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Abstract

Primary homes compose a large part of household assets in the Netherlands and can be
a major source of household financial risk. We show that pension funds can help manage
this risk and increase household welfare by implementing an investment strategy that dif-
ferentiates between home owners and renters. The advantage of differentiation grows when
households live in homes beyond their optimal risk profile and shrinks when households do
not have precautionary savings. We further find that the historical growth in house prices is
unlikely to be sustained in the future because historical returns can in part be attributed to
market cyclicality.



1 Introduction

According to the Dutch Central Bureau of Statistics (CBS), house prices in the Netherlands

have risen 63.5% since their lowest point in June 2013 (CBS, 2021a). In April 2021, Dutch house

prices recorded their highest year-on-year growth in 20 years. The rising prices are frequently

attributed to a shortage in housing supply and cheap credit, and can cause problems on two

fronts. On one hand, those that are unable to buy a house may find themselves at the lower end

of increasing inequality between those who can and cannot afford a home (Boelhouwer, 2020).

On the other hand, those who do buy a house are more likely to take on large amounts of debt

to finance the purchase (Fischer and Stamos, 2013), which could cause problems if prices were to

fall substantially. The impact of changing housing prices is amplified by how much of household

wealth is stored in primary homes. In 2019, primary homes accounted for 1.4 trillion out of 2.5

trillion euros in household assets (CBS, 2021b).

The other large store of value in the Netherlands is pension wealth. The total pension

fund assets in the Netherlands, which are excluded from household assets, added up to over 1.5

trillion euros in 2019 (DNB, 2021). Given that these two pillars account for such a large portion

of wealth and are both subject to substantial fluctuations in asset value, it seems plausible that

the optimal investment allocation in the one depends on the other. Specifically, households

that own their house, often with a substantial mortgage, are already subject to a lot of market

risk. These households may prefer their pension assets to be invested with less risk than they

would have otherwise. Similarly, renting households that do not benefit from an expected rise in

property price may desire a higher expected return on their pension money. If pension wealth is

invested identically for renters and home owners, then it is likely that the investment allocation

is sub-optimal for at least one of the two parties.

In this research, we investigate how optimal pension investments vary between home owners

and renters and assess the benefits of a pension fund allocation that differentiates between these

two groups. We construct a model that describes the dynamics of the Dutch housing market in

combination with other core economic variables. We then use this model to simulate households

in the Dutch economy and optimise their pension investments.

The first component in our research is a model for the economy. We calibrate a model

that includes bonds, stocks, inflation, and housing on the Dutch economy. Van Hemert et al.

(2006) and De Jong et al. (2008) have previously calibrated economic models in the presence of

housing. However, they assume deterministic term structures, while Sangvinatsos and Wachter

(2005) and Koijen et al. (2010) show that time-varying risk premia substantially affect investment

strategies. Furthermore, they use data from the US economy, so their results can not necessarily
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be extrapolated to the Dutch economy. For research into the Dutch economy, the KNW model

(Koijen et al., 2010) has become the workhorse model used by Dutch institutions such as De

Nederlandsche Bank (DNB) and the Netherlands Bureau for Economic Policy Analysis (CPB).

The KNW model of the economy consists of two latent factors that drive the dynamics of the

time-varying bond market, the stock market and a price index. We expand the KNW model

by adding a housing asset. Because this has not previously been done for Dutch data, we first

calibrate the model, which we tailor to the parameter restrictions laid out by the Committee

Parameters (2019). We further add a time-varying risk premium for housing returns to investigate

if it can help model cycles in the housing market. This builds on previous research by Fischer

and Stamos (2013) and Corradin et al. (2014), who analyse cyclicality in the US housing market

by constructing models with simplified dynamics of the other asset returns. We propose an

adaptation of the Fischer and Stamos (2013) model that only requires us to estimate 1 additional

variable for the introduction of a dynamic risk premium.

We find that housing investments have historically been well-rewarded, but that future returns

are expected to be lower. Our estimates for long-run returns from house value appreciation are

below the risk free rate. This does not conform with the recent trend of double digit increases

in house prices every year, but it is in line with past calibrations of the US housing market by

Van Hemert et al. (2006) and De Jong et al. (2008). We show that the continued growth in house

value can partly be attributed to cycles in the housing market. The addition of a time-varying

risk premium reduces residual variance of the fitted housing market by 30%.

The second component in our research is a model for household behaviour. We investigate

how households make decisions for consumption and housing, and how that affects their optimal

pension investments. This relates our research to the large literature on life-cycle investing, an

area that considers how people should invest their funds based on their changing income and

preferences throughout their life. The extraordinary size of Dutch pension funds has led to its

own line of research on how to invest these funds, examples of which are Chen et al. (2019) and

Metselaar et al. (2020). This research generally does not consider housing in the models. On the

other hand, there is a class of research that studies housing decisions, which generally assumes

that households manage their own retirement assets rather than through a pension fund. Cocco

(2005) find that introducing housing in the model decreases investment in other financial assets.

Yao and Zhang (2005) also considers the option of renting a house and find significant welfare

losses when households are permanent home owners or renters, rather than choosing based on

the circumstances. They also find that when investors own a house, they decrease their equity

holdings as a fraction of their net worth but actually increase their equity holdings as a fraction
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of their financial assets, because of the diversification effect. Fischer and Stamos (2013) find that

a cyclical housing market significantly affects the choice of tenure and the size of the investment.

Our research bridges the gap between pension fund strategies and housing decisions by con-

structing a household model that is tailored to the Dutch environment. We first optimise house-

hold decisions on consumption and housing by using backward induction. This allows us to find

the optimal decisions for every financial position of the households. We then optimise the pension

fund investments and investigate how these should incorporate the tenure of a household.

We find that when households own houses that exceed their risk profile, pension differentiation

based on housing tenure can yield an increase in welfare of up to 2.5%, a yearly increase in certain

consumption of e600 for the median Dutch household. This result is particularly interesting in

light of the current housing market, where many people maximise their mortgage to have a

chance at buying a home. In a setting where households structurally buy the biggest house they

can afford, the optimal pension fund allocation into risky assets is 49% point higher for renters

than for owners. However, this difference decreases when households don’t hold personal savings,

in which case a house serves as a buffer that renters do not have.

Our research confirms that the investment decisions for housing and retirement fund are

connected in the Dutch economy. Furthermore, our economic model helps to understand the

dynamics of property prices and can be used in future research into the impact of policy changes.

The structure of this paper is as follows. Section 2 considers the economic model and its

calibration on the Dutch economy, including an analysis of the resulting parameters. In Section

3 we construct the household model and discuss how we optimise household behaviour and

pension investments through a simulation. We discuss the results of this simulation in Section

4. Finally, Section 5 concludes.

2 Economic model

To generate simulations, we construct a model of the economy that captures the most relevant

aspects of the economy: the bond market, a stock index, inflation and the housing market. The

model we use is closely related to the work by, among others Brennan and Xia (2002) and Koijen

et al. (2010). We use uppercase letters for nominal variables and lowercase letters for their real

counterparts, which are adjusted for inflation.
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2.1 Model dynamics

2.1.1 Two-factor model

The dynamics of the term structure are modeled by two state variables, xt = (x1t, x2t)
′, which

are assumed to be mean-reverting around zero to accommodate for first-order autocorrelation in

the interest rate and expected inflation:

dxt = −Kxt dt+ [I2×2 O3×2] dzt,

with zt ∈ R5 a vector of independent Brownian motions driving the uncertainty in the economy.

As advocated by Dai and Singleton (2000) we normalise K to be lower triangular, ensuring that

the factors do not rotate. The states xt dictate the movement of two hidden variables: the

instantaneous nominal interest rate Rt and the instantaneous expected rate of inflation πt. Both

are affine in the factors:

Rt = δ0R + δ′1Rxt, πt = δ0π + δ′1πxt, δ0R > 0, δ0π > 0.

To derive bond prices we model the nominal stochastic discount factor φN
t as

dφN
t

φN
t

= −Rt dt− λ′t dzt,

where the price of risk λt is equal to

λt = λ0 +Λ1xt with λt,λ0 ∈ R5 and Λ1 ∈ R5×2.

For future reference we define λ̃0 as the first 2 elements of λ0 and Λ̃1 as the upper 2× 2 matrix

of Λ1. The price of a zero coupon bond with a payout at t+ τ is exponentially affine in the state

variables xt: Pt(t+ τ) = exp
(
a(τ) + b(τ)′xt

)
, such that annual yields are given by

yt(τ) = −a(τ)

τ
− b(τ)′

τ
xt.

We use the analytical expressions derived by Muns (2015) for a(τ) and b(τ). The other observable

processes are the price index, the stock index and the housing market. The price index, Πt,

evolves as follows:
dΠt

Πt
= πt dt+ σ′Π dzt, Π0 = 1,
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and the stock index, St, according to

dSt
St

= (Rt + ηS) dt+ σ′S dzt, S0 = 1.

As the final process we introduce the housing market through the price of one housing unit

Qt. We adopt the equation from (Van Hemert, 2010, p. 473):

dQt
Qt

= (Rt + ηQ − rimp) dt+ σ′Q dzt, Q0 = 1,

with rimp the imputed rent. This derives from the idea that the expected benefit for a landlord

or a home owner is fairly compensated by the time value of money and the price of risk:

E[
dQt
Qt

+ rimp dt] = [Rt + ηQ] dt.

For the purposes of this paper, net rental income and imputed rent are interchangeable.

We discretise the model and its parameters to be able to calibrate them. Here we follow

Pelsser (2019) in augmenting the state vector with the observed variables:

x̃t =


xt

ln Πt

lnSt

lnQt

 .

This state vector then follows an Ornstein-Uhlenbeck process dx̃t = (θ0 +Θ1x̃t) dt +ΣX dz̃t,

which can be discretised to

x̃t = φ(h) +Φ(h)x̃t−h + εt, εt ∼ N(0,Q(h)). (1)

Details on the discretisation process can be found in Appendix A.

2.1.2 Dynamic risk premium

As an adaptation to the model we introduce a time-varying risk premium for the housing market,

which can help explain potential cycles in the data. Next to the unconditional risk premium ηQ,

we add a sensitivity βQ to some predictive signal ζt, such that the housing price evolves according

to
dQt
Qt

= (Rt + ηQ + βQζt − rimp) dt+ σ′Q dzt. (2)
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This is similar to the model from Fischer and Stamos (2013), who then let ζt follow an Ornstein-

Uhlenbeck process with a unique drift and stochastic process. However, adopting their method

would introduce various unknown parameters, which is undesirable in our already complex model.

Instead, we propose dynamics for the drift and shocks in ζt that are mostly governed by the

previously defined parameters.

First, we note that Fischer and Stamos (2013) find a correlation of more than 98% between

shocks in the predictive signal and shocks in the housing market. As such, we propose to model

the predictive signal as a univariate Ornstein-Uhlenbeck process with identical shocks to the

housing market:
dζt
ζt

= −k dt+ σ′Q dzt,

which corresponds to the AR(1) process ζt = e−khζt−h + εt,5. In this setting, we do not need to

estimate additional parameters for the shocks in ζt.

As a second measure to reduce the number of parameters to estimate, we let the mean

reversion be equal to the senstivity from (2): βQ = e−kh, such that ζt evolves as

ζt = βQζt−h + εt,5. (3)

We can show that this leads to an intuitive interpretation of the predictive signal. For this we

note that the discrete housing price dynamics, as indicated by the 5th row of the discretisation

from (1), is revised when adding the dynamic risk premium:

lnQt = φ
(h)
5 +Φ

(h)
5. x̃t−h + βQζt−h + εt,5. (4)

Here φ(h)
5 and Φ(h)

5. denote the 5th row of φ(h) and Φ(h) respectively. Combining (3) and (4)

then provides the definition for the predictive signal:

ζt = lnQt − φ(h)
5 −Φ(h)

5. x̃t−h,

which can be interpreted as the change in house price that could not be explained by the un-

conditional drift or the factor dynamics. Because the signal follows a mean-reverting process, it

can help explain cyclicality in the data. Furthermore, with this definition of ζt we only need to

estimate one additional parameter, k, when adding a dynamic risk premium.
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2.1.3 Restrictions

We assume the unconditional risk premia and the imputed rent to be constant. Because the drift

must be 0 under the Q-measure, the risk premia are restricted to

σ′Sλt = ηS , σ′Qλt = ηQ − rimp.

We follow Muns (2015) and Committee Parameters (2019) in adding three additional restric-

tions. The fixed values 5.6% and 1.9% are imposed on the unconditional expected returns for the

stock index and inflation. The Ultimate Forward Rate (UFR) is set to 2.1%. The restrictions

that follow are:

ηS = ln(1.056)− δ0R +
1

2
σ′SσS ,

δ0Π = ln(1.019) +
1

2
σ′ΠσΠ,

δ0R = ln(1.021) + λ′0b∞ + b′∞b∞.

with b∞ = limτ→∞ b(τ) = (K + Λ̃1)′−1δ1R.

We also consider a restriction on house value increases. Although Committee Parameters

(2019) does not incorporate housing in their model, they do advise a value of 4.1% for the

unconditional return on non-public real estate. This takes into account both price increases and

net rental income, so we first must separate the two figures. We consider a simplified model where

the value of a house, H, is the discounted sum of all future net rental income. In an environment

with stable growth q and discount factor ρ, the value of a house is H = Hrimp

ρ−q . Rearranging

gives rimp = ρ − q. CPB (2020) estimate that ρ = 3.95% and q = 0.7%. Consequently, we

set the imputed rent (net rental income) at 3.25% of the house value. This means that, under

the aforementioned restriction, the remaining 0.85% forms the unconditional yearly return on

house value rhQ. From this we can construct our final restriction. The unconditional continuously

compounded return on house value is given by

ln(1 + rhQ) = lim
t→∞

E

[
ln
Qt+1

Qt

]
= δ0R + ηQ − rimp − 1

2
σ′QσQ.

The ensuing restriction is

ηQ − rimp = ln(1.0085)− δ0R +
1

2
σ′QσQ.

This restriction does not affect the time-varying risk premium, because its unconditional expected

7



value is 0.

2.2 Calibration

We use the Kalman filter to estimate the model, adopting the augmented formulation from

Pelsser (2019) that allows us to use the standard version of the Kalman filter. The Kalman filter

is based on a discrete model, but our economic model is set up in continuous time. As such, we

first discretise the model and its parameters. Then, we run the Kalman filter in combination

with Quasi-Maximum Likelihood to find the model parameters that best fit the Dutch economy.

Appendices A and B describe the state space formulation, the discretisation and the Kalman

equations in more detail. De Jong (2000) provides further discussion on how to estimate affine

term structure models with a Kalman filter.

2.3 Data

Our data consists of quarterly observations for bond yields, stock returns, inflation rates and

house prices, spanning from March 1973 until March 2021. It is an updated version of the data

used by Draper (2014). In contrast, the Committee Parameters (2019) uses monthly observations

from the last 20 years, which have lower measurement error and are likely a more accurate

reflection of the current dynamics. However, housing data is only available in quarterly frequency,

so the Committee Parameters (2019) set would leave us with less than 100 observations. This

could lead to substantial estimation errors due to the large number of parameters to be estimated,

which is why we opt for the larger data set.

We consider bonds with 6 different maturities: 3 months, 1 year, 2 years, 3 years, 5 years

and 10 years. From Jan-1973 until Dec-1998, the shortest maturities are 3-month money market

rates from Frankfurt banks. From Dec-1999, they are the 3-month Euribor rates. Both are

available through the Bundesbank. For the longer maturities, we use German government bonds

up to Dec-2003, also available through the Bundesbank. From Jan-2004 onward, we use the

zero-coupon bond rates constructed by De Nederlandsche Bank.

The price index is a combination of German CPI figures as published by the IMF and,

from Jan-1999 onward, the Harmonized Index of Consumer Prices that the ECB publishes. The

MSCI world index in euros serves as our stock market, available through Eikon. We complete the

data with house prices. Dutch residential property prices come from the Bank for International

Settlements.

Figure 1 depicts the gradual decline of bond yields throughout the years. Since we model

the yields as an affine function of the state variables, this decline makes at least one of the
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Figure 1: Bond yields (%)
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Figure 2: Inflation rate (%)
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states likely to be close to nonstationary. This could hamper parameter estimation if we did not

put restrictions on the unconditional interest rate, because the high unconditional variance of

the state variable obscures the steady-state value of the interest rate. Table 1 depicts how the

yield curve is on average upward-sloping, with short-term yields more volatile than long-term

yields. Table 2 shows that correlations across yields are generally above 90%, suggesting that

a two-factor model could be sufficient to explain a large part of the yield curve. We also see a

substantial correlation between the yields and the inflation rate, supporting the applicability of

a simple factor structure for these time series.

Figure 3: Equity returns (%)
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Figure 4: Housing returns (%)
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Figures 3 and 4 show returns for the stock index and the housing market respectively. The

stock returns exhibit no obvious pattern, substantiated by low autocorrelation and correlation

with the other variables, as depicted in Tables 1 and 2. As such, the two-factor model will

likely be of little help in predicting stock behaviour. However, stock returns are notoriously hard

to predict, so our model is likely a sufficient approximation. Unlike stocks however, housing

prices appear highly predictable. Indeed, the quarterly returns have a first-order autocorrelation

(FOAC) of 68%. While our model does allow for autocorrelation through the two factors, the

housing returns are mostly uncorrelated with the other variables. Thus, it is unlikely that the
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two-factor model can explain the high autocorrelation in housing returns, and the model with

a constant risk premium for house price dynamics is likely not a perfect fit. The housing and

inflation data also depict the trade-off between sample size and accuracy, with the older data

seemingly noisier than the more recent data.

Table 1: Summary statistics

Mean (%) Variance (%) Skewness Kurtosis FOAC
3-month Yield 4.199 3.358 0.670 0.130 0.945
1-year Yield 4.204 3.061 0.323 -0.541 0.959
2-year Yield 4.402 3.033 0.133 -0.761 0.961
3-year Yield 4.595 3.022 0.005 -0.843 0.963
5-year Yield 4.905 2.969 -0.138 -0.870 0.966
10-year Yield 5.345 2.796 -0.290 -0.787 0.967
Inflation rate 2.438 2.263 1.060 1.624 0.475
Equity returns 10.429 29.658 -0.249 0.501 0.163
Housing returns 5.380 10.289 0.621 4.031 0.678

Table 2: Correlation matrix

3-m
Yield

1-year
Yield

2-year
Yield

3-year
Yield

5-year
Yield

10-year
Yield

Inflation
rate

Equity
returns

Housing
returns

3-m
Yield

X 0.979 0.966 0.951 0.928 0.897 0.596 -0.060 -0.017

1-year
Yield

0.979 X 0.995 0.986 0.969 0.941 0.581 -0.050 -0.015

2-year
Yield

0.966 0.995 X 0.997 0.987 0.966 0.572 -0.045 0.009

3-year
Yield

0.951 0.986 0.997 X 0.996 0.981 0.562 -0.039 0.028

5-year
Yield

0.928 0.969 0.987 0.996 X 0.994 0.547 -0.032 0.051

10-year
Yield

0.897 0.941 0.966 0.981 0.994 X 0.529 -0.029 0.076

Inflation
rate

0.596 0.581 0.572 0.562 0.547 0.529 X 0.023 -0.015

Equity
returns

-0.060 -0.050 -0.045 -0.039 -0.032 -0.029 0.023 X -0.015

Housing
returns

-0.017 -0.015 0.009 0.028 0.051 0.076 -0.015 -0.015 X

2.4 Estimation results

We calibrate four different models that are each an adjustment to the previous model. Model

(i) omits the housing data and is most comparable to previous calibrations of the KNW model.

Model (ii) adds housing data without additional restrictions. Model (iii) expands on that with

an additional restriction on the unconditional housing return. Finally, model (iv) incorporates

a time-varying risk premium.
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Table 3: Model calibration on quarterly data from Q1-1973 to Q1-2021

(i) (ii) (iii) (iv)
Parameter Estimate SE Estimate SE Estimate SE Estimate SE

Instantaneous expected inflation πt = δ0π + δ′1πxt
δ0π 1.89% - 1.89% - 1.89% - 1.89% -
δ1π(1) 0.57% (0.08%) 0.07% (0.10%) -0.06% (0.16%) 0.03% (0.40%)
δ1π(2) 0.39% (0.12%) -0.72% (0.13%) -0.71% (0.11%) -0.73% (0.11%)

Instantaneous nominal interest rate Rt = δ0R + δ′1Rxt
δ0R 2.30% - 2.32% - 1.73% - 2.39% -
δ1R(1) 1.32% (0.12%) 0.23% (0.13%) 0.10% (0.30%) 0.15% (0.84%)
δ1R(2) 0.82% (0.12%) -1.56% (0.15%) -1.53% (0.09%) -1.56% (0.15%)

State variable dynamics dxt = −Kxt dt+ [I2×2 O3×2] dzt
K(11) 4.30% (3.65%) 3.59% (3.51%) 4.06% (3.43%) 4.28% (4.11%)
K(22) 16.35% (9.26%) 21.35% (12.19%) 18.20% (11.08%) 19.10% (12.23%)
K(21) 5.58% (5.16%) 6.93% (5.93%) 10.36% (7.87%) 8.50% (9.22%)

Realised inflation process dΠt

Πt
= πt dt+ σ′Π dzt

σΠ(1) -0.02% (0.08%) -0.01% (0.08%) 0.00% (0.08%) -0.02% (0.08%)
σΠ(2) -0.02% (0.07%) 0.03% (0.07%) 0.03% (0.07%) 0.03% (0.07%)
σΠ(3) -0.92% (0.05%) -0.92% (0.05%) -0.92% (0.05%) 0.92% (0.05%)

Stock return process dSt

St
= (Rt + ηS) dt+ σ′S dzt

ηS 4.24% - 4.22% - 4.83% - 4.17% -
σS(1) -0.62% (1.24%) -1.84% (1.29%) -1.98% (1.31%) -2.07% (1.35%)
σS(2) 1.82% (1.15%) -0.73% (1.13%) -0.82% (1.18%) -0.55% (1.62%)
σS(3) -1.37% (1.08%) -1.12% (1.09%) -1.23% (1.09%) -1.32% (1.09%)
σS(4) 14.53% (0.73%) 14.61% (0.75%) 14.67% (0.75%) 14.73% (0.76%)

Prices of risk λt = λ0 +Λ1xt
λ0(1) -0.126 (0.029) -0.213 (0.014) -0.226 (0.012) -0.212 (0.012)
λ0(2) 0.175 (0.029) -0.010 (0.062) -0.005 (0.053) -0.007 (0.140)
Λ1(11) 0.023 (0.042) 0.092 (0.044) 0.106 (0.088) 0.104 (0.237)
Λ1(12) 0.278 (0.044) 0.102 (0.038) 0.102 (0.046) 0.109 (0.127)
Λ1(21) -0.006 (0.055) 0.250 (0.085) 0.244 (0.076) 0.250 (0.074)
Λ1(22) 0.277 (0.095) 0.163 (0.125) 0.164 (0.134) 0.163 (0.202)

Housing return process dQt

Qt
= (Rt + ηQ − rimp) dt+ σ′Q dzt

ηQ - - 4.85% (2.47%) 2.45% - 1.78% -
σQ(1) - - -0.96% (0.47%) -0.89% (0.49%) -0.35% (0.39%)
σQ(2) - - 0.23% (0.46%) 0.25% (0.48%) 0.48% (0.35%)
σQ(3) - - -0.19% (0.43%) -0.10% (0.45%) -0.39% (0.29%)
σQ(4) - - 0.19% (0.39%) 0.25% (0.39%) 0.44% (0.28%)
σQ(5) - - 5.36% (0.27%) 5.46% (0.28%) 3.78% (0.19%)

Dynamic risk premium dζt
ζt

= −k dt+ σ′Q dzt

k - - - - - - 34.93% (2.46%)
βQ - - - - - - 70.52% (4.97%)

logL 7861.3 8459.7 8453.7 8525.6

Parameter estimates and standard errors of (i) estimation without housing data, (ii) estimation with housing
data without a constraint on ηQ − rimp, (iii) estimation with a constraint on ηQ − rimp, and (iv) estimation with
a time-varying risk premium for housing. The log likelihood of model (i) is incomparable with the other three,
as it uses a different data set.
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Table 3 displays the estimated parameters of the four models. To understand the impact

of adding housing data we examine the parameters of models (i) and (ii). The addition of

housing data leads to an estimate of 4.85% for the risk premium ηQ, which is 0.63% higher than

the equity risk premium. This is an interesting observation, considering that we estimate the

volatility of equity from σS at almost 3 times that of housing. Furthermore, housing returns

are, at least on the surface, more predictable. Because of these factors, one might expect that

housing investments would have a lower price of risk. We offer two potential explanations why

that is not the case in this unconstrained calibration. The first explanation is that certain

obstacles, such as low liquidity, entry costs, and maintenance costs, lead investors to require

a higher return on investment. The second explanation is that the data period from 1973 to

2021 is not representative of the long term behaviour of house prices. Other forces such as the

shortage in housing supply, the increase in available credit and a decreasing discount rate may

have caused positive price shocks that cannot (fully) be attributed to the factors in the current

model. In either case, the parameters confirm that housing has historically been a well-rewarded

investment.

However, the Committee Parameters (2019) does not expect similar returns in the future. In

model (iii), we apply their restriction on the unconditional return on real estate investments.

Because the unconditional return is a function of the steady state interest rate δ0R and the risk

premium ηQ, this restriction leads to a lower estimate of both. This decrease in δ0R in turn

leads to an increase in ηS to explain the high historical return on equity. The difference between

the restricted and unrestricted estimates shows the discrepancy between the housing market’s

historical performance and the future projection by the Committee Parameters (2019). The

restriction leads to a drop in log-likelihood of 6.0.

In model (iv) we allow for a time-varying risk premium. The mean-reversion parameter k is

estimated at 0.349, corresponding to an autoregressive coefficient βQ of 0.705, which is roughly

equal to the autocorrelation in the data. The log likelihood increases by 71.9, which corresponds

to a Likelihood-Ratio Test statistic of 143.8. Because we only require 1 additional parameter,

the test statistic follows a χ2(1) distribution. As such, the increase is significant for any practical

confidence level.

We take a closer look at how model (iii) fits the data in Table 4. For conciseness, we only show

the statistics of the the 5-year yield, as they are comparable with those of the other maturities.

We find that the model is able to explain most of the variance and first-order autocorrelation

(FOAC) in the 5-year yields. It is also able to partly follow the inflation rate. However, it has

no explanatory power for any of the variance in the equity and housing returns. In fact, the
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Table 4: Model (iii) fit statistics

Mean (%) Variance (%) Skewness Kurtosis FOAC
5-year Yield
Data 4.905 2.969 -0.138 -0.870 0.966
Residuals -0.040 0.482 0.227 0.579 0.156

Inflation rate
Data 2.438 2.263 1.060 1.624 0.475
Residuals -0.137 1.851 0.530 1.500 0.211

Equity returns
Data 10.429 29.658 -0.249 0.501 0.163
Residuals 2.829 30.033 -0.321 0.421 0.178

Housing returns
Data 5.380 10.289 0.621 4.031 0.678
Residuals 2.443 10.967 0.043 3.631 0.701

residual variance is larger than the variance in the original data, which is likely due to the extra

restrictions on their respective risk premia. These restrictions also explain why residuals of both

returns have a substantial positive mean. Furthermore, the residuals in the housing data are still

heaviliy serial correlated, so the two-factor structure does not pick up on the housing trends. We

can see this confirmed by the model fit of equity and housing in Figure 5, which does not appear

to track the data. This is not surprising, considering that we only have two factors to explain

nine variables. Equity returns in particular are notoriously hard to predict. However, the serial

correlation in housing returns suggests that we can do better on that front.
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Figure 5: Model fit with the calibration of model (iii)
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Figure 6 and Table 5 describe the fit on housing returns of model (iv), which includes the

time-varying risk premia. There are no noticeable difference in the fit of the other variables as
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compared to model (iii), so we omit them from the analysis.

Figure 6: Model (iv) fit
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Table 5: Model (iv) fit statistics

Mean (%) Variance (%) Skewness Kurtosis FOAC
Housing returns
Data 5.380 10.289 0.621 4.031 0.678
Residuals 0.909 7.700 -0.443 3.613 -0.066

The addition of a time-varying risk premium leads to a better fit on housing data. Here

the model matches the trend in the data, especially as it becomes less noisy. Indeed, Table 5

shows that the residual autocorrelation in model (iv) is close to 0, and the residual variance

drops by 30% as compared to model (iii). Furthermore, the residual mean decreases from 2.4%

to 0.9%. The dynamic risk premium thus helps explain the high housing returns that do not

match the Committee Parameters (2019) restrictions. Given the substantial improvement in fit

for the housing market, as also indicated by the jump in log likelihood, we use model (iv) and

its parameters in the second part of this paper.

3 Household model

Within the economy, we construct a household consumption model. We can infer which pen-

sion fund investment strategy maximises household welfare by analysing the utility a household

obtains from consumption. We simulate Nsim = 20000 households that enter our model at age

25, at which point t = 1. They first work for TW = 40 years and then spend TP = 20 years

in retirement, for a total of T = 60 years in our model. Households obtain utility from real

consumption of non-durable goods c and the number of housing units h, which represents the

various valuable aspects of houses, such as location, size and appearance. In line with among

others Cocco (2005), households have a Cobb-Douglas utility function with Constant Relative
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Risk Aversion (CRRA):

u(c, h) =
(c1−λhλ)1−γ

1− γ
.

Here λ describes the relative preference between the two goods and γ is the coefficient of relative

risk aversion. The goal for households is to maximise their lifetime utility

max
T∑
t=1

ρt
(c1−λ
t hλt )1−γ

1− γ
. (5)

Although we are specifically focused on finding optimal pension investments, we still require

a realistic model for the housing and consumption decisions. Optimising all decision variables

at once is theoretically possible, but this quickly becomes computationally infeasible, especially

when adding more complexities to the model. We deal with this by first constructing a simplified

model which can be solved numerically. We call this model the ‘Baseline Model’ and discuss its

optimisation in Section 3.1. Then we use the optimised household choices from the Baseline

Model as inputs in more complex models, in which we focus solely on optimising the pension

fund strategy. We discuss this process in Section 3.2.

3.1 Baseline Model

3.1.1 Income and Pension

The income for a household between 25 and 64 years old comes from labour Lt. Real labour

income lt is constant and equal for each household. The pension system is based on the new Dutch

pension contract, the details of which are outlined in Metselaar et al. (2020). To simplify the

model, we assume no solidarity buffer, which means there is no inter-generational risk-sharing.

In this system, each household has its own pension depository, so we can model one individual

household at a time, rather than a whole population.

Each year, households allocate a fraction p of their income to their pension depository WP,

which starts at 0. When households reach age 65 at t = TW, they spend the next 20 years in

retirement and start receiving pension benefits according to

Bt =
WP
t∑T−t

τ=0 DFτ,t
,

where DFτ,t denotes the discount factor between t and t + τ , which we set equivalent to a

bond price at time t with maturity τ . The pension assets of a household are invested into

stocks, long-term bonds that match the expected pension benefits, and single-period bonds with

fractions xS, xB and xC respectively, where xS + xB + xC = 1. A household has a return
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RP
t = xBRB

t + xSRS
t + xCRft on its pension, such that

WP
t+1 = RP

t (WP
t −Bt) + pLt+1. (6)

3.1.2 Consumption and Housing

Households spend their wealth on the consumption of non-durable goods, CNDG
t , and housing.

The housing decision consists of their tenure 1own
t and number of housing units ht, which is the

current house price Ht normalised by the housing index:

ht =
Ht

Qt
.

Renting households spend a fixed fraction ξR of the house value on housing services. Any financial

wealth that remains after consumption is invested in the single-period bond with return Rft . The

dynamics of a renting household’s financial wealth Wt are then

Wt+1 = (Wt − CNDG
t −HtξR)Rft+1 +Bt+1 + (1− p)Lt+1, if 1own

t = 0. (7)

Because the elasticity of substitution for Cobb-Douglas utility is 1, a renting household will always

spend the same fraction λ on housing services and (1-λ) on non-durable goods, irrespective of

current price levels. This can intuitively be thought of as a balance between two effects when

a good increases in price. On the one hand, a household wants to maintain its consumption

so is inclined to spend more. On the other hand, the good has become less attractive so the

household is inclined to spend less. These effects even out exactly in Cobb-Douglas utility. This

simplification also holds in multiple periods because the wealth in future periods is not affected

by the current consumption (Yao and Zhang, 2005). However, it does not hold for home owners,

because their expenses not only count as consumption but also as a risky investment in a housing

asset.

Home owners also spend a fixed fraction ξO of the house value on housing services. In addition,

they pay a minimum fraction δ as a down payment. They receive return RH
t = Qt/Qt−1 on their

house value and pay Rft on the mortgage. Equating mortgage interest to savings interest greatly

reduces the complexity of the model because it eliminates separate decisions on the size of the

mortgage and repayments. We further reduce the number of state and decision variables by

assuming that an investor can adjust mortgage size and tenure flexibly every year without costs.

This is equivalent to the household selling its house at the end of each year and buying a new

house without transaction costs. The financial wealth of a home owner then evolves according
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to

Wt+1 = (Wt − CNDG
t −Ht(ξO + δ))Rft+1 +Ht(R

H
t+1 − (1− δ)Rft+1)

+Bt+1 + (1− p)Lt+1, if 1own
t = 1. (8)

Consumption and house size must be positive in each period. Furthermore, the savings, as

indicated by the first term on the right-hand side in (7) and (8), must be non-negative. We

impose each of these restrictions when optimising the decisions.

We let half of the simulated households be permanent owners and the other half permanent

renters. It is feasible to optimise the tenure decision, but initial results show that this is a

somewhat futile exercise. Specifically, we find that households beyond the age of 75 always

prefer renting due to the reduced risk. Before that, households almost always prefer to own

their house, except when their current wealth is very low compared to expected wealth in future

periods. These choices are not an accurate reflection of the real world, where many younger

households rent, and some older households still own their house in their final years. Important

reasons for this discrepancy between our model and the real world are lack of a bequest motive

and of a lower bound for house prices. Because we are also interested in the impact on young

renters and on old owners, we let tenure be decided exogenously in that households are either

permanent owners or permanent renters. The set d of decision variables to be optimised is then

d = {ct, ht, xt}Tt=1. We discuss the optimisation technique in the next section.

3.1.3 Solving with backward induction

We refer to the optimal decision variables as the solution to the model, d∗. Finding the solution

is complicated because it is different for each combination of the state variables. In the Baseline

Model the state variables are time, wealth, pension wealth and income {t, wt, wP
t , lt}. We deal

with this dependency by constructing a grid over the state variables and finding the solution

d∗t ({t, wt, wP
t , lt}) for each gridpoint numerically, where dt denotes the set of decision variables

at time t. This presents two new issues, however: (1) long computation time can make solv-

ing infeasible and (2) the gridpoints can not be solved separately because the solutions across

gridpoints depend on each other.

First, computation time rapidly increases with the number of state variables since each state

variable adds an additional dimension to this grid. For instance, allowing households to carry

over their house to the next period would add two additional state variables: the house value

and the mortgage. If we include 20 gridpoints for each, this simple modification would increase
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the computation time by 400.1 Evidently, minimising the number of state variables is the key

to a tractable model. Next to simplifying the model, we normalise the variables by wP , which

further reduces the number of state variables by 1. We then denote the set of remaining state

variables by zt = {t, wt/wP
t , lt/w

P
t } Even though labour income is assumed constant, we can not

ignore it as a state variable because the ratio lt/wP
t can still vary across simulations.

The second issue is that the solutions across time are interdependent. Specifically, for a given

state zt, each combination of decisions leads to a realised utility at time t and a new state zt+1.

Thus, to find the solution at t we first need to know the expected utility when reaching any state

zt+1. We solve this by splitting the problem into many two-period problems. We start in the

final period, find the utility of each state and then iterate backwards through a process called

backward induction. Judd (1998) writes extensively on this topic.

Recall from equation (5) that households maximise the expected utility over the remaining

years. Thus, we can define the value of being in state zt as the expected utility over the remaining

years, given that the household makes the optimal decisions. We refer to this as the value

function:

vt(zt) = max
{cs,hs,xs}Tt

T∑
s=t

ρs−tEt(u(cs, hs)).

The value function can be written recursively, commonly known as the Bellman equation:

vt(zt) = max
{cs,hs,xs}Tt

T∑
s=t

ρs−tEt(u(cs, hs))

= max
{cs,hs,xs}Tt

u(ct, ht) +

T∑
s=t+1

ρs−tEt(u(cs, hs))

= max
{ct,ht,xt}

u(ct, ht) + ρEt(vt+1(zt+1)).

This representation shows how we can split the large problem into many two-period problems,

using the value of any given state in the next period to calculate the value in the current period.

The final period T is easily solved because households obtain no further utility in T + 1, so

the expected value term disappears. We construct a grid GT over the state variables w/wP and

l/wP. For each gridpoint ZT ∈ GT , we find the decision variables that maximise u(cT , hT ). We

then save this solution d∗T (ZT ) along with the value vT (ZT ).

Next, we work backwards from T − 1 to 1. At each point in time we construct a grid Gt

and optimise the decision variables for all gridpoints. Here we use the wealth dynamics from

equations (6), (7) and (8) to determine what state zt+1 will be reached with the decisions dt and
1For reference, Van Hemert (2010) uses 60 parallel-connected computers to solve a comparable model with six

decision variables and five state variables and has a computation time of 10 hours for a single run.
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current state Zt. We can then assess the value of this state because we have already determined

vt+1(Zt+1) for all Zt+1 ∈ Gt+1. Since the state variables for wealth are on a continuous scale,

the final step is to interpolate the value function between the gridpoints. We use cubic Hermite

interpolation, as is frequently done in the literature. For a comprehensive review of different

interpolation techniques, we refer to Judd (1998). We set up a grid of 20 values for wt/wP
t , 20

for lt/wP
t and 60 for t. Since labour income is 0 in the final 20 years, this gives a total of 16,400

individual optimisations.

3.2 Extended models

While the Baseline Model allows us to find the optimal solution for every possible state, it relies

on unrealistic assumptions. In particular, real households are not able to switch houses every

year without costs and there may not be any houses available in the lower price ranges, even

if the household would theoretically prefer these. These frictions mean that in reality home

owners are at higher risk than the Baseline Model accounts for. We construct four models to

understand how this impacts the optimal pension strategy. The first model, which we refer to as

the ‘Flexible Housing Model’, uses the same assumptions as the Baseline Model, but with a new

estimated pension strategy to make it comparable with the other models. The second model,

which we refer to as the ‘Inflexible Housing’ model, reduces the flexibility in housing transfers.

Rather than changing every year, households have a holding period of 5 years, which they can

only break if their net worth before income would become negative. In this case, they sell their

house and use their income to finance an alternative option. The third model, which we refer to

as the ‘Maximised Housing’ model, also has this inflexibility. In addition, home owners choose

the biggest house they can finance after their non-durable goods consumption. This maximum

is restricted by the minimum down payment δ. These models all assume households may have

some cash saved up for a rainy day. In reality, some households live mostly of their pension

income. In the fourth model, ’Maximised Consumption’, households spend all wealth that is left

after their housing expenses on non-durable goods consumption, so they have no precautionary

savings.

Due to the additional state variables, it is no longer feasible to solve these extended models

through backward induction. Instead, we use the solutions from the Baseline Model as input

for household choices ct and ht. We then find the pension strategy by optimising a parametric

function that accounts for the age of the household. The age-dependent functions are captured
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in the vector θ(t):

θ(t) =


1

T − t
T
t − 1

 .

We further allow the allocation to depend on some indicator of home ownership status ωm,t. We

optimise the the model-dependent parameters Bm ∈ R2×3, which govern the interaction such

that the allocation to risky assets is

xS
m,t =

(
1 ωm,t

)
Bmθ(t).

We consider three investment strategies that depend on home ownership through ωm,t, where

ωm,t differs for each model m. The first strategy does not differentiate through home ownership:

ω1,t = 0. In the second strategy we add a linear relation with the dummy variable ω2,t = 1own
t ,

which indicates home ownership status. The third strategy uses the value of the house owned as

a fraction of total wealth: ω3,t = Ht/(wt +wH
t +wP

t +hct). Here wH
t denotes net housing wealth

and hct the human capital at t: the sum of discounted future labour income. This strategy more

accurately reflects the sensitivity of household wealth to shocks in the housing market, but would

be more complex to implement in practice.

We find the optimal parameters by maximising the certainty equivalent across the pension

years. For an average utility Ū , the certainty equivalent measures the corresponding value for

the Cobb-Douglas term c1−θhθ:

CE =

(
(1− γ)Ū∑TW+TP

t=TW ρt

)1/(1−γ)

,

which follows from inverting the function for lifetime average utility (5). We separately measure

the utility of the home owners and renters, ŪO and ŪR, to find their corresponding certainty

equivalents CEO and CER. We then obtain the parameters by maximising the equally weighted

sum

max
Bm

CEO + CER

2
.

This approach ensures that the interests of home owners and renters are weighted equally.

3.3 Parameters

Finally, we discuss the parameters of the model. The economy of each simulation is generated

with the variables from Section 2. Previous research on the US market frequently scales the house
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price volatility upward because inidividual house prices are more volatile than the aggregate.

For instance, Van Hemert (2010) scales annual volatility to 15%. However, we have no data on

idiosyncratic volatility in the Netherlands, in particular in the presence of market cycles, so we

refrain from this scaling. It is possible that this underestimates the housing risk that households

are subject to.

Table 6 contains the parameters that describe the household preferences. The relative risk

aversion is 5, as is common in the literature. We follow Corradin et al. (2014) and set the

Cobb-Douglas parameter to 0.3. We set the subjective discount rate to discount according to

the annualised steady-state nominal interest rate δ0R. The years spent in each bracket are in line

with previous research into the Dutch pension system (Chen et al., 2019). Real labour income

is set equal to the median income for a 25-year-old household (CBS, 2021c). We calibrate the

annual pension contribution such that, on average, the pension income in the first year of pension

is equal to the labour income in the last year of work.

Table 6: Household parameters

Parameter Symbol Value
Relative risk aversion γ 5
Cobb-Douglas housing weight λ 0.3
Subjective discount rate ρ 98.2%
Years spent working TW 40
Years spent in retirement TP 20
Real labour income l 24,100
Pension contribution p 13%
Recurring costs of ownership ξown 0.85%
Recurring costs of rental ξrent 4.10%
Minimum down payment δ 30%

Table 6 also shows the parameters that affect the housing choice. CPB (2020) calibrate the

steady-state rental price at 4.10% of the house price. In Section 2, we derived the net rental

income at 3.25%. It follows that the costs of ownership are then 0.85%. Finally, we set the

minimum down payment at 30%.

4 Results

We present the optimal pension strategies and household choices. All figures in this section are

inflation-corrected.
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4.1 Pension strategy

In this section, we discuss the optimised pension strategies from the extended models. Table

7 shows how a differentiating strategy impacts the certainty equivalent across the four models.

As expected, the benefit of accounting for tenure is relatively small in the Flexible Housing

model, where households switch to a new house every year. This indicates households can better

manage their risk from housing shocks by moving to smaller houses when this option is always

immediately available. This is likely further aided by the minimum down payment of 30%, which

keeps the housing net worth positive in most scenarios.

The introduction of a holding period of 5 years in the Inflexible Housing model substantially

decreases the certainty equivalent. Throughout this holding period, house sizes can deviate from

their optimum and leave both home owners and renters with a house that is either smaller

than they would choose or one that is worth too much, such that the house no longer matches

the risk profile of the household. In this case, accounting for tenure increases welfare by a full

percentage point, the equivalent of a certain e240 in consumption each year for a median income

household. Households in the Maximised Housing model have an even bigger gap between their

chosen and optimal house. Here accounting for tenure increases welfare by 2.5%. The advantage

of differentiation disappears when households maximise their consumption, in which case it is

primarily the renters that take on additional risk because they lack a buffer.

Table 7: Certainty Equivalent for different housing models and pension strategies

Equal allocation Tenure Housing wealth
Flexible Housing

CE 27,626 27,735 27,701
Welfare increase 0.39% 0.27%

Inflexible Housing
CE 24,278 24,526 24,511
Welfare increase 1.02% 0.96%

Maximised Housing
CE 20,781 21,300 21,104
Welfare increase 2.50% 1.55%

Maximised Consumption
CE 12,418 12,430 12,423
Welfare increase 0.10% 0.04%

The equal allocation strategy does not consider a differentiating strategy. The tenure strategy allocates
differently based on tenure. The housing wealth strategy allocates based on the fraction of total household
wealth that is invested in housing.

In all housing models, accounting for tenure is more effective than accounting for the fraction

of total wealth invested in housing, even though the latter is arguably a better indicator of the

risk a household is exposed to. This may be explainable by a disparity between our model and

the real world. In our model, all households base their housing choices on the same solution and
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have the same down payment, which may decrease the value of differentiating between households

in this way. Furthermore, households in our model are either permanent owners or permanent

renters, making the tenure strategy especially resilient to changes in the future. We can thus not

be sure that the more complex housing wealth strategy would also be inferior in the real world.

Still, the results suggest that the relatively simple tenure strategy can bring substantial welfare

increases.

Figure 7 shows the optimal risky asset allocation for the ‘Equal allocation’ and the ‘Tenure’

strategy. The general picture is that allocations trend downwards as households age, in line

with the consensus in life-cycle investing. Households would optimally take a highly leveraged

position in the first few years, which rapidly decreases as they build up pension wealth. This

leverage means that pension wealth occasionally dips below 0 in our simulation, although the

new contributions allow it to recover relatively quickly. Chen et al. (2019) find similar results

at the start of the curve. However, through the way they parameterise their curve, they impose

that that pensioned households are largely treated the same across their pension years. Our

curves, however, show that the optimal allocation still decreases in the last years of the life cycle,

in particular for renters.

A comparison between the four housing models shows substantial differences in the allocation.

When households can flexibly change houses, we see a relatively small difference between the

investment strategy for renters and owners. The strategies deviate considerably when households

are under increased risk in the Inflexible and Maximised Housing models. Interestingly, the

strategies converge again at the end of the life cycle. This is because home owners decrease their

house size towards the end of their life to reduce risk, which brings their risk profile closer to that

of renters. Finally, the Maximised Consumption model shows that the difference in strategies

disappears when households immediately spend all their savings. This has a larger effect on

renters, who do not have the house value as a buffer when pension returns are negative. As such,

they prefer a substantially safer strategy than in the other models. This is in line with the results

from Chen et al. (2019), whose allocations are generally less aggressive than ours. Households

in their model also have no personal savings, so their stable consumption relies entirely on the

pension depository.

4.2 Household finances

Our simulation also offers insights into the financial differences between renters and owners.

Figure 8 shows how their average asset composition evolves. In the first years, home owners

quickly grow their assets compared to renters. However, as the years pass, renters partly make
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Figure 7: Risky asset allocation in the equal allocation and tenure strategy
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up for this through their riskier pension allocation. Both types of households retain a buffer of

cash that they start to consume in their pension years. Our model assumes that this cash is

invested safely in the short rate. If households were to invest part of this cash in risky assets,

we would likely see an overall decrease in risky pension allocation.

Figure 9 further explores how the household choices vary among renters and owners. As

households reduce their built-up buffer, the average consumption increases gradually over time.

Rental home values increase for the same reason. Neither of these is related to inflation, as the

depicted figures are inflation-corrected. On the other hand, home owners start decreasing their

home value after reaching 50, with a rapid decrease at the end of their lifetime. These trends

may not reflect how some households behave in real life. An explanation is that people tend to

leave behind an inheritance in the real world, which we have not accounted for. In this case,

renters may prefer to save some wealth later in life rather than spending it on their rental home

and consumption. In a similar vein, home owners would frequently have some cash on hand to

compensate for housing shocks, so they would be less averse to the housing risk.
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Table 8: Average risky asset allocation

Renters Equal allocation Owners

Flexible Housing 154% 143% 130%
Inflexible Housing 139% 121% 100%
Maximised Housing 136% 114% 87%
Maximised Consumption 88% 88% 91%

The ‘Equal allocation’ investment displays the strategy when the fund does not differentiate between renters
and owners. The ‘Renters’ and ‘Owners’ investments display the strategy where the fund differentiates based on
tenure.

Figure 8: Average asset composition under the flexible model
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Figure 9: Average consumption and house value under the flexible model
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5 Conclusion

Our research sheds new light on how pension funds can personalise the risk profile of their

beneficiaries. We find that differentiation based on housing tenure is useful when households are

in a sub-optimal housing situation. The benefits are particularly prominent when home owners

have to spend more on their house than they would ideally like to, as is the case in the current

Dutch housing market. This benefit can already be obtained from relatively simple differentiation

between home owners and renters, without requiring additional information.

One caveat to these benefits is that they only come to fruition in the later stages of one’s life.

They therefore do not provide a direct solution for younger people who can not finance a home.

In fact, it would likely be ill-advised to use pension assets for this purpose, as extra funds would

only further inflate the housing market.

However, our calibration of the Dutch economy indicates that the housing market itself may

reach a solution for those now priced out. In our economic model, where we add a housing asset

to the existing models, we expect future returns to be lower than their historical counterparts.

In fact, once house prices have adjusted to a low-interest rate environment, our model expects

house prices to decrease slightly on a yearly basis, with rental income as the sole profit driver

for investors. We find that market cycles can help explain the surge in house prices over the

last decade. A different state in the cycle, with decreasing house prices, could make the housing

market more accessible for those currently priced out, although the timing of such a correction

is unknown.

Future research into the Dutch housing market could use our financial market model and its

calibration to analyse the impact of policy changes. Another interesting direction would be to

investigate how the housing market cycles affect investment decisions.
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A State space model

We follow Pelsser (2019) in augmenting the state vector with the observed variables, which allows

us to use a standard version of the Kalman filter:

x̃t =


xt

ln Πt

lnSt

lnQt

 .

The state space formulation consists of two parts: the measurement equation and the transition

equation. The measurement equation dictates how the observed variables relate to the state

vector:

ỹt =


yt

ln Πt

lnSt

lnQt

 = a+Bx̃t + ηt, η ∼ N(0,H)

Here η is assumed i.i.d. and a and B contain the affine structure of the yields and a trivial

structure to connect the other variables:

a =



−a(τ1)/τ1

...

−a(τm)/τm

0

0

0


, B =



−b(τ1)′/τ1 0 0 0
...

...
...

...

−b(τ1)′/τ1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

The model without housing data omits the last row of a and the last row and column of B. The

term structure coefficients follow the ordinary differential equations

a′(τ) = −b(τ)′λ̃0 +
1

2
b(τ)′b(τ)′ − δ0R,

b′(τ) = −(K ′ + Λ̃′1)b(τ)− δ1R,

with solutions

b(τ) = (K ′ + Λ̃′1)−1[exp(−(K ′ + Λ̃′1)τ)− I2]δ1R

a(τ) =

∫ τ

0
a′(s)ds,
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and a(0) = 0, b(0) = 0. Alternatively, Muns (2015) derives closed form solutions for a(τ) that

don’t require numerical integration and are hence computationally more efficient. We adopt that

approach and refer to Muns (2015) for the full derivation.

The second part of the state space formulation is the transition equation, which describes how

the state vector evolves over time. In continuous time, this can be written as the multivariate

Ornstein-Uhlenbeck process:

dx̃t =




02×1

δ0π − 1
2σ
′
πσπ

δ0R + ηS − 1
2σ
′
SσS

δ0R + ηQ − rimp − 1
2σ
′
QσQ

+


−K O2×3

δ′1π 01×3

δ′1R 01×3

δ′1R 01×3

 x̃t
dt+


[I2×2 O2×3]

σ′π

σ′S

σ′Q

 dz̃t.

However, we require a discrete version as a transition equation. We consider the exact discreti-

sation from dx̃t = (θ0 +Θ1x̃t) dt+ΣX dz̃t to

x̃t = φ+Φx̃t−h + εt, εt ∼ N(0,Q).

To obtain the transition parameters we consider the eigenvalue decomposition Θ1 = UDU−1.

Given thatK is a lower triangular matrix, the eigenvalues ofΘ1 are k1, k2 and 0 with multiplicity

3. Then the transition parameters are as follows.

Φ = U exp(Dh)U−1

φ = UFU−1θ0,

where F is a diagonal matrix with elements

(F )ii = hα((D)iih), α(x) =
exp(x)− 1

x
,

with α(0) = 1. The derivation for Q gives

Q = UV U−1,

(V )ij = [U−1ΣXΣ
′
X(U−1)′]ijhα([(D)ii + (D)jj ]h)
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B Kalman filter

The measurement and transition equation allow us to estimate the model with a Kalman filter.

We follow Pelsser (2019) in setting the initial estimates equal to their unconditional expected

values:

x̂0 = lim
t→∞

E[x̃t] = 0,

P0 = lim
t→∞

var[x̃], vec(P0) = (I −Φ⊗Φ)−1 vec(Q).

The prediction equations are

x̂t|t−h = φ+Φx̂t−h,

Pt|t−h = ΦPt−hΦ
′ +Q.

The likelihood contribution is

ŷt|t−h = a+Bx̂t|t−h,

ut = yt − ŷt|t−h

Vt = BPt|t−hB
′ +H,

logLt = −1

2
ln |Vt| −

1

2
u′tV

−1
t ut.

Finally, the updating step is

Kt = Pt|t−hB
′V −1
t ,

Lt = I −KtB,

x̂t = x̂t|t−h +Ktut,

Pt = LtPt|t−h.

The algorithm maximises the log likelihood function

logL =
T∑
t=2

logLt.
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