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Abstract

The rapid growth in peer-to-peer lending has caused some concerns among financial

researchers with regard to its effect on economic stability. This research applies deep hy-

brid learning to improve credit default risk assessment on an Estonian peer-to-peer lending

platform called Bondora. The dataset contains 217,692 loans with 37 features. The method

consists of a two step procedure where, in the first step, irrelevant features are eliminated

from the dataset to decrease random noise. This prevents overfitting and improves the

performance of the deep learning model that is applied in the second step. It is shown that

the method can add value to current risk assessment and outperforms comparative tech-

niques, particularly in large datasets. The validation AUC is 0.8284, which is promising,

although metrics are difficult to compare across datasets and researches. The suggested

method can contribute to mitigating information asymmetries between borrowers and in-

vestors which ultimately improves economic stability and may also decrease systemic risk.

Keywords: Machine Learning, Deep Hybrid Learning, Recursive Feature Elimination,

Neural Network, Perceptron, Credit Default Risk, Credit Scoring, Information Asymmetry,

Peer-to-Peer Lending, Bondora, FinTech
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1
Introduction

After the financial crisis in 2008, peer-to-peer lending platforms have grown exponentially

(Käfer, 2018). In the U.S., peer-to-peer lending has become the largest supplier of unse-

cured loans (Tang, 2019). As a result, many financial researchers have taken an interest in

these developments. Some argue that peer-to-peer platforms are utilized to circumvent

credit regulation (Braggion, Manconi and Zhu, 2018), others argue that they could be a

source of systemic risk (Magnuson, 2018).

Due to information asymmetries, peer-to-peer lending possesses a high risk of invest-

ment failure. It is difficult for the lender to asses the borrowers’ creditworthiness. The un-

secured nature of the loans and the lack of regulation increase the credit risk of this kind of

lending. In order to make an informed decision on whether to supply credit or not, lenders

need to extract as much information as possible from the borrowers’ loan application.

This research proposes a deep hybrid learning model that mitigates the information

asymmetry between lenders and borrowers. The model helps lenders to extract informa-

tion from the loan applications by eliminating irrelevant features from the dataset, thereby

removing a substantial amount of random noise. Next, deep learning is applied on the less

noisy features which prevents overfitting and results in superior model performance. The

performance is assessed using out-of-sample (validation) AUC.

The data originates from Bondora, an Estonian peer-to-peer lending platform. Bon-

dora is currently the 9’th largest peer-to-peer lending platform in the world in terms of

total funding1. The platform provides only personal loans and allows all types of investors,

1See: https://p2pmarketdata.com/.
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1. Introduction

which makes it a "pure" peer-to-peer lending platform. This sets it apart from other plat-

forms such as mintos which also provide business loans (and a number of other types of

loans) and also from platforms such as Credimi, which only allow institutional investors.

Furthermore, Bondora was founded in 2009 which makes it one of the older platforms in

Europe with a relatively large track record.

Defaults are predicted using 37 a priori loan features as inputs for a sequential deep

neural network. Two models are defined; one based on the complete dataset and another

based on a subset of matured loans. The former has a validation AUC of 0.8284, the latter

of 0.8000. Compared to other researches these results seem promising, although it is dif-

ficult to compare metrics across datasets. An estimation of the value added sketches the

picture that deep hybrid learning can improve profits for Bondora investors by superior

assessment of the creditworthiness of Bondora borrowers. The model outperforms other

machine learning techniques on the complete dataset but not on the subset of matured

loans.

This research fits between two literatures; the literature on credit scoring and the lit-

erature of peer-to-peer lending. In the second half of the 20th century statistical methods

were introduced to estimate credit ratings and by the end of the century it has been show

that machine learning methods yield superior results in many different settings (Huang,

Chen, Hsu, Chen, and Wu, 2004). Moreover, in recent years, hybrid and ensemble machine

learning methods have become particularly popular (Tripathi, Shukla, Reddy, Bopche and

Chandramohan, 2022). In the literature on peer-to-peer lending, researchers have stressed

the issue of information asymmetry that exists between borrowers and lenders. Many re-

searchers are fearful that the rapid growth in peer-to-peer lending might decrease eco-

nomic stability (Tarullo, 2019). This research tries to apply one of the more sophisticated

methods from the credit scoring literature to decrease the problem of information asym-

metry that worries researchers in the peer-to-peer lending literature.
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2
Literature Review

2.1. Consumer Credit Risk Analysis
Credit risk is often defined as the potential that a borrower or counterparty fails to meet

the obligations in accordance with the agreed terms1 of a contract. This research will focus

on consumer credit risk. Lenders have typically assessed this risk using consumer credit

rating scores, where a lower rating reflects higher risk and increases the risk premium i.e.,

interest rate, on the contract. An example of these scores are FICO2 scores which are most

often used in the U.S. In the European Union a mixture of public and private institutions

(Rothemund and Gerhardt, 2011, p. 1) determine consumer credit scores, these institutions

all follow a directive issued by the European Commission (2021).

In the second half of the 20th century statistical methods were introduced to estimate

credit ratings based on quantitative factors3, these early methods applied Ordinary Least

Squares (OLS) estimation (Fisher, 1959; Pogue and Soldofsky, 1969, Orgler, 1970), multiple

discriminant analysis (MDA) (Durand, 1941; Myers and Forgy, 1963; Pinches and Mingo,

1973), logistic regression (Ederington, 1985, Steenackers and Goovaerts, 1989) and probit

regression (Gentry, Whitford and Newbold, 1988). Prediction accuracy of these methods

are typically between 50% and 70% percent (Huang, Chen, Hsu, Chen and Wu, 2004, p.

545).

1Basle Committee on Banking Supervision and Bank for International Settlements (2000, p. 1)
2FICO scores are credit scores created by the Fair Isaac Corporation (FICO), the score is determined based

on five major factors; payment history, accounts owed, length of credit history, credit mix and new credit.
The resulting rating is scored somewhere between 300 and 850 where 650 is often used as the threshold that
quantifies a "good" credit history.

3For a comprehensive literature review see: Abdou and Pointon (2011). For a review of consumer credit
specifically see: Thomas (2000).
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As an alternative to these statistical measures researchers have been using machine

learning techniques such as; decision trees (Boyle, Crook, Hamilton and Thomas, 1992;

Khandani, Kim and Lo, 2010), random forest and k-nearest neighbors (Kruppa, Schwarz,

Arminger and Ziegler, 2013) Support Vector Machines (SVM) (Han, Han and Zhao, 2013),

Least Absolute Shrinkage and Selection Operator (Lasso) (Wang, Xu and Zhou, 2015), hy-

brid measures (Zhu, Yang, Wang and Yuan, 2018), neural networks (Dutta and Shekhar,

1988; West, 2000; Tsai, Lin, Cheng and Lin, 2009) and many others. These machine learn-

ing techniques generally outperform statistical methods (Huang et al., 2004, p. 547), with

prediction accuracy’s between 70% and 90%. Many researchers find that neural networks

are particularly effective (Abdou and Pointon, 2011, p. 73; Baesens, Van Gestel, Viaene,

Stepanova, Suykens and Vanthienen, 2003, p. 634; West, 2000).

However, it is important to note that there is no broad consensus in the literature on

which algorithms have the highest performance, since the performance often depends on

the dataset that is used and the specifics of the model. It is generally true that the variation

in performance between datasets is larger than the variation between (machine learning)

methods4. There is no systematic way in which these different methods are compared in

the literature, mostly it is simple trial and error to determine which algorithm performs

best. Machine learning is an active field of research and models are still in development,

changing virtually every year. This makes it difficult to compare results in papers that are

published some years apart.

In recent years the most common machine learning methods, applied for credit scor-

ing, are ensemble learning and hybrid learning (Tripathi, Shukla, Reddy, Bopche and Chan-

dramohan, 2022, p. 788), where two machine learning methods are combined to produce

more accurate outcomes. The difference between ensemble learning and hybrid learning is

that the two algorithms work independently with ensemble learning and dependently with

hybrid learning. In this research hybrid learning is applied because recursive feature elim-

ination is applied in the pre-processing stage and then a deep neural network is applied at

the regression stage.

4e.g. Thomas (2000, p. 160), Baesens, Van Gestel, Viaene, Stepanova, Suykens and Vanthienen (2003 p. 634),
Tripathi, Shukla, Reddy, Bopche and Chandramohan (2022, p. 791)
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There are some researchers that have used the same dataset (Bondora) as this research

and whose methods are also closely related. Byanjankar, Heikkilä and Mezei (2015) use a

neural network to predict which Bondora loans default and demonstrate that their neu-

ral network has less false positives than a comparative logistic regression model. How-

ever, their neural network does have more false negatives. Gavurova, Dujcak, Kovac and

Kotásková (2018) research which factors are most important for successful loan applica-

tion on Bondora, they find that especially credit history and debt to income ratio are im-

portant determinants. Our results can perhaps most easily be compared to the results in

the researches mentioned above, since they ulitize the same dataset. Note, however, that

those researches were done some years ago which greatly reduces the number of loans in

the dataset. This can have significant consequences for model performance.

2.2. Peer-to-Peer Lending platforms
Peer-to-Peer (P2P) lending is the disintermediation of consumer finance using a social

marketplace. Removing layers of intermediation between investors and borrowers (Morse,

2015). This kind of lending platforms provide an alternative to bank lending, the platforms

operate with lower overhead costs and supply loans at lower rates than conventional retail

lending (Basha, Elgammal and Abuzayed, 2021). The first P2P lending platforms appeared

around 2005 and they became increasingly popular after the great recession, which may

reflect the increase in popularity of alternatives to traditional financial institutions (Morse,

2015).

Over the last couple of years P2P lending platforms have become an attractive invest-

ment option. Technological advances in P2P platforms have facilitated better performance

in credit scoring and a real time reporting supply of lending bids, which allows investors to

diversify across loans. That way, borrower risk is spread across different investors (Namvar,

2014). Moreover, Morse (2015) calculates that the Internal Rate of Return (IRR) of prosper

and lending club5 loans are 3 percent point higher than standard6 consumer Asset Backed

Security (ABS) returns. As a result, the P2P lending market7 has grown significantly over the

5The two larges P2P lending platforms in the U.S.
6Morse refers to the Barclays Capital Fixed ABS Index as a "standard" consumer ABS.
7Belleflamme, Omrani and Peitz (2015) estimate the worldwide P2P lending market in 2014 to be around 11
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2.2. Peer-to-Peer Lending platforms 2. Literature Review

last couple of years, in the U.S. and Europe the size of market approximately doubles every

year (Käfer, 2018, p. 4).

These developments have sparked interest among researchers in financial studies. In

2017 an editorial team of the Review of Financial Studies, Goldstein, Jiang and Karolyi

(2019), launched a competition to develop research proposals on FinTech topics. Out of

the 156 proposals, 47 mentioned P2P lending as the main topic of research. P2P was clearly

the most popular topic among researches8 followed by big data, which was mentioned as

the main topic in 27 proposals.

Researchers have focused on different aspects of P2P lending. Tang (2019) researches to

what extent P2P lending platforms serve as substitutes for bank lending and finds that P2P

lending serves as a substitute for infra-marginal bank borrowers and as complements for

small loans, indicating that the majority of the credit expansion as a result of P2P lending

occurs among borrowers who already have access to bank credit. The shift of consumer

finance from banks to P2P platforms worries some researchers. According to them, P2P

lending is riskier than traditional banking (Käfer, 2018). P2P lending could be seen as a

source of shadow banking which, according to Tarullo (2019), could decrease economic

stability.

The growth in P2P lending might also increase systemic risk. After the financial cri-

sis of 2008 many researchers argued financial institutions have become "too big to fail"

which creates misincentives and increases systemic risk (Wilmarth, 2010). However, other

researchers argue that the dispersed nature and small size of the FinTech industry raises its

own systemic risk concerns. For example; the small size makes them very susceptible to

adverse shocks, the shared susceptibility of hacking could serve as a propagation mecha-

nisms for economic shocks and the significant information asymmetries allow offloading

risks to counterparties (Magnuson, 2018, p. 1200). P2P lending can be a potential platform

through which this offloading of risks could occur.

Furthermore, Braggion, Manconi and Zhu (2018) find that Chinese borrowers increase

P2P loans when mortgage Loan-To-Value (LTV) caps increase. This indicates that P2P credit

billion USD.
8See Goldstein, Jiang and Karolyi (2019, p. 1653), figure 5.
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is utilized to circumvent credit regulation. Through these channels P2P platforms can un-

dermine financial regulation and decrease economic stability. This finding is in line with

earlier research that concludes that developments in FinTech are often driven by regulatory

arbitrage (Plantin, 2015; Buchak, Matvos, Piskorski and Seru, 2018).

Other researchers have taken a closer look at the disintermediation process of P2P lend-

ing (Balyuk and Davydenko, 2019). These researchers observed that retail investors are

only playing a significant role as early adopters of the platforms. Over time, institutional

investors rapidly start to dominate the supply of credit. The P2P platforms themselves are

performing virtually all task related to loan evaluation with the (predominantly) institu-

tional investors passively accepting almost all loan offers. For their efforts, the P2P plat-

forms charge a service fee and de facto become the new intermediaries. This process is

called reintermediation.
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3
Data

This research uses data from a peer-to-peer online loan platform based in Tallinn (Estonia)

named Bondora1. This platform publishes loan data that is not covered by data protection

laws. The platform caters to both lenders and borrowers and lenders need to be able to

make their own risk assessment. For this reason Bondora publishes the data.

Bondora is the 9’th largest peer-to-peer lending platform in the world and the largest

"pure" platform, meaning that it only provides personal loans and puts no restriction on

types of investors. It was founded by Pärtel Tomberg, Martin Rask and Mihkel Tasa in 2009

and restructured as a private limited company in 2015. Currently the total funding volume

is €569.67 M2. Figure 3.1 reflects the monthly funding history.

The data was downloaded3 on 17 February 2022 and covers loan data from 21 Febru-

ary 2009 onward, roughly 13 years in total. Over these years a total of 217,693 loans are

recorded. It records data on the loan-level, Bondora supplies a number of different loan

features such as; application date, amount, loan duration, age, income, liabilities, country,

employment etc. The complete list, including descriptions, of all 37 features that are uti-

lized in this research can be found in appendix A.1. Descriptive statistics of the continuous,

ordinal and dummy features, including targets, can be found in table 3.1. For a summary

of some of the nominal variables we refer to Bondora’s statistics overview4.
1See https://www.bondora.com/en/
2See: https://p2pmarketdata.com/platforms/bondora/statistics/
3From this web page: https://www.bondora.com/en/public-reports
4See: https://www.bondora.com/en/public-statistics.
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3.1. Targets 3. Data

Figure 3.1: Monthly funding of the Bondora peer-to-peer lending platform since 2009.

3.1. Targets
The dataset of Bandora includes matured loans and unmatured loans. As our target we

want to set loans that defaulted. But there are different ways to code defaults, two distinct

defaults are utilized. The first one is based on a variable called "default date", this variable

records the date on which the loan went into the default state. This means that the borrower

had a late payment, it does not mean the loan defaulted indefinitely. When a borrower

does not pay within 2.5 weeks a collection process is started. Sometimes the loan can be

restructured, which means that the maturity date has been increased with more than sixty

days. The target based on this variable will be a dummy variable called default1 that equals

one if a default date is recorded i.e., the borrower had at least one late payment, and is zero

otherwise.

The previous measure simply forecasts the likelihood that a loan will default at least

once before the maturity date5. Another approach is to consider matured loans which have

defaulted and have a recorded principal write off. Bandora records the principal write offs

after the loans have matured, so for this measure only matured loans are considered (which

reduces the number of loans to about 55,000). This dummy is called default2.

5Which loans will be classified as default depends on the chosen decision boundary.
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3.2. Data Summary
Table 3.1 provides descriptive statistics of all variables that are pre-processed as continues

variables, dummies or ordinal categorical variables.

Table 3.1: Descriptive Statistics.

Variable type Obs Mean S.D. Min Max
default1 dummy 217,692 0.354 0.478 0 1
default2 dummy 55,618 0.309 0.462 0 1
Bids Portfolio Manager continuous 217,692 681.0 1154 10625
Bids Api continuous 217,692 22.89 134.3 0 7570
Bids Manual continuous 217,692 426.9 670.2 0 10630
New Credit Customer dummy 217,692 0.560 0.496 0 1
Age continuous 217,692 40.30 12.40 0 77
Education ordinal 215,792 3.565 1.221 0 5
Number of Dependants continuous 35,600 0.725 1.012 0 11
Applied Amount continuous 217,692 2,708 2,317 10 10632
Loan Duration continuous 217,692 48.51 16.95 1 120
Employment Duration ordinal 214,965 5.244 2.341 0 8
Current Employer
Work Experience ordinal 36,522 2.915 1.494 0 5
Income From Principal continuous 217,692 270.1 1,420 0 228,400
Employer
Income From Pension continuous 217,692 11.62 118.9 0 5,038
Income From Family continuous 217,692 3.512 30.30 0 2,006
Allowance
Income From Social continuous 217,692 1.477 28.95 0 4,551
Welfare
Income From Leave Pay continuous 217,692 2.010 60.96 0 21,300
Income From Child continuous 217,692 1.458 22.40 0 2,500
Support
Income Other continuous 217,692 26.64 361.5 0 50,000
Income Total continuous 217,692 1,890 10,155 0 1,012,019
Debt to Income continuous 217,642 4.801 13.33 0 198.0
Free Cash continuous 217,642 75.53 547.6 -2,332 158,748
Verification Type ordinal 217,642 3.192 1.291 0 4
Existing Liabilities continuous 217,692 2.814 3.121 0 40
Liabilities Total continuous 217,692 468.5 26,625 0 1.24×107

Refinance Liabilities continuous 217,692 0.116 0.711 0 23
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4
Methodology

In this research a combination of two different machine learning algorithms is applied.

In this manner the attributes of both methods can be utilized. For the prediction of loan

defaults we need an algorithm that scores high on forecasting accuracy, for this a neural

network is applied. A disadvantage of neural networks is that they have a very low inter-

pretability, the algorithm operates as a "black box". Moreover, neural nets tend to overfit

when there is a lot of random noise in the dataset.

So, in the pre-processing stage, a single perceptron is used for feature selection. This

has two main advantages. Firstly, it allows us to interpret which features are the most im-

portant determinants of loan defaults, which is difficult to identify applying only neural

nets. Secondly, because of the pre-processing of categorical variables the number of fea-

tures in the model increases rapidly. Not all these features provide useful information in

the context of forecasting loan defaults. With many irrelevant features in the dataset neu-

ral nets tend to model random noise after repeated iterations. Moreover, a large number

of irrelevant features increases the processing time of training the model which limits the

scope of hyperparameter optimization.

Because the two methods are applied in sequence and are dependent this is called hy-

brid learning. In credit scoring, many researchers have applied this combination of ma-

chine learning with "deep" learning (Hsieh, 2005; Tsai and Chen, 2010; Xia, Liu, Li and Liu,

2017; Zhu, Yang, Wang and Yuan, 2018). It is also sometimes referred to as Deep Hybrid

Learning (DHL).
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4.1. Perceptron

4.1.1. Algorithm

The Perceptron was introduced by Rosenblatt (1957). It is a classification algorithm that

predicts two possible outcomes based on a vector of input variables xn
1. Figure 4.1 is a

schematic depiction of the algorithm.

Figure 4.1: Schematic depiction of a Perceptron. Source: Mitchell (1997, p. 87)

It takes the dot product of the input vector xn and a vector of "weights" wn, j to calculate

a net input j (equation 4.1).

Net Input j =
N∑

j=1
wn, j xn (4.1)

This net input j goes through an activation function, if the threshold θ j is met, the function

activates and activation o j takes on the value of 1 and is 0 otherwise. The algorithm can use

different activation functions. A popular one is the given in equation 4.2.

φ(xn) =
{

1 if
∑N

j=1 wn, j xn +b > 0

0 otherwise
(4.2)

Here, a bias b, independent of the input vector xn , is added to the net input j . This effec-

tively raises the threshold θ j
2.

Initially, the weights wn, j are random small values, so the output o j is also random.

Next, the algorithm uses a variable d that equals 1 if the output o j is equal to the outcomex

and -1 otherwise. Using this variable the new weights w ′
n, j are calculated as follows:

w ′
n, j = wn, j +ηd xn (4.3)

1outcomex ∈ {0,1}
2If b is negative it can also lower the threshold θ j .
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It can be seen that the weights increase when the output equals the outcome and decrease

when the output does not equal the outcome. Furthermore, it can be seen in equation

4.2 that this algorithm creates a line in two dimensions (N = 2) and a (hyper)plane in higher

dimensions (N > 2). This means that, in this form, it is only able to classify linearly separable

classes.

η is the learning rate, which is a parameter that scales the weight correction. If η is too

high it takes many iterations to find the optimal solution but if η is too low the algorithm

might overshoot and not find the optimal solution. The algorithm has no analytical solu-

tion so it uses iterations instead. It keeps iterating until a previously defined number of

iterations is met or until some stopping criterion is met.

This research applies the Perceptron module of sklearn3 (in Python). All parameters are

left as default meaning that the η= 1 and b = 0. The stopping criteria works as follows; the

algorithm splits the input data into 90% training data and 10% test data and uses the test

data to calculate the AUC (classification scoring metic, discussed in section 4.5.1), if this

out of sample AUC does not improve for five sequential iterations the algorithm terminates

with a maximum of 1000 iterations.

4.1.2. Recursive Feature Elimination

A perceptron is in some ways similar to linear regression, where the weights of the percep-

tron can, for the purpose of this research, be interpreted as the coefficients/estimates in

linear regression. Both algorithms essentially create a line of best fit. The difference is that

with linear regression this line is calculated by minimizing the sum of squared residuals,

which can be done analytically by solving the first order conditions of the OLS estimates.

With a binary dependent variable (linear probability model), this line can be used to clas-

sify the new inputs. More suitable would be a probit or logit model where the coefficients

are first normalized using cumulative distribution functions.

A perceptron, on the other hand, creates a line of best fit based on the iterative process

discussed above. This line divides the featurespace so that new inputs can be mapped and

3See: https://scikit-learn.org/stable/modules/linear_model.html#perceptron
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classified. The commonality between linear regression and perceptrons is that, once the

input vector xn has been normalized, the coefficients/weights can be interpreted as feature

importance. This is the goal of this first step of the hybrid model.

Next, the weights from the perceptron are used for recursive feature elimination (Guyon

and Elisseeff, 2003). All features are ranked4 from largest to smallest based on their absolute

weights5. Now we run the perceptron and calculate the AUC using 5-fold cross validation.

Then, the feature with the smallest coefficient is eliminated and we run the algorithm again,

if the AUC does not decrease, that feature remains excluded. If the AUC decreases after the

elimination, the feature will be included. This process will be repeated over all features.

Using the AUC, or some other scoring metric, of a machine learning model to decide which

features to eliminate is called the "wrapper" method of recursive feature elimination and

was popularized by Kohavi and John (1997). The features selected by this process are used

as inputs for our final model, discussed in the next section.

4.2. Neural Network
Once the input vector has been trimmed down to the essentials, the neural network can

be build. Perceptrons can be viewed as building blocks of neural networks. The difference

is that they are called neurons and that there is a multitude of them. The connections

between neurons are called synapses and have a weight and the neurons themselves have

an activation function and a bias, same as in the perceptron. The architecture of a neural

network is depicted in figure 4.2. As can be seen, there are multiple neurons in the network.

Each input neuron is connected to all neurons in the first layer, called the hidden layer h1.

Another difference with the perceptron is that there are multiple layers behind the first

layer. In this research we use "dense" layers which means that each neuron of the input

layer is connected to all neurons in the first hidden layer h1 and each neuron in the first

hidden layer is connected to all neurons in the second hidden layer h2, and so forth. The

4After pre-processing (discussed in section 4.3), 173 features remain. One can construct 2173 different subsets
from these features (the total number of subsets (n) that can be constructed without limiting the size of each
subset (k) can be calculated as:

∑n
k=0

n!
k !(n−k)! which in this particular case equals n2 −1, this can be proven

using the binomial theorem where x = y = 1). In order to know which subsets to test with cross validation,
the discussed ranking of weights is constructed. It reduces the number of times the model has to run to 173,
which is feasible using a single perceptron.

5Weights can be negative.
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Figure 4.2: Schematic depiction of the architecture of an artificial neural network . Source: Bre, Gimenez and
Fachinotti (2018, p. 1430, figure 1)

last layer consist of one neuron in regression and multiple neurons in classification, where

the number of neurons in the output layer equals the number of classes.

Since the layers are connected in sequence this architecture is sometimes referred to

as a sequential neural network or a multilayer perceptron. The structure of multiple layers

was first introduced by Ivakhnenko and Lapa (1965)6. When a model has no hidden layers

it is called a shallow neural network and when it has one or more hidden layers it is called a

"deep" neural network. These kind of networks have been shown to outperform alternative

machine learning methods in numerous important applications (Schmidhuber, 2015).

The activation functions in the neurons of the neural network are slightly different than

the one in the perceptron but equally simple. This research applies ReLU (Rectified Linear

Unit) activation functions which can simply be expressed as f (x) = max(0, x). Hence, if

all weights coming into the neuron add up to more than 0 the output is the same as the

input. If the weights add up to less than 0, the output is zero. Instead of ReLU the logistic

sigmoid function7 used to be the most popular option. This function normalizes all inputs

between zero and one, a form of cumulative distribution functions, which seems perhaps

more intuitive. However, in a famous paper by Glorot, Bordes and Bengio (2011) it was

found that ReLU actually performs better than sigmoid and as of 2017 ReLU is the most

popular activation function for deep neural networks (Ramachandran, Zoph and Le, 2017).

The output layer has one neuron and uses the sigmoid activation function.

6According to Schmidhuber (2015, p. 90).
7 f (x) = 1

1+e−x
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An important deviation from a single perceptron is the way the weights get updated.

In a neural network this happens in a process called backpropagation8. A loss function is

calculated, which basically takes the difference between the predicted output of the model

and the actual outcomex . Next, the weights in the last hidden layer are updated with the

gradient of that loss function. These adjustments are summed at each neuron and that

sum functions as the loss function for the next hidden layer. This process is iterated over

all observations in the dataset. The details of this process are beyond the scope of this re-

search but it can be assumed that through this process the loss functions essentially gets

minimized. This process of finding the local minimum of the loss function is know as gradi-

ent descent. A popular loss function for regression is the squared error which is, obviously,

simply the square of the difference between output and outcomex . In classification cross-

entropy is often used. The loss function applied in this research is binary cross entropy9.

4.3. Pre-processing
Before the Bondora data can be used in the perceptron and neural network some pre-

processing is necessary. Firstly, all categorical variables need to be encoded. If the categori-

cal variable is ordinal, such as work experience, all categories are simply coded accordingly;

smallest is one, the second smallest is two and so forth. This cannot be done with nominal

variables since there is no predefined order. An example is the day of the week on which

the borrower applied for the loan. For those variables dummies are constructed for each

category. This process inflates the number of features in the model which is a motivation

for recursive feature elimination.

Secondly, the data needs to be normalized. The optimal weights in the deep neural

network are interdependent, meaning that we cannot scale individual weights to match

the average of each input in the input vector xn as can be done with, for example, OLS. If

8The backpropagation algorithm was introduced by Rumelhart, Hinton and Williams (1986).
9Also known as "log loss", the formula is given:

Hp (q) =− 1

N

N∑
i=1

yi × log (p(yi ))+ (1− yi )× log (1−p(yi ))

Here, yi is the target i.e., default or non-default. and p(yi ) is the predicted probability for the target to be 1
for all N points.
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we do not normalize the data the algorithm has trouble optimizing the loss function (as a

matter of fact, Keras cannot even calculate the loss function) due to the difference between

the mean of, for example, applied amount and age. In short, all data is normalized. The

min-max-scaler of sklearn10 is used. Each input x is normalized to x ′ according to equation

4.411.

x ′ = x −min(x)

max(x)−min(x)
(4.4)

Finally, neural networks cannot handle missing values so we need some way to deal

with them. One way is to simply drop each observation that contains a missing value,

which greatly reduces the number of observations. Quick and dirty ways to deal with miss-

ing values are to replace them with some constant or the column average. This research

replaces missing values with the constant -1, expecting that the network will learn to ig-

nore the values12. A more sophisticated way would be to forecast the missing values using,

for example, regression (Little and Rubin, 2019). Missing values can also contain informa-

tion, when occupation is left blank for example. Recently developed advanced neural nets

utilize this "informative missingness" to improve model performance (Che, Purushotham,

Cho, Sontag and Liu, 2018). As a final remark, officially, recursive feature elimination is also

part of pre-processing.

4.4. Hyperparameter Optimization
The weights of the model are parameters which are optimized through the process of back-

propagation. These parameters are known as trainable parameters to which we can apply

gradient descent. There are other parameters in the model such as; the number of layers,

the number of neurons in each layer, the learning rate, the activation function, the loss

function etc. These parameters, which define the architecture of the model, are known as

10See: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
11This normalization is heavy on skewed data such as refinance liabilities and income from leave pay. To

deal with skewed features, log transformations can be applied or, alternatively, the feature values can be
ranked before normalizing them. This is not done in this research but ideally it should have been done.
Applying ranks to the most skewed features in the pre-processing phase does not change the validation
AUC or feature selection. However, it does change the magnitude (not sign) of some feature weights in the
perceptron model depicted in figure 5.1.

12François Chollet (2021), the creator of Keras, suggests that missing values can be replaced with values that
are not already meaningful in the dataset. In this research the value -1 is chosen because the features with
lots of missing values are strictly positive. According to Chollet, the network will learn that values of -1
are not informative, conditional on the data being missing at random. Note that missing values are not
common in most features in the data(see table 3.1).
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hyperparameters.

Hyperparameters cannot be optimized through gradient descent, they are non-trainabele.

This means that the hyperparameters are a choice of the model builder. For the activation

function there exists a large body of research that finds that ReLU is superior to other acti-

vation functions such as sigmoid in virtually all settings. Loss functions are designed for a

specific purpose with binary cross entropy being the most popular choice for binary clas-

sification. So we do not optimize these two hyperparameters but simply follow general

machine learning practice.

The optimal value of the other hyperparameters, most importantly the number of layers

and the number of neurons in each layer, depend on the dataset that is used. There exist,

to my knowledge, no standard practice or heuristic when it comes down to this choice.

Therefore, a grid search (or something similar) needs to be performed. For this we have to

define a range in each hyperparameter over which we want to search for a optimal solution.

Furthermore, a step size needs to be defined to determine the increment between each

search. In this research three hyperparameters are optimized. Firstly, the number of layers,

where we search between 1 and 5 layers with a step size of 1. Secondly, the number of

neurons in each individual layer where we search between 32 and 256 neurons with a step

size of 32. Third, the learning rate where we choose between 0.001 and 0.000113.

A calculation of the options for this relatively basic architecture shows that there exist a

total of (85 +8×4)×2 = 65,60014 different configurations of the model. In a grid search, for

each combination a scoring metric is calculated and the optimal combination is chosen.

In our case we would have to find the optimal point in a 7-dimensional15 grid containing

65,600 datapoints. It can be quickly seen that this is unfeasible due to processing limita-

tions. To circumvent this problem we use KerasTuner16 (Python module).

In this research KerasTuner is used to apply the Hyperband methodology of Li, Jamieson,

13Note that the choice of these ranges and step sizes are essentially still arbitrary.
148 options for each layer times the 2 options for the learning rate. The addition of 32 comes from the options

of no more layers. Once the option zero neurons occurs in a layer all further layers are necessarily also zero.
The first layer cannot have zero neurons, the minimum is 32.

15This hyperspace consist of a dimension for each layer, one dimension for the learning rate and one dimen-
sion for the out of sample AUC.

16See: https://keras.io/keras_tuner/
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DeSalvo, Rostamizadeh and Talwalkar (2017). These researchers define the optimization

problem as something called a "pure-exploration non-stochastic infinite-armed bandit prob-

lem" where a defined number of resources like iterations, data or features are allocated to

randomly sampled configurations. The search narrows down on promising configurations.

The details of this algorithm are beyond the scope of this research but suffice to say that it

finds optimal combinations of hyperparameters with orders of magnitude less processing

time than a grid search.

KerasTuner also searches for the optimal number of iterations. Depending on the data

and the structure of the model, the AUC can be increased by minimizing the loss functions

through repeated iterations over the complete dataset. The problem with this process is

that the model will overfit, meaning that the weights are fine-tuned to the dataset to such

an extent that it essentially starts remembering the data instead of learning general rela-

tionships. The neural network will effectively model random noise in the dataset. This loss

of generality becomes apparent when the AUC is calculated on data outside of the training

set. If this out of sample AUC is lower than the in sample AUC, the model is overfitting.

In general, machine learning methods are better than statistical methods in the sense

that they have a lower bias. They do not underfit. However, a disadvantage of machine

learning is that it has high variance. It tends to overfit. In (hyper)parameter optimization

and machine learning in general, the fundamental problem is this bias-variance tradeoff

(Kohavi and Wolpert, 1996). This tradeoff can only be assessed by computing the out of

sample AUC, which is the metric along which the tuning of the hyperparameters is scored

and the choice of the number of iterations is made. It is also a key metric that is used to

asses model performance, which will be discussed next.

4.5. Model Performance

4.5.1. Area Under Curve

To asses the model performance we use an out-of-sample forecasting metric. Specifically, a

metric called Area Under Curve (AUC) is used (DeLong, DeLong and Clarke-Pearson, 1988).

The metric is not only used to asses the performance of the final model it also functions
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as an optimization objective during the hyperparameter tuning. The metric calculates the

area under the Receiver Operating Characteristic (ROC) curve. The ROC curve plots all pos-

sible points on a two dimensional grid with the true positive rate on the y-axis and the false

positive rate on the x-axis and connects these points. Each point corresponds to a unique

confusion matrix that can be calculated by shifting the decision boundary between default

and non-default. The area under this curve is the AUC which can be used to compare dif-

ferent ROC’s. The true positive rate is given:

True Positive Rate = True Positives

False Negatives+True Positives
= True Positives

Positives
(4.5)

Equation 4.5 shows which percentage of the defaults were correctly classified by the model.

The false positive rate is given:

False Positive Rate = False Positives

True Negatives+False Positives
= False Positives

Negatives
(4.6)

Equation 4.6 shows which percentage of the non-defaults where incorrectly classified.

Lets say that 10% of loans default and we want to predict defaults. For any given con-

figuration of the model, a simple solution would be to shift the decision boundary so that

all predictions are zero. The forecasting accuracy would be 90%, which is pretty good. The

false positive rate would be zero which is nice but the problem is that the true positive rate

is zero as well, which renders the model completely useless. From this point we can shift

the decision boundary so that the model start to actually predicts defaults. As a conse-

quence the true positive rate increases which is what we want. However, it is intuitive that

the false positive rate also increases. There is a tradeoff here, which point to chose depends

on the users of the model. All possibilities are summarized by the ROC.

Now lets say we change the configuration of the model, we get a new ROC. How do

we decide which model is better? This is where the AUC comes in, it simply allows us to

compare the two sets of options without having to make the tradeoff between true and

false positives. The higher the AUC, the better options we have.
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4.5.2. Value Added

After the AUC is optimized and the final model is complete, the value added can be calcu-

lated as follows:
VA(TN,FN,r,PIW) = TN× r−FN×PIW (4.7)

Where, r is the average of the interest rate multiplied by the loan amount (€736.57) and

PIW the sum of the average principal, interest and penalty write offs in case of a default

(€965.99). The value added reflects the revenue generated by loans correctly classified as

non-default (TN) minus the costs of loans that were predicted as non-default but did in fact

default (FN). The amount of TN and FN depends on the decision boundary. When compar-

ing models, in this research, the decision boundary will be set as to optimize equation 4.7.

The implicit assumption in calculating the value added is that positives, whether true

or false, are not eligible for a loan. Why positives are not included in equation equation 4.7

can be further illustrated as follows. let N , denote the total number of non-defaults and P

the total number of defaults. We know that N = TN + FP and P = TP + FN, this implies;

TN ↑⇐⇒ FP ↓ (4.8)

FN ↓⇐⇒ TP ↑ (4.9)

Let’s assume for simplicity that r = PIW, now equation 4.7 is maximized when TN−FN is

optimal. From 4.8 and 4.9 it can be concluded that;

TN−FN ↑⇐⇒ TP−FP ↑ (4.10)

Hence, the value added reflects the amount of true positives and false positives indirectly.

When r > PIW the optimal decision boundary will shift leftwards relative to the point where

TN − FN is optimal. However, the illustration that positives are indirectly reflected still

holds.

The costs of a default are difficult to estimate. When using default2, the subset of loans

has complete information on write offs and PIW is calculated as the average write offs over

all defaults. However, when using default1 there is no complete information on PIW be-

cause most loans have not yet matured. So, when using default1, the PIW and r are cal-

culated based on the subset of default2, with the side-note that the relative proportions of
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revenue and costs might have changed slightly over time. When the costs are overestimated

the optimal decision boundary has a downwards bias and vice versa when underestimated.

4.5.3. Comparison to Other Techniques

Another way to asses model performance is to compare it to alternative techniques. The

selected features will be the same for all methods. In this subsection all alternative tech-

niques will be discussed briefly.

Logistic Regression

Logistic regression (LR) is a specific form of a binary response model which estimates the

following conditional probability (Wooldridge, 2018, p. 560):

P(Default = 1|X) =G(β0 +β1x1 + ...+βk xk ) =G(β0 +Xβ) (4.11)

The β’s are estimated using linear regression and put through a normalization function

G(z). X equals the vector of selected features. The function G(z), in logistic regression, is

given:

G(z) = ex

ex +1
(4.12)

This logistic function normalizes all inputs to range from zero to one. Furthermore, equa-

tion 4.12 is an example of a sigmoid function which is often applied as an activation func-

tion in neural networks. This research will apply the logistic regression algorithm of sklearn17.

Decision Tree

A decision tree (DT) classifier is a non-parametric learning method used for classification.

The method creates a decision tree which splits the data into nodes that contain thresh-

olds for feature values. Information flows from the top node (root) down the decision tree.

Each node (branch) is connected to two other nodes. Through which of both nodes the

information flows depends on whether the defined threshold is met. The final node (leaf)

determines how the input vector is classified. The tree is build until all nodes are "pure",

meaning that all final nodes (leafs) exclusively contains defaults or non-defaults, or until

some prior defined maximum number of leafs is reached.

17See: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html.
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The thresholds are defined by calculating all Gini impurity metrics (or some similar

metric) which reflects how well the possible node, on its own, is able to discriminate be-

tween defaults and non-defaults. It sorts all continues features based on their feature value

from smallest to largest and puts a threshold between adjacent cells. The Gini impurity can

then be calculated as follows:

IG (p) = 1−
2∑

i=1
p2

i (4.13)

i reflects the target; one for default and zero for non-default. The equation is summing the

probabilities pi of all loans with target i being correctly classified times the probability of a

mistake in the classification of those loans.

The node with the lowest Gini impurity will be the root node. Once the root node is

defined, the gini impurity metrics are calculated again and the lowest values will form the

next branches of the decision tree and so forth18. The disadvantage of this method is that

it tends to overfit if the number of leafs is not limited. We will apply the decision tree algo-

rithm of sklearn19 and perform a grid search based on the maximum amount of leafs in the

tree. The range is set from 10 to 500 with a stepsize of 10. The data point with the highest

validation AUC will be selected.

Random Forest

The random forest (RF) algorithm, introduced by Breiman (2001), creates many decision

trees based on randomly selected features (bootstraps). The features are selected with re-

placement, meaning that individual features can be utilized multiple times. This method

is known as feature bagging. Information flows through all trees and classification takes

place through a majority vote among all trees in the "forest".

Single decision trees have a low bias but very high variance. Low bias means high rel-

evance between features which means there will be no underfitting, high variance means

modelling random noise which causes overfitting. The multitude of de-correlated trees

in the forest mitigate this problem of overfitting but increase the bias i.e., the problem of

underfitting. Underfitting is, broadly speaking, less of a problem in machine learning so

random forest generally outperforms single decision trees. Note that this research applies

18The decision tree of the subset of matured loans is depicted in appendix A.2.
19See: https://scikit-learn.org/stable/modules/tree.html.
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recursive feature elimination to mitigate random noise which already prevents overfitting

to some degree.

This research applies the random forest algorithm of sklearn20. The following hyperpa-

rameters will be optimized: the maximum amount of leafs in the trees (50 to 500 with step

size 50), the number of trees in the forest (200 to 2000 with step size 200) and the maximum

amount of features in each tree (choice between all features and
p

features). For this opti-

mization the randomized search21 algorithm of sklearn is applied. It selects a predefined

number of random values for each hyperparameter and validates it using 5-fold cross val-

idation, where the AUC metric is monitored. The set of hyperparameters with the highest

validation AUC is selected.

k-Nearest Neighbors

k-Nearest Neighbors (KNN) is another non-parametric machine learning algorithm, intro-

duced by Fix and Hodges (1989), that simply uses a majority vote among "nearest neigh-

bors" i.e., input vectors with similar feature values. The most important hyperparame-

ter of this model is the number of neighbours (k). In this research the KNN algorithm of

sklearn22 is applied. A grid search is performed to find the optimal number of neighbours

on a range from 5 to 100 with step size 5. The distance (D) between two input vectors (X

=(x1 +x2 + ...+xn)) and (Y =(y1 + y2 + ...+ yn)) is calculated as follows:

D(X,Y) =
n∑

i=1
|xi − yi | (4.14)

Equation 4.14 is a special case (p=2) of the Minkowski distance that is equivalent to simple

Euclidean distance.

Support Vector Machine

A support vector machine (SVM) is a non-probabilistic binary classifier introduced by Boser,

Guyon and Vapnik (1992). The algorithm separates the feature space by a straight line (a

decision boundary). The decision boundary is set as to optimize the margin around it. The

20See: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.
21See: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.

html#.
22See: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html.
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only feature vectors that influence the optimal decision boundary are the ones that deter-

mine where the edges of this margin are. These are the support vectors. Input vectors are

simply mapped on the feature space and classified based on their location relative to the

decision boundary23.

Defaults and non-defaults are obviously not linearly separable in the feature space. So

SVM applies a kernel trick which adds an extra dimension to each feature vector where

the feature space is transformed in such a way that the decision boundary can be straight.

The mathematics of these kernels are beyond the scope of this research, but they allow

classification of classes that are not linearly separable. The type of kernel that is used is

a hyperparameter which is optimized using a grid search (choice of; radial basis function,

polynomial function or sigmoid function)

This research applies the SVM algorithm of sklearn24. In addition to the kernel, two

other hyperparameters are optimized: C, which adds a penalty for misclassified data (con-

trols for bias/underfitting) and γ, which is a coefficient in the kernel that controls the dis-

tance of influence of a single feature vector. For high values of γ feature vectors need to

be relatively close together to be recognized as a distinct class which increases overfitting.

With lower values of γ, the regions separating classes get more generalized and overfitting

is reduced. For both values the right order of magnitude needs to be found, we will search

in the range 10k for k ∈ {−2, ...,2}.

23SVM is non-probabilistic, meaning that feature vectors are mapped and classified as either default or non-
default with a probability of 100%. As a result, the validation ROC curve consists of a single confusion
matrix. It does not realy make sense to use the AUC metric but for comparison it is calculated as follows:

AUC = (TPR×FPR×0.5)+ ((1−FPR)×TPR)+ ((1−FPR)× (1−TPR)×0.5)

24See: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.
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5
Results

5.1. Recursive Feature Elimination
The results of the recursive feature elimination are depicted in figure 5.1. RFE selected 49

out of the total of 173 features. Features with high absolute weights are, generally, more

often included than features with relatively low absolute weights. Only nominal variables

are eliminated all ordinal and continuous variables are included. All occupation areas, ap-

plication signed hours and application signed weekdays are eliminated. However, not all

nominal variables were excluded. For example, home ownership type 0 is included and in-

creases the risk of default significantly (high weight), this nominal variable denotes home-

less people. Most other home ownership types are eliminated.

Total income has the highest negative weight followed by monthly payment day 30 and

29, also relatively high we find monthly payment day 31. This is probably due to the very

low amount of positives. These three days added up, only account for 81 out of the 217,693

observations. Use of loan is an interesting nominal variable as some types have a negative

weight (accounts receivable, acquisition of stocks, working capital financing) while others

have positive weights (home improvement).

Some final things to note; Liabilities and bids increase the risk of default and are all

included. All gender dummies are eliminated. Martial status of widow, cohabitant and

married have positive weights and are included. The countries of Spain and Slovakia in-

crease default risk and are included, the countries of Estonia and Finland reduce risk but

are eliminated. Furthermore, new credit credit customer is eliminated. Income from leave
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Figure 5.1: Recursive Feature Elimination by 5-fold cross validation. Features in red are eliminated, green
features are included. Feature weights are graphed on the x-axis.
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pay, child support and pension increase default risk, income from employer and other

income decrease default risk, all are included. The better the verification type of the income

the lower the default risk. Remarkably, debt to income decreases default risk as well.

5.2. Hyperparameter Optimization
Now that it is determined which features to include and which to eliminate, the model

can be optimized. Two different architectures are defined, one for the complete dataset

(default1) and one for the subset of matured loans (default2). The architectures are sum-

marized in table 5.1. Note that the optimal number of layers for both architectures is four.

Epochs are the optimal number of iterations and batch size is the number of loans that

are passed through the network for one calculation of the gradient of the loss function1. If

the batch size is one the gradient of the loss function is calculated for each individual loan

which is computationally demanding and does not provide better performance. The batch

size is set so that the total number of batches in one epoch is roughly 500.

Table 5.1: Architecture summary.

Dataset default1 default2

Neurons input layer 49 49
Neurons first layer 224 64
Neurons second layer 128 160
Neurons third layer 224 224
Neurons fourth layer 224 128
Neurons output layer 1 1
Trainable parameters 119,521 78,401
Learning rate 0.001 0.001
Epochs 20 11
Batch size 256 64

5.3. Model Performance
The model performance is summarized in figure 5.2. Figure 5.2a and 5.2b depict the Re-

ceiver Operator Characteristics (ROC) curves and accompanying area’s (AUC) of the com-

plete dataset (left panel) and the subset of matured loans (right panel). The validation AUC

1One complete backpropagation.
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of the complete dataset is 0.8284 and that of the subset of matured loans is 0.800. Compared

to other researches, this seems decent. Baesens, Van Gestel, Viaene, Stepanova, Suykens

and Vanthienen (2003) summarize credit scoring results over nine different datasets and 17

different techniques, including neural networks, and find AUC’s ranging from 0.50 to 0.94.

The neural network had the highest AUC in five of these databases with an average of 0.77.

Brown and Mues (2012) review six different databases. These researchers also look at neu-

ral networks in a subset of the data with a default rate of 30% and find an average AUC of

0.79. Djeundje, Crook, Calabrese and Hamid (2021) use data from a mexian and nigerian

bank and find AUC’s ranging from 0.53 to 0.63

As mentioned in section 2.1, the variation in scoring metrics across datasets is gen-

erally larger than across different techniques. So, ideally, we should compare our results

to researchers that use the Bondora dataset. Byanjankar, Heikkilä and Mezei (2015) use the

Bondora dataset but, unfortunately, do not report the AUC. The researchers do report a val-

idation accuracy of 64.51%, this research has a maximum validation accuracy of 75.05% for

the complete dataset and 74.22% for the subset of matured loans. The accuracy of 64.51%

seems low but the default rate in their dataset is 56.97% which deflates accuracy statistics

relative to our datasets which have a higher default rate. That is one reason why AUC is

more appropriate2, however, as mentioned, the AUC is not reported.

Figure 5.2a and 5.2b also depict the confusion matrices that yield the highest accuracy

(red circle)3 and the highest value added (red triangle). These two points are quite close

to each other which is due to the estimation of the revenue generated by true negatives,

which is €736.56, and the average cost of false negatives, which is €965.99. If the costs are

underestimated the optimal decision boundary will shift to the left due to the higher actual

cost of false negatives. As a result of this leftward shift more loans will be classified as de-

fault. Consequently the false positive rate and true positive rate would both increase and

the triangles in figure 5.2a and 5.2b would shift to the right. This would also happen if the

2The AUC is much less sensitive to the underlying distribution of binary classes compared to plain accuracy
metrics. However, it is not completely insensitive to the distribution. For example see Brown and Mues
(2012, p. 3451).

3Accuracy is simply calculated as TP + TN
TP + FP + TN + FN .
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(a) AUC and ROC of predictions on the complete
dataset (default1).

(b) AUC and ROC of predictions on a subset of the
data (default2).

(c) Developments of the True Negatives, False Neg-
atives, True Positives and False Positives (y-axis) as
the Decision Boundary is shifted (x-axis), based on
predictions of the complete dataset (default1).

(d) Developments of the True Negatives, False Neg-
atives, True Positives and False Positives (y-axis) as
the Decision Boundary is shifted (x-axis), based on
predictions of a subset of the data (default2).

(e) The Value Added (left y-axis) and the accuracy
(right y-axis) as the Decision Boundary (x-axis)
is shifted, based on predictions of the complete
dataset (default1).

(f) The Value Added (left y-axis) and the accuracy
(right y-axis) as the Decision Boundary (x-axis) is
shifted, based on predictions of a subset of the data
(default2).

Figure 5.2: Model performance graphs, the left panels depict the model based on default1, the right panels
depict the model based on default2.
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revenue of true negatives is overestimated because then false negatives become rela-

tively more costly.

The development of true negatives, false negatives, true positives and false positives

are depicted in figure 5.2b (complete dataset) and 5.2c (subset of matured loans). As can

be seen, when the decision boundary is zero, all loans will be classified as default. The

true positives equal the total amount of defaults (77,099 left panel, 17,210 right panel) and

the false positives equal all non-defaults (140,593 left panel, 38,408 right panel). The true

and false negatives are obviously zero. When the decision boundary is shifted to the right

the amount of false positives decreases steeply and the amount of true negatives increase

steeply, in the complete dataset more steeply than in the subset of matured loans. The true

positives decrease gradually and the false negatives increase gradually. Again in the com-

plete dataset more gradually than in the subset of matured loans. The optimal accuracy is

always around the decision boundary of 50, at this point the true positives and negatives

relative to the false positives and negatives are maximized. When the decision boundary is

100 all loans are classified as non-defaults and the true negatives equal non-defaults and

the false negatives equal defaults, positives are zero.

Figure 5.2e and 5.2f depict the development of the value added (left y-axis) and the

accuracy (right y-axis) as the decision boundary (x-axis) is shifted. As can be seen, when all

loans are classified as default (decision boundary is 0) the value added is zero. The accuracy

equals the default rate. Now we shift the decision boundary to the right and we start to

make a profit on the loans. At a decision boundary of roughly 45 this profit is maximized,

beyond this point the true negatives do not weigh up to the costs of the additional false

negatives (see figure 5.2c and 5.2d) and the value added becomes suboptimal.

When the decision boundary is 100 the accuracy is the non-default rate and the value

added is the actual profit of bondora. Remember that all loans in the dataset were granted.

Meaning that in reality the decision boundary was at 100. When one accepts the estima-

tions at face value it can be claimed that the credit scoring methodology of this research

could add additional value up and above Bondora’s current profit. This value is realized by

not providing loans to any applicants that score above the decision boundary of 45. This

would eliminate 80,017 loans (about 36,76%) in the case of the complete dataset and 16,705
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loans (about 30.04%) in the subset of matured loans.

The above estimations are based on predictions of the complete datasets, not just the

test set. We have optimized the dataset based on the test set but this does not mean that the

model is not overfitting on the training data. As a consequence the value added depicted in

figure 5.2e and 5.2f might be misleading. However, when value added is calculated on the

test data the same pattern emerges with the decision boundary in roughly the same spot.

The fact that there is virtually no difference between the optimal decision boundary, for the

value added, between test and training data is evidence that the model is not overfitting.

This is confirmed by the small difference between the training and validation AUC (see

table 5.2).

5.4. Comparison to Other Techniques
Table 5.2 summarizes the results of the comparison to other techniques. The neural net-

work has the highest validation AUC for the complete dataset (default1). Random forest has

the highest validation accuracy. Both methods score roughly equal on value added4. The

difference between train AUC and test AUC is higher in the random forest model which

shows that it overfits slightly more.

Note that overfitting in decision tree algorithms is related to the maximum allowed leaf

nodes and does not necessarily come at a cost in terms of validation AUC. The reason is

that overfitting happens in the lowest part of the decision tree which can memorize all

input vectors. Out-of-sample input vectors rarely make it that far down the tree. However,

this redundant part should always be removed as it can lead to misclassification in rare

cases and adds nothing to the validation. Neural nets are parametric models, where the

parameters change when the model starts to memorize input vectors. As a result, test AUC

diminishes as the train AUC surpasses the test AUC i.e., when the model starts to overfit.

In the complete dataset, the support vector machine scores lowest on AUC. This is be-

cause the AUC is not a valid metric for non-probabilistic models where the decision bound-

ary is defined by the model itself. The support vector machine can best be compared on

4Note that the value added in table 5.2 reflects the value added based on the test data, which is only 20% of
the complete dataset which is depicted in figures 5.2e and 5.2f.
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Table 5.2: Comparison to Other Techniques

default1 default2

Train AUC Test AUC VA Accuracy Train AUC Test AUC VA Accuracy
NN 0.8331 0.8284 11.4 0.7505 0.8117 0.8000 3.2 0.7422
LR 0.7645 0.7631 10.1 0.7223 0.7581 0.7531 3.0 0.7261
DT 0.8191 0.8021 10.8 0.7357 0.8051 0.7678 3.1 0.7330
RF 0.8437 0.8203 11.4 0.7532 0.8777 0.8026 3.3 0.7567
KNN 0.8119 0.7857 9.2 0.7201 0.8179 0.7700 2.4 0.7170
SVM 0.6980 0.6960 11.0 0.7491 0.6956 0.6656 3.2 0.7433

Note: NN = neural network, LR = logistic regression, DT = decision tree, RF = random forest,
KNN = k-nearest neighbors, SVM = support vector machine, VA = value added (in millions,
in euro).

the basis of its accuracy and scores reasonably well, outperforming k-nearest neighbors,

logistic regression and the decision tree classifier5. Ignoring the support vector machine

validation AUC, logistic regression scores lowest followed by k-nearest neighbors and deci-

sion trees.

In the subset of matured loans (default2), random forest outperforms the neural net-

work, in terms of validation AUC, value added and accuracy. The random forest model is

overfitting slightly but, as mentioned, this is no matter of great consequence. The neural

network comes in second on merit of validation AUC, the support vector machine comes

second in terms of accuracy. The worse performing models are, again; logistic regression,

decision tree, and k-nearest neighbors. In machine learning, neural networks are the most

popular method for large datasets ( N > 100,000). In general; the larger the dataset, the

better neural nets perform relative to alternative methods. So it is not that surprising that

random forest outperforms the neural network in the subset of matured loans (N = 55,618)

but not in the complete dataset (N = 217,692).

5The decision tree of the subset of matured loans is depicted in appendix A.2.
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6
Conclusion

This research proposes a deep hybrid learning approach to improve credit default risk as-

sessment in peer-to-peer lending markets. The method consist of a two step procedure

where, in the first step, redundant features are removed by recursive feature elimination.

Perceptron weights are applied as a metric for feature importance. This results in the se-

lection of 49 informative features from a total of 173. This step removes noisy features

from the dataset which helps prevent the neural network, applied in the second step, from

overfitting. The hyperparameters of the neural network are optimized with the Hyperband

method.

Two models are defined, one for the complete dataset and one for a subset of matured

loans. The validation AUC of the complete dataset is 0.8284, the subset of matured loans

has a validation AUC of 0.8000. These scores look promising, although it is difficult to com-

pare metrics across different datasets and researches. An estimation of the average cost of

false negatives and the average revenue of true negatives shows that the model could po-

tentially ad value to the current risk assessment. However, the actual added value is difficult

to estimate because the costs of default are not observed in the dataset.

Compared to other methods the deep hybrid learning approach performs best in the

complete dataset. However, random forest outperforms the deep hybrid learning model

on the subset of matured loans. This is probably due to the smaller size of that dataset

which benefits the random forest methodology as compared to the neural network. In both

datasets the deep hybrid learning models outperform logistic regression, decision tree, k-

nearest neighbors and the support vector machine algorithms based on the validation AUC.
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6. Conclusion

In conclusion, this research shows that deep hybrid learning has the potential to im-

prove risk assessment in peer-to-peer lending markets. Moreover, it shows that as the num-

ber of loans in the dataset increases, the relative performance of the neural network im-

proves. Taking into consideration the rapidly growing peer-to-peer lending market, it can

be expected that the gain from the suggested method will increase over time. The model

can possibly help mitigate the expected adverse effects of the growth in this type of lending.

In particular, the improved risks assessment may prevent peer-to-peer markets from being

used as a vehicle for offloading risk to counterparties.

Regulatory arbitrage is often mentioned as one of the driving forces behind the pop-

ularity of FinTech developments such as peer-to-peer lending. The possibility to circum-

vent credit regulation poses a threat to economic stability. On the flip side, the digitization

of financial markets creates large information flows (big data) which can be used to im-

prove risk assessment as compared to assessment in a centralized economy. Deep hybrid

learning helps filter the information and yield superior default risk forecasts. Mitigating

the information asymmetries in decentralized financial markets can ultimately increase

economic stability and decrease systemic risk.
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Appendix

A.1. Data

Table A.1: Feature Description

Feature Pre-process Type Description

Bids Portfolio Manager continuous The amount of investment offers made
by portfolio managers.

Bids Api continuous The amount of investment offers made
via Api.

Bids Manual continuous The amount of investment offers made
manually.

New Credit Customer dummy Zero if the customer had at least three
months of credit history in Bondora,
one otherwise.

Application Signed hour nominal N/A

Application Signed nominal N/A
Weekday

Monthly Payment Day nominal The day of the month on which the one
payment is scheduled. Weekend days are
shifted to monday.

Language Code nominal 1: Estonian, 2: English, 3: Russian,
4: Finnish, 5: German, 6: Spanish,
9: Slovakian.

Age continuous Age of the borrower.

Gender nominal 0: male, 1: female, 2: other.

Country nominal 1: Estonia, 2: Finland, 3: Spain
4: Slovakia. Residence of borrower.
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A.1. Data A. Appendix

Education ordinal 1: primary education, 2: basic education,
3: vocational education, 4: secondary
education, 5: Higher Education.

Marital Status nominal 1: married, 2: cohabitant, 3: single,
4: divorced, 5: widow.

Number of Dependants continues Number of children or other dependants.

Home Ownership Type nominal 0: homeless, 1: owner, 2: living with
parents, 3: tenant, pre-furnished
property, 4: tenant, unfurnished
property, 5: council house, 6: joint
tenant, 7: joint ownership, 8: mortgage,
9: owner with encumbrance, 10: other.

Applied Amount continuous Originally applied amount.

Loan Duration continuous Loan duration in months.

Monthly Payment nominal Estimated amount the borrower has to pay
every month.

Employment Status nominal 1: unemployed, 2: partially employed, 3: fully
employed, 4: self-employed, 5: entrepreneur
6: retiree.

Employment Duration ordinal 0: other, 1: trial period, 2: up to 1 year,
Current Employer 3: up to 2 years, 4: up to 3 years, 5: up to 4

years, 6: up to 5 years, 7: more than 5 years,
8: retiree.

Work Experience ordinal 0: less than 2 years, 1: 2-5 years, 2: 5-10 years,
3: 10-15 years, 4: 15-25 years, 5: more than 25
years.

Occupation Area nominal 1: other, 2: mining, 3: processing, 4: energy,
5: utilities, 6: construction, 7: retail,
8: transport and warehousing, 9: hospitality
and catering, 10: info and telecom, 11: finance
and insurance, 12: real-estate, 13: research,
14: administrative, 15: civil service and
military, 16: education, 17: healthcare and
social help, 18: art and entertainment,
19: agriculture, forestry and fishing.

Income From Principal continuous N/A
Employer

Income From Pension continuous N/A

Income From Family continuous Income from child support.
Allowance

Income From Social continuous N/A
Welfare
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Income From Leave Pay continuous Income from paternity leave.

Income From Child continuous Income from alimony payments.
Support

Income Other continuous N/A

Income Total continuous N/A

Debt to Income continuous Ratio of the borrowers monthly gross income
that goes towards paying loans.

Free Cash continuous Discretionary income after monthly liabilities.

Verification Type ordinal Method used for loan application data. 0: not
set, 1: income unverified, 2: income unverified,
cross-referenced by phone, 3: income verified,
4: income and expenses verified.

Use of Loan nominal 0: loan consolidation, 1: real estate, 2: home
improvement, 3: business, 4: education, 5:
travel, 6: vehicle, 7: other, 8: health, 101:
working capital financing, 102: purchase of
machinery equipment, 103: renovation of real
estate, 104: accounts receivable financing, 105:
acquisition of means of transport, 106:
construction finance, 107: acquisition of stocks
108: acquisition of real estate, 109:
guaranteeing obligation, 110: other business.
All code in format 1xx are for business loans
that are not supported since oct 2012.

Existing Liabilities continuous Number of existing liabilities.

Liabilities Total continuous Total monthly liabilities.

Refinance Liabilities continuous Total amount of liabilities after refinancing.

A.2. Results
The figure on the following page depicts the decision tree of the subset of matured loans.

The colors indicate targets, red is non-default, blue is default. The color intensity reflects

the probability. Each node contains a threshold feature value, a Gini impurity metric and

the number of defaults and non-defaults in that node.

The optimal number of leaf nodes in the depicted tree is 60, this is a relatively small tree.

The optimal number of leaf nodes for the complete dataset is 160 which increases the size

of the tree substantially. The trees in the random forest model have an optimal amount of

leaf nodes of 500 and are even larger still.
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