 2000-2011 in isolation, the statistically significant and positive effect for 

R&D can again be confirmed. The statistically insignificant effect for the very short period 

2012-2015 reappears in this specification as well (just as in the NBRM, compare Table 2 in 

Estimation Results).  

The here employed measure of the patent share is far from a perfect replacement. For example, 

assume patenting activity in all technologies strongly increased in a country due to unobserved 

reasons (e.g., potentially increased R&D subsidies for nuclear energy technologies), while RE 

patenting activity remained unaffected. As a result, the share of RE patents would decrease, 

although the number of RE patents has not changed. As the example suggests, this alternative 

measure is likely affected by unobserved factors. A thorough analysis of its drivers goes beyond 

the scope of this piece. 
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Table 3. Estimates for the effect of public research and development funding on innovation in renewable 

energy technologies derived from estimating Equation (2) through Ordinary Least Squares (dependent 

variable: patents in renewable energy technologies as a share of patents in all technologies) 

 (1) (2) (3) (4) (5) (6) (7) 

 Variable 

2000- 

2015 

2000- 

2015 

2000- 

2015 

2000- 

2011 

2012- 

2015 

2000- 

2015 

lag2 

2000- 

2015 

lag3 

Total public RE R&D 

in % of GDP 

43.220* 43.500* 32.640 39.810 8.118 18.470 4.668 

(0.01) (0.03) (0.06) (0.07) (0.28) (0.21) (0.76) 

Electricity prices  7.579 -3.084 1.640 -44.680 -9.154 -12.100 

  (0.33) (0.71) (0.87) (0.11) (0.25) (0.10) 

Energy consumption  0.097* 0.093* 0.052 -0.095 0.139*** 0.126** 

  (0.03) (0.03) (0.16) (0.55) (0.00) (0.00) 

Feed-in tariffs   -0.095 -0.107 -0.189 -0.220 -0.283 

   (0.58) (0.51) (0.37) (0.27) (0.34) 

Standards   0.349* 0.683** -0.290 0.569** 0.659** 

   (0.02) (0.00) (0.42) (0.01) (0.01) 

Taxes   0.576 0.918 -0.975 0.168 -0.192 

   (0.31) (0.14) (0.40) (0.67) (0.63) 

Trading schemes   0.170 0.047 -0.095 0.180 0.084 

   (0.22) (0.76) (0.69) (0.12) (0.59) 

Constant 1.222 -8.782 -9.417 -7.631 21.710 -12.400** -9.526* 

  (0.07) (0.05) (0.05) (0.08) (0.28) (0.01) (0.04) 

Observations 272 272 272 204 68 272 272 

BIC 1124.1 1121.2 1122.9 837.9 232.0 1098.0 1099.9 

Note. Table 3 shows ordinary least square regression estimates for Equation (2). The first row displays 

estimates for the effect of public R&D support for renewable energy technologies (measured in % of 

GDP) on the share of RE patents. More specifically, the dependent variable is calculated as follows: the 

constructed number of renewable energy patents is divided by the number of patents in all technologies, 

per year and country, and restricted to patents of at least family size 2, which excludes low quality 

patents (as described in Section 4.1.). Except ‘number of patents in all technologies’, the additional 

covariates remain the same as in Baseline Equation (1): final energy consumption and electricity prices 

for domestic consumers (expressed in Purchasing Power Standards) as measures of demand; OECD 

indices for the environmental policy stringency of feed-in tariffs, standards, taxes and trading schemes. 

Columns 1, 2 and 3 display OLS estimates for all available years (2000-2015), while Columns 4 and 5 

restrict the periods under scrutiny. Columns 1-5 can be compared to Columns 1-5 in Table 2. Indeed, 

statistical significance and direction of public R&D estimates remain similar. For the whole period, the 

overall effect of public R&D on RE patenting is still statistically significant and positive. In Column 6, 

the dependent variable ‘RE patents’ is lagged with plus 2 years and in Column 7 with plus 3 years. These 

columns are again based on the whole period 2000-2015. They highlight the importance of the chosen 

lag structure for the OLS estimates for the effect of public R&D.  

BIC-values as measures for model-fit are displayed at the bottom.  

p-values are displayed in parentheses: *** Significance at the 0.1 percent level; ** Significance at the 1 

percent level; * Significance at the 5 percent level. 
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Second, the robustness of the statistically significant and positive effect of public R&D support 

is scrutinised concerning different temporal treatments of the dependent variable. In size, 

direction and statistical significance, the result is strongly dependent on the chosen lag structure, 

consistently across models (NBRM, PRM and OLS)23. While both theory and existing literature 

support the choice of a one- to two-year lag treatment (Section 4.1.), the high dependence of 

finding (a) on the temporal treatment of the dependent variable limits the persuasiveness of the 

results. The Discussion Section (7.1) elaborates on the implications of this inconsistency for 

future research. 

Third, given the potential relevance of patent quality (Section 4.1.), Baseline Equation (1) is 

estimated on patents of various qualities. The statistically significant positive effect of public 

R&D expenditures on patenting is robust to choices of patent quality (family sizes ranging from 

one for low to four for very high quality) (Table 4, Columns 3-6). The BIC-values as measures 

of model-fit improved as soon as only higher-quality patents were included in the measurement 

of the dependent variable. 

  

 
23 For the alternative measure of the dependent variable mentioned above and estimated through OLS, this is shown 

in Table 2, Columns 6 and 7, and in Table 3 Columns 1 and 2 for the estimation of Baseline Equation (1) through 

a NBRM. 
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Table 4. Robustness-check of negative binomial regression estimates for the effect of public research and 

development funding on innovation (Equation (1)) for different patent qualities and temporal treatments of the 

dependent variable (patents in the renewable energy sector) 

 (1) (2) (3) (4) (5) (6) 

 Variable lag2 lag3 

Family Size 

Two 

Family 

Size One 

Family 

Size Three Family Size Four 

Total public RE 

R&D 1.480 -3.070* 6.060*** 5.980*** 6.350*** 5.470*** 

 (0.299) (0.034) (0.000) (0.000) (0.000) (0.000) 

Electricity prices 2.070 -1.120 4.290** 4.650*** 3.510* 3.120* 

 (0.111) (0.397) (0.002) (0.000) (0.016) (0.041) 

Energy 

consumption 0.040*** 0.040*** 0.030*** 0.030*** 0.030*** 0.030*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Patents all 

technologies 0.0000017 0.0000024 0.0000048 0.0000048 0.0000110 0.0000109 

 (0.896) (0.857) (0.705) (0.714) (0.412) (0.446) 

Feed-in tariffs 0.026 0.007 0.045 0.017 0.040 0.033 

 (0.293) (0.773) (0.077) (0.469) (0.126) (0.217) 

Standards 0.170*** 0.186*** 0.153*** 0.115*** 0.150*** 0.176*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Taxes -0.065 -0.080 -0.034 -0.013 -0.080 -0.097 

 (0.361) (0.244) (0.656) (0.848) (0.312) (0.227) 

Trading schemes 0.189*** 0.163*** 0.158*** 0.159*** 0.150*** 0.149*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Constant -3.185*** -2.278*** -3.376*** -2.382*** -2.541** -2.434** 

  (0.000) (0.001) (0.000) (0.001) (0.002) (0.003) 

       

Observations 272 272 272 272 272 272 

BIC 2084.1 2104.6 2088.7 2359.1 1902.3 1770.4 

Note. Table 4 analyses the importance of the measurement of the dependent variable. It shows negative 

binomial regression estimates for Equation (1). The first row displays estimates for the effect of public R&D 

support for renewable energy technologies (measured in % of GDP) on patents in the renewable energy sector. 

All available years (2000-2015) are included for all columns. The additional covariates include: final energy 

consumption and electricity prices for domestic consumers (expressed in Purchasing Power Standards) as 

measures of demand; the number of patents in all technologies (restricted to at least family size 2) as measure 

of the propensity to patent; OECD indices for the environmental policy stringency of feed-in tariffs, standards, 

taxes and trading schemes. Importantly, the columns differ in the measurement of the dependent variable. In 

Columns 1 and 2, the dependent variable is lagged with plus two and plus three years instead of only one. This 

different temporal treatment affects the public R&D estimates. This also becomes evident in comparison with 

Column 3, where patents are lagged with only one year. Note that Column 3 here corresponds to Column 3 in 

Table 2, and on which the main results of this piece are based. In this vein, patents in Column 3 are restricted 

to patents with a family size of at least two. This means that those patents are filed in at least two jurisdictions, 

excluding low-quality patents. Column 4 does not apply this restriction and includes all renewable energy 

patents in measuring the dependent variable. Columns 5 and 6 are more restrictive in the quality of patents and 

include only those that are filed in at least three or four jurisdictions. Columns 3, 4, 5 and 6 show that the main 

results for public R&D do not depend on the quality of patents, approximated by family size.  

BIC-values as measures for model-fit are displayed at the bottom.  

p-values are displayed in parentheses: *** Significance at the 0.1 percent level; ** Significance at the 1 percent 

level; * Significance at the 5 percent level. 
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6.3. Robustness to Alternative Measures of Covariates  

In the following, the robustness of sign and statistical significance of the R&D estimates 

obtained is evaluated with respect to the inclusion of three alternative measures of covariates. 

First, OECD's (2016) overall market-based EPS index replace single EPS indices for market-

based, demand-pull policies, represented by the variables 

(𝐹𝑒𝑒𝑑_𝑖𝑛_𝑡𝑎𝑟𝑖𝑓𝑓𝑠𝑖,𝑡),  (𝑇𝑎𝑥𝑒𝑠𝑖,𝑡) 𝑎𝑛𝑑 (𝑇𝑟𝑎𝑑𝑖𝑛𝑔_𝑠𝑐ℎ𝑒𝑚𝑒𝑠𝑖,𝑡). This replacement is performed 

to account for concerns of multicollinearity. Several different EPS indices are included in the 

baseline Equation (1). It could be the case that different environmental policies are strongly 

linearly correlated. For example, they could have been introduced or strengthened in the same 

year. In the regression, the effect of public R&D support is obtained by holding the other 

regressors constant. However, if EPS indices shared variability with public R&D funding, 

‘holding other factors constant’ would decrease the variability of public R&D funding in so far 

as shared with the other regressors. This potential loss of information and variability can result 

in less accurate estimates through increased standard errors, both for public R&D funding and 

individual EPS indices (Wooldridge 2009, ch.3, p.95f.). 

Calculating Pearson correlation indices for all regressors in Baseline Equation (1) (compare 

Appendix 6, Table A.6.ii), the regressor of interest, public R&D funding, results as not strongly 

linearly correlated with any of the other regressors. Although a quantitative interpretation of 

estimates is not the purpose of this analysis, concerns of multicollinearity can still be ruled out 

for the R&D estimate. However, the EPS index for Trading Schemes is linearly correlated with 

the EPS index for Standards at a critical level of 0.58 (while a value of 1 would indicate a 

perfect linear correlation of the two variables). Therefore, to mitigate multicollinearity concerns 

for Standards, the variables Trading-Schemes, Taxes, and Feed-in Tariffs are replaced by the 

cumulative index for market-based EPS. This replacement reduces the correlation between the 

EPS index for Standards and the EPS index for market-based policies to 0.4 (see Appendix 6, 

Table A.6.iii). As expected, the estimates for total public R&D expenditures are robust to this 

replacement in size, direction and statistical significance. In contrast, estimates for Standards 

increase slightly in their size (Table 5, Column 2 compared to Column 1). 

This piece focuses on whether public R&D has been an effective driver of innovation. As 

mentioned, Pitelis et al. (2020) found that sometimes, RE R&D funding as a technology push 

policy is effective only in combination with other demand-pull policies. Thus, as an extension, 

R&D funding is interacted with the index for market-based EPS (Table 5, Column 3). A positive 
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and statistically significant effect is found only for the interaction term. This is in line with past 

evidence on the importance of combining technology-push and demand-pull policies. 

Second, the total number of patents in all technologies is replaced by an alternative measure for 

the innovative system. Namely, as an alternative, the knowledge stock created by all patents 

related to renewable technologies is estimated (as similarly done by Costantini et al. (2015) for 

biomass only). The knowledge stock represents a measure of the presumed, accumulated 

knowledge created by past patents. Klaassen et al. (2005), Kobos et al. (2006) and Bointner 

(2014) provide a detailed description of the methodology. The method goes beyond a pure sum 

of patent counts. While Equation (1) already implied assumptions concerning time lags, 

calculating the cumulative knowledge stock for RES permits it to go further. Namely, it implies 

assumptions both on knowledge spillovers (𝜌) and depreciation rates of knowledge (𝛿). It 

consists of both the accumulated knowledge stock of the past period, depreciated and multiplied 

by a spill-over effect, as well as the amount of RE patents for period 𝑡. This is illustrated by the 

following Equation (3): 

 

𝐾𝑆_𝑅𝐸_𝑃𝑎𝑡𝑡,𝑖 = ∑ (1 + 𝜌) × (1 − 𝛿) × 𝐾𝑆(𝑡−1),𝑖 + 𝑅𝐸_𝑃𝑎𝑡𝑡,𝑖
𝑛
𝑖=1     (3) 

 

The reasoning which justifies accounting for depreciation of knowledge is that the further in 

the past knowledge has been created, the lower is its value for current inventions. Based on 

existing contributions by Bointner (2014) and De Negri et al. (2020), a depreciation rate of 10% 

for knowledge on renewable energy technologies is assumed. Furthermore, it is assumed that 

knowledge creation of one party facilitates innovation by other parties. Thus, new knowledge 

can, at least in parts, be traced back to past innovations and their positive externalities (Jaffe, 

Trajtenberg, and Fogarty 2000). In line with De Negri et al. (2020) and based on the European 

Commission's (2017) technical study on energy spillovers of clean technologies, a knowledge 

spillover rate of 35% is assumed. 

The estimated values for the RE-patenting knowledge stock are then used to replace the total 

number of patents in all technologies. The R&D estimate remains statistically significant and 

positive (Table 5). Thus, the estimate of public R&D funding proved robust to the inclusion of 

a knowledge stock measure for green innovation. The estimates for the knowledge stock are 

also statistically significant and positive. This is in line with expectations, as one would expect 

green patenting to be positively affected by the amount of knowledge accumulated in the past 

in that sector. 
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Third, OECD's (2016) Environmental Policy Stringency index for public R&D subsidies is 

added. The index replaced the total amounts of public R&D funding, the regressor of main 

interest in this paper. Notably, OECD’s index for the environmental stringency of public R&D 

funding differs from the latter in an important way: in the calculation of the index, the 

government’s budget allocations to R&D on renewable technologies are used, in line with 

IEA’s definition of “public” (Botta and Koźluk 2014, p.18). This, though, does not include 

R&D funding on renewable technologies distributed through the European Commission 

(Section 3.2). As the results in Table 5 illustrate, the positive and statistically significant effect 

of public R&D funding is confirmed with (Column 1) and without EC funding considered 

(Column 5). This supports not only the reliability of the R&D measure that has been constructed 

and employed in this study for the first time. It also indicates the robustness of the main finding 

of a positive and statistically significant effect of public R&D support to alternative, more 

incomplete measures of that variable. 
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Table 5. Robustness-check for negative binomial regression estimates for the effect of public research and 

development funding on innovation after including alternative measures for covariates 

 (1) (2) (3) (4) (5) 

 Variable 

Baseline 

Equation 

Market-

based EPS 

Total public 

RE R&D # 

Market-based 

EPS 

RE Patent 

Knowledge 

Stock 

EPS for 

R&D 

Support 

Total public RE R&D in % of 

GDP 

6.058*** 6.038*** 2.910 5.151***  

(0.00) (0.00) (0.31) (0.00)  

Electricity prices 4.292** 4.543*** 4.775*** 4.132** 4.803*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

Energy consumption 0.035*** 0.042*** 0.043*** 0.037*** 0.031*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

Patents all technologies 0.000 -0.000 -0.000  0.000 

 (0.70) (0.75) (0.75)  (0.84) 

Feed-in tariffs 0.045   0.059* 0.047 

 (0.08)   (0.02) (0.06) 

Standards 0.153*** 0.199*** 0.234*** 0.131*** 0.146*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

Taxes -0.034   -0.010 0.005 

 (0.66)   (0.90) (0.94) 

Trading schemes 0.158***   0.175*** 0.177*** 

 (0.00)   (0.00) (0.00) 

Market-based instruments  0.232***    

  (0.00)    

Total public RE R&D # Market-

based instruments 

  1.771   

  (0.07)   

RE Patent Knowledge Stock    0.00008*  

    (0.04)  

EPS for national R&D Support     0.142*** 

     (0.00) 

Constant -3.376*** -4.456*** -4.330*** -3.515*** -3.265*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

Observations 272 272 272 272 272 

BIC 2088.7 2085.9 2097.0 2085.2 2086.7 

Note. Table 5 shows negative binomial regression estimates for Baseline Equation (1) with different measures for 

the covariates. The dependent variable remains the by the OECD constructed number of renewable energy patents 

per year and country, lagged by one year and restricted to patents of at least family size 2. All columns rely on the 

whole available period (2000-2015). For comparison, Column 1 displays the main results of the Baseline Equation 

(1) and corresponds to Column 3 in Table 2. In Column 2, to control for multicollinearity, the market-based 

environmental policy stringency index replaces separate market-based policy measures (taxes, trading schemes 

and feed-in tariffs). In Column 3, this market-based EPS is interacted with public R&D funding. In Column 4, the 

knowledge stock created by renewable energy patents replaces the number of patents in all technologies as a 

measure of the innovative environment. In Column 5, OECD’s EPS index for national R&D support replaces total 

public R&D funding. For all columns, estimates for public R&D funding remain statistically significant and 

positive. In Column 3, public R&D estimates are statistically significant at a 10 percent level only if interacted 

with market-based policy instruments. 

BIC-values as measures for model-fit are displayed at the bottom.  

p-values are displayed in parentheses: *** Significance at the 0.1 percent level; ** Significance at the 1 percent 

level; * Significance at the 5 percent level. 
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7. Discussion, Limitations and Policy Recommendations 

Addressing part two of the research question, an overall positive and statistically significant 

effect of public (EC + national) R&D support on green innovation has been found. The result 

is robust across models and different measures for the dependent variable and covariates. 

However, the importance of temporal treatment and statistically insignificant results for 2012-

2015 motivate the author to be reluctant to quantitative interpretations. These results provide 

the case to discuss three main limitations of this piece before policy recommendations are 

formulated. 

 

7.1. Limitation One: Temporal Uncertainty 

The main results are based on lagging patents by one year. Hall, Griliches, and Hausman (1983) 

support this choice. They found that most of the effect of R&D spending on patenting occurs 

in the first and, to a smaller extent, in the second year. The choice is also in line with other 

contributions (Johnstone et al. 2010; Costantini et al. 2015). At the same time, a different 

temporal treatment affects the results, independent of the chosen model. This reflects a 

challenge identified by Pless et al. (2020), who stress the long and uncertain times between 

receiving R&D support and the manifestation of measurable innovation outcomes. Pitelis 

(2018) justifies his reluctance to a quantitative interpretation of estimates with the dependence 

of results on chosen lag structures. 

Future research should address this challenge, first, through recognising the different stages of 

current innovation processes. Different levels of technology advancement imply different time 

spans for R&D activities to produce innovation outcomes. Second, through data-collection: 

Although extensive data-collection over several years (such as in this piece) forms the basis to 

address the challenge of temporal uncertainty successfully, here, a limitation is set by future 

innovation outcomes not yet being observable. The patent data analysed in the present piece are 

only available until 2018. Future research should collect data on more extended periods post 

policies to address the temporal uncertainty challenge.  

 

7.2. Limitation Two: The Quantification of the Causal Effect 

Another challenge the evaluation of energy innovation policies commonly faces is the reliable 

quantification of causal effects (Pless, Hepburn, and Farrell 2020). This challenge underpins an 

interpretation of the statistically insignificant estimates from 2012 onwards. The challenge 



43 

consists of the following: to identify a causal effect of a policy, influences from other factors 

on the innovation outcome need to be stripped out. Ideally, the innovation outcome would be 

compared to a counterfactual: the potential outcome had the entity/ country not received public 

R&D funding. This potential outcome, though, is by definition unobservable. Instead, the 

regression method with fixed effects employed in this piece aims to ‘strip out’ relevant 

differences between countries other than public R&D subsidies that are likely to affect green 

innovation. However, at least two statistical problems still threaten the isolation of marginal 

effects and their quantitative, causal interpretation. (Pless et al. 2020) 

The first is commonly known as ‘selection bias’. It refers to systematic differences between 

groups that ‘cause’ outcomes to differ. For example, countries might vary systematically in 

their propensity to innovate. Firms that have been innovative in the past are more likely to apply 

for patents successfully. In this piece, different measures for the innovative environment (the 

number of all technology patents, the RE Knowledge Stock) and the fixed effects method cope 

with this challenge at least partly. The RE Knowledge Stock controls for the estimated 

knowledge available in a country and technology sector. (Pless et al. 2020) 

‘Simultaneity bias’ represents the second statistical problem that threatens a causal 

interpretation: changes in policies may coincide with other changes over time. For example, 

research efforts of firms may be driven directly by expectations about future demand and the 

reputations of these technologies within society. At the same time, governments may respond 

to these societal interests as well. They might introduce policies that favour renewable energy 

technologies. Thus, green innovation would be driven ‘simultaneously’ by both firms’ direct 

responses to political interests and the introduction of more stringent policies by governments. 

(Pless et al. 2020) 

For the period from 2012 to 2015, next to simultaneity bias and selection bias, R&D estimates 

are likely unreliable for several reasons. The period is very short, and stable total public R&D 

expenditures reflect a small within variation. This makes a reliable application of a fixed effects 

method questionable (Wooldridge 2009, ch.14, p.481f.). Also, sector-specific price drops and 

general industry declines are not included in the analysis. These factors are likely to have caused 

the decrease in patenting activity for that very recent period instead of stable public R&D 

funding. For example, between 2006 and 2016, the (inflation-adjusted) price of rooftop 

photovoltaic systems in Germany decreased by approximately 72% (Fraunhofer ISE 2021, 

p.44), which was mainly caused by massive production by Chinese manufacturers (Li and Shao 

2021). Maturity levels of renewable energy technologies may represent additional unobserved 

drivers of green innovation, especially for 2012-2015. RE technologies have advanced over 
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time, which may have affected the impact of public R&D support (Costantini et al. 2015). In 

Section 7.4., lacking data on maturity levels of technologies will be further discussed as a 

separate limitation. For these various reasons, the statistically insignificant R&D estimates for 

2012-2015 should not be interpreted as undermining the relevance of public R&D support. 

Instead, for that period, RE patenting is likely driven by other factors. 

Overall, the fixed effects method and covariates can remove some endogeneity. Nevertheless, 

it is simply impossible to know whether all relevant information and sources of endogeneity 

are included in the analysis. This impossibility is one of the reasons that motivate the author to 

be reluctant to formulate quantitative interpretations.  

Possible simultaneity- and selection bias and some unobserved drivers of innovation, especially 

for the period from 2012 onwards, shed light on promising realms for future research. Adapting 

the design of new energy innovation policies can make it easier to account for potential 

simultaneity- and selection bias. For example, policy design can facilitate randomised control 

trials (Athey and Imbens 2017) through randomising specific requirements of R&D grant 

funding (e.g., whether the applicant collaborates with certain types of firms or institutions). 

Alternatively, determining the distribution of public R&D support through grades or rankings 

can permit the evaluation through ‘Regression Discontinuity Designs’ (D. S. Lee and Lemieux 

2010). Innovation performance of firms just above and below the cut-off, which is assumed to 

be similar in relevant characteristics, can be compared. For example, Bronzini and Piselli (2016) 

and Agrawal, Rosell, and Simcoe (2020) have already successfully implemented Regression 

Discontinuity Designs in the context of evaluating energy innovation policies. (Pless et al. 

2020) 

Finally, regarding unobserved drivers of patenting activity, which may be particularly relevant 

from 2012 onwards, the inclusion of alternative measures of innovation outcomes may provide 

beneficial insights in future research. These alternative measures include private R&D 

spending, which will be discussed in the next section, price or cost development, and academic 

publications (all measures were not available for the purpose of this study) (Groba and 

Breitschopf 2013). Indeed, in contrast to patents, the EU’s share of global academic 

publications in RE sectors remained constant from 2012 onwards (Hoogland et al. 2019).  

 

7.3. Limitation Three: Private R&D Funding 

For this piece, country-specific data on private R&D funding were not available. Public R&D 

funding can affect private R&D spending, which is why the latter represents an alternative 
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measure for innovation output in RE technologies (Groba and Breitschopf 2013). Theory and 

recent evidence on the relationship between private and public R&D funding shed light on why 

the lack of private data likely biases the size of the public R&D estimates.  

First, the lack of private R&D data is a challenge that coincides with Limitation Two. Regarding 

selection bias, a firm that is innovative and successful in applying for patents is likely one that 

has spent significant amounts on innovation activities. At the same time, such a firm is also 

likely successful in receiving public R&D funding (Jaffe 2002). Thus, the ‘true’ estimates for 

the impact of public R&D spending on patents may be smaller than in the output of this piece. 

While the fixed effects approach allows capturing unobserved variation between countries in 

their levels of private spending, it cannot capture unobserved changes in private spending over 

time (Section 4.3.). And this is critical if one recalls that global private R&D funding for RE 

technologies has increased heavily in recent years and represents an essential part of total R&D 

spending (IEA 2020a) (Section 3.1.). Thus, changes in patenting activity may be partly driven 

by changes in private R&D spending. Regarding simultaneity bias (Pless et al. 2020), as 

discussed, public reputations of RE technologies may simultaneously affect private and public 

R&D spending. And both private and public expenditures affect RE innovation. Thus, the true 

effect of public R&D may be smaller than if private spending was omitted. 

Second, besides issues related to simultaneity- and selection bias, firms may alter their spending 

decisions if they receive public support. This so-called ‘additionality question’ concerns how 

public R&D funding affects private R&D spending. In a simple theoretical framework, one may 

suggest that public spending crowds out private spending. If marginal costs remain constant, a 

firm that maximizes its profits will not invest more in innovation activities and instead reduce 

private spending. However, cost-sharing or co-funding requirements for public support can 

mitigate crowding out by reducing marginal costs. A profit-maximizing firm is incentivized to 

invest more until the marginal productivity of R&D spending decreases sufficiently so that 

marginal benefits again equal marginal costs (Wallsten 2000). Also, in so far as private funding 

reflects a firm’s long-term commitments, it is not affected by fluctuating public support (Becker 

2015). Furthermore, firms may free-ride on the public funding decision conceiving of it as a 

certification of high quality and therefore invest more in these projects (the so-called ‘halo’ 

effect) (Diamond 1999). Thus, public funding may even ‘crowd-in’ private funding. Recent 

empirical evidence predominantly supports the hypothesis that, in general, public R&D support 

crowds-in and stimulates private R&D spending. Thereby, the effectiveness of public R&D 

spending is found to be larger for smaller firms that face financial constraints, while larger firms 

are likely to invest anyways. (Jaffe 2002; Becker 2015) 
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Overall, the implication of omitting private R&D data for the public R&D estimates is 

ambiguous. Selection- and simultaneity bias may imply that true public R&D estimates are 

smaller. However, recent empirical evidence predominantly supports the crowding-in 

hypothesis. Public R&D support generally drives innovation in interaction with and ‘through’ 

stimulating private investment (Becker 2015). This recent evidence suggests that the piece’s 

main result on public R&D’s general effectiveness is not threatened by the omission of private 

data. Provided the availability of private R&D data is enhanced, future research should analyse 

this relationship for the case of RE technologies. 

 

7.4. Limitation Four: Stages of Technology Development  

An additional challenge stems from the dependence of the impact of public R&D support on 

the stage of technology development. For example, Grubb (2004) emphasises that public R&D 

support is vital during the early phases of the technology development and continues to be 

effective during the demonstration phases until commercialisation in a niche market. While 

market-pull policies should generally be combined with R&D funding, market-pull policies are 

crucial during later stages to support full market commercialisation. Johnstone et al. (2010) 

support this finding, arguing that R&D support is especially effective for early-stage RE 

technologies since it incentivizes very specific technologies. An OECD publication (OECD 

2011) adds stringent environmental standards as effective drivers for early-stage technological 

development. Standards stimulate innovation that makes it less costly to comply with the new 

regulations. Costantini et al. (2015) discriminated between two generations of technologies in 

the biofuels sector. They found that only second-generation technologies in the biofuels sector 

reacted positively to technology push policies (such as R&D support). They suggest that 

demand-pull policies can effectively incentivise risky and exploratory innovation investments 

on first generation-technologies by affecting a firm’s expectations towards the growth of 

demand.  

All these findings indicate that the stages of development and the generation and advancement 

of technologies matter for policies’ effectiveness. In this piece, due to data limitations, it was 

impossible to clearly discriminate between different stages of development or technology 

generations. Doing so would be a relevant extension for future research. Regarding the period 

2012-2015, a closer analysis of the commercialisation stages of RE technologies can provide 

valuable insights on the relationship between maturity levels of RE technologies and the 

decrease of renewable energy patenting in Europe. 
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7.5. Policy Recommendations 

The descriptive analysis in this piece resulted from an extensive data collection effort. It 

revealed a high heterogeneity across countries in the relative importance of the European 

Commission’s R&D contributions for renewable energy technologies, ranging from 15% 

(France) to 63% (Belgium). The National Energy and Climate Plans (NECPs), which all EU 

Member States must submit, address the necessity to align national support for R&D in 

renewable energy technologies (EU 2018b). However, alignment does not mean equality. Path-

dependence and divergence in the governments’ R&D efforts or the allocation of EC funding 

may be of little concern for green innovation (Grafström et al. 2020). Overall, drawing 

normative conclusions from biases of the allocation of EC funding towards certain countries 

goes beyond the scope of this piece. Instead, (policy recommendation 1) to facilitate the 

transparency and alignment of public R&D efforts, the accessibility of data on EC and national 

contributions should be improved. Furthermore, the availability of private R&D data should be 

enhanced so that the relationship between private and public R&D funding can be analysed. In 

relation to this, the vital role international organizations such as the IEA play in providing such 

data and knowledge services and in mobilizing other agencies to support renewable energy 

technologies should be recognized (Li and Shao 2021). 

In line with existing contributions, the estimation results on the overall effectiveness of R&D 

funding for RE are statistically significant, positive, and diverse across sectors and countries. 

From this follows policy recommendation 2: the size of public R&D support for renewable 

energy technologies should be determined recognizing the local conditions and policies in 

place. For example, Denmark has many wind resources and already relies on wind power 

generation. However, despite the countries’ local conditions, ocean energy generation is an 

underdeveloped sector with potential that deserves more attention (Li and Shao 2021). Another 

example of a technology-specific factor that affects the impact of R&D support is the 

complementarity to other energy innovation policies in place. Acemoglu et al. (2012) show that 

an effective carbon price should complement public R&D subsidies for environmental 

regulation to be effective. Furthermore, the extent to which R&D support measures should be 

complementary to demand-pull instruments should, among others, depend on the current stages 

of development of specific RE technologies (Groba and Breitschopf 2013; Costantini et al. 

2015). 

Policy recommendation 3 addresses the necessity to quantify marginal effects: the design of 

energy innovation policies should recognise the need to identify marginal effects and quantify 
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the effectiveness of measures, such as through implementing lotteries or rankings. Finally, 

policy recommendation 4 relates to this and addresses the temporal uncertainty of innovation 

outcomes. As discussed, (quantitative) results highly depend on the temporal treatment. 

Therefore, it is recommended that energy innovation policies are provided consistently over 

time and coupled with reporting processes of innovation impacts maintained for several years. 

Reporting processes can provide critical data to capture middle- to long-term effects. (Pless, 

Hepburn, and Farrell 2020) 
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Conclusion 

The EU and its Member States widely acknowledge the importance of public research and 

development support for renewable energy technologies. For example, they committed to 

double public R&D investment from 2015 until 2020 and to increase the renewable energy 

share to at least 35% by 2030. That provides the case to address the following research question: 

what was the size of public R&D funding for renewable energy sources in 2000-2020 and its 

effect on knowledge and innovation?  

Public (the EC’s + national) R&D funding for renewable energy technologies were analysed 

from 2000 to 2020 and across 17 European countries, on both a country- and sector-specific 

level and over time. Based on this (to the author’s knowledge) so far uniquely detailed panel 

dataset on a country-level, the piece provides strong support for the relevance of public R&D 

funding. In addition, it aims to incentivize future research and policy-making. The research 

question is answered as follows:  

(a) Concerning the first part of the research question, yearly averages for public R&D 

funding for RE technologies have been the highest in the largest economies (DE, FR). 

Nordic countries lead when the sizes of the economies are taken into account. The piece 

made it possible to shed light on the vast heterogeneity of the relative importance of EC 

contributions (as shares of total public R&D funding for renewable energy 

technologies): Belgium received 63% and Spain 46% of their total public R&D support 

for renewable energy technologies from the European Commission. In contrast, France 

received only 15% and Finland only 18% from the EC. Regarding changes over time, 

all countries experienced an increase in total public R&D funding until 2011. From 2012 

onwards, for most countries, the strong increase in EC contributions coincided with and 

compensated decreasing national budgets. This resulted in overall stable total public 

R&D support in most countries since 2012. Hence, on a detailed country level, the piece 

highlights the vital role of EC expenditures in stabilizing public R&D support for 

renewable energy technologies. In Norway, the Netherlands, Belgium and Portugal, 

total available public R&D funding for RE technologies even increased after 2012. 

However, none of the countries could double available public R&D support between 

2015-2020, despite their commitment to the MI initiative. 

(b) Concerning the second part of the research question, estimates for the overall average 

effect of total public R&D support on green innovation are statistically significant and 

positive. Based on precise data for the very recent period 2000-2015 and including the 

European Commission’s contributions, existing evidence derived from indices and 
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without the consideration of EC contributions is therefore confirmed. Furthermore, the 

effectiveness and relevance of public R&D support is confirmed for nearly all countries 

and the largest sectors (biomass, solar- and wind energy), whereby the size of the 

estimates is heterogeneous. However, for the most recent years 2012-2015, the 

association between public R&D funding and patenting in renewable energy 

technologies is statistically insignificant. Statistically, the estimates for that period are 

unreliable: the period is too short and within variation too small. Also, the decrease in 

patenting activity contrasts with the development of other innovation output measures 

such as academic publications on RE technologies. Overall, various factors not included 

in this analysis may have affected patenting activity in those years, such as the industry 

decline in the solar sector and less need for patenting due to, for example, technology 

advancement. 

(c) The piece also contributes to existing findings by confirming the general relevance of 

public R&D support through a range of sensitivity analyses. The overall positive and 

statistically significant result is robust: across alternative model-choices (for OLS, 

NBRM and PRM); across different measures for the dependent variable (RE patents as 

a share of all technology patents and different patent-qualities); against concerns of 

multicollinearity; when controlling for the knowledge stock created by renewable 

energy patents; and including OECD’s Environmental Policy Stringency index for 

(only) national R&D subsidies as a replacement for the unique, more complete measure 

constructed for this piece.  

(d) Overall, the piece shares four limitations with existing studies: the manifestation of 

innovation outcomes remains uncertain; the precise quantification of marginal effects 

remains critical; the advancement of technologies is heterogeneous; data availability 

(particularly for private R&D funding) remains limited. These limitations have been 

addressed. The discussion, so the author hopes, incentivizes future research and 

policymaking. 
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Appendix 

Appendix 1 on National Research and Development Expenditures 
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Figure A1.i. Sector-specific development of national research and development

expenditures for renewable energy technologies of 17 European countries from 2000 until

2020 (Mill. Euro) (2020 prices and exchange rates)
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Appendix 2 on the European Commission’s Research and Development 

Expenditures  

Description of data collection for the European Commission’s research and development 

expenditures for renewable energy technologies: 

The analysis of this piece is based on a unique dataset that is the result of an extensive data 

collection effort. Namely, the framework programme-specific datasets accessed through 

CORDIS still had to be attributed to both the RE-sector and subsectors (such as wind or solar 

energy), as well as to countries. The attribution of R&D projects to the RE-sector and subsectors 

has been carried out through a detailed, automated keyword search. Each project’s title and 

objective description were automatically skimmed for matches with a list of 99 keywords. 

Based on the resulting matches, the projects were then attributed to respective RE-subsectors.  

In general, a keyword method could be biased. For example, it might include irrelevant projects 

or exclude relevant ones (Johnstone, Haščič, and Popp 2010, p.7). However, the keyword search 

method applied in this piece is likely reliable. The risk of excluding relevant projects has been 

mitigated not only through a long list of different keywords (nearly a hundred). Furthermore, 

the method did not require precise matches, but the single keywords could also match parts of 

terms used in the project titles or descriptions. This again effectively minimised the risk of 

leaving out relevant projects. On the other hand, the risk of including irrelevant projects has 

been mitigated through a manual examination of descriptions of matched projects’ abstracts.  

In a subsequent step, the categorised projects had to be attributed to countries. Initially, lacking 

data on countries’ participation formed a significant obstacle to the feasibility of the present 

analysis. Fortunately, after several inquiries at the Helpdesk of the Publications Office of the 

European Union, the required CORDIS data has been made available to a sufficiently detailed 

extent. The published data also contained the precise amounts that countries received through 

their participation in EC R&D projects. This information could be merged with the sector 

attribution obtained from the keyword method.  

Finally, given that the raw data on EC funding only contained nominal values, they still had to 

be adjusted for inflation. This adjustment was carried out in reference to Harmonised Indices 

of Consumer Prices (HICP), which are published by the European Statistical Office (Eurostat 

2021). HICP provide comparable measures for inflation across Europe, both on a country level 

and over time. The year 2020 was used as a reference year to transform the nominal values into 

real values.  
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Figure A2.i. Research and development expenditures for renewable energy technologies

of the European Commission in 17 European countries from 2000-2020 by sector (Mill.

Euro) (2020 prices and exchange rates)
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Appendix 3 on Total Research and Development Expenditures  
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Figure A3.i. Total (the European Comission's + national) research and development

expenditures for renewable energy technologies, in 17 European countries and from

2000-2020 by country (Mill. Euro) (2020 prices and exchange rates)
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Figure A3.ii. Total (the European Comission's + national) research and development

expenditures for renewable energy technologies in 17 European countries from 2000-

2020 by sector (Mill. Euro) (2020 prices and exchange rates)
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Appendix 4 on Empirical Strategy and Data 

Table A.4.i. Descriptive statistics (for the period included in the estimation: 2000-2015) 

Variable Obs. Mean Std. dev. Min. Max. 

      

Patents RE 272 86.899 177.944 0 1282.920 

Patents RE as % share of all technology patents 272 2.818 2.887 0 19.638 

Total public R&D expenditures for RE in Mill. Euro 272 55.081 70.599 0.234 372.022 

Total public R&D expenditures for RE in % of GDP 272 0.040 0.033 0.001 0.177 

Energy consumption 272 96.588 5.625 80.900 113.300 

      

Electricity prices 272 0.126 0.043 0.052 0.235 

Feed-in Tariffs 272 2.003 1.912 0 6.000 

Standards 272 4.019 1.338 1 6.627 

Taxes 272 1.733 0.806 0.637 4.335 

Trading Schemes 272 1.497 1.248 0 5.281 

      

Market-based instruments 272 1.744 0.754 0.250 3.433 

R&D Stringency 272 2.578 1.460 0.919 6.728 

Patents RE Knowledge Stock 272 476.128 1026.011 2.350 6716.002 

Patents Solar Energy 272 42.733 105.462 0 762.090 

Patents Wind Energy 272 26.661 58.979 0 349.000 

      

Patents Biomass 272 8.632 13.310 0 81.790 

Patents Ocean Energy 272 3.721 5.670 0 38.000 

Patents Geothermal Energy 272 1.320 3.195 0 27.000 

Patents Hydroelectricity 272 3.828 6.896 0 59.830 

Total public R&D for Solar Energy in Mill. Euro 272 20.858 30.179 0 140.600 

      

Total public R&D for Solar Energy in % of GDP 272 0.011 0.008 0 0.054 

Total public R&D for Wind Energy in Mill. Euro 272 8.205 12.734 0 75.941 

Total public R&D for Wind Energy in % of GDP 272 0.007 0.011 0 0.073 

Total public R&D for Biomass in Mill. Euro 272 17.245 22.575 0 140.532 

Total public R&D for Biomass in % of GDP 272 0.016 0.018 0 0.103 

      

Total public R&D for Ocean Energy in Mill. Euro 272 1.366 2.755 0 15.834 

Total public R&D for Ocean Energy in % of GDP 272 0.002 0.004 0 0.032 

Total public R&D for Geothermal Energy in Mill. Euro 272 2.002 4.585 0 24.706 

Total public R&D for Geothermal Energy in % of GDP 272 0.001 0.001 0 0.013 

Total public R&D for Hydroelectricity in Mill. Euro 272 1.273 2.347 0 12.731 

      

Total public R&D for Hydroelectricity in % of GDP 272 0.001 0.003 0 0.029 

GDP Deflator 272 145603.8 173140.7 5418.9 745226.0 
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Table A.4.ii: Output of Hausman Test of H0: Difference in coefficients not systematic 

chi2(8) = (b-B)'[(V_b-V_B)^(-1)](b 

 
= 91.70 

Prob > chi2 = 0.0000 

(V_b-V_B is not positive definite) 
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Figure A.4.i. Total number of patents for renewable energy technologies from 2000-

2018 in 17 European countries by country.
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Figure A.4.ii. Scatterplot for renewable energy 

research and development funding and renewable 

energy patents (lagged by one year) (all 17 

countries, 2000-2015). 

Figure A.4.iii. Scatterplot for renewable energy 

research and development funding and renewable 

energy patents (lagged by one year) (16 countries 

except Germany, 2000-2015). 
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Appendix 5 on Estimation Results 

Table A.5.i: Comparison of negative binomial regression estimates for the effect of public research 

and development funding on innovation in renewable energy technologies between countries 

(Equation (1)) (dependent variable: patents in the renewable energy sector (lag 1)) 

 (1) 

 Variable 2000-2015 

Total public RE R&D 17.410** 

 (0.00) 

Country=AT # Total public RE R&D 0.000 

 (.) 

Country=BE # Total public RE R&D -15.180*** 

 (0.00) 

Country=CZ # Total public RE R&D 3.007 

 (0.73) 

Country=DE # Total public RE R&D 1.327 

 (0.80) 

Country=DK # Total public RE R&D -10.320* 

 (0.03) 

Country=ES # Total public RE R&D -0.492 

 (0.90) 

Country=FI # Total public RE R&D -6.034 

 (0.22) 

Country=FR # Total public RE R&D -10.040 

 (0.11) 

Country=HU # Total public RE R&D -2.537 

 (0.36) 

Country=IE # Total public RE R&D -4.641 

 (0.05) 

Country=IT # Total public RE R&D -10.400 

 (0.39) 

Country=NL # Total public RE R&D -14.500** 

 (0.00) 

Country=NO # Total public RE R&D -21.330*** 

 (0.00) 

Country=PL # Total public RE R&D -3.189 

 (0.56) 

Country=PT # Total public RE R&D -12.560 

 (0.32) 

Country=SE # Total public RE R&D -18.340*** 

 (0.00) 

Country=SK # Total public RE R&D -5.672 

 (0.49) 

Electricity prices -1.798 

 (0.69) 

Energy consumption 0.028 

 (0.14) 

Patents all technologies 0.000*** 

 (0.00) 
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Feed-in tariffs 0.019 

 (0.73) 

Standards 0.165*** 

 (0.00) 

Taxes 0.043 

 (0.60) 

Trading schemes 0.145*** 

 (0.00) 

Constant  
Observations 272 

Note. Table A.5.i displays country-specific negative binomial regression estimates for Baseline 

Equation (1) for the whole period 2000-2015. More specifically, and equally to Table 2 Column 3, this 

table displays estimates for the effect of public R&D support for renewable energy technologies 

(measured in % of GDP) on patents in the renewable energy sector (lagged by one year and restricted 

to at least family size 2, which excludes low quality patents). The additional covariates (Section 4.2) 

include: final energy consumption and electricity prices for domestic consumers (expressed in 

Purchasing Power Standards) as measures of demand; the number of patents in all technologies 

(restricted to at least family size 2) as measure of the propensity to patent; OECD indices for the 

environmental policy stringency of feed-in tariffs, standards, taxes and trading schemes. The baseline 

country is Austria (AT), for which the association between public R&D funding and patenting is 

statistically significant and positive. For Belgium (BE), the coefficient remains positive and statistically 

significant (17.41-15.18=2.23). The positive and statistically significant effect of public R&D funding 

is confirmed for most countries (except for Norway and Sweden).  

p-values are displayed in parentheses: 

*** Significance at the 0.1 percent level. 

** Significance at the 1 percent level. 

* Significance at the 5 percent level.  

 

17 European countries are included: Austria (AT), Belgium (BE), Czech Republic (CZ), Germany (DE), 

Denmark (DK), Spain (ES), Finland (FI), France (FR), Hungary (HU), Ireland (IE), Italy (IT), The 

Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT), Sweden (SE), Slovakia (SK). 
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Table A.5.ii: Comparison of NBRM estimates for the effect of public research and development funding on 

innovation in renewable energy technologies (Equation (1)) between sectors (dependent variable: patents in the 

renewable energy sector (lag 1)) 

 (1) (2) (3) (4) (5) (6) 

 Variable Biomass Wind Solar Ocean Geothermal Hydroelectricity 

R&D Biomass 7.906**      

 (0.01)      

Electricity prices 4.517 7.996*** 3.687* 6.151* -3.931 1.934 

 (0.05) (0.00) (0.03) (0.01) (0.42) (0.46) 

Energy consumption 0.029** 0.024* 0.044*** 0.042*** 0.036 0.016 

 (0.00) (0.02) (0.00) (0.00) (0.05) (0.20) 

Patents all technologies -0.000 0.000 -0.000 -0.000*** 0.000*** -0.000 

 (0.63) (0.09) (0.79) (0.00) (0.00) (0.33) 

Feed-in tariffs 0.056 0.013 0.056 0.036 0.032 -0.021 

 (0.10) (0.70) (0.07) (0.45) (0.61) (0.64) 

Standards 0.135** 0.156*** 0.177*** 0.209*** 0.135 0.288*** 

 (0.00) (0.00) (0.00) (0.00) (0.09) (0.00) 

Taxes -0.075 -0.055 0.006 -0.118 0.163 -0.212 

 (0.43) (0.61) (0.95) (0.31) (0.40) (0.12) 

Trading schemes 0.225*** 0.125** 0.197*** 0.120* 0.174* 0.130* 

 (0.00) (0.00) (0.00) (0.04) (0.01) (0.03) 

R&D Wind  13.490*     

  (0.03)     

R&D Solar   15.080**    

   (0.00)    

R&D Ocean    -18.780   

    (0.14)   

R&D Geothermal     17.130  

     (0.77)  
R&D Hydroelectricity      -27.300 

      (0.23) 

       

Constant -2.288* -2.868* -4.672*** -3.340* -4.173 -0.931 

  (0.05) (0.01) (0.00) (0.01) (0.05) (0.51) 

Observations 272 272 272 272 256 272 

Note. Table A.5.ii displays sector-specific negative binomial regression estimates for Baseline Equation (1) for the 

whole period 2000-2015. More specifically, and equally to Table 2 Column 3, this table displays estimates for the 

effect of public R&D support for renewable energy technologies (measured in % of GDP) on patents in the 

renewable energy sector (lagged by one year and restricted to at least family size 2, which excludes low quality 

patents). The additional covariates (Section 4.2) include: final energy consumption and electricity prices for 

domestic consumers (expressed in Purchasing Power Standards) as measures of demand; the number of patents in 

all technologies (restricted to at least family size 2) as measure of the propensity to patent; OECD indices for the 

environmental policy stringency of feed-in tariffs, standards, taxes and trading schemes. The effectiveness of public 

R&D funding on patents in the specific RE sectors is estimated separately for all RE sectors (biomass, wind energy, 

solar energy, ocean energy, geothermal energy, hydroelectricity). The positive and statistically significant effect of 

public R&D funding is confirmed for all three renewable energy sources which currently provide the most 

renewable energy (biomass, solar and wind).  

p-values are displayed in parentheses: *** Significance at the 0.1 percent level; ** Significance at the 1 percent 

level; * Significance at the 5 percent level. 
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Appendix 6 on Sensitivity Analyses and Robustness Checks 

Table A.6.i: Negative binomial regression estimates for the effect of public research and development 

funding on innovation in renewable energy technologies compared to Poisson regression estimates 

and Ordinary Least Square regression estimates (Equation (1)) (dependent variable: patents in the 

renewable energy sector (lag 1))  

 (1) (2) (3) 

 Variable 

NBRM 

2000- 

2015 

PRM 

2000- 

2015 

OLS  

2000- 

2015 

Total public RE R&D in % of GDP 6.058*** 8.701*** 832.800* 

 (0.00) (0.00) (0.05) 

Electricity prices 4.292** -0.058 -263.800 

 (0.00) (0.98) (0.18) 

Energy consumption 0.035*** 0.021 -0.418 

 (0.00) (0.23) (0.74) 

Patents all technologies 0.000 0.000*** 0.136*** 

 (0.70) (0.00) (0.00) 

Feed-in tariffs 0.044 -0.021 -9.674 

 (0.08) (0.62) (0.26) 

Standards 0.153*** 0.158*** -1.098 

 (0.00) (0.00) (0.84) 

Taxes -0.034 -0.093 -14.670 

 (0.66) (0.25) (0.48) 

Trading schemes 0.158*** 0.140*** 5.817 

 (0.00) (0.00) (0.13) 

Constant -3.376***  -373.200** 

  (0.00)   (0.00) 

Observations 272 272 272 

BIC 2088.7 4701.5 3163 

Note. Table A.6.i compares negative binomial regression estimates (NBRM) for Baseline Equation 

(1) with poisson regression estimates (PRM) and ordinary least square estimates (OLS). All available 

years (2000-2015) are included. As in Table 2, the dependent variable is the by the OECD constructed 

number of renewable energy patents per year and country, lagged by one year and restricted to patents 

of at least family size 2, which excludes low quality patents (as described in Section 4.1.). The 

additional covariates (Section 4.2) include: final energy consumption and electricity prices for 

domestic consumers (expressed in Purchasing Power Standards) as measures of demand; the number 

of patents in all technologies (restricted to at least family size 2) as measure of the propensity to patent; 

OECD indices for the environmental policy stringency of feed-in tariffs, standards, taxes and trading 

schemes. Estimates for ‘Total public RE R&D’, the variable of main interest, indicate the effect of 

public R&D support for renewable energy technologies (measured in % of GDP) on patents in the 

renewable energy sector. The estimates reveal that the finding of a positive and statistically significant 

effect of public R&D funding is independent of the chosen model. For other covariates, however, the 

choice of model matters. The main reliance on the NBRM in this piece is justified in Section 4.3.  
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BIC-values as measures for model-fit are displayed at the bottom.  

p-values are displayed in parentheses: *** Significance at the 0.1 percent level; ** Significance at the 

1 percent level; * Significance at the 5 percent level. 

 

Table A.6.ii: Correlation matrix             

 Variable (1) (2) (3) (4) (5) (6) (7) (8) 

(1) Total public RE R&D 1        

(2) Feed-in tariffs -0.07 1       

(3) Standards 0.33 0.13 1      

(4) Taxes 0.17 -0.15 -0.06 1     

(5) Trading schemes 0.33 -0.13 0.58 0.18 1    

(6) Electricity prices -0.35 0.12 0.01 0.08 0.01 1   

(7) Energy consumption 0.01 -0.35 -0.04 -0.01 0.18 -0.24 1  

(8) Patents all technologies -0.02 0.28 0.17 -0.17 -0.07 -0.11 0.11 1 

 

 

Table A.6.iii: Correlation matrix replacing variables "Feed-in tariffs", "Standards" and "Taxes" 

with overall "Market-based EPS" 

 Variable (1) (2) (3) (4) (5) (6) 

(1) Total public RE R&D 1      

(2) Market-based EPS 0.18 1     

(3) Standards 0.33 0.41 1    

(6) Electricity prices -0.35 0.14 0.01 1   

(7) Energy consumption 0.01 -0.20 -0.04 -0.24 1  

(8) Patents all technologies -0.02 0.14 0.17 -0.11 0.11 1 

  



63 

Bibliography  

Acemoglu, Daron, Philippe Aghion, Leonardo Bursztyn, and David Hemous. 2012. “The Environment 

and Directed Technical Change.” American Economic Review 102 (1): 131–66. 

https://doi.org/10.1257/aer.102.1.131. 

Agrawal, Ajay, Carlos Rosell, and Timothy Simcoe. 2020. “Tax Credits and Small Firm R&D 

Spending.” American Economic Journal: Economic Policy 12 (2): 1–21. 

https://doi.org/10.1257/pol.20140467. 

Arnold, Erik, Kristine Farla, Peter Kolarz, and Xavier Potau. 2014. “The Case for Public Support of 

Innovation: At the Sector, Technology and Challenge Area Levels.” London: Crown. 

Athey, S., and G. W. Imbens. 2017. “Chapter 3 - The Econometrics of Randomized Experimentsa.” In 

Handbook of Field Experiments, edited by Abhijit Vinayak Banerjee and Esther B T - Handbook 

of Economic Field Experiments Duflo, 1:73–140. North-Holland. 

https://doi.org/https://doi.org/10.1016/bs.hefe.2016.10.003. 

Baccini, Leonardo, and Johannes Urpelainen. 2012. “Legislative Fractionalization and Partisan Shifts 

to the Left Increase the Volatility of Public Energy R&D Expenditures.” Energy Policy 46: 49–

57. https://doi.org/https://doi.org/10.1016/j.enpol.2012.03.016. 

Becker, Bettina. 2015. “Public R&D Policies and Private R&D Investment: A Survey of the Empirical 

Evidence.” Journal of Economic Surveys 29 (5): 917–42. 

https://doi.org/https://doi.org/10.1111/joes.12074. 

Bointner, Raphael. 2014. “Innovation in the Energy Sector: Lessons Learnt from R&D Expenditures 

and Patents in Selected IEA Countries.” Energy Policy 73 (C): 733–47. 

https://econpapers.repec.org/RePEc:eee:enepol:v:73:y:2014:i:c:p:733-747. 

Bointner, Raphael, Simon Pezzutto, Gianluca Grilli, and Wolfram Sparber. 2016. “Financing 

Innovations for the Renewable Energy Transition in Europe.” Energies 9 (November): 990. 

https://doi.org/10.3390/en9120990. 

Botta, Enrico, and Tomasz Koźluk. 2014. “Measuring Environmental Policy Stringency in OECD 

Countries,” no. 1177. https://doi.org/https://doi.org/https://doi.org/10.1787/5jxrjnc45gvg-en. 

Bronzini, Raffaello, and Paolo Piselli. 2016. “The Impact of R&D Subsidies on Firm Innovation.” 

Research Policy 45 (2): 442–57. 

https://econpapers.repec.org/RePEc:eee:respol:v:45:y:2016:i:2:p:442-457. 

Brunnermeier, Smita B., and Mark A. Cohen. 2003. “Determinants of Environmental Innovation in 

US Manufacturing Industries .” Journal of Environmental Economics and Management . 

https://doi.org/10.1016/S0095-0696(02)00058-X. 

Burnham, Kenneth P., and David R. Anderson. 2004. “Multimodel Inference: Understanding AIC and 

BIC in Model Selection.” Sociological Methods & Research 33 (2): 261–304. 

https://doi.org/10.1177/0049124104268644. 

Cameron, A, and P. Trivedi. 1986. “Econometric Models Based on Count Data: Comparisons and 

Applications of Some Estimators and Tests.” Journal of Applied Econometrics 1 (1): 29–53. 

https://econpapers.repec.org/RePEc:jae:japmet:v:1:y:1986:i:1:p:29-53. 

Cohen, Wesley M., and Daniel A. Levinthal. 1990. “Absorptive Capacity: A New Perspective on 

Learning and Innovation.” Administrative Science Quarterly 35 (1): 128–52. 

https://doi.org/10.2307/2393553. 



64 

Costantini, Valeria, Francesco Crespi, Chiara Martini, and Luca Pennacchio. 2015. “Demand-Pull and 

Technology-Push Public Support for Eco-Innovation: The Case of the Biofuels Sector.” 

Research Policy 44 (3): 577–95. https://doi.org/https://doi.org/10.1016/j.respol.2014.12.011. 

Cremers, Katrin, Dietmar Harhoff, Frederic Scherer, and Katrin Vopel. 2003. “Citations, Family Size, 

Opposition and the Value of Patent Rights.” Research Policy 32 (September): 1343–63. 

https://doi.org/10.1016/S0048-7333(02)00124-5. 

Cunliff, C. 2019. “Omission Innovation 2.0: Diagnosing the Global Clean Energy Innovation System.” 

Retrieved: 04.12.2021. https://itif.org/publications/2019/09/23/omission-innovation-20-

diagnosing-global-clean-energy-innovation-system. 

Dechezleprêtre, Antoine, and Matthieu Glachant. 2014. “Does Foreign Environmental Policy 

Influence Domestic Innovation? Evidence from the Wind Industry.” Environmental and 

Resource Economics 58 (3): 391–413. https://doi.org/10.1007/s10640-013-9705-4. 

Diamond, A. M. 1999. “Does Federal Funding ‘Crowd in’ Private Funding of Science.” Contemporary 

Economic Policy, no. 17: 423–31. https://doi.org/10.1111/j.1465-7287.1999.tb00694.x. 

Ek, Kristina, and Patrik Söderholm. 2010. “Technology Learning in the Presence of Public R&D: The 

Case of European Wind Power.” Ecological Economics 69 (12): 2356–62. 

https://doi.org/https://doi.org/10.1016/j.ecolecon.2010.07.002. 

EU. 2018a. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 

2018 on the Promotion of the Use of Energy from Renewable Sources. Brussels, Belgium. 

EU. 2018b. Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 

December 2018 on the Governance of the Energy Union and Climate Action. Brussels, Belgium. 

EU Publications Office. 2021. “EU Open Data Portal.” Retrieved: 12.12.2021. 

https://data.europa.eu/data/datasets?locale=en. 

European Commission. 2015a. “Capacity Mapping: R&D Investment in SET-Plan Technologies.” 

Luxembourg. 

European Commission. 2017. “A Technical Case Study on R&D and Technology Spillovers of Clean 

Energy Technologies.” Brussels, Belgium. 

European Commission. 2015b. “A Framework Strategy for a Resilient Energy Union with a Forward-

Looking Climate Change Policy.” Brussels, Belgium. 

European Commission. 2018. “The Implementation Plans: Research & Innovation Enabling the EU’s 

Energy Transition.” Brussels, Belgium. 

European Commission. 2019a. “Communication From the Commission: The European Green Deal.” 

Brussels, Belgium. 

European Commission. 2019b. “The European Green Deal.” Brussels, Belgium. 

Eurostat. 2021. “Database.” Retrieved: 04.12.2021. 

https://ec.europa.eu/eurostat/web/main/data/database. 

Fraunhofer ISE. 2021. “Photovoltaics Report.” Freiburg, Germany. 

https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/photovoltaics-report.html. 

Grafström, Jonas, Patrik Söderholm, Erik Gawel, Paul Lehmann, and Sebastian Strunz. 2020. 

“Government Support to Renewable Energy R&D: Drivers and Strategic Interactions among EU 



65 

Member States.” Economics of Innovation and New Technology, December, 1–24. 

https://doi.org/10.1080/10438599.2020.1857499. 

Griliches, Zvi. 1990. “Patent Statistics as Economic Indicators: A Survey.” Journal of Economic 

Literature 28 (4): 1661–1707. http://www.jstor.org.eur.idm.oclc.org/stable/2727442. 

Groba, Felix, and Barbara Breitschopf. 2013. “Impact of Renewable Energy Policy and Use on 

Innovation: A Literature Review.” Entrepreneurship \& Economics EJournal. 

Grubb, Michael. 2004. “Technology Innovation and Climate Change Policy: An Overview of Issues 

and Options.” Keio Economic Studies 41 (January): 103–32. 

Hall, Bronwyn H., Zvi Griliches, and Jerry A. Hausman. 1983. “Patents and R&D. Searching for a 

Lag Structure.” National Bureau of Economic Research Working Paper Series No. 1227. 

https://doi.org/10.3386w1227. 

Hall, Bronwyn H., Zvi Griliches, and Jerry A. Hausman. 1986. “Patents and R&D: Is There a Lag?” 

International Economic Review 27 (2): 265–83. https://doi.org/10.2307/2526504. 

Hoogland, Onne, Elske Veenstra, Liliana Guevara Opinska, Perla C. Torres Vega, and Koen 

Rademaekers. 2019. “Study on Impacts of EU Actions Supporting the Development of 

Renewable Energy Technologies.” Retrieved: 18.01.2022. 

https://trinomics.eu/project/impact_of_eu_r_and_d_support_for_renewables/. 

Horbach, Jens. 2008. “Determinants of Environmental Innovation—New Evidence from German 

Panel Data Sources.” Research Policy 37 (1): 163–73. 

IEA. 2020a. “Clean Energy Innovation.” Paris. https://www.iea.org/reports/clean-energy-innovation. 

IEA. 2020b. “European Union 2020.” Paris. https://www.iea.org/reports/european-union-2020. 

IEA. 2021a. “Energy Technology RD&D Budgets October 2021 Edition—Database Documentation.” 

Paris. Retrieved: 03.11.2021. https://www.iea.org/data-and-statistics/data-product/energy-

technology-rd-and-d-budget-database-2#documentation. 

IEA. 2021b. “Statistics Data Browser.” Paris. Retrieved: 03.11.2021. https://www.iea.org/data-and-

statistics/data-product/energy-technology-rd-and-d-budget-database-2#energy-technology-rdd-

budgets. 

IEA. 2021c. “World Energy Outlook 2021.” Paris. https://www.iea.org/reports/world-energy-outlook-

2021. 

Jaffe, Adam B. 2002. “Building Programme Evaluation into the Design of Public Research‐Support 

Programmes.” Oxford Review of Economic Policy 18 (1): 22–34. 

https://doi.org/10.1093/oxrep/18.1.22. 

Jaffe, Adam B., and Manuel Trajtenberg. 2002. “Patents, Citations, and Innovations: A Window on 

the Knowledge Economy.” 

Jaffe, Adam B., Manuel Trajtenberg, and Michael S. Fogarty. 2000. “The Meaning of Patent Citations: 

Report on the NBER/Case-Western Reserve Survey of Patentees.” NBER Working Papers. 

National Bureau of Economic Research, Inc. 

Johnstone, Nick, Ivan Haščič, and David Popp. 2010. “Renewable Energy Policies and Technological 

Innovation: Evidence Based on Patent Counts.” Environmental and Resource Economics 45 (1): 

133–55. https://doi.org/10.1007/s10640-009-9309-1. 



66 

Klaassen, G. J., Asami Miketa, Katarina Larsen, and Thomas Sundqvist. 2005. “The Impact of R&D 

on Innovation for Wind Energy in Denmark, Germany and the United Kingdom.” Ecological 

Economics 54: 227–40. 

Klevorick, Alvin K., Richard C. Levin, Richard R. Nelson, and Sidney G. Winter. 1995. “On the 

Sources and Significance of Interindustry Differences in Technological Opportunities.” Research 

Policy 24 (2): 185–205. https://doi.org/https://doi.org/10.1016/0048-7333(93)00762-I. 

Kobos, Peter H., Jon D. Erickson, and Thomas E. Drennen. 2006. “Technological Learning and 

Renewable Energy Costs: Implications for US Renewable Energy Policy.” Energy Policy 34 

(13): 1645–58. https://doi.org/https://doi.org/10.1016/j.enpol.2004.12.008. 

Lee, David S., and Thomas Lemieux. 2010. “Regression Discontinuity Designs in Economics.” 

Journal of Economic Literature 48 (2): 281–355. https://doi.org/10.1257/jel.48.2.281. 

Lee, Kyungpyo, and Sungjoo Lee. 2013. “Patterns of Technological Innovation and Evolution in the 

Energy Sector: A Patent-Based Approach.” Energy Policy v. 59: 415–32. 

https://doi.org/10.1016/j.enpol.2013.03.054. 

Li, Songran, and Qinglong Shao. 2021. “Exploring the Determinants of Renewable Energy Innovation 

Considering the Institutional Factors: A Negative Binomial Analysis.” TECHNOLOGY IN 

SOCIETY 67 (November). https://doi.org/10.1016/j.techsoc.2021.101680. 

Lichtenberg, Frank R. 1986. “Energy Prices and Induced Innovation.” Research Policy 15 (2): 67–75. 

Marques, António Cardoso, and José Alberto Fuinhas. 2012. “Are Public Policies towards Renewables 

Successful? Evidence from European Countries.” Renewable Energy 44: 109–18. 

Mazzucato, Mariana. 2013. The Entrepreneurial State: Debunking Public vs. Private Sector Myths. 

London: Anthem Press. 

Mowery, David C. 1983. “Economic Theory and Government Technology Policy.” Policy Sciences 

16: 27–43. 

Negri, Juan Francisco De, Simon Pezzutto, Sonia Gantioler, David Moser, and Wolfram Sparber. 

2020. “A Comprehensive Analysis of Public and Private Funding for Photovoltaics Research and 

Development in the European Union, Norway, and Turkey.” Energies 13 (11). 

https://doi.org/10.3390/en13112743. 

Nelson, Richard R., and Sidney G. Winter. 1977. “In Search of Useful Theory of Innovation.” 

Research Policy 6 (1): 36–76. https://doi.org/https://doi.org/10.1016/0048-7333(77)90029-4. 

Nemet, Gregory F. 2009. “Demand-Pull, Technology-Push, and Government-Led Incentives for Non-

Incremental Technical Change.” Research Policy 38 (5): 700–709. 

https://doi.org/https://doi.org/10.1016/j.respol.2009.01.004. 

Nesta, Lionel, Francesco Vona, and Francesco Nicolli. 2014. “Environmental Policies, Competition 

and Innovation in Renewable Energy.” Journal of Environmental Economics and Management 

67: 396–411. 

OECD. 2009. “Indicators of Patent Value.” In OECD Patent Statistics Manual, 135–49. OECD. 

https://doi.org/10.1787/9789264056442-9-en. 

OECD. 2011. Invention and Transfer of Environmental Technologies. 

https://doi.org/https://doi.org/https://doi.org/10.1787/9789264115620-en. 

OECD. 2016. “Environmental Policy: Environmental Policy Stringency Index.” OECD Environment 



67 

Statistics (Database). Retrieved: 21.11.2021. https://doi-org.eur.idm.oclc.org/10.1787/2bc0bb80-

en. 

OECD. 2021. “Environment Database Technology Development.” Retrieved: 21.11.2021. 

https://stats.oecd.org/Index.aspx?DataSetCode=PAT_DEV. 

Oltra, Vanessa. 2008. “Environmental Innovation and Industrial Dynamics: The Contributions of 

Evolutionary Economics.” Cahiers Du GREThA 28 (27): 77–89. 

Peters, Michael, Malte Schneider, Tobias Griesshaber, and Volker H. Hoffmann. 2012. “The Impact of 

Technology-Push and Demand-Pull Policies on Technical Change – Does the Locus of Policies 

Matter?” Research Policy 41 (8): 1296–1308. 

https://doi.org/https://doi.org/10.1016/j.respol.2012.02.004. 

Pitelis, Alkis Theonas. 2018. “Industrial Policy for Renewable Energy: The Innovation Impact of 

European Policy Instruments and Their Interactions.” Competition & Change 22 (3): 227–54. 

https://doi.org/10.1177/1024529418768491. 

Pitelis, Alkis, Nicholas Vasilakos, and Konstantinos Chalvatzis. 2020. “Fostering Innovation in 

Renewable Energy Technologies: Choice of Policy Instruments and Effectiveness.” Renewable 

Energy 151: 1163–72. https://doi.org/https://doi.org/10.1016/j.renene.2019.11.100. 

Pless, Jacquelyn, Cameron Hepburn, and Niall Farrell. 2020. “Bringing Rigour to Energy Innovation 

Policy Evaluation.” Nature Energy 5 (4): 284–90. https://doi.org/10.1038/s41560-020-0557-1. 

Popp, David. 2002. “Induced Innovation and Energy Prices.” American Economic Review 92 (1): 160–

80. 

Popp, David. 2003. “Lessons From Patents: Using Patents To Measure Technological Change in 

Environmental Models.” NBER Working Paper Series, no. 9978. 

Popp, David. 2015. “Using Scientific Publications to Evaluate Government R&D Spending: The Case 

of Energy.” Munich: Center for Economic Studies and ifo Institute (CESifo). 

http://hdl.handle.net/10419/113771. 

Putnam, Jonathan. 1996. “The Value of International Patent Rights.” Ph.D. Thesis, Yale University. 

Rennings, Klaus. 2000. “Redefining Innovation—Eco-Innovation Research and the Contribution from 

Ecological Economics.” Ecological Economics 32 (2): 319–32. 

Rosenberg, Nathan. 1969. “The Direction of Technological Change: Inducement Mechanisms and 

Focusing Devices.” Economic Development and Cultural Change 18 (1, Part 1): 1–24. 

https://doi.org/10.1086/450399. 

Rosenberg, Nathan. 1974. “Science, Invention and Economic Growth.” The Economic Journal 84 

(333): 90–108. https://doi.org/10.2307/2230485. 

Rosenberg, Nathan. 1990. “Why Do Firms Do Basic Research (with Their Own Money).” Research 

Policy 19: 165–74. 

Schwarz, Gideon. 1978. “Estimating the Dimension of a Model.” Ann. Statist. 6 (2): 461–64. 

http://links.jstor.org.eur.idm.oclc.org/sici?sici=0090-

5364(197803)6:2%3C461:ETDOAM%3E2.0.CO;2-5&origin=MSN. 

Sturman, M. C. 1999. “Multiple Approaches to Analyzing Count Data in Studies of Individual 

Differences: The Propensity for Type 1 Errors, Illustrated with the Case of Absenteeism 

Prediction.” https://ecommons.cornell.edu/handle/1813/72369. 



68 

Wallsten, Scott J. 2000. “The Effects of Government-Industry R&D Programs on Private R&D: The 

Case of the Small Business Innovation Research Program.” The RAND Journal of Economics 31 

(1): 82–100. https://doi.org/10.2307/2601030. 

Wooldridge, Jeffrey M. 2009. Introductory Econometrics : A Modern Approach. Mason, OH: South 

Western, Cengage Learning. 

World Bank Group. 2019. “State and Trends of Carbon Pricing 2019.” Washington, D.C. 

https://openknowledge.worldbank.org/handle/10986/31755. 


